JP7224800B2 - エポキシ樹脂組成物、プリプレグ、繊維強化複合材料、及びそれらの製造方法 - Google Patents
エポキシ樹脂組成物、プリプレグ、繊維強化複合材料、及びそれらの製造方法 Download PDFInfo
- Publication number
- JP7224800B2 JP7224800B2 JP2018140958A JP2018140958A JP7224800B2 JP 7224800 B2 JP7224800 B2 JP 7224800B2 JP 2018140958 A JP2018140958 A JP 2018140958A JP 2018140958 A JP2018140958 A JP 2018140958A JP 7224800 B2 JP7224800 B2 JP 7224800B2
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- resin composition
- prepreg
- reinforcing fiber
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Reinforced Plastic Materials (AREA)
- Epoxy Resins (AREA)
Description
特許文献1には、熱硬化性樹脂に熱可塑性樹脂を溶解させることにより、熱硬化性樹脂に靱性を付与させる方法が記載されている。この方法によれば、熱硬化性樹脂に対してある程度の靱性を付与させることができる。しかし、高い靱性を付与させるためには、熱硬化性樹脂に多量の熱可塑性樹脂を溶解させなければならない。その結果、多量の熱可塑性樹脂が溶解している熱硬化性樹脂は、粘度が著しく高くなり、炭素繊維からなる強化繊維基材内部に、十分な量の樹脂を含浸させることが困難となる。この様なプリプレグを用いて作製されるコンポジットは、ボイド等の多くの欠陥を内在する。その結果、コンポジット構造体の圧縮性能及び損傷許容性などにマイナスの影響を及ぼす。
特許文献2~4には、プリプレグ表面に熱可塑性樹脂微粒子を局在化させたプリプレグが記載されている。これらのプリプレグは、表面に粒子形状の熱可塑性樹脂が局在しているため、初期のタック性が低い。また、表層に内在する硬化剤との硬化反応が進行するため、保存安定性が悪く、経時的にタック性やドレープ性が低下する。さらに、この様な硬化反応の進行してしまったプリプレグを用いて作製されるコンポジットは、多くのボイド等の欠陥が内在し、コンポジット構造体の機械物性が著しく低下する。
で示されるエポキシ樹脂[A]と、
グリシジルエーテル基を有する芳香族エポキシ樹脂であって、グリシジルエーテル個数/芳香環個数が2のエポキシ樹脂[B]と、
を含んで成ることを特徴とするエポキシ樹脂組成物。
前記強化繊維基材内に含浸された〔1〕~〔4〕の何れかに記載のエポキシ樹脂組成物と、
から成ることを特徴とするプリプレグ。
本発明のエポキシ樹脂組成物は、少なくともエポキシ樹脂[A]と、エポキシ樹脂[B]を含むとともに、アミン系硬化剤を含んで成る。本発明のエポキシ樹脂組成物は、これらの他に、熱可塑性樹脂やその他の添加剤を含んでいても良い。
本発明のエポキシ樹脂組成物は、下記化学式(1)
で示されるエポキシ樹脂[A]を含む。R1~R4が、脂肪族炭化水素基または脂環式炭化水素基である場合、その炭素数は1~4であることが好ましい。
本発明のエポキシ樹脂組成物は、グリシジルエーテル基を有する芳香族エポキシ樹脂であって、グリシジルエーテル個数/芳香環個数が2のエポキシ樹脂[B]を含む。なお、本発明において、ナフタレン環やアントラセン環など縮環構造は1つの芳香環とみなす。
エポキシ樹脂[B]は、エポキシ樹脂[A]の粘度を低下させて、プリプレグ作製時の樹脂含浸性を向上させるとともに、硬化樹脂の弾性率を向上させる。そのため、エポキシ樹脂[A]とエポキシ樹脂[B]とを組み合わせて用いることにより、耐熱性及び高弾性率を維持しつつ、FRPの各種物性を向上できる。
本発明のエポキシ樹脂組成物における、全エポキシ樹脂量に対する、エポキシ樹脂[A]及びエポキシ樹脂[B]が占める割合は、50質量%以上であることが好ましく、70質量%以上であることがより好ましい。
グリシジルアミン構造を含有するエポキシ樹脂としては、テトラグリシジルジアミノジフェニルメタン、N,N,O-トリグリシジル-p-アミノフェノール、N,N,O-トリグリシジル-m-アミノフェノール、N,N,O-トリグリシジル-3-メチル-4-アミノフェノール、トリグリシジルアミノクレゾールの各種異性体などが例示される。
グリシジルエーテル構造を含有するエポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂が例示される。
また、これらのエポキシ樹脂は、必要に応じて、芳香族環構造などに、非反応性置換基を有していても良い。非反応性置換基としては、メチル、エチル、イソプロピルなどのアルキル基やフェニルなどの芳香族基やアルコキシル基、アラルキル基、塩素や臭素などの如くハロゲン基などが例示される。
本発明のエポキシ樹脂組成物は、公知のアミン系硬化剤が用いられる。アミン系硬化剤としては、例えば、ジシアンジアミド、芳香族アミン系硬化剤の各種異性体、アミノ安息香酸エステル類が挙げられる。
本発明のエポキシ樹脂組成物は熱可塑性樹脂を含んでいても良い。熱可塑性樹脂としては、エポキシ樹脂可溶性熱可塑性樹脂とエポキシ樹脂不溶性熱可塑性樹脂とが挙げられる。
エポキシ樹脂組成物は、エポキシ樹脂可溶性熱可塑性樹脂を含有することもできる。このエポキシ樹脂可溶性熱可塑性樹脂は、エポキシ樹脂組成物の粘度を調整するとともに、得られるFRPの耐衝撃性を向上させる。
一方、エポキシ樹脂不溶性熱可塑性樹脂とは、FRPを成形する温度又はそれ以下の温度において、エポキシ樹脂に実質的に溶解しない熱可塑性樹脂をいう。即ち、エポキシ樹脂100質量部に対して、平均粒子径が20~50μmの熱可塑性樹脂10質量部を混合して190℃で1時間撹拌した際に、粒子の大きさが10%以上変化しない熱可塑性樹脂をいう。なお、一般的に、FRPを成形する温度は100~190℃である。また、粒子径は、顕微鏡によって目視で測定され、平均粒子径とは、無作為に選択した100個の粒子の粒子径の平均値を意味する。
エポキシ樹脂組成物には、エポキシ樹脂可溶性熱可塑性樹脂の他に、エポキシ樹脂不溶性熱可塑性樹脂を含有しても良い。本発明において、エポキシ樹脂組成物はエポキシ樹脂可溶性熱可塑性樹脂及びエポキシ樹脂不溶性熱可塑性樹脂の両者を含有していることが好ましい。
本発明のエポキシ樹脂組成物には、導電性粒子や難燃剤、無機系充填剤、内部離型剤が配合されてもよい。
本発明のエポキシ樹脂組成物は、エポキシ樹脂[A]およびエポキシ樹脂[B]と、必要に応じて、エポキシ樹脂[A]、[B]以外のエポキシ樹脂、硬化剤、熱可塑性樹脂やその他の成分と、を混合することにより製造できる。これらの混合の順序は問わない。
本発明のプリプレグは、強化繊維基材と、前記強化繊維基材内に含浸された上記エポキシ樹脂組成物と、から成る。
本発明で用いる強化繊維基材としては、特に制限はなく、例えば、炭素繊維、ガラス繊維、アラミド繊維、炭化ケイ素繊維、ポリエステル繊維、セラミック繊維、アルミナ繊維、ボロン繊維、金属繊維、鉱物繊維、岩石繊維及びスラッグ繊維などが挙げられる。
本発明のプリプレグの製造方法は、特に制限がなく、従来公知のいかなる方法も採用できる。具体的には、ホットメルト法や溶剤法が好適に採用できる。
具体的な含浸圧力は、線圧 0.01~250(N/cm)であり、0.1~200(N/cm)であることが好ましい。
本発明のプリプレグを特定の条件で加熱加圧して硬化させることにより、繊維強化複合材料(FRP)を得ることができる。本発明のプリプレグを用いて、FRPを製造する方法としては、オートクレーブ成形やプレス成形等の公知の成形法が挙げられる。
本発明のFRPの製造方法としては、オートクレーブ成形法が好ましく用いられる。オートクレーブ成形法は、金型の下型にプリプレグ及びフィルムバッグを順次敷設し、該プリプレグを下型とフィルムバッグとの間に密封し、下型とフィルムバッグとにより形成される空間を真空にするとともに、オートクレーブ成形装置で、加熱と加圧をする成形方法である。成形時の条件は、昇温速度を1~50℃/分とし、0.2~0.7MPa、130~180℃で10~300分間、加熱及び加圧することが好ましい。
本発明のFRPの製造方法としては、プレス成形法が好ましく用いられる。プレス成形法によるFRPの製造は、本発明のプリプレグ又は本発明のプリプレグを積層して形成したプリフォームを、金型を用いて加熱加圧することにより行う。金型は、予め硬化温度に加熱しておくことが好ましい。
成形時間は1~8時間が好ましい。
(エポキシ樹脂)
エポキシ樹脂[A]
・テトラグリシジル-3,4’-ジアミノジフェニルエーテル(合成例1の方法で合成、以下「3,4’-TGDDE」と略記する)
エポキシ樹脂[B]
・レゾルシノールジグリシジルエーテル(ナガセケムテックス社製 EX-201、グリシジルエーテル個数/芳香環個数=2、以下「Resorcinol-DG」と略記する)
その他エポキシ樹脂
・テトラグリシジル-4,4’-ジアミノジフェニルメタン(ハンツマン社製 Araldite MY721、グリシジルエーテル個数/芳香環個数=0、以下「TGDDM」と略記する)
・ビスフェノールA-ジグリシジルエーテル(三菱化学社製 jER825、グリシジルエーテル個数/芳香環個数=1、以下「DGEBA」と略記する)
・トリグリシジル-m-アミノフェノール(ハンツマン社製 Araldite MY0600、グリシジルエーテル個数/芳香環個数=1、以下「TG-mAP」と略記する)
(アミン系硬化剤)
・3,3’-ジアミノジフェニルスルホン(小西化学工業株式会社製、以下、「3,3’-DDS」と略記する)
(エポキシ樹脂不溶熱可塑性樹脂)
・ポリアミド12(エムスケミージャパン社製 TR-55、平均粒子径20μm、以下「PA12」と略記する)
(エポキシ樹脂可溶熱可塑性樹脂)
・ポリエーテルスルホン(住友化学工業株式会社製 スミカエクセルPES-5003P、平均粒子径20μm、以下「PES」と略記する)
(炭素繊維)
・“テナックス(登録商標)”IMS65 E23 830tex(炭素繊維ストランド、引張強度 5.8GPa、引張弾性率 290GPa、サイジング剤付着量 1.2質量%、帝人(株)製)
・“テナックス(登録商標)”IMS65 E22 830tex(炭素繊維ストランド、引張強度 5.8GPa、引張弾性率 290GPa、サイジング剤付着量 0.5質量%、帝人(株)製)
温度計、滴下漏斗、冷却管および攪拌機を取り付けた四つ口フラスコに、エピクロロヒドリン1110.2g(12.0mol)を仕込み、窒素パージを行いながら温度を70℃まで上げて、これにエタノール1000gに溶解させた3,4’-ジアミノジフェニルエーテル200.2g(1.0mol)を4時間かけて滴下した。さらに6時間撹拌し、付加反応を完結させ、N,N,N’,N’-テトラキス(2-ヒドロキシ-3-クロロプロピル)-3,4’-ジアミノジフェニルエーテルを得た。続いて、フラスコ内温度を25℃に下げてから、これに48%NaOH水溶液500.0g(6.0mol)を2時間で滴下してさらに1時間撹拌した。環化反応が終わってからエタノールを留去して、400gのトルエンで抽出を行い5%食塩水で2回洗浄を行った。有機層からトルエンとエピクロロヒドリンを減圧下で除くと、褐色の粘性液体が361.7g(収率85.2%)得られた。主生成物である3,4’-TGDDEの純度は、84%(HPLC面積%)であった。
(1) 樹脂硬化物の物性
(1-1) エポキシ樹脂組成物の調製
表1に記載する割合で、攪拌機を用いてエポキシ樹脂に溶解性熱可塑性樹脂を120℃で溶解させた。その後、80℃まで降温し、硬化剤および非溶解性熱可塑性樹脂を添加して30分間混合し、エポキシ樹脂組成物を調製した。なお、表1に記載の組成においては、エポキシ樹脂のグリシジル基と硬化剤のアミノ基は当量となる。
(1-1)で調製したエポキシ樹脂組成物を真空中で脱泡した後、4mm厚のシリコン樹脂製スペーサーにより厚み4mmになるように設定したシリコン樹脂製モールド中に注入した。180℃の温度で2時間硬化させ、厚さ4mmの樹脂硬化物を得た。
ティー・エイ・インスツルメント社製レオメーターARES-RDAを用い、直径25mmのパラレルプレートを用い、パラレルプレート間のエポキシ樹脂組成物の厚さを0.5mmとし、角速度10ラジアン/秒の条件で昇温速度2℃/分で180℃まで(1-1)で調整したエポキシ樹脂組成物の粘度測定を行い、温度-粘度曲線から100℃における粘度を測定した。
JIS K7171法に準じて、試験を実施した。その際の樹脂試験片の寸法は、80mm×10mm×4mmで準備した。支点間距離Lは16×h(厚み)とし、試験速度2m/minで曲げ試験を行い、曲げ強度と曲げ弾性率を測定した。
SACMA 18R-94法に準じて、ガラス転移温度を測定した。
樹脂試験片の寸法は50mm×6mm×2mmで準備した。UBM社製動的粘弾性測定装置Rheogel-E400を用い、測定周波数1Hz、昇温速度5℃/分、ひずみ0.0167%の条件で、チャック間の距離を30mmとし、50℃からゴム弾性領域まで貯蔵弾性率E’を測定した。logE’を温度に対してプロットし、logE’の平坦領域の近似直線と、E’が転移する領域の近似直線との交点から求められる温度をガラス転移温度(Tg)として記録した。
(2-1) プリプレグの作製
リバースロールコーターを用いて、離型紙上に、(1-1)で得られたエポキシ樹脂組成物を塗布して50g/m2目付の樹脂フィルムを作製した。次に、単位面積当たりの繊維質量が190g/m2となるように炭素繊維を一方向に整列させてシート状の強化繊維基材層を作製した。この強化繊維基材層の両面に上記樹脂フィルムを積重し、温度95℃、圧力0.2MPaの条件で加熱加圧して、炭素繊維含有率が65質量%の一方向プリプレグを作製した。
(2-1)で得られたプリプレグを温度26.7℃、湿度65%に10日間保存した後に、プリプレグをカットし、金型に積層することにより評価した。評価結果は以下の基準(○~×)で表した。
○:金型へ積層しても十分追従し、製造直後とほとんど変わらない取扱性。
×:プリプレグの硬化反応が進行し、タック・ドレープ性が著しく低下しており、金型へ積層することが困難な状況。
(2-1)で得られたプリプレグを温度26.7℃、湿度65%に10日間保存した後に、プリプレグを150mm×150mmにカットし、積層構成[0]10で積層し、積層体をコンパクション処理(真空パックで積層体を保管)を施し、温度23℃の環境下で保管した。
積層32日後に通常の真空オートクレーブ成形法を用い、0.59MPaの圧力下、180℃の条件で2時間成形した。試験片を切り出し、断面研磨を行い、ボイドの有無を顕微鏡により観察を行った。
○:ボイド無
×:ボイド有
プリプレグのタック性は、タッキング試験装置 TAC-II(RHESCA CO., LTD.)を用いて以下の方法により測定した。試験方法として、27℃に保持された試験ステージに(2-1)で得られたプリプレグをセットし、27℃に保持されたφ5のタックプローブで初期荷重100gfの荷重をかけて、10mm/secの試験速度で引き抜いた際の最大の荷重を求めた。
製造直後のプリプレグと、温度26.7℃、湿度65%に10日間保存したプリプレグに、それぞれタックプローブ試験を実施した。評価結果は以下の基準(○~×)で表した。
○:製造直後の荷重が200gf以上で、10日間保存後のタック保持率が50%以上100%未満
×:製造直後の荷重が200gf以上で、10日間保存後のタック保持率が50%未満
プリプレグのドレープ性は、ASTM D1388に準拠して、以下の試験により評価した。(2-1)で得られたプリプレグを0°繊維方向に対し90°方向にカットし、傾斜角度 41.5°の傾斜に対するドレープ性(flexural rigidity, mg*cm)を評価した。この評価は、プリプレグの製造直後と、温度26.7℃、湿度65%で所定の期間保存した後とに、それぞれ実施した。評価結果は以下の基準(○~×)で表した。
○:20日間経過時のドレープ性は製造直後と変わらない。
×:20日間経過時のドレープ性が製造直後と比較して50%以上低下
(3-1) OHC
(2-1)で得られたプリプレグを一辺が360mmの正方形にカット、積層し、積層構成[+45/0/-45/90]3Sの積層体を得た。通常の真空オートクレーブ成形法を用い、0.59MPaの圧力下、180℃の条件で2時間成形した。得られた成形物を幅38.1mm × 長さ304.8mmの寸法に切断し、試験片中心に直径6.35mmの穴あけ加工を施し、有孔圧縮強度(OHC)試験の試験片を得た。
試験片と試験は、SACMA SRM3に則って測定し、最大点荷重から有孔圧縮強度を算出した。
(2-1)で得られたプリプレグを一辺が300mmの正方形にカット、積層し、積層構成[+45/-45]2Sの積層体を得た。
測定試料は、通常の真空オートクレーブ成形法を用いて、0.59MPaの圧力下、180℃の条件で2時間成形した。得られた成形物を幅25mm × 長さ230mmの寸法に切断し、SACMA SRM7に則って測定し、最大点荷重からIPS強度、弾性率を算出した。
(2-1)で得られたプリプレグを一辺が360mmの正方形にカット、積層し、積層構成[+45/0/-45/90]3Sの積層体を得た。通常の真空オートクレーブ成形法を用い、0.59MPaの圧力下、180℃の条件で2時間成形した。得られた成形物を幅101.6mm × 長さ152.4mmの寸法に切断し、衝撃後圧縮強度(CAI)試験の試験片を得た。供試体(サンプル)は各試験片の寸法測定後、衝撃試験は落錘型衝撃試験機(インストロン社製 Dynatup)を用いて、30.5Jの衝撃エネルギーを与えた。衝撃後、供試体の損傷面積は、超音波探傷試験機(クラウトクレーマー社製 SDS3600、HIS3/HF)にて測定した。衝撃後、供試体の強度試験は、供試体の上から25.4mmでサイドから25.4mmの位置に、歪みゲージを左右各1本ずつ貼付し、同様に表裏に合計4本/体の歪みゲージを貼付けた後、試験機(島津製作所製オートグラフ)のクロスヘッド速度を1.27mm/minとし、供試体の破断まで荷重を負荷した。
(2-1)で得られたプリプレグを一辺が360mmの正方形にカットした後、積層し、0°方向に10層積層した積層体を2つ作製した。初期クラックを発生させるために、離型シートを2つの積層体の間に挟み、両者を組み合わせ、積層構成[0]20のプリプレグ積層体を得た。通常の真空オートクレーブ成形法を用い、0.59MPaの圧力下、180℃の条件で2時間成形した。得られた成形物(FRP)を幅12.7mm × 長さ330.2mmの寸法に切断し、層間破壊靭性モードI(GIc)の試験片を得た。
GIcの試験方法として、双片持ちはり層間破壊靱性試験法(DCB法)を用い、離型シートの先端から12.7mmの予亀裂(初期クラック)を発生させた後に、さらに亀裂を進展させる試験を行った。予亀裂の先端から、亀裂進展長さが127mmに到達した時点で試験を終了させた。試験片引張試験機のクロスヘッドスピードは12.7mm/分とし、n=5で測定を行った。
亀裂進展長さは顕微鏡を用いて試験片の両端面から測定し、荷重、及び亀裂開口変位を計測することにより、GIc算出した。
(2-1)で得られたプリプレグを所定の寸法にカットした後、積層し、0°方向に10層積層した積層体を2つ作製した。初期クラックを形成させるために、離型シートを2つの積層体の間に挟み、両者を組み合わせ、積層構成[0]20のプリプレグ積層体を得た。通常の真空オートクレーブ成形法を用い、0.59MPaの圧力下、180℃の条件で2時間成形した。得られた成形物(繊維強化複合材料)を幅12.7mm × 長さ330.2mmの寸法に切断し、層間破壊靭性モードII(GIIc)の試験片を得た。この試験片を用いて、GIIc試験を行った。
GIIc試験方法として、3点曲げ荷重を負荷するENF試験(end notched flexure test)を行った。支点間距離は101.6mmとした。厚さ25μmのPTFEシートにより作製したシートの先端が、支点から38.1mmとなるように試験片を配置し、この試験片に2.54mm/分の速度で曲げの負荷を与えて初期クラックを形成させた。
その後、クラックの先端が、支点から25.4mmの位置になるように試験片を配置し、2.54mm/分の速度で曲げの負荷を与えて試験を行った。同様に3回の試験を実施し、それぞれの曲げ試験の荷重―ストロークから各回のGIIcを算出した後、それらの平均値を算出した。
クラックの先端は顕微鏡を用いて、試験片の両端面から測定を行った。GIIc試験の測定は、n=5の試験片で測定を行った。
表1に記載する成分を攪拌機を用いて混合してエポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を硬化させた樹脂硬化物の各種物性を表1に示した。実施例1~5は、100℃において130Pa・s以下の低粘度、180MPa以上の高曲げ強度、4.3GPa以上の高曲げ弾性率、190℃以上の高Tgを示した。
比較例2は、エポキシ樹脂[B]を用いずに、TG-mAPを用いて粘度を低下させたが、プリプレグの保存安定性が低くなった。
比較例3、5は、エポキシ樹脂[A]を用いずに、TGDDMを用いたが、樹脂物性CFRPの物性が低くなった。
比較例4は、エポキシ樹脂[B]を用いずに、TG-mAPを用いて粘度を低下させたが、CFRPの物性が低くなった。
表1に記載する成分を攪拌機を用いて混合してエポキシ樹脂組成物を得た。得られたエポキシ樹脂組成物を硬化させた樹脂硬化物の各種物性を表1に示した。実施例7~10は、100℃において130Pa・s以下の低粘度、180MPa以上の高曲げ強度、4.3GPa以上の高曲げ弾性率、190℃以上の高Tgを示した。
Claims (9)
- 前記エポキシ樹脂[A]がテトラグリシジル-3,4’-ジアミノジフェニルエーテルである請求項1に記載のエポキシ樹脂組成物。
- 前記エポキシ樹脂[B]がジグリシジルレゾルシノールである請求項1又は2に記載のエポキシ樹脂組成物。
- 前記エポキシ樹脂組成物の100℃における粘度が、1~100Pa・sである請求項1~3の何れか1項に記載のエポキシ樹脂組成物。
- 強化繊維基材と、
前記強化繊維基材内に含浸された請求項1~4の何れか1項に記載のエポキシ樹脂組成物と、
から成ることを特徴とするプリプレグ。 - 前記強化繊維基材が炭素繊維から成る強化繊維基材である請求項5に記載のプリプレグ。
- 前記強化繊維基材に用いる強化繊維が、サイジング剤が付着した強化繊維の質量に対して、サイジング剤が0.01~10質量%付着した強化繊維束である請求項5又は6に記載のプリプレグ。
- 請求項1~4の何れか1項に記載のエポキシ樹脂組成物を強化繊維基材内に含浸させることを特徴とするプリプレグの製造方法。
- 請求項5~7の何れか1項に記載のプリプレグを積層して、圧力0.05~2MPa、温度150~210℃で1~8時間加熱することを特徴とする繊維強化複合材料の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/010715 WO2019177131A1 (ja) | 2018-03-16 | 2019-03-14 | エポキシ樹脂組成物、プリプレグ及び繊維強化複合材料、並びにこれらの製造方法 |
EP19767338.7A EP3766912A1 (en) | 2018-03-16 | 2019-03-14 | Epoxy resin composition, prepreg, fiber-reinforced composite material, and production methods therefor |
AU2019233463A AU2019233463B9 (en) | 2018-03-16 | 2019-03-14 | Epoxy resin composition, prepreg, fiber-reinforced composite material, and production methods therefor |
US16/981,096 US20200407548A1 (en) | 2018-03-16 | 2019-03-14 | Epoxy resin composition, prepreg, fiber reinforced composite material, and production methods therefor |
CA3094280A CA3094280A1 (en) | 2018-03-16 | 2019-03-14 | Epoxy resin composition, prepreg, fiber-reinforced composite material, and production methods therefor |
TW108108869A TW201945462A (zh) | 2018-03-16 | 2019-03-15 | 環氧樹脂組成物、預浸體及纖維強化複合材料,以及此等之製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018050278 | 2018-03-16 | ||
JP2018050278 | 2018-03-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019163438A JP2019163438A (ja) | 2019-09-26 |
JP7224800B2 true JP7224800B2 (ja) | 2023-02-20 |
Family
ID=68064750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018140958A Active JP7224800B2 (ja) | 2018-03-16 | 2018-07-27 | エポキシ樹脂組成物、プリプレグ、繊維強化複合材料、及びそれらの製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7224800B2 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003026768A (ja) | 2001-07-13 | 2003-01-29 | Toray Ind Inc | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
JP2011057736A (ja) | 2009-09-07 | 2011-03-24 | Toho Tenax Co Ltd | エポキシ樹脂組成物及びそれを用いたプリプレグ |
WO2011118106A1 (ja) | 2010-03-23 | 2011-09-29 | 東レ株式会社 | 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料 |
JP2014148572A (ja) | 2013-01-31 | 2014-08-21 | Mitsubishi Rayon Co Ltd | プリプレグ、繊維強化複合材料、及びその製造方法 |
WO2016017371A1 (ja) | 2014-07-31 | 2016-02-04 | 東レ株式会社 | 繊維強化複合材料用2液型エポキシ樹脂組成物および繊維強化複合材料 |
WO2016148175A1 (ja) | 2015-03-17 | 2016-09-22 | 東レ株式会社 | エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料 |
JP2017008316A (ja) | 2015-06-25 | 2017-01-12 | 東レ株式会社 | エポキシ樹脂組成物、繊維強化複合材料、成形品および圧力容器 |
JP2017119813A (ja) | 2015-06-25 | 2017-07-06 | 東レ株式会社 | エポキシ樹脂組成物、繊維強化複合材料、成形品および圧力容器 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62183340A (ja) * | 1986-02-07 | 1987-08-11 | 住友化学工業株式会社 | 繊維強化複合材料 |
JPH02169618A (ja) * | 1988-12-22 | 1990-06-29 | Sumitomo Chem Co Ltd | エポキシ樹脂組成物及びそれを主成分とする繊維強化複合材料 |
-
2018
- 2018-07-27 JP JP2018140958A patent/JP7224800B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003026768A (ja) | 2001-07-13 | 2003-01-29 | Toray Ind Inc | エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 |
JP2011057736A (ja) | 2009-09-07 | 2011-03-24 | Toho Tenax Co Ltd | エポキシ樹脂組成物及びそれを用いたプリプレグ |
WO2011118106A1 (ja) | 2010-03-23 | 2011-09-29 | 東レ株式会社 | 炭素繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料 |
JP2014148572A (ja) | 2013-01-31 | 2014-08-21 | Mitsubishi Rayon Co Ltd | プリプレグ、繊維強化複合材料、及びその製造方法 |
WO2016017371A1 (ja) | 2014-07-31 | 2016-02-04 | 東レ株式会社 | 繊維強化複合材料用2液型エポキシ樹脂組成物および繊維強化複合材料 |
WO2016148175A1 (ja) | 2015-03-17 | 2016-09-22 | 東レ株式会社 | エポキシ樹脂組成物、プリプレグおよび炭素繊維強化複合材料 |
JP2017008316A (ja) | 2015-06-25 | 2017-01-12 | 東レ株式会社 | エポキシ樹脂組成物、繊維強化複合材料、成形品および圧力容器 |
JP2017119813A (ja) | 2015-06-25 | 2017-07-06 | 東レ株式会社 | エポキシ樹脂組成物、繊維強化複合材料、成形品および圧力容器 |
Also Published As
Publication number | Publication date |
---|---|
JP2019163438A (ja) | 2019-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2655512B1 (en) | Epoxy resin system containing insoluble and partially soluble or swellable toughening particles for use in prepreg and structural component applications | |
EP2794735B1 (en) | Improvements in or relating to fibre reinforced composites | |
JP7448409B2 (ja) | プリプレグ | |
WO2012133033A1 (ja) | プリプレグ及びその製造方法 | |
EP2935421B1 (en) | Fast cure epoxy resin systems | |
JP7213620B2 (ja) | エポキシ樹脂組成物、プリプレグ、炭素繊維強化複合材料及びこれらの製造方法 | |
RU2736820C2 (ru) | Композиция эпоксидной смолы, препрег и композитный материал, армированный углеродным волокном | |
JP7190258B2 (ja) | エポキシ樹脂組成物、プリプレグ、及び繊維強化複合材料 | |
TW201945462A (zh) | 環氧樹脂組成物、預浸體及纖維強化複合材料,以及此等之製造方法 | |
JP7224800B2 (ja) | エポキシ樹脂組成物、プリプレグ、繊維強化複合材料、及びそれらの製造方法 | |
JP7315304B2 (ja) | エポキシ樹脂組成物、プリプレグ、及び繊維強化複合材料 | |
EP4029897A1 (en) | Epoxy resin composition, resin cured product, fiber-reinforced composite material, and production methods therefor | |
EP3835336A1 (en) | Epoxy compound, epoxy resin, epoxy resin composition, cured resin product, prepreg, fiber-reinforced composite material, and production method for these | |
JP2019156981A (ja) | プリプレグ、繊維強化複合材料、及びそれらの製造方法 | |
JP7481160B2 (ja) | プリプレグ | |
JP2023084198A (ja) | エポキシ樹脂組成物、プリプレグ、繊維強化複合材料および製造方法 | |
WO2019177131A1 (ja) | エポキシ樹脂組成物、プリプレグ及び繊維強化複合材料、並びにこれらの製造方法 | |
EP4471073A1 (en) | Curing agent composition for thermosetting resin, epoxy resin composition, and fiber-reinforced composite material | |
JP7143473B2 (ja) | プリプレグ及びその製造方法、並びに繊維強化複合材料 | |
JP2021195473A (ja) | プリプレグ | |
JP2022137823A (ja) | エポキシ樹脂組成物、樹脂硬化物および繊維強化複合材料 | |
US20240336751A1 (en) | Fiber-reinforced composite material and production method therefor | |
WO2022186101A1 (ja) | 熱硬化性樹脂用硬化剤組成物、エポキシ樹脂組成物および繊維強化複合材料 | |
JP2021107470A (ja) | 繊維強化複合材料およびその製造方法 | |
JP2019059827A (ja) | エポキシ樹脂組成物、プリプレグ、樹脂硬化物および繊維強化複合材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211109 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220628 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220826 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221025 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230110 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230208 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7224800 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |