JP7211701B2 - Short carbon fiber wet-laid nonwoven fabric and carbon fiber reinforced resin - Google Patents
Short carbon fiber wet-laid nonwoven fabric and carbon fiber reinforced resin Download PDFInfo
- Publication number
- JP7211701B2 JP7211701B2 JP2017238368A JP2017238368A JP7211701B2 JP 7211701 B2 JP7211701 B2 JP 7211701B2 JP 2017238368 A JP2017238368 A JP 2017238368A JP 2017238368 A JP2017238368 A JP 2017238368A JP 7211701 B2 JP7211701 B2 JP 7211701B2
- Authority
- JP
- Japan
- Prior art keywords
- fibers
- short carbon
- short
- carbon fibers
- nonwoven fabric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920000049 Carbon (fiber) Polymers 0.000 title claims description 181
- 239000004917 carbon fiber Substances 0.000 title claims description 181
- 239000004745 nonwoven fabric Substances 0.000 title claims description 78
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims description 52
- 229920005989 resin Polymers 0.000 title claims description 22
- 239000011347 resin Substances 0.000 title claims description 22
- 239000000835 fiber Substances 0.000 claims description 159
- 229920003043 Cellulose fiber Polymers 0.000 claims description 19
- 229920000433 Lyocell Polymers 0.000 claims description 11
- 239000011122 softwood Substances 0.000 claims description 7
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 60
- 238000012545 processing Methods 0.000 description 37
- 238000000465 moulding Methods 0.000 description 28
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 25
- 229910052799 carbon Inorganic materials 0.000 description 25
- 239000003795 chemical substances by application Substances 0.000 description 20
- 238000000034 method Methods 0.000 description 18
- 229920002994 synthetic fiber Polymers 0.000 description 17
- 239000012209 synthetic fiber Substances 0.000 description 17
- 239000011230 binding agent Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 12
- -1 cupra Polymers 0.000 description 11
- 238000002156 mixing Methods 0.000 description 11
- 238000002844 melting Methods 0.000 description 8
- 238000004513 sizing Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 239000004372 Polyvinyl alcohol Substances 0.000 description 7
- 229920000139 polyethylene terephthalate Polymers 0.000 description 7
- 239000005020 polyethylene terephthalate Substances 0.000 description 7
- 229920002451 polyvinyl alcohol Polymers 0.000 description 7
- 239000002131 composite material Substances 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000012784 inorganic fiber Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 238000001035 drying Methods 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 238000004064 recycling Methods 0.000 description 4
- 239000004627 regenerated cellulose Substances 0.000 description 4
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 3
- 206010061592 cardiac fibrillation Diseases 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 230000002600 fibrillogenic effect Effects 0.000 description 3
- 239000011295 pitch Substances 0.000 description 3
- 229920002239 polyacrylonitrile Polymers 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 238000010008 shearing Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920006231 aramid fiber Polymers 0.000 description 2
- 238000010000 carbonizing Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000010893 paper waste Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229920002972 Acrylic fiber Polymers 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 241000556629 Blennioidei Species 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 229920003071 Polyclar® Polymers 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229920002978 Vinylon Polymers 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 229920006240 drawn fiber Polymers 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000011271 tar pitch Substances 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- 238000011077 uniformity evaluation Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Landscapes
- Reinforced Plastic Materials (AREA)
- Nonwoven Fabrics (AREA)
- Paper (AREA)
Description
本発明は、炭素短繊維湿式不織布及び炭素繊維強化樹脂に関する。 TECHNICAL FIELD The present invention relates to short carbon fiber wet-laid nonwoven fabrics and carbon fiber reinforced resins.
炭素繊維は鉄よりも軽量であり、強度が強いという優れた力学特性を有している。そのため、炭素繊維複合材料は航空機、自動車、テニスラケット、釣り竿、風力発電の羽根などの幅広い分野で使用されており、今後も用途が拡大すると予想される。 Carbon fiber is lighter than iron and has excellent mechanical properties such as high strength. Therefore, carbon fiber composite materials are used in a wide range of fields, such as aircraft, automobiles, tennis rackets, fishing rods, and blades for wind power generation, and their applications are expected to expand in the future.
炭素繊維としては、現在主に、ポリアクリロニトリルを炭素化、黒鉛化することで得られるPAN系炭素繊維と、タールピッチ液化石炭を溶融紡糸してから炭素化、黒鉛化することで得られるピッチ系炭素繊維とが使用されている。こうして生産された炭素繊維は、織物として加工するか、あるいは一方向に並べた後に、未硬化樹脂を含浸させた炭素繊維プリプレグと呼ばれる材料を、目標とする成形物の型に合うように裁断した後に樹脂を硬化することで得られる、炭素繊維強化樹脂(以下、「炭素繊維強化樹脂」を「CFRP」と略記する場合がある)として使用されることが多い。あるいは、CFRP廃材をリサイクルして得られた炭素繊維を使用する場合は、炭素繊維がリサイクル過程において短繊維化して炭素短繊維となることから、織物として加工することはできないため、不織布として加工されることが一般的である。 Currently, the main carbon fibers are PAN-based carbon fibers obtained by carbonizing and graphitizing polyacrylonitrile, and pitch-based carbon fibers obtained by melt-spinning tar pitch liquefied coal and then carbonizing and graphitizing it. Carbon fiber is used. The carbon fibers produced in this way are either processed as a fabric, or after being arranged in one direction, a material called carbon fiber prepreg impregnated with uncured resin is cut to fit the mold of the target molding. It is often used as a carbon fiber reinforced resin (hereinafter, "carbon fiber reinforced resin" may be abbreviated as "CFRP") that is obtained by curing the resin later. Alternatively, when using carbon fibers obtained by recycling CFRP waste materials, the carbon fibers become short fibers in the recycling process and become short carbon fibers, so it cannot be processed as a woven fabric, so it is processed as a nonwoven fabric. It is common to
炭素短繊維をシート化して炭素短繊維不織布とする方法としては、炭素短繊維と水膨潤フィブリル化繊維とを水中に分散させ、抄紙用スラリーを作製し、繊維を交絡させて、炭素短繊維湿式不織布を製造する方法が開示されている。水膨潤フィブリル化繊維としては、フィブリル化パラ型芳香族ポリアミド繊維や、フィブリル化アクリル繊維が挙げられている(特許文献1参照)。しかしながら、この方法は炭素短繊維不織布をCFRP加工する際の繊維・樹脂の成形流動性や不織布内の炭素短繊維の均一性などの点については考慮されておらず、CFRP加工する際にトラブルが発生する場合がある。CFRP加工の際に繊維・樹脂の成形流動性が低い場合、複雑な形状のCFRPを加工する際に細かい部分にまで繊維・樹脂が広がらず、複雑な形状に加工することができない場合がある。また、不織布内の炭素短繊維が均一でない場合、CFRP加工後の強度も不均一になり、CFRPとしては適さない場合がある。 As a method of forming short carbon fibers into a sheet to form a short carbon fiber nonwoven fabric, short carbon fibers and water-swollen fibrillated fibers are dispersed in water to prepare a slurry for papermaking, the fibers are entangled, and the short carbon fibers are wet-processed. A method of making a nonwoven is disclosed. Examples of water-swollen fibrillated fibers include fibrillated para-aromatic polyamide fibers and fibrillated acrylic fibers (see Patent Document 1). However, this method does not consider the molding fluidity of fibers and resins when CFRP processing carbon short fiber nonwoven fabrics and the uniformity of carbon short fibers in nonwoven fabrics, and troubles occur during CFRP processing. may occur. If the molding fluidity of the fiber/resin is low during CFRP processing, the fiber/resin may not spread to fine parts when processing CFRP with a complex shape, and processing into a complex shape may not be possible. In addition, if the short carbon fibers in the nonwoven fabric are not uniform, the strength after CFRP processing will also be uneven, which may not be suitable for CFRP.
また、炭素短繊維湿式不織布を製造する別方法としては、炭素短繊維75質量%~97質量%、セルロース25質量%~3質量%からなる炭素短繊維湿式不織布を製造する方法において、含窒素有機溶媒を含有する水性分散助剤を炭素短繊維に対して10質量%以下と炭素短繊維を所定量の水に添加して撹拌し、さらに水でスラリー固形分濃度を0.05質量%以下に希釈して回流させる工程を経た後、湿式抄紙する方法が示されている(特許文献2参照)。しかしながら、特許文献2の炭素短繊維湿式不織布は、ガス透過性や導電性を有する不織布であり、CFRPに使用される不織布ではないため、炭素短繊維不織布をCFRP加工する際の繊維・樹脂の成形流動性や不織布内の炭素短繊維の均一性などの点においては考慮されておらず、CFRP加工の際やCFRP加工後に不具合が発生する場合がある。 In addition, as another method for producing a carbon short fiber wet-laid nonwoven fabric, in a method for producing a carbon short fiber wet-laid nonwoven fabric composed of 75% to 97% by mass of carbon short fibers and 25% to 3% by mass of cellulose, a nitrogen-containing organic An aqueous dispersing aid containing a solvent is added to 10% by mass or less of the short carbon fibers and the short carbon fibers are added to a predetermined amount of water and stirred, and the solid content concentration of the slurry is reduced to 0.05% by mass or less with water. A wet papermaking method is disclosed after passing through the step of diluting and circulating (see Patent Document 2). However, the carbon short fiber wet-laid nonwoven fabric of Patent Document 2 is a nonwoven fabric having gas permeability and conductivity, and is not a nonwoven fabric used for CFRP. Fluidity and uniformity of short carbon fibers in the nonwoven fabric are not taken into account, and problems may occur during or after CFRP processing.
本発明は、CFRPに加工する際に優れた成形流動性を示し、またCFRP加工後の強度が高く、均一性に優れた炭素短繊維湿式不織布を得ることを目的としている。 An object of the present invention is to obtain a short carbon fiber wet-laid nonwoven fabric that exhibits excellent molding fluidity when processed into CFRP, has high strength after CFRP processing, and is excellent in uniformity.
本発明者らは、この課題を解決するため研究を行った結果、下記手段を見出した。 The present inventors have found the following means as a result of conducting research to solve this problem.
(1)炭素短繊維の割合が不織布を構成する全繊維に対して10~98質量%であり、繊維長が2mmよりも長い炭素短繊維の割合が全炭素短繊維に対して20~98質量%であり、繊維長が2mm以下の炭素短繊維の割合が全炭素短繊維に対して80~2質量%であり、針葉樹パルプ、リンターパルプ及びリヨセルの群から選ばれる1種以上のセルロース繊維を含有することを特徴とする炭素短繊維湿式不織布。
(2)上記(1)記載の炭素短繊維湿式不織布と、該不織布と複合化された樹脂とからな
る炭素繊維強化樹脂。
(1) The ratio of short carbon fibers is 10 to 98% by mass with respect to the total fibers constituting the nonwoven fabric, and the ratio of short carbon fibers with a fiber length longer than 2 mm is 20 to 98% by mass with respect to the total short carbon fibers. %, the proportion of short carbon fibers having a fiber length of 2 mm or less is 80 to 2% by mass of the total short carbon fibers, and one or more cellulose fibers selected from the group consisting of softwood pulp, linter pulp and lyocell Short carbon fiber wet-laid nonwoven fabric characterized by containing
(2) A carbon fiber reinforced resin comprising the short carbon fiber wet-laid nonwoven fabric described in (1) above and a resin compounded with the nonwoven fabric.
本発明によれば、CFRPに加工する際に優れた成形流動性を示し、CFRP加工後には優れた強度及び均一性を持つ炭素短繊維湿式不織布を得ることができる。 According to the present invention, it is possible to obtain a short carbon fiber wet-laid nonwoven fabric that exhibits excellent molding fluidity when processed into CFRP and has excellent strength and uniformity after CFRP processing.
本発明は、CFRPに加工する際に優れた成形流動性を持つ炭素短繊維湿式不織布を得るための手法である。炭素短繊維不織布をCFRPに加工する際において、炭素短繊維不織布の成形流動性が低い場合、複雑な形状に加工することができないという問題が発生する場合がある。すなわち、炭素短繊維が樹脂と共に流動せず、樹脂のみが複雑な形状を形成するが、樹脂のみの箇所の強度が非常に弱くなり、CFRPとしては適さないという問題が発生する場合がある。また、炭素短繊維不織布の成形流動性はあったとしても、炭素短繊維が流動するにあたり、炭素短繊維が寄り集まり、高密度となる箇所ができ、その結果、低密度箇所の強度と高密度箇所の強度が不均一となるため、CFRPの品質も不均一になり、CFRP加工用炭素短繊維不織布として適さないという問題が発生する場合があった。 INDUSTRIAL APPLICABILITY The present invention is a method for obtaining a short carbon fiber wet-laid nonwoven fabric having excellent molding fluidity when processed into CFRP. When the short carbon fiber nonwoven fabric is processed into CFRP, if the short carbon fiber nonwoven fabric has low molding fluidity, there may be a problem that it cannot be processed into a complicated shape. That is, the short carbon fibers do not flow together with the resin, and only the resin forms a complicated shape, but the strength of the portion where only the resin is present becomes extremely weak, which may cause a problem that it is not suitable for CFRP. In addition, even if the short carbon fiber nonwoven fabric has molding fluidity, when the short carbon fibers flow, the short carbon fibers gather and there are places with high density. Since the strength of the portion becomes uneven, the quality of the CFRP also becomes uneven, which sometimes causes the problem of being unsuitable as a short carbon fiber nonwoven fabric for CFRP processing.
これらの問題を解決するため、鋭意研究を行った結果、炭素短繊維の割合が不織布を構成する全繊維に対して10~98質量%であり、繊維長が2mmよりも長い炭素短繊維の割合が全炭素短繊維に対して20~98質量%であり、繊維長が2mm以下の炭素短繊維の割合が全炭素短繊維に対して80~2質量%であることを特徴とする炭素短繊維湿式不織布は、炭素短繊維の成形流動性が高く、CFRP加工後の強度及び均一性も高いことが分かった。炭素短繊維の繊維長が2mm以下の炭素短繊維の割合が80質量%を超えると、CFRP加工後の強度が低くなり、CFRP用の炭素短繊維不織布として適さない。また、繊維長が2mmより長い炭素短繊維の割合が98質量%を超える場合、不織布内に空隙が多くなり、CFRP加工時に炭素短繊維が不均一になりやすい傾向にある。不織布内の空隙を繊維長が2mm以下の炭素短繊維で充填することにより、炭素短繊維が均一なCFRPを得ることができる。 In order to solve these problems, as a result of intensive research, the ratio of short carbon fibers is 10 to 98% by mass with respect to the total fibers constituting the nonwoven fabric, and the ratio of short carbon fibers with a fiber length longer than 2 mm. is 20 to 98% by mass of the total short carbon fibers, and the proportion of short carbon fibers having a fiber length of 2 mm or less is 80 to 2% by mass of the total short carbon fibers. It was found that the wet-laid nonwoven fabric has high forming flowability of short carbon fibers and high strength and uniformity after CFRP processing. If the proportion of short carbon fibers having a fiber length of 2 mm or less exceeds 80% by mass, the strength after CFRP processing becomes low, making it unsuitable as a short carbon fiber nonwoven fabric for CFRP. Moreover, when the ratio of short carbon fibers having a fiber length longer than 2 mm exceeds 98% by mass, there are many voids in the nonwoven fabric, and the short carbon fibers tend to become non-uniform during CFRP processing. By filling the voids in the nonwoven fabric with short carbon fibers having a fiber length of 2 mm or less, CFRP with uniform short carbon fibers can be obtained.
本発明において、繊維長が2mmよりも長い炭素短繊維の割合は、全炭素短繊維に対して20~98質量%であり、より好ましくは25~95質量%であり、更に好ましくは30~90質量%である。また、繊維長が2mm以下の炭素短繊維の割合は、全炭素短繊維に対して80~2質量%であり、より好ましくは75~5質量%であり、更に好ましくは70~10質量%である。 In the present invention, the proportion of short carbon fibers having a fiber length longer than 2 mm is 20 to 98% by mass, more preferably 25 to 95% by mass, and still more preferably 30 to 90% of the total short carbon fibers. % by mass. In addition, the proportion of short carbon fibers having a fiber length of 2 mm or less is 80 to 2% by mass, more preferably 75 to 5% by mass, and still more preferably 70 to 10% by mass with respect to the total short carbon fibers. be.
なお、本発明において、炭素短繊維とは、繊維長が50mm以下の繊維を言う。また、「繊維長が2mm以下の炭素短繊維」における繊維長の下限値は、0.1mmであることが好ましい。炭素短繊維の繊維長が0.1mm未満になると、湿式不織布を製造する際に繊維が脱落する場合がある。 In the present invention, short carbon fibers refer to fibers having a fiber length of 50 mm or less. In addition, the lower limit of the fiber length of "short carbon fibers having a fiber length of 2 mm or less" is preferably 0.1 mm. If the fiber length of the short carbon fibers is less than 0.1 mm, the fibers may fall off during the production of the wet-laid nonwoven fabric.
炭素短繊維としては、PAN系、ピッチ系など、どのような製法で製造された炭素短繊維でも使用することができる。また、新品未使用の炭素短繊維でも、廃棄された炭素繊維をリサイクル処理して得られた炭素短繊維でもなんら問題は無い。炭素短繊維を得るのに必要なコストを考慮すると、リサイクル処理して得られた炭素短繊維がより好ましい。 As short carbon fibers, short carbon fibers manufactured by any manufacturing method such as PAN-based and pitch-based short fibers can be used. Also, there is no problem with short carbon fibers that are new and unused, or short carbon fibers that are obtained by recycling discarded carbon fibers. Considering the cost required to obtain short carbon fibers, short carbon fibers obtained by recycling are more preferable.
本発明の炭素短繊維湿式不織布においては、性能を阻害しない範囲で、炭素短繊維以外の繊維を含有することができる。以下、「炭素短繊維以外の繊維」を「他繊維」と略記する場合がある。他繊維としては、セルロース繊維、半合成繊維、合成繊維、無機繊維等を挙げることができる。 The short carbon fiber wet-laid nonwoven fabric of the present invention may contain fibers other than short carbon fibers within a range that does not impair performance. Hereinafter, "fibers other than short carbon fibers" may be abbreviated as "other fibers". Examples of other fibers include cellulose fibers, semi-synthetic fibers, synthetic fibers, and inorganic fibers.
セルロース繊維を使用することができる。セルロース繊維の種類としては、天然セルロース繊維、再生セルロース繊維等が挙げられる。天然セルロース繊維としては、針葉樹パルプ、広葉樹パルプなどの木材パルプ;藁パルプ、竹パルプ、リンターパルプ、ケナフパルプなどの木本類又は草本類のパルプが挙げられる。再生セルロース繊維としては、レーヨン、キュプラ、リヨセル等の再生セルロース繊維が挙げられる。これらのセルロース繊維は、フィブリル化(叩解)されていてもなんら差し支えない。さらに、古紙、損紙などから得られるパルプ繊維を使用してもよい。 Cellulose fibers can be used. Types of cellulose fibers include natural cellulose fibers and regenerated cellulose fibers. Natural cellulose fibers include wood pulps such as softwood pulps and hardwood pulps; woody or herbaceous pulps such as straw pulps, bamboo pulps, linter pulps and kenaf pulps. Regenerated cellulose fibers include regenerated cellulose fibers such as rayon, cupra, and lyocell. These cellulose fibers may be fibrillated (beaten) without any problem. Furthermore, pulp fibers obtained from waste paper, waste paper, etc. may be used.
上記セルロース繊維の中で、針葉樹パルプ、リンターパルプ及びリヨセルの群から選ばれる1種以上のセルロース繊維を使用することが好ましく、リヨセルを使用することがより好ましい。また、リヨセルはフィブリル化(叩解)されていることが好ましい。これらの好ましいセルロース繊維を使用することによって、繊維の脱落を抑制することができる。また、炭素短繊維湿式不織布を抄紙法で製造する場合の操業性が安定するという効果も得られる。 Among the cellulose fibers, it is preferable to use one or more cellulose fibers selected from the group consisting of softwood pulp, linter pulp and lyocell, and more preferably lyocell. Also, the lyocell is preferably fibrillated (beaten). By using these preferable cellulose fibers, it is possible to suppress the shedding of the fibers. In addition, the effect of stabilizing the operability when producing the short carbon fiber wet-laid nonwoven fabric by the papermaking method can also be obtained.
フィブリル化(叩解)セルロース繊維は、上記のセルロース繊維をフィブリル化することによって製造することができる。フィブリル化するための装置としては、ビーター、PFIミル、シングルディスクリファイナー(SDR)、ダブルディスクリファイナー(DDR)、また、顔料等の分散や粉砕に使用するボールミル、ダイノミル、ミキサー、摩砕装置、高速の回転刃により剪断力を与える回転刃式ホモジナイザー、高速で回転する円筒形の内刃と固定された外刃との間で剪断力を生じる二重円筒式の高速ホモジナイザー、超音波による衝撃で微細化する超音波破砕器、繊維懸濁液に少なくとも20MPaの圧力差を与えて小径のオリフィスを通過させて高速度とし、これを衝突させて急減速することにより繊維に剪断力、切断力を加える高圧ホモジナイザー等の装置が挙げられる。これらの装置を、単独又は組み合わせて用いることによって、フィブリル化セルロース繊維を製造することができる。そして、これらの装置の種類、処理条件(繊維濃度、温度、圧力、回転数、リファイナーの刃の形状、リファイナーのプレート間のギャップ、処理回数)等のフィブリル化条件の調整により、目的のフィブリル化状態を得ることができる。 Fibrillated (beaten) cellulose fibers can be produced by fibrillating the above cellulose fibers. Devices for fibrillation include beaters, PFI mills, single disc refiners (SDR), double disc refiners (DDR), ball mills, dyno mills, mixers, grinders, and high-speed grinders used for dispersing and grinding pigments. A rotating blade homogenizer that applies shearing force with rotating blades, a double cylindrical high-speed homogenizer that produces shearing force between a cylindrical inner blade that rotates at high speed and a fixed outer blade, and atomization by ultrasonic impact. A high pressure ultrasonic crusher that applies a pressure difference of at least 20 MPa to the fiber suspension to pass through a small-diameter orifice to a high speed, which is then collided and rapidly decelerated to apply a shearing force and a cutting force to the fiber. A device such as a homogenizer may be used. Fibrillated cellulose fibers can be produced by using these devices alone or in combination. Then, by adjusting fibrillation conditions such as the type of equipment and processing conditions (fiber concentration, temperature, pressure, rotation speed, refiner blade shape, refiner plate gap, number of processing times), the desired fibrillation can be achieved. status can be obtained.
合成繊維としては、例えば、ポリオレフィン系、ポリアミド系、ポリアクリル系、ビニロン系、ポリ塩化ビニリデン系、ポリ塩化ビニル系、ポリエステル系、ベンゾエート系、ポリクラール系、フェノール系などの合成繊維を挙げることができる。また、無機繊維としては、ガラス繊維、岩石繊維、スラッグ繊維、金属繊維などの無機繊維が挙げられる。また、半合成繊維としては、アセテート、トリアセテート、プロミックス等が挙げられる。 Examples of synthetic fibers include polyolefin-based, polyamide-based, polyacrylic-based, vinylon-based, polyvinylidene chloride-based, polyvinyl chloride-based, polyester-based, benzoate-based, polyclar-based, and phenol-based synthetic fibers. . Examples of inorganic fibers include inorganic fibers such as glass fibers, rock fibers, slag fibers, and metal fibers. Semisynthetic fibers include acetate, triacetate, promix, and the like.
本発明の炭素短繊維湿式不織布においては、性能を阻害しない範囲で、バインダー合成繊維を使用することができる。バインダー合成繊維としては、芯鞘繊維(コアシェルタイプ)、並列繊維(サイドバイサイドタイプ)、放射状分割繊維などの複合繊維;未延伸繊維;低融点合成樹脂単繊維;熱水可溶性繊維等が挙げられる。バインダー合成繊維は、繊維全体又は繊維の一部のガラス転移温度又は溶融温度(融点)が低く、抄紙機の乾燥工程において、バインダー能力を発現する。複合繊維は、皮膜を形成しにくいので、炭素短繊維湿式不織布の空間を保持したまま、機械的強度を向上させることができる。より具体的には、複合繊維としては、ポリプロピレン(芯)とポリエチレン(鞘)の組み合わせ、ポリプロピレン(芯)とエチレンビニルアルコール(鞘)の組み合わせ、高融点ポリエステル(芯)と低融点ポリエステル(鞘)の組み合わせが挙げられる。未延伸繊維としては、ポリエステル等の未延伸繊維が挙げられる。また、ポリエチレンやポリプロピレン等の低融点樹脂のみで構成される単繊維(全融タイプ)等の低融点合成樹脂単繊維や、ポリビニルアルコール系のような熱水可溶性繊維は、乾燥工程で皮膜を形成しやすいが、本発明では使用することができる。本発明においては、熱水可溶性繊維であるポリビニルアルコール系のバインダー合成繊維が、炭素短繊維表面の官能基と水素結合を形成して強度を発揮しやすいため、好ましい。 In the short carbon fiber wet-laid nonwoven fabric of the present invention, a binder synthetic fiber can be used as long as the performance is not impaired. Examples of binder synthetic fibers include composite fibers such as core-sheath fibers (core-shell type), parallel fibers (side-by-side type), and radially split fibers; undrawn fibers; low melting point synthetic resin single fibers; hot water soluble fibers. The binder synthetic fiber has a low glass transition temperature or melting temperature (melting point) of the whole fiber or a part of the fiber, and exhibits binder ability in the drying process of the paper machine. Composite fibers are less likely to form a film, so the mechanical strength can be improved while maintaining the spaces of the short carbon fiber wet-laid nonwoven fabric. More specifically, composite fibers include a combination of polypropylene (core) and polyethylene (sheath), a combination of polypropylene (core) and ethylene vinyl alcohol (sheath), and a high melting point polyester (core) and low melting point polyester (sheath). A combination of Examples of undrawn fibers include undrawn fibers such as polyester. In addition, low-melting synthetic resin single fibers such as single fibers (full-melting type) composed only of low-melting resins such as polyethylene and polypropylene, and hot water-soluble fibers such as polyvinyl alcohol, form a film in the drying process. but can be used in the present invention. In the present invention, polyvinyl alcohol binder synthetic fibers, which are hot water soluble fibers, are preferable because they tend to form hydrogen bonds with the functional groups on the surface of short carbon fibers to exhibit strength.
他繊維の中で、フィブリル化されていない再生セルロース繊維、合成繊維、無機繊維及び半合成繊維の繊維長は特に限定しないが、3mm以上30mm未満であることが好ましい。これらの他繊維の繊維長が長いほど、一本あたりの繊維同士の接触点が多くなり、繊維が脱落しにくくなる傾向があるため、これらの他繊維の繊維長は3mm以上であることが好ましい。繊維長が長過ぎる場合は、抄紙性や不織布の地合いが悪化する場合があるため、30mm未満であることが好ましい。繊維径についても特に限定しないが、1μm以上30μm未満であることが好ましく、2μm以上20μm未満であることが特に好ましい。繊維径が1μm未満の繊維を配合すると、炭素短繊維湿式不織布内が過剰に密な構造になることから、例えば炭素短繊維湿式不織布に樹脂を浸透させるなどの加工を行う際に樹脂の浸透を阻害し、加工後のCFRPの性能が下がる場合がある。繊維径が30μm以上である場合は、バインダー能力を持たない合成繊維又は無機繊維が脱落しやすい場合がある。 Among other fibers, the fiber length of non-fibrillated regenerated cellulose fibers, synthetic fibers, inorganic fibers and semi-synthetic fibers is not particularly limited, but is preferably 3 mm or more and less than 30 mm. The longer the fiber length of these other fibers, the more the contact points between the fibers per one fiber, and the fibers tend to be less likely to fall off. Therefore, the fiber length of these other fibers is preferably 3 mm or more. . If the fiber length is too long, the papermaking properties and texture of the nonwoven fabric may deteriorate, so it is preferably less than 30 mm. Although the fiber diameter is not particularly limited, it is preferably 1 μm or more and less than 30 μm, and particularly preferably 2 μm or more and less than 20 μm. When fibers with a fiber diameter of less than 1 μm are blended, the inside of the carbon short fiber wet-laid nonwoven fabric becomes an excessively dense structure. It may hinder the performance of the CFRP after processing. If the fiber diameter is 30 μm or more, synthetic fibers or inorganic fibers that do not have binder ability may easily fall off.
本発明において、炭素短繊維湿式不織布に含まれる全繊維に対して、炭素短繊維の含有量は10~98質量%であり、20~97質量%であることがより好ましく、30~96質量%であることが更に好ましい。炭素短繊維の含有量が10質量%未満である場合は、加工した際に炭素短繊維が持つ「強度が高く、質量が軽い」という効果が十分に発揮できない場合がある。炭素短繊維の含有量が98質量%よりも多い場合は、繊維同士の結着が不十分となり、脱落繊維が発生する場合がある。 In the present invention, the content of short carbon fibers is 10 to 98% by mass, more preferably 20 to 97% by mass, and 30 to 96% by mass, based on the total fibers contained in the short carbon fiber wet-laid nonwoven fabric. is more preferable. If the content of short carbon fibers is less than 10% by mass, the effects of "high strength and light weight" of carbon short fibers may not be sufficiently exhibited when processed. If the content of short carbon fibers is more than 98% by mass, the binding between fibers may be insufficient, and fibers may fall off.
本発明の炭素短繊維湿式不織布は、炭素短繊維を抄紙機でシート化する抄紙法によって得られる。 The short carbon fiber wet-laid nonwoven fabric of the present invention is obtained by a papermaking method in which short carbon fibers are formed into a sheet by a paper machine.
抄紙法では、例えば、長網式、円網式、傾斜ワイヤー式を用いることができる。これらの抄紙方式を単独で有する抄紙機を使用しても良いし、同種又は異種の2機以上の抄紙方式がオンラインで設置されているコンビネーション抄紙機を使用しても良い。均一性に優れた炭素短繊維湿式不織布を製造するには、長網式、傾斜ワイヤー式のように、緩やかに、ワイヤー上のスラリーから脱水することができる抄紙方式を使用することが好ましい。本発明の炭素短繊維湿式不織布は、単層であっても良いし、複層であっても良い。 In the papermaking method, for example, a Fourdrinier method, a cylinder method, or an inclined wire method can be used. A paper machine having one of these papermaking systems alone may be used, or a combination paper machine in which two or more papermaking systems of the same or different types are installed online may be used. In order to produce a carbon short fiber wet-laid nonwoven fabric with excellent uniformity, it is preferable to use a papermaking method such as a fourdrinier method or an inclined wire method, which can gently dewater the slurry on the wire. The short carbon fiber wet-laid nonwoven fabric of the present invention may have a single layer or multiple layers.
抄紙法において、炭素短繊維やその他の繊維を分散することを目的に、パルパーでの離解作業を行う。パルパーの種類は特に限定しておらず、縦型パルパーを使用しても良いし、横型パルパーを使用しても良いし、その他の形式のパルパーでもなんら問題は無い。パルパーの離解能力も特に限定していないが、パルパーの離解能力が強すぎる場合、炭素短繊維がパルパーによって砕かれ、ミルド状となり、CFRP加工後の強度が低くなる場合がある。パルパーの離解能力が弱すぎる場合、炭素短繊維が全く離解せずに、地合いが悪くなり、炭素短繊維が不均一になり、CFRP加工後の強度も不均一になる場合がある。炭素短繊維の離解の状態については、パルパーの強度、時間を調節することでコントロールすることが望ましい。 In the papermaking process, a pulper is used to disperse short carbon fibers and other fibers. The type of pulper is not particularly limited, and a vertical pulper may be used, a horizontal pulper may be used, and other types of pulpers may be used without any problem. The pulper's disintegration ability is not particularly limited, but if the pulper's disintegration ability is too strong, the short carbon fibers may be crushed by the pulper and become milled, resulting in reduced strength after CFRP processing. If the pulper's disintegration ability is too weak, the short carbon fibers may not be disintegrated at all, resulting in poor texture, uneven carbon short fibers, and uneven strength after CFRP processing. It is desirable to control the state of disaggregation of short carbon fibers by adjusting the strength and time of the pulper.
抄紙法において、繊維を均一に水中に分散させる目的や各種機能を付与する目的で、繊維を水中に分散する際に、各種アニオン性、ノニオン性、カチオン性、あるいは両性の分散剤、消泡剤、親水剤、濾水剤、紙力向上剤、粘剤、帯電防止剤、高分子粘剤、離型剤、抗菌剤、殺菌剤、pH調整剤、ピッチコントロール剤、スライムコントロール剤等の薬品を添加する場合もある。 In the papermaking process, various anionic, nonionic, cationic or amphoteric dispersants and antifoaming agents are used when dispersing fibers in water for the purpose of uniformly dispersing fibers in water or for the purpose of imparting various functions. , Hydrophilic agents, drainage agents, paper strength improvers, viscous agents, antistatic agents, polymer viscous agents, release agents, antibacterial agents, bactericides, pH adjusters, pitch control agents, slime control agents, etc. It may be added.
本発明の炭素短繊維湿式不織布には、必要に応じてサイズ剤を配合することができる。サイズ剤としては、本発明の所望の効果を損なわないものであれば、強化ロジンサイズ剤、ロジンエマルジョンサイズ剤、石油樹脂系サイズ剤、合成サイズ剤、中性ロジンサイズ剤、アルキルケテンダイマー(AKD)などのサイズ剤の中からいずれをも用いることができる。 The short carbon fiber wet-laid nonwoven fabric of the present invention may optionally contain a sizing agent. As the sizing agent, reinforced rosin sizing agents, rosin emulsion sizing agents, petroleum resin-based sizing agents, synthetic sizing agents, neutral rosin sizing agents, alkylketene dimers (AKD ) and other sizing agents can be used.
抄紙機で製造された湿紙を、ヤンキードライヤー、エアードライヤー、シリンダードライヤー、サクションドラム式ドライヤー、赤外方式ドライヤー等で乾燥することにより、炭素短繊維湿式不織布を得る。湿紙の乾燥の際に、ヤンキードライヤー等の熱ロールに密着させて熱圧乾燥させることによって、密着させた面の平滑性が向上する。熱圧乾燥とは、タッチロール等で熱ロールに湿紙を押しつけて乾燥させることをいう。熱ロールの表面温度は、100~180℃が好ましく、100~160℃がより好ましく、110~160℃が更に好ましい。圧力は、好ましくは50~1000N/cmであり、より好ましくは100~800N/cmである。 The wet paper produced by the paper machine is dried with a Yankee dryer, an air dryer, a cylinder dryer, a suction drum dryer, an infrared dryer, or the like to obtain a short carbon fiber wet-laid nonwoven fabric. When the wet paper is dried, it is brought into close contact with a hot roll such as a Yankee dryer and dried under heat and pressure, thereby improving the smoothness of the contacted surface. Hot-press drying means drying by pressing the wet paper against a hot roll with a touch roll or the like. The surface temperature of the heat roll is preferably 100 to 180°C, more preferably 100 to 160°C, even more preferably 110 to 160°C. The pressure is preferably 50-1000 N/cm, more preferably 100-800 N/cm.
本発明の炭素短繊維湿式不織布の坪量は、特に限定しないが、10g/m2以上500g/m2以下が好ましく、30g/m2以上400g/m2以下がより好ましい。坪量が10g/m2未満では、不織布の密度が低くなり過ぎる傾向にあり、またCFRP加工時に多数の不織布を重ねる必要があり、樹脂の浸透量に表裏差が発生しやすくなることから、CFRPの均一性を損ねる可能性がある。坪量が500g/m2超では、ドライヤーでの乾燥の際に均一に乾燥することが難しく、炭素短繊維湿式不織布の品質にムラが生じる場合がある。 Although the basis weight of the short carbon fiber wet-laid nonwoven fabric of the present invention is not particularly limited, it is preferably 10 g/m 2 or more and 500 g/m 2 or less, more preferably 30 g/m 2 or more and 400 g/m 2 or less. If the basis weight is less than 10 g/m 2 , the density of the nonwoven fabric tends to be too low, and it is necessary to stack many nonwoven fabrics during CFRP processing, which tends to cause a difference in the amount of resin permeation between the front and back sides of the fabric. uniformity may be compromised. If the basis weight is more than 500 g/m 2 , it is difficult to dry uniformly in a dryer, and the quality of the short carbon fiber wet-laid nonwoven fabric may be uneven.
以下、実施例によって本発明を更に詳しく説明するが、本発明はこの実施例に限定されるものではない。なお、実施例中の部数や百分率は質量基準である。 EXAMPLES The present invention will be described in more detail below with reference to Examples, but the present invention is not limited to these Examples. The parts and percentages in the examples are based on mass.
実施例1
表1記載の繊維長の炭素短繊維と叩解リヨセルとPVAバインダー(クラレ製、製品名:VPB107-1)とを、表1記載の配合比率(質量基準)で水に投入して、縦型パルパーで10分間混合分散した後、湿紙を傾斜ワイヤー方式で、一層抄きで湿式抄紙し、表面温度130℃のヤンキードライヤーで乾燥し、抄紙速度20m/minで、坪量50g/m2の炭素短繊維湿式不織布を得た。
Example 1
A short carbon fiber having a fiber length described in Table 1, a beaten lyocell, and a PVA binder (manufactured by Kuraray, product name: VPB107-1) were added to water at the blending ratio (mass basis) described in Table 1, and a vertical pulper was added. After mixing and dispersing the wet paper for 10 minutes, the wet paper is wet paper-made in a single layer with an inclined wire method, dried with a Yankee dryer at a surface temperature of 130 ° C., and a paper-making speed of 20 m / min and a basis weight of 50 g / m 2 carbon A short fiber wet-laid nonwoven fabric was obtained.
実施例2~4、比較例1~4
炭素短繊維の繊維長と炭素短繊維の配合比率を表1記載内容に変えた以外は、実施例1と同様に実施例2~4及び比較例1~4の炭素短繊維湿式不織布を得た。
Examples 2-4, Comparative Examples 1-4
Short carbon fiber wet-laid nonwoven fabrics of Examples 2 to 4 and Comparative Examples 1 to 4 were obtained in the same manner as in Example 1, except that the fiber length of the short carbon fibers and the blending ratio of the short carbon fibers were changed to those described in Table 1. .
実施例5及び6
セルロース繊維の種類又はバインダー合成繊維の種類を表1記載内容に変えた以外は、実施例1と同様に実施例5及び6の炭素短繊維湿式不織布を得た。
Examples 5 and 6
Short carbon fiber wet-laid nonwoven fabrics of Examples 5 and 6 were obtained in the same manner as in Example 1, except that the type of cellulose fiber or the type of binder synthetic fiber was changed to those described in Table 1.
実施例7及び8
合成繊維を追加し、各繊維の配合比率を表1記載内容に変えた以外は、実施例1と同様に実施例7及び8の炭素短繊維湿式不織布を得た。
Examples 7 and 8
Short carbon fiber wet-laid non-woven fabrics of Examples 7 and 8 were obtained in the same manner as in Example 1, except that synthetic fibers were added and the blending ratio of each fiber was changed to the content described in Table 1.
実施例9~11、比較例5~7
炭素短繊維の配合比率を表1記載内容に変えた以外は、実施例1と同様に実施例9~11及び比較例5~7の炭素短繊維湿式不織布を得た。
Examples 9-11, Comparative Examples 5-7
Short carbon fiber wet-laid nonwoven fabrics of Examples 9 to 11 and Comparative Examples 5 to 7 were obtained in the same manner as in Example 1, except that the mixing ratio of the short carbon fibers was changed to that described in Table 1.
実施例12~17、比較例8
炭素短繊維、叩解リヨセル及びPVAバインダーの配合比率を表1記載内容に変えた以外は、実施例1と同様に実施例12~17及び比較例8の炭素短繊維湿式不織布を得た。
Examples 12-17, Comparative Example 8
Short carbon fiber wet-laid nonwoven fabrics of Examples 12 to 17 and Comparative Example 8 were obtained in the same manner as in Example 1, except that the mixing ratio of short carbon fibers, beaten lyocell, and PVA binder was changed to the content shown in Table 1.
実施例18~23
炭素短繊維の種類及び配合比率を表1記載内容に変えた以外は、実施例1と同様に実施例18~23の炭素短繊維湿式不織布を得た。
Examples 18-23
Short carbon fiber wet-laid nonwoven fabrics of Examples 18 to 23 were obtained in the same manner as in Example 1, except that the type and blending ratio of short carbon fibers were changed to those described in Table 1.
実施例24~29
炭素短繊維湿式不織布の坪量を表1記載内容に変えた以外は、実施例1と同様に実施例24~29の炭素短繊維湿式不織布を得た。
Examples 24-29
Short carbon fiber wet-laid nonwoven fabrics of Examples 24 to 29 were obtained in the same manner as in Example 1, except that the basis weight of the short carbon fiber wet-laid nonwoven fabric was changed to the contents shown in Table 1.
表1に記載されている繊維の詳細は、以下の通りである。 Details of the fibers listed in Table 1 are as follows.
叩解リヨセル:リヨセル繊維(繊度1.4dtex、繊維長3mm)を、ダブルディスクリファイナーを用いて処理し、平均繊維径14.0μmの幹部から平均繊維径1μm以下の枝部を発生させるように調製した繊維。
叩解針葉樹パルプ:ろ水度500mlCSFとなるように調製した天然針葉樹パルプ。
PET繊維:ポリエチレンテレフタレート(PET)延伸繊維、繊度1.7デシテックス、繊維長5mm
アラミド繊維:繊度0.9デシテックス、繊維長 5mm
PVAバインダー:ポリビニルアルコールバインダー繊維(クラレ製、製品名:VPB107-1)
PETバインダー:PET未延伸バインダー繊維、繊度1.2デシテックス、繊維長5mm
Beating lyocell: Lyocell fibers (fineness 1.4 dtex, fiber length 3 mm) were treated using a double disc refiner to generate branches with an average fiber diameter of 1 μm or less from a stem with an average fiber diameter of 14.0 μm. fiber.
Beat softwood pulp: Natural softwood pulp prepared to have a freeness of 500 ml CSF.
PET fiber: polyethylene terephthalate (PET) drawn fiber, fineness 1.7 decitex, fiber length 5 mm
Aramid fiber: fineness 0.9 decitex, fiber length 5 mm
PVA binder: Polyvinyl alcohol binder fiber (manufactured by Kuraray, product name: VPB107-1)
PET binder: PET unstretched binder fiber, fineness 1.2 decitex, fiber length 5 mm
実施例及び比較例で作製した炭素短繊維湿式不織布において、坪量を測定し、また、CFRP加工後の強度、均一性及び成形流動性を評価し、測定結果及び評価結果を表1に示した。 The basis weight of the carbon short fiber wet-laid nonwoven fabrics produced in Examples and Comparative Examples was measured, and the strength, uniformity and molding fluidity after CFRP processing were evaluated. The measurement results and evaluation results are shown in Table 1. .
<坪量>
炭素短繊維湿式不織布の坪量をJIS P 8124:2011に則って測定した。
<Basis weight>
The basis weight of the short carbon fiber wet-laid nonwoven fabric was measured according to JIS P 8124:2011.
<CFRP加工>
炭素短繊維湿式不織布のCFRP加工を行った。炭素短繊維不織布に硬化剤を混合した熱硬化性樹脂を炭素短繊維不織布の質量の二倍量塗工した後、厚みが2mmとなるように熱プレス加工(温度120℃、圧力5MPa)を行い、炭素短繊維湿式不織布のCFRP板を得た。
<CFRP processing>
A short carbon fiber wet-laid nonwoven fabric was subjected to CFRP processing. After coating a short carbon fiber nonwoven fabric with a thermosetting resin mixed with a curing agent in an amount twice the weight of the short carbon fiber nonwoven fabric, heat press processing (temperature 120°C, pressure 5 MPa) is performed so that the thickness becomes 2 mm. , a CFRP plate of carbon short fiber wet-laid nonwoven fabric was obtained.
使用したエポキシ樹脂は以下の通りである。
エポキシ樹脂:GM-6800(ブレニー技研)
硬化剤混合後粘度:505cps
The epoxy resins used are as follows.
Epoxy resin: GM-6800 (Blenny Giken)
Viscosity after mixing curing agent: 505 cps
エポキシ樹脂は、硬化剤を主剤/硬化剤が10/3となるように混合した後、CFRP加工を実施した。 The epoxy resin was processed by CFRP after mixing the curing agent so that the ratio of main agent/curing agent was 10/3.
<CFRP加工後の強度評価>
作製したCFRP板の強度をJIS K 7074:1988に則って、サンプルごとにN=10回測定して、評価を行った。
<Strength evaluation after CFRP processing>
The strength of the produced CFRP plate was evaluated by measuring N=10 times for each sample according to JIS K 7074:1988.
○:CFRPとして十分高い強度が得られた。
△:CFRPとしてやや低めではあるものの、高い強度が得られた。
×:CFRPとして強度が不足していた。
◯: Sufficiently high strength was obtained as CFRP.
Δ: A high strength was obtained although the CFRP was slightly low.
x: Insufficient strength as CFRP.
<CFRP加工後の均一性評価>
作製したCFRPの強度の変動係数を求め、評価を行った。
<Uniformity evaluation after CFRP processing>
The coefficient of variation of the strength of the produced CFRP was determined and evaluated.
○:変動係数が10%未満であり、強度が均一であった
△:変動係数が10~30%であり、強度がやや不均一であった。
×:変動係数が30%よりも高く、強度が不均一であった。
○: The coefficient of variation was less than 10%, and the strength was uniform. △: The coefficient of variation was 10 to 30%, and the strength was somewhat uneven.
x: The coefficient of variation was higher than 30%, and the strength was uneven.
<CFRP成形流動性評価>
炭素短繊維湿式不織布の成形流動性を測定するため、上記<CFRP加工>と同様に、炭素短繊維不織布に熱硬化性樹脂を塗工して得た複合体31を、上板(スリットあり)11と下板(スリットなし)21との間に置き、熱プレス成形(温度120℃、圧力5MPa)して、幅2mm、長さ50mmのリブ41を成形して、成形流動性の測定を行った(図1)。
<CFRP molding fluidity evaluation>
In order to measure the molding fluidity of the carbon short fiber wet-laid nonwoven fabric, the composite 31 obtained by coating the carbon short fiber nonwoven fabric with a thermosetting resin was placed on an upper plate (with slits) in the same manner as in <CFRP processing>. 11 and a lower plate (no slit) 21, hot press molding (temperature 120° C., pressure 5 MPa) is performed to form a
○:炭素繊維を含んだリブが3mmよりも高く形成され、高い成形流動性が見られた。
△:炭素繊維を含んだリブが高さ0.5~3mmの範囲で形成され、やや高い流動性が見られた。
×:炭素繊維を含んだリブが0.5mmよりも低く形成され、成形流動性が見られなかった。
◯: Ribs containing carbon fibers were formed higher than 3 mm, and high molding fluidity was observed.
Δ: Ribs containing carbon fibers were formed in the range of 0.5 to 3 mm in height, and slightly high fluidity was observed.
x: Ribs containing carbon fibers were formed lower than 0.5 mm, and molding fluidity was not observed.
炭素短繊維の割合が不織布を構成する全繊維に対して10~98質量%であり、繊維長が2mmよりも長い炭素短繊維の割合が全炭素短繊維に対して20~98質量%であり、繊維長が2mm以下の炭素短繊維の割合が全炭素短繊維の質量に対して80~2質量%である実施例1~4においては、優れた成形流動性とCFRP加工後の強度及び均一性を持つことが分かる。繊維長が2mmよりも長い炭素短繊維により、炭素繊維の持つ高い強度を発揮し、且つ2mm以下の短い炭素短繊維が高い成形流動性を持つことから、リブに繊維が流動することができ、炭素短繊維湿式不織布を含むCFRPのリブを形成することできた。また、繊維長2mm以下の短い炭素短繊維がCFRPの空隙部分を埋める役割を果たすため、CFRPの内部に炭素繊維が均一に配合されることによって、優れたCFRPの均一性が示された。 The ratio of short carbon fibers is 10 to 98% by mass with respect to all fibers constituting the nonwoven fabric, and the ratio of short carbon fibers with a fiber length longer than 2 mm is 20 to 98% by mass with respect to all short carbon fibers. , In Examples 1 to 4, in which the proportion of short carbon fibers with a fiber length of 2 mm or less is 80 to 2% by mass with respect to the mass of all short carbon fibers, excellent molding fluidity and strength and uniformity after CFRP processing known to have sex. Short carbon fibers with a fiber length longer than 2 mm exhibit the high strength of carbon fibers, and short carbon fibers with a fiber length of 2 mm or less have high molding fluidity, so that the fibers can flow to the ribs. It was possible to form CFRP ribs containing short carbon fiber wet-laid nonwoven fabric. In addition, since short short carbon fibers with a fiber length of 2 mm or less play a role in filling voids in CFRP, excellent uniformity of CFRP was demonstrated by uniformly blending carbon fibers inside CFRP.
また、全炭素短繊維が繊維長2mm以下の炭素短繊維である比較例1及び2では、優れた成形流動性を持つものの、CFRP加工後の強度が低いことが分かる。これは全ての炭素繊維が短いため、炭素繊維が持つ強度を十分に発揮することができなかったためと推測される。また、全炭素短繊維が2mmよりも長い炭素短繊維である比較例3及び4では、CFRP加工後の強度は高かったものの、リブ部分に炭素短繊維が見られず、炭素短繊維に成形流動性が見られなかった。これは全ての炭素繊維が長いため、炭素短繊維同士の接点が多く、繊維同士が強く結合した炭素短繊維しか存在しないことから、細かいリブ部分に炭素短繊維が入っていかず、成形流動性が見られなかったと推測される。 Moreover, in Comparative Examples 1 and 2, in which all of the short carbon fibers are carbon short fibers having a fiber length of 2 mm or less, the strength after CFRP processing is low although excellent molding fluidity is obtained. It is presumed that this is because all of the carbon fibers are short, so that the strength of the carbon fibers could not be exhibited sufficiently. In addition, in Comparative Examples 3 and 4, in which all the short carbon fibers were longer than 2 mm, the strength after CFRP processing was high, but no short carbon fibers were observed in the rib portion, and the short carbon fibers did not flow during molding. sex was not found. This is because all the carbon fibers are long, so there are many points of contact between short carbon fibers, and there are only short carbon fibers that are strongly bonded to each other. Presumably not seen.
炭素短繊維の割合が不織布を構成する全繊維に対して10~98質量%であり、繊維長が2mmよりも長い炭素短繊維の割合が全炭素短繊維に対して20~98質量%であり、繊維長が2mm以下の炭素短繊維の割合が全炭素短繊維に対して80~2質量%である実施例5~8においては、優れた成形流動性とCFRP加工後の強度及び均一性を持つことが分かる。実施例1の叩解リヨセルを叩解針葉樹パルプに変えた実施例5の結果及び実施例1のPVAバインダー合成繊維をPETバインダー合成繊維に変更した実施例6の結果から、炭素短繊維以外の繊維を実施例1記載の繊維以外の繊維に変更しても問題が無いことが分かる。また、合成繊維としてPET繊維又はアラミド繊維が配合されている実施例7及び8においても、評価の結果に問題が見られないことから、合成繊維を配合してもCFRP加工性に影響は無いことが確認された。 The ratio of short carbon fibers is 10 to 98% by mass with respect to all fibers constituting the nonwoven fabric, and the ratio of short carbon fibers with a fiber length longer than 2 mm is 20 to 98% by mass with respect to all short carbon fibers. , In Examples 5 to 8, in which the ratio of short carbon fibers having a fiber length of 2 mm or less is 80 to 2% by mass with respect to the total short carbon fibers, excellent molding fluidity and strength and uniformity after CFRP processing are obtained. I know you have From the results of Example 5 in which the beaten lyocell of Example 1 was changed to beaten softwood pulp and the results of Example 6 in which the PVA binder synthetic fibers of Example 1 were changed to PET binder synthetic fibers, fibers other than short carbon fibers were used. It can be seen that there is no problem even if the fibers other than those described in Example 1 are used. In addition, in Examples 7 and 8, in which PET fibers or aramid fibers are blended as synthetic fibers, no problems were observed in the evaluation results, so blending synthetic fibers does not affect CFRP processability. was confirmed.
炭素短繊維の割合が不織布を構成する全繊維に対して10~98質量%であり、繊維長が2mmよりも長い炭素短繊維の割合が全炭素短繊維に対して20~98質量%であり、繊維長が2mm以下の炭素短繊維の割合が全炭素短繊維に対して80~2質量%である実施例9~11においては、優れた成形流動性とCFRP加工後の強度及び均一性を持つことが分かる。実施例1の2mm以下の炭素短繊維と2mmよりも長い炭素短繊維の割合を変更した実施例9~11の結果から、繊維長が2mmよりも長い炭素短繊維/繊維長が2mm以下の炭素短繊維=20~98質量%/80~2質量%の範囲内であれば、繊維長が2mm以下の炭素短繊維と繊維長が2mmよりも長い炭素短繊維の割合は変更しても問題が無いことが分かる。 The ratio of short carbon fibers is 10 to 98% by mass with respect to all fibers constituting the nonwoven fabric, and the ratio of short carbon fibers with a fiber length longer than 2 mm is 20 to 98% by mass with respect to all short carbon fibers. In Examples 9 to 11, in which the ratio of short carbon fibers having a fiber length of 2 mm or less is 80 to 2% by mass with respect to the total short carbon fibers, excellent molding fluidity and strength and uniformity after CFRP processing are obtained. I know you have From the results of Examples 9 to 11 in which the ratio of carbon short fibers of 2 mm or less and carbon short fibers longer than 2 mm in Example 1 was changed, carbon short fibers with a fiber length of 2 mm or less / carbon with a fiber length of 2 mm or less Short fibers = 20 to 98 mass% / 80 to 2 mass%, there is no problem even if the ratio of carbon short fibers with a fiber length of 2 mm or less and carbon short fibers with a fiber length of longer than 2 mm is changed. I know there is none.
比較例5では、繊維長が2mm以下の炭素短繊維の割合が全炭素短繊維に対して2質量%未満となったことから、リブ部分に入る炭素短繊維や、CFRP内の空隙に入る炭素短繊維が少なくなったため、成形流動性やCFRP加工後の均一性が悪くなったと推測される。比較例6及び7では、繊維長が2mmよりも長い炭素短繊維の割合が全炭素短繊維に対して20質量%未満となり、長い繊維が少なくなったことから、炭素繊維の強度を十分に発揮することができなくなったと推測される。 In Comparative Example 5, the proportion of short carbon fibers having a fiber length of 2 mm or less was less than 2% by mass with respect to the total short carbon fibers. It is presumed that the molding fluidity and uniformity after CFRP processing deteriorated because the amount of short fibers decreased. In Comparative Examples 6 and 7, the proportion of short carbon fibers having a fiber length of more than 2 mm was less than 20% by mass with respect to the total short carbon fibers. presumed to be no longer possible.
炭素短繊維の割合が不織布を構成する全繊維に対して10~98質量%であり、繊維長が2mmよりも長い炭素短繊維の割合が全炭素短繊維に対して20~98質量%であり、繊維長が2mm以下の炭素短繊維の割合が全炭素短繊維に対して80~2質量%である実施例12~17においては、優れた成形流動性とCFRP強度、均一性を持つことが分かる。不織布を構成する全繊維に対する炭素短繊維の割合を変更している実施例1及び実施例12~17の結果から、炭素短繊維の割合が全繊維に対して10~98質量%であれば、問題が無いことが分かる。実施例12においては、炭素短繊維の割合がやや少ないことから、CFRP加工後の強度や成形流動性がやや低い結果となった。 The ratio of short carbon fibers is 10 to 98% by mass with respect to all fibers constituting the nonwoven fabric, and the ratio of short carbon fibers with a fiber length longer than 2 mm is 20 to 98% by mass with respect to all short carbon fibers. In Examples 12 to 17, in which the ratio of short carbon fibers having a fiber length of 2 mm or less is 80 to 2% by mass with respect to the total short carbon fibers, excellent molding fluidity, CFRP strength, and uniformity can be obtained. I understand. From the results of Examples 1 and 12 to 17 in which the ratio of short carbon fibers to the total fibers constituting the nonwoven fabric is changed, if the ratio of short carbon fibers to the total fibers is 10 to 98% by mass, It turns out that there is no problem. In Example 12, since the proportion of short carbon fibers was slightly low, the strength and molding fluidity after CFRP processing were slightly low.
炭素短繊維の割合が不織布を構成する全繊維に対して10質量%未満である比較例8においては、炭素短繊維が少ないため、CFRP加工後の強度が不十分となったと推測する。 In Comparative Example 8, in which the proportion of short carbon fibers is less than 10% by mass relative to the total fibers constituting the nonwoven fabric, it is presumed that the strength after CFRP processing was insufficient due to the small amount of short carbon fibers.
炭素短繊維の割合が不織布を構成する全繊維に対して10~98質量%であり、繊維長が2mmよりも長い炭素短繊維の割合が全炭素短繊維に対して20~98質量%であり、繊維長が2mm以下の炭素短繊維の割合が全炭素短繊維に対して80~2質量%である実施例18~23においては、優れた成形流動性とCFRP加工後の強度及び均一性を持つことが分かる。繊維長が2mm以下の炭素短繊維や、繊維長が2mmよりも長い炭素短繊維を複数混合している実施例18~23の結果から、繊維長が2mmよりも長い炭素短繊維/繊維長が2mm以下の炭素短繊維=20~98質量%/80~2質量%の範囲内であれば、繊維長の異なる炭素短繊維を複数混合して使用しても問題が無いことが分かる。 The ratio of short carbon fibers is 10 to 98% by mass with respect to all fibers constituting the nonwoven fabric, and the ratio of short carbon fibers with a fiber length longer than 2 mm is 20 to 98% by mass with respect to all short carbon fibers. In Examples 18 to 23, in which the ratio of short carbon fibers having a fiber length of 2 mm or less is 80 to 2% by mass with respect to the total short carbon fibers, excellent molding fluidity and strength and uniformity after CFRP processing are obtained. I know you have From the results of Examples 18 to 23 in which a plurality of short carbon fibers with a fiber length of 2 mm or less and carbon short fibers with a fiber length of longer than 2 mm are mixed, carbon short fibers with a fiber length longer than 2 mm / fiber length Short carbon fibers of 2 mm or less = 20 to 98% by mass/80 to 2% by mass, it can be seen that there is no problem even if a plurality of short carbon fibers having different fiber lengths are mixed and used.
炭素短繊維の割合が不織布を構成する全繊維に対して10~98質量%であり、繊維長が2mmよりも長い炭素短繊維の割合が全炭素短繊維に対して20~98質量%であり、繊維長が2mm以下の炭素短繊維の割合が全炭素短繊維に対して80~2質量%である実施例24~29においては、優れた成形流動性とCFRP加工後の強度及び均一性を持つことが分かる。坪量を変更している実施例24~29の結果から、炭素短繊維の割合が上記範囲であれば、坪量を変更しても問題が無いことが分かる。 The ratio of short carbon fibers is 10 to 98% by mass with respect to all fibers constituting the nonwoven fabric, and the ratio of short carbon fibers with a fiber length longer than 2 mm is 20 to 98% by mass with respect to all short carbon fibers. , In Examples 24 to 29, in which the ratio of short carbon fibers with a fiber length of 2 mm or less is 80 to 2% by mass with respect to the total short carbon fibers, excellent molding fluidity and strength and uniformity after CFRP processing are obtained. I know you have From the results of Examples 24 to 29 in which the grammage is changed, it can be seen that there is no problem even if the grammage is changed as long as the ratio of short carbon fibers is within the above range.
本発明の炭素短繊維湿式不織布は、炭素繊維強化樹脂(CFRP)加工用として好適に使用できる。 The short carbon fiber wet-laid nonwoven fabric of the present invention can be suitably used for carbon fiber reinforced resin (CFRP) processing.
11 上板(スリットあり)
21 下板(スリットなし)
31 炭素短繊維不織布と熱硬化性樹脂複合体
41 リブ
11 Upper plate (with slit)
21 lower plate (no slit)
31 carbon short fiber nonwoven fabric and
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017238368A JP7211701B2 (en) | 2017-12-13 | 2017-12-13 | Short carbon fiber wet-laid nonwoven fabric and carbon fiber reinforced resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017238368A JP7211701B2 (en) | 2017-12-13 | 2017-12-13 | Short carbon fiber wet-laid nonwoven fabric and carbon fiber reinforced resin |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019105003A JP2019105003A (en) | 2019-06-27 |
JP7211701B2 true JP7211701B2 (en) | 2023-01-24 |
Family
ID=67061046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017238368A Active JP7211701B2 (en) | 2017-12-13 | 2017-12-13 | Short carbon fiber wet-laid nonwoven fabric and carbon fiber reinforced resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7211701B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7077292B2 (en) * | 2019-11-22 | 2022-05-30 | 三菱製紙株式会社 | Carbon staple fiber non-woven fabric |
JP7473416B2 (en) | 2020-07-30 | 2024-04-23 | トヨタ自動車株式会社 | Method for producing fiber-reinforced composite material |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007097436A1 (en) | 2006-02-24 | 2007-08-30 | Toray Industries, Inc. | Fiber-reinforced thermoplastic resin molded article, molding material, and method for production of the molded article |
JP2013016476A (en) | 2011-06-09 | 2013-01-24 | Toray Ind Inc | Gas diffusion electrode base material and production method therefor |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005239806A (en) * | 2004-02-25 | 2005-09-08 | Toray Ind Inc | Carbon fiber-reinforced thermoplastic resin molding |
EP2803693B1 (en) * | 2012-01-10 | 2020-03-04 | Toray Industries, Inc. | Carbon fiber-reinforced polypropylene sheet and molded article thereof |
JP2014095034A (en) * | 2012-11-09 | 2014-05-22 | Toray Ind Inc | Molded article and method for producing molded article |
CN105579211B (en) * | 2014-02-14 | 2018-01-23 | 帝人株式会社 | Fibre reinforced moulding material and molded article |
JP6728985B2 (en) * | 2016-05-27 | 2020-07-22 | 王子ホールディングス株式会社 | Base material for fiber-reinforced plastic molded body, fiber-reinforced plastic molded body, and method for producing base material for fiber-reinforced plastic molded body |
-
2017
- 2017-12-13 JP JP2017238368A patent/JP7211701B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007097436A1 (en) | 2006-02-24 | 2007-08-30 | Toray Industries, Inc. | Fiber-reinforced thermoplastic resin molded article, molding material, and method for production of the molded article |
JP2013016476A (en) | 2011-06-09 | 2013-01-24 | Toray Ind Inc | Gas diffusion electrode base material and production method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2019105003A (en) | 2019-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2596521C2 (en) | Cellulose nanofilaments with high coefficient of drawing and production methods thereof | |
BR112019004638B1 (en) | METHOD FOR TRANSFORMING A PULP INTO A PRE-DISPERSED PULP FIBROUS MATERIAL, PRE-DISPERSED FIBROUS MATERIAL, AND, REFINER SYSTEM | |
US20180264386A1 (en) | Filter media comprising cellulose filaments | |
JP6976767B2 (en) | Carbon short fiber wet non-woven fabric and carbon short fiber reinforced resin composition | |
JP7211701B2 (en) | Short carbon fiber wet-laid nonwoven fabric and carbon fiber reinforced resin | |
JP2020165048A (en) | Carbon fiber non-woven fabric and carbon fiber reinforced resin composite | |
JP7386776B2 (en) | Carbon fiber-containing wet-laid nonwoven fabric | |
JP7211791B2 (en) | Short carbon fiber wet-laid nonwoven fabric and carbon fiber reinforced resin | |
JP2020158912A (en) | Wet nonwoven fabric of short carbon fiber, and carbon fiber reinforced resin | |
JP2019157315A (en) | Carbon fiber non-woven fabric and composite | |
JP7030472B2 (en) | Carbon staple fiber wet non-woven fabric | |
JP6829174B2 (en) | Carbon fiber non-woven fabric | |
JP2020051000A (en) | Manufacturing method of carbon fiber unwoven fabric | |
JP6914106B2 (en) | Carbon short fiber non-woven fabric | |
JP7490053B2 (en) | Wet-laid webs containing viscose fibers | |
JP2020076174A (en) | Wet non-woven fabric containing polyphenylene sulfide fiber | |
JP2023098385A (en) | Carbon fiber reinforced elastic polymer composite | |
JP2019131931A (en) | Carbon short fiber wet non-woven fabric and carbon fiber-reinforced resin | |
JP2020133055A (en) | Carbon short fiber wet type nonwoven fabric and carbon fiber-reinforced resin | |
JP2023148946A (en) | Heat-resistant glass fiber nonwoven fabric | |
JP2017172083A (en) | Carbon short fiber nonwoven fabric and composite | |
JP2021095646A (en) | Carbon short fiber nonwoven fabric and carbon fiber-reinforced plastic | |
JP2018159164A (en) | Method for impregnating porous sheet-like matter comprising carbon fiber with liquid having conductive solid dispersed therein | |
JP2022148272A (en) | Carbon fiber composite material precursor and carbon fiber composite material | |
JP6625941B2 (en) | Method for producing carbon fiber sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200520 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210202 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20210330 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210601 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20211026 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20220126 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20220920 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20221011 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20221108 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20221122 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20221220 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20221220 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230112 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7211701 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |