JP6914106B2 - Carbon short fiber non-woven fabric - Google Patents
Carbon short fiber non-woven fabric Download PDFInfo
- Publication number
- JP6914106B2 JP6914106B2 JP2017110967A JP2017110967A JP6914106B2 JP 6914106 B2 JP6914106 B2 JP 6914106B2 JP 2017110967 A JP2017110967 A JP 2017110967A JP 2017110967 A JP2017110967 A JP 2017110967A JP 6914106 B2 JP6914106 B2 JP 6914106B2
- Authority
- JP
- Japan
- Prior art keywords
- fibers
- fiber
- carbon
- carbon short
- woven fabric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 title claims description 244
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims description 131
- 229910052799 carbon Inorganic materials 0.000 title claims description 115
- 239000004745 nonwoven fabric Substances 0.000 title claims description 73
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 55
- 229920003043 Cellulose fiber Polymers 0.000 claims description 44
- 239000011230 binding agent Substances 0.000 claims description 39
- 229920002994 synthetic fiber Polymers 0.000 claims description 27
- 239000012209 synthetic fiber Substances 0.000 claims description 27
- 238000002156 mixing Methods 0.000 claims description 16
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 12
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 10
- 229920000433 Lyocell Polymers 0.000 claims description 9
- 239000004917 carbon fiber Substances 0.000 description 47
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 24
- 238000000034 method Methods 0.000 description 16
- -1 cupra Polymers 0.000 description 14
- 239000003795 chemical substances by application Substances 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000004513 sizing Methods 0.000 description 8
- 239000004743 Polypropylene Substances 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 239000004698 Polyethylene Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000012784 inorganic fiber Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 5
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 238000010009 beating Methods 0.000 description 4
- 206010061592 cardiac fibrillation Diseases 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 230000002600 fibrillogenic effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 238000004064 recycling Methods 0.000 description 4
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 3
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000011295 pitch Substances 0.000 description 3
- 229920002239 polyacrylonitrile Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000011122 softwood Substances 0.000 description 3
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 206010040880 Skin irritation Diseases 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 238000010000 carbonizing Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 230000036556 skin irritation Effects 0.000 description 2
- 231100000475 skin irritation Toxicity 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229920002972 Acrylic fiber Polymers 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229920002978 Vinylon Polymers 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000010893 paper waste Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000011271 tar pitch Substances 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Landscapes
- Nonwoven Fabrics (AREA)
Description
本発明は、炭素短繊維不織布に関する。 The present invention relates to short carbon fiber non-woven fabrics.
炭素繊維は鉄よりも軽量であり、強度が強いという優れた力学特性を有している。そのため、炭素繊維複合材料は航空機、自動車、テニスラケット、釣竿、風力発電の羽根などの幅広い分野で使用されており、今後も用途が拡大すると予想される。 Carbon fiber is lighter than iron and has excellent mechanical properties such as high strength. Therefore, carbon fiber composite materials are used in a wide range of fields such as aircraft, automobiles, tennis rackets, fishing rods, and blades for wind power generation, and their applications are expected to expand in the future.
炭素繊維としては、現在主に、ポリアクリロニトリルを炭素化、黒鉛化することで得られるPAN系炭素繊維と、タールピッチ液化石炭を溶融紡糸してから炭素化、黒鉛化することで得られるピッチ系炭素繊維とが使用されている。こうして生産された炭素繊維は、織物として加工するか、あるいは一方向に並べた後に、未硬化樹脂を含浸させた炭素繊維プリプレグと呼ばれる材料を、目標とする成形物の型に合うように裁断した後に樹脂を硬化することで得られる、炭素繊維強化樹脂(以下「CFRP」と略記する)として使用されることが多い。あるいは、CFRP廃材をリサイクルして得られた炭素繊維を使用する場合は、炭素繊維がリサイクル過程において短繊維化して炭素短繊維となることから、織物として加工することはできないため、不織布として加工されることが一般的である。 Currently, the carbon fibers are mainly PAN-based carbon fibers obtained by carbonizing and graphitizing polyacrylonitrile, and pitch-based carbon fibers obtained by melt-spinning tar-pitch liquefied coal and then carbonizing and graphitizing. Carbon fiber is used. The carbon fibers thus produced were processed as a woven fabric or arranged in one direction, and then a material called carbon fiber prepreg impregnated with an uncured resin was cut to fit the target molded product mold. It is often used as a carbon fiber reinforced resin (hereinafter abbreviated as "CFRP") obtained by curing the resin later. Alternatively, when carbon fiber obtained by recycling CFRP waste material is used, it cannot be processed as a woven fabric because the carbon fiber is shortened to carbon short fiber in the recycling process, so that it is processed as a non-woven fabric. Is common.
炭素短繊維をシート化して炭素短繊維不織布とする方法としては、炭素短繊維と水膨潤フィブリル化繊維とを水中に分散させ、抄紙用スラリーを作製し、繊維を交絡させる方法が示されている。水膨潤フィブリル化繊維としては、フィブリル化パラ型芳香族ポリアミド繊維や、フィブリル化アクリル繊維が挙げられている(特許文献1参照)。しかしながら、この方法は、炭素短繊維不織布をCFRPに加工する際に断裁、圧縮などの工程において微細な炭素短繊維が脱落するという問題について考慮されていない。脱落した炭素短繊維は、オペレーターの肌を刺激して炎症を発生させるなどして、健康状態を損ねる場合や、あるいは電気系統に浸入してショートを引き起こす場合がある。 As a method of forming a carbon short fiber non-woven fabric into a sheet of carbon short fibers, a method of dispersing carbon short fibers and water-swelled fibrillated fibers in water to prepare a papermaking slurry and entwining the fibers is shown. .. Examples of the water-swelled fibrillated fibers include fibrillated para-type aromatic polyamide fibers and fibrillated acrylic fibers (see Patent Document 1). However, this method does not consider the problem that fine carbon short fibers fall off in steps such as cutting and compression when the carbon short fiber non-woven fabric is processed into CFRP. The lost carbon short fibers may irritate the operator's skin and cause inflammation, which may impair the health condition, or may invade the electrical system and cause a short circuit.
また、炭素短繊維をシート化して不織布とする別方法としては、炭素短繊維75質量%〜97質量%、セルロース25質量%〜3質量%からなる炭素短繊維不織布を製造する方法において、含窒素有機溶媒を含有する水性分散助剤を炭素短繊維に対して10質量%以下と炭素短繊維を所定量の水に添加して撹拌し、さらに水でスラリー固形分濃度を0.05質量%以下に希釈して回流させる工程を経た後、湿式抄紙する方法が示されている(特許文献2参照)。しかしながら、特許文献2の炭素短繊維不織布は、ガス透過性や導電性を有する不織布であり、CFRPに使用される不織布ではないため、炭素短繊維不織布をCFRPに加工する際に断裁、圧縮などの工程において微細な炭素短繊維が脱落するという問題については考慮されていなかった。
Further, as another method of forming a non-woven fabric by sheeting carbon short fibers, a method for producing a carbon short fiber non-woven fabric composed of 75% by mass to 97% by mass of carbon short fibers and 25% by mass to 3% by mass of cellulose contains nitrogen. An aqueous dispersion aid containing an organic solvent is added to a predetermined amount of water with 10% by mass or less of the carbon short fibers and the carbon short fibers are added and stirred, and the slurry solid content concentration is 0.05% by mass or less with water. A method of wet papermaking after undergoing a step of diluting and circulating the paper is shown (see Patent Document 2). However, the carbon short fiber non-woven fabric of
本発明の課題は、炭素短繊維不織布を加工した際に発生する脱落繊維を抑制することができる炭素短繊維不織布を提供するものである。 An object of the present invention is to provide a carbon short fiber non-woven fabric capable of suppressing fallen fibers generated when the carbon short fiber non-woven fabric is processed.
本発明者らは、この課題を解決するため研究を行った結果、下記手段を見出した。 As a result of conducting research to solve this problem, the present inventors have found the following means.
(1)炭素短繊維(活性炭素繊維を除く)、セルロース繊維及びバインダー合成繊維を含む炭素短繊維不織布であり、炭素短繊維(活性炭素繊維を除く)を必須成分とする多孔質基材及びセルロース繊維を必須成分とする網状構造体とが混在して含まれ、バインダー合成繊維がポリビニルアルコール系繊維である炭素短繊維不織布。
(2)炭素短繊維(活性炭素繊維を除く)の平均繊維長が1.0mm以上であることを特徴とする上記(1)記載の炭素短繊維不織布。
(3)セルロース繊維が叩解リヨセル繊維である上記(1)又は(2)記載の炭素短繊維不織布。
(4)坪量が10g/m 2 以上である上記(1)〜(3)のいずれか記載の炭素短繊維不織布。
(5)炭素短繊維(活性炭素繊維を除く)の配合比率(質量基準)が10%以上99%未満である上記(4)記載の炭素短繊維不織布。
(1) A carbon short fiber non-woven fabric containing carbon short fibers (excluding activated carbon fibers), cellulose fibers and binder synthetic fibers, and a porous base material and cellulose containing carbon short fibers (excluding activated carbon fibers) as essential components. A carbon short fiber non-woven fabric in which a network structure containing fibers as an essential component is mixed and contained, and the binder synthetic fiber is a polyvinyl alcohol-based fiber.
(2) The carbon short fiber non-woven fabric according to (1) above, wherein the average fiber length of carbon short fibers (excluding activated carbon fibers) is 1.0 mm or more.
(3) The short carbon fiber non-woven fabric according to (1) or (2) above, wherein the cellulose fiber is a beaten lyocell fiber.
(4) The short carbon fiber non-woven fabric according to any one of (1) to (3) above , which has a basis weight of 10 g / m 2 or more.
(5) The carbon short fiber non-woven fabric according to (4) above, wherein the blending ratio (mass standard) of carbon short fibers (excluding activated carbon fibers) is 10% or more and less than 99% .
本発明によれば、脱落繊維が抑制された炭素短繊維不織布を得ることができる。 According to the present invention, it is possible to obtain a short carbon fiber non-woven fabric in which shed fibers are suppressed.
炭素短繊維を含む不織布においては、断裁、圧縮等の力が加えられると、炭素短繊維が折れ、微細な炭素短繊維が飛散することがある。炭素短繊維は自己接着する要素を持たず、繊維同士が絡み合いにくいことから、脱落繊維が起こりやすい傾向にある。また、人体の皮膚への刺激性も強いため、オペレーターの健康状態を損なう可能性が考えられる。また、炭素短繊維は電気伝導性を持つため、機械内部に侵入することで短絡を引き起こし、機械に不具合が発生する原因となることがある。これらのことから、脱落繊維の防止は安定した生産には必要である。 In a non-woven fabric containing carbon short fibers, when a force such as cutting or compression is applied, the carbon short fibers may be broken and fine carbon short fibers may be scattered. Short carbon fibers do not have self-adhesive elements, and the fibers are less likely to be entangled with each other, so that shed fibers tend to occur easily. In addition, since it is highly irritating to the skin of the human body, it is possible that the health condition of the operator may be impaired. In addition, since carbon short fibers have electrical conductivity, they may enter the inside of the machine and cause a short circuit, which may cause a malfunction in the machine. For these reasons, prevention of fallen fibers is necessary for stable production.
炭素短繊維は自己接着する要素を持たないことから、自己接着機能を持つセルロース繊維やバインダー合成繊維を配合することで炭素短繊維同士の接着強度を上げ、脱落繊維を防止することができる。セルロース繊維が複数の炭素短繊維と絡み合うことで、図1に示したように、炭素短繊維1を必須成分とする多孔質基材及びセルロース繊維を必須成分とする網状構造体2とを含む炭素短繊維不織布となり、炭素短繊維の脱落を抑制する効果がある。図2に示したように、セルロース繊維を必須成分とする網状構造体2を含まない炭素短繊維不織布では、炭素短繊維は繊維同士の点接着のみの弱い結合となり、炭素短繊維は脱落しやすい。
Since carbon short fibers do not have an element for self-adhesion, it is possible to increase the adhesive strength between carbon short fibers and prevent shedding fibers by blending cellulose fibers or binder synthetic fibers having a self-adhesive function. By entwining the cellulose fibers with a plurality of carbon short fibers, as shown in FIG. 1, carbon containing a porous base material containing the carbon
炭素短繊維としては、PAN系、ピッチ系など、どのような製法で製造された炭素短繊維でも使用することができる。また、新品未使用の炭素短繊維でも、廃棄された炭素繊維をリサイクル処理して得られた炭素短繊維でもなんら問題はない。炭素短繊維を得るのに必要なコストを考慮するとリサイクル処理して得られた炭素短繊維がより好ましい。 As the carbon short fibers, carbon short fibers manufactured by any manufacturing method such as PAN type and pitch type can be used. In addition, there is no problem with new and unused carbon short fibers or carbon short fibers obtained by recycling discarded carbon fibers. Considering the cost required to obtain carbon short fibers, carbon short fibers obtained by recycling are more preferable.
炭素短繊維の平均繊維長は、1.0mm以上が好ましく、3.0mm以上がより好ましく、5.0mm以上がさらに好ましい。炭素短繊維の平均繊維長が長いほど、一本あたりの接着点が増えることから、脱落繊維が抑制されるため、炭素短繊維の平均繊維長は長い方が好ましいが、繊維長が長過ぎる場合、抄紙法でシート化する際に操業性が不安定となる場合がある。 The average fiber length of the carbon short fibers is preferably 1.0 mm or more, more preferably 3.0 mm or more, and even more preferably 5.0 mm or more. The longer the average fiber length of the carbon short fibers, the more adhesive points per fiber, and the more the fibers are suppressed from falling out. Therefore, it is preferable that the average fiber length of the carbon short fibers is long, but when the fiber length is too long. , Operability may become unstable when making sheets by the papermaking method.
ここで、炭素短繊維の平均繊維長は以下の方法により求められる。まず、炭素短繊維をランダムに20本採取し、その繊維長を測定する。その後以下の計算方法で炭素短繊維の平均繊維長を求める。 Here, the average fiber length of the short carbon fibers is obtained by the following method. First, 20 short carbon fibers are randomly collected and their fiber lengths are measured. After that, the average fiber length of the short carbon fibers is calculated by the following calculation method.
平均繊維長={(炭素短繊維1の繊維長(mm))+(炭素短繊維2の繊維長(mm))+(炭素短繊維3の繊維長(mm))+…(炭素短繊維20の繊維長(mm))}/20 Average fiber length = {(fiber length of carbon short fiber 1 (mm)) + (fiber length of carbon short fiber 2 (mm)) + (fiber length of carbon short fiber 3 (mm)) + ... (carbon short fiber 20) Fiber length (mm))} / 20
セルロース繊維としては針葉樹パルプ、広葉樹パルプなどの木材パルプ;藁パルプ、竹パルプ、リンターパルプ、ケナフパルプなどの木本類、草本類のパルプなどの天然パルプ繊維や、レーヨン、キュプラ、リヨセル等の再生セルロース繊維も使用することができる。これらのセルロース繊維は、本発明の効果が得られる範囲であれば、フィブリル化されていてもなんら差し支えない。さらに、古紙、損紙などから得られる天然パルプ繊維を使用してもよい。上記セルロース繊維の中で針葉樹パルプ、リンターパルプ、及びリヨセルの群から選ばれる1種以上のセルロース繊維を使用することが好ましく、リヨセルを使用することがより好ましい。また、リヨセル繊維はフィブリル化(叩解)されていることが好ましい。これらの好ましいセルロース繊維を使用することによって、セルロース繊維を必須成分とする網状構造体が形成されやすくなり、繊維の脱落を抑制することができる。また、炭素短繊維不織布を抄紙法で製造する場合の操業性が安定するという効果も得られる。 As cellulose fibers, wood pulps such as coniferous pulp and broadleaf pulp; natural pulp fibers such as straw pulp, bamboo pulp, linter pulp, and kenaf pulp, and herbaceous pulp, and recycled cellulose such as rayon, cupra, and lyocell. Fiber can also be used. These cellulose fibers may be fibrillated as long as the effects of the present invention can be obtained. Further, natural pulp fibers obtained from used paper, waste paper and the like may be used. Among the above-mentioned cellulose fibers, it is preferable to use one or more kinds of cellulose fibers selected from the group of softwood pulp, linter pulp, and lyocell, and it is more preferable to use lyocell. Further, it is preferable that the lyocell fiber is fibrillated (beaten). By using these preferable cellulose fibers, a network structure containing cellulose fibers as an essential component can be easily formed, and the fibers can be suppressed from falling off. In addition, the effect of stabilizing the operability when the carbon short fiber non-woven fabric is produced by the papermaking method can be obtained.
叩解(フィブリル化)セルロース繊維は、上記のセルロース繊維をフィブリル化することによって製造することができる。フィブリル化するための装置としては、ビーター、PFIミル、シングルディスクリファイナー(SDR)、ダブルディスクリファイナー(DDR)、また、顔料等の分散や粉砕に使用するボールミル、ダイノミル、ミキサー、摩砕装置、高速の回転刃により剪断力を与える回転刃式ホモジナイザー、高速で回転する円筒形の内刃と固定された外刃との間で剪断力を生じる二重円筒式の高速ホモジナイザー、超音波による衝撃で微細化する超音波破砕器、繊維懸濁液に少なくとも20MPaの圧力差を与えて小径のオリフィスを通過させて高速度とし、これを衝突させて急減速することにより繊維に剪断力、切断力を加える高圧ホモジナイザー等の装置が挙げられる。これらの装置を、単独又は組み合わせて用いることによって、フィブリル化セルロース繊維を製造することができる。そして、これらの装置の種類、処理条件(繊維濃度、温度、圧力、回転数、リファイナーの刃の形状、リファイナーのプレート間のギャップ、処理回数)等のフィブリル化条件の調整により、目的のフィブリル化状態を得ることができる。 The beating (fibrillation) cellulose fiber can be produced by fibrillating the above-mentioned cellulose fiber. Devices for fibrillation include beaters, PFI mills, single disc refiners (SDRs), double disc refiners (DDRs), ball mills used for dispersing and grinding pigments, dyno mills, mixers, grinders, and high-speed. A rotary blade homogenizer that applies shear force by a rotary blade, a double cylindrical high-speed homogenizer that generates shear force between a cylindrical inner blade that rotates at high speed and a fixed outer blade, and miniaturization by impact by ultrasonic waves. Apply a pressure difference of at least 20 MPa to the ultrasonic crusher and fiber suspension to pass through a small-diameter orifice to increase the speed, and collide with this to make a sudden deceleration to apply shearing force and cutting force to the fiber. Examples include devices such as a homogenizer. Fibrilized cellulose fibers can be produced by using these devices alone or in combination. Then, by adjusting the fibrillation conditions such as the type of these devices, the processing conditions (fiber concentration, temperature, pressure, rotation speed, shape of the refiner blade, gap between the refiner plates, number of processings), the desired fibrillation is achieved. You can get the state.
バインダー合成繊維としては、芯鞘繊維(コアシェルタイプ)、並列繊維(サイドバイサイドタイプ)、放射状分割繊維などの複合繊維;未延伸繊維;低融点合成樹脂単繊維;熱水可溶性繊維等が挙げられる。バインダー合成繊維は、繊維全体又は繊維の一部のガラス転移温度又は溶融温度(融点)が低く、抄紙機の乾燥工程において、バインダー能力を発現する。複合繊維は、皮膜を形成しにくいので、炭素短繊維不織布の空間を保持したまま、機械的強度を向上させることができる。より具体的には、複合繊維としては、ポリプロピレン(芯)とポリエチレン(鞘)の組み合わせ、ポリプロピレン(芯)とエチレンビニルアルコール(鞘)の組み合わせ、高融点ポリエステル(芯)と低融点ポリエステル(鞘)の組み合わせが挙げられる。未延伸繊維としては、ポリエステル等の未延伸繊維が挙げられる。また、ポリエチレンやポリプロピレン等の低融点樹脂のみで構成される単繊維(全融タイプ)等の低融点合成樹脂単繊維や、ポリビニルアルコール系のような熱水可溶性繊維は、乾燥工程で皮膜を形成しやすいが、本発明では使用することができる。本発明においては、熱水可溶性繊維であるポリビニルアルコール系のバインダー合成繊維が、炭素短繊維表面の官能基と水素結合を形成して強度を発揮しやすいため、好ましい。また、本発明では、セルロース繊維とバインダー合成繊維の両方を含むことによって、セルロース繊維を必須成分とする網状構造体が形成されやすくなり、炭素短繊維脱落抑制効果を高める。この効果は、バインダー合成繊維がポリビニルアルコール系繊維である場合により高いものとなる。 Examples of the binder synthetic fiber include composite fibers such as core-sheath fibers (core-shell type), parallel fibers (side-by-side type), and radial split fibers; undrawn fibers; low melting point synthetic resin single fibers; and hot water-soluble fibers. The binder synthetic fiber has a low glass transition temperature or melting temperature (melting point) of the whole fiber or a part of the fiber, and exhibits the binder ability in the drying step of the paper machine. Since the composite fiber is difficult to form a film, the mechanical strength can be improved while maintaining the space of the carbon short fiber non-woven fabric. More specifically, as the composite fiber, a combination of polypropylene (core) and polyethylene (sheath), a combination of polypropylene (core) and ethylene vinyl alcohol (sheath), a high melting point polyester (core) and a low melting point polyester (sheath). The combination of. Examples of the undrawn fiber include undrawn fibers such as polyester. In addition, low melting point synthetic resin single fibers such as single fibers (total fusion type) composed only of low melting point resins such as polyethylene and polypropylene, and hot water soluble fibers such as polyvinyl alcohol type form a film in the drying process. It is easy to use, but it can be used in the present invention. In the present invention, a polyvinyl alcohol-based binder synthetic fiber, which is a hot water-soluble fiber, is preferable because it easily forms a hydrogen bond with a functional group on the surface of a short carbon fiber and easily exhibits strength. Further, in the present invention, by including both the cellulose fiber and the binder synthetic fiber, a network structure containing the cellulose fiber as an essential component is easily formed, and the effect of suppressing the loss of short carbon fiber is enhanced. This effect is higher when the binder synthetic fiber is a polyvinyl alcohol-based fiber.
本発明の炭素短繊維不織布には、炭素短繊維、セルロース繊維及びバインダー合成繊維以外にも性能を阻害しない範囲で、バインダー能力を持たない合成繊維や、無機繊維を炭素短繊維不織布に配合することができる。例えば、ポリオレフィン系、ポリアミド系、ポリアクリル系、ビニロン系、ポリ塩化ビニリデン系、ポリ塩化ビニル系、ポリエステル系、ベンゾエート系、ポリクラール系、フェノール系などの合成繊維や、ガラス繊維や岩石繊維、スラッグ繊維や金属繊維などの無機繊維が挙げられる。また、半合成繊維のアセテート、トリアセテート、プロミックス等も使用することができる。 In the carbon short fiber non-woven fabric of the present invention, in addition to carbon short fibers, cellulose fibers and binder synthetic fibers, synthetic fibers having no binder ability and inorganic fibers are blended with the carbon short fiber non-woven fabric as long as the performance is not impaired. Can be done. For example, synthetic fibers such as polyolefin-based, polyamide-based, polyacrylic-based, vinylon-based, polyvinylidene chloride-based, polyvinyl chloride-based, polyester-based, benzoate-based, polyclaral-based, and phenol-based, glass fiber, rock fiber, and slug fiber. And inorganic fibers such as metal fibers. Further, semi-synthetic fiber acetate, triacetate, promix and the like can also be used.
合成繊維及び無機繊維の繊維長は特に限定しないが、3mm以上30mm未満であることが好ましい。合成繊維及び無機繊維の繊維長が長いほど、一本あたりの繊維同士の接触点が多くなり、繊維が脱落しにくくなる傾向があるため、合成繊維及び無機繊維の繊維長は3mm以上であることが好ましい。繊維長が長過ぎる場合は、抄造性や不織布の地合いが悪化する場合があるため、30mm未満であることが好ましい。繊維径についても特に限定しないが、1μm以上30μm未満であることが好ましく、2μm以上20μm未満であることが特に好ましい。繊維径が1μm未満の繊維を配合すると、炭素短繊維不織布内が密な構造になることから、例えば炭素短繊維不織布に樹脂を浸透させるなどの加工を行う際に樹脂の浸透を阻害し、性能が下がる場合がある。繊維径が30μm以上である場合は、バインダー能力を持たない合成繊維又は無機繊維が脱落しやすい場合がある。 The fiber length of the synthetic fiber and the inorganic fiber is not particularly limited, but is preferably 3 mm or more and less than 30 mm. The longer the fiber length of the synthetic fiber and the inorganic fiber, the more contact points between the fibers per fiber, and the more difficult it is for the fiber to fall off. Therefore, the fiber length of the synthetic fiber and the inorganic fiber should be 3 mm or more. Is preferable. If the fiber length is too long, the papermaking property and the texture of the non-woven fabric may deteriorate, so that the fiber length is preferably less than 30 mm. The fiber diameter is also not particularly limited, but is preferably 1 μm or more and less than 30 μm, and particularly preferably 2 μm or more and less than 20 μm. When a fiber having a fiber diameter of less than 1 μm is blended, the inside of the carbon short fiber non-woven fabric becomes a dense structure. May go down. When the fiber diameter is 30 μm or more, synthetic fibers or inorganic fibers having no binder ability may easily fall off.
炭素短繊維の配合比率(質量基準)は10%以上99%未満であることが好ましく、20%以上98%未満であることがより好ましく、30%以上97%未満であることがさらに好ましい。炭素短繊維の配合比率が10%未満である場合は、加工した際に炭素短繊維が持つ「強度が高く、質量が軽い」という効果が十分に発揮できない場合がある。炭素短繊維の配合比率が99%以上である場合は、セルロース繊維とバインダー合成繊維を含んでいても、セルロース繊維を必須成分とする網状構造体を十分に形成できず、繊維同士の結着が不十分となり、脱落繊維を抑制できない場合がある。 The blending ratio (mass basis) of the short carbon fibers is preferably 10% or more and less than 99%, more preferably 20% or more and less than 98%, and further preferably 30% or more and less than 97%. When the blending ratio of the carbon short fibers is less than 10%, the effect of "high strength and light mass" of the carbon short fibers when processed may not be sufficiently exhibited. When the blending ratio of the short carbon fibers is 99% or more, even if the cellulose fibers and the binder synthetic fibers are contained, the network structure containing the cellulose fibers as an essential component cannot be sufficiently formed, and the fibers are bound to each other. It may be insufficient and the shed fibers may not be suppressed.
セルロース繊維の配合比率(質量基準)は特に限定されないが、0.5%以上50%未満であることが好ましく、1%以上30%未満であることが特に好ましい。セルロース繊維の配合比率が0.5%よりも低い場合は、セルロース繊維を必須成分とした網状構造体があまり形成されず、脱落繊維を抑制する効果が少なくなる場合がある。50%以上の場合は、樹脂の浸透がセルロース繊維によって阻害され、樹脂が均一に炭素短繊維不織布内に浸透しない場合がある。 The blending ratio (mass basis) of the cellulose fibers is not particularly limited, but is preferably 0.5% or more and less than 50%, and particularly preferably 1% or more and less than 30%. When the blending ratio of the cellulose fibers is lower than 0.5%, a network structure containing the cellulose fibers as an essential component is not formed so much, and the effect of suppressing the shed fibers may be reduced. If it is 50% or more, the permeation of the resin may be hindered by the cellulose fibers, and the resin may not uniformly permeate into the short carbon fiber non-woven fabric.
バインダー合成繊維の配合比率(質量基準)は特に限定されないが、0.5%以上90%未満であることが好ましく、1%以上70%未満であることが特に好ましい。バインダー合成繊維の配合比率が0.5%よりも低い場合は、セルロース繊維を必須成分とした網状構造体があまり形成されず、脱落繊維を抑制する効果が少なくなる場合がある。バインダー合成繊維の配合比率が90%以上の場合は、炭素短繊維の配合比率が少なく、炭素短繊維不織布を加工した際に炭素短繊維が持つ「強度が高く、質量が軽い」という効果が十分に発揮できない場合がある。 The blending ratio (mass basis) of the binder synthetic fiber is not particularly limited, but is preferably 0.5% or more and less than 90%, and particularly preferably 1% or more and less than 70%. When the blending ratio of the binder synthetic fiber is lower than 0.5%, the network structure containing the cellulose fiber as an essential component is not formed so much, and the effect of suppressing the fallen fiber may be reduced. When the blending ratio of the binder synthetic fiber is 90% or more, the blending ratio of the carbon short fiber is small, and the effect of the carbon short fiber "high strength and light mass" when the carbon short fiber non-woven fabric is processed is sufficient. It may not be possible to demonstrate it.
本発明では、炭素短繊維は抄紙機でシート化される。すなわち、抄紙法で炭素短繊維不織布を製造する。 In the present invention, the short carbon fibers are made into a sheet by a paper machine. That is, a short carbon fiber non-woven fabric is produced by a papermaking method.
抄紙法では、例えば、長網式、円網式、傾斜ワイヤー式を用いることができる。これらの抄紙方式を単独で有する抄紙機を使用しても良いし、同種又は異種の2機以上の抄紙方式がオンラインで設置されているコンビネーション抄紙機を使用しても良い。均一性に優れた炭素短繊維不織布を製造するには、長網式、傾斜ワイヤー式のように、緩やかに、ワイヤー上のスラリーから脱水することができる抄紙方式を使用することが好ましい。本発明の炭素短繊維不織布は、単層であっても良いし、複層であっても良い。 In the papermaking method, for example, a long net type, a circular net type, and an inclined wire type can be used. A paper machine having these paper making methods alone may be used, or a combination paper machine in which two or more paper machines of the same type or different types are installed online may be used. In order to produce a carbon short fiber non-woven fabric having excellent uniformity, it is preferable to use a papermaking method capable of gently dehydrating the slurry on the wire, such as a long net type or an inclined wire type. The short carbon fiber non-woven fabric of the present invention may be a single layer or a multi-layer.
抄紙法において、繊維を均一に水中に分散させる目的や各種機能を付与する目的で、繊維を水中に分散する際に、各種アニオン性、ノニオン性、カチオン性、あるいは両性の分散剤、消泡剤、親水剤、濾水剤、紙力向上剤、粘剤、帯電防止剤、高分子粘剤、離型剤、抗菌剤、殺菌剤、pH調整剤、ピッチコントロール剤、スライムコントロール剤等の薬品を添加する場合もある。 In the papermaking method, when the fibers are dispersed in water for the purpose of uniformly dispersing the fibers in water or imparting various functions, various anionic, nonionic, cationic or amphoteric dispersants and defoamers are used. , Hydrophilic agents, drainage agents, paper strength improvers, adhesives, antistatic agents, polymer adhesives, mold release agents, antibacterial agents, bactericides, pH adjusters, pitch control agents, slime control agents, etc. It may be added.
本発明の炭素短繊維不織布には、必要に応じてサイズ剤を配合することができる。サイズ剤としては、本発明の所望の効果を損なわないものであれば、強化ロジンサイズ剤、ロジンエマルジョンサイズ剤、石油樹脂系サイズ剤、合成サイズ剤、中性ロジンサイズ剤、アルキルケテンダイマー(AKD)などのサイズ剤の中からいずれをも用いることができる。 A sizing agent can be added to the short carbon fiber non-woven fabric of the present invention, if necessary. As the sizing agent, a strengthened rosin sizing agent, a rosin emulsion sizing agent, a petroleum resin-based sizing agent, a synthetic sizing agent, a neutral rosin sizing agent, and an alkyl keten dimer (AKD) as long as they do not impair the desired effect of the present invention. ) And other sizing agents can be used.
抄紙機で製造された湿紙を、ヤンキードライヤー、エアードライヤー、シリンダードライヤー、サクションドラム式ドライヤー、赤外方式ドライヤー等で乾燥することにより、炭素短繊維不織布を得る。湿紙の乾燥の際に、ヤンキードライヤー等の熱ロールに密着させて熱圧乾燥させることによって、密着させた面の平滑性が向上する。熱圧乾燥とは、タッチロール等で熱ロールに湿紙を押しつけて乾燥させることをいう。熱ロールの表面温度は、100〜180℃が好ましく、100〜160℃がより好ましく、110〜160℃がさらに好ましい。圧力は、好ましくは50〜1000N/cm、より好ましくは100〜800N/cmである。 Wet paper produced by a paper machine is dried with a Yankee dryer, an air dryer, a cylinder dryer, a suction drum type dryer, an infrared type dryer, or the like to obtain a carbon short fiber non-woven fabric. When the wet paper is dried, it is brought into close contact with a heat roll such as a Yankee dryer and heat-pressure dried, so that the smoothness of the adhered surface is improved. Hot pressure drying means drying by pressing wet paper against the hot roll with a touch roll or the like. The surface temperature of the heat roll is preferably 100 to 180 ° C, more preferably 100 to 160 ° C, and even more preferably 110 to 160 ° C. The pressure is preferably 50 to 1000 N / cm, more preferably 100 to 800 N / cm.
本発明の炭素短繊維不織布の坪量は、特に限定しないが、10g/m2以上350g/m2未満が好ましく、30g/m2以上300g/m2未満がより好ましい。坪量が10g/m2未満では、炭素短繊維同士の接着面が少なく、炭素短繊維不織布の強度が弱いため、炭素短繊維の脱落を防止する効果が低くなる場合がある。坪量が350g/m2以上である場合、ドライヤーでの乾燥の際に均一に乾燥することが難しく、炭素短繊維不織布の品質にムラが生じる場合がある。 The basis weight of the short carbon fiber nonwoven fabric of the present invention is not particularly limited, but is preferably less than 10 g / m 2 or more 350 g / m 2, less than 30 g / m 2 or more 300 g / m 2 is more preferable. When the basis weight is less than 10 g / m 2 , the adhesive surface between the carbon short fibers is small and the strength of the carbon short fiber non-woven fabric is weak, so that the effect of preventing the carbon short fibers from falling off may be low. When the basis weight is 350 g / m 2 or more, it is difficult to dry uniformly when drying with a dryer, and the quality of the carbon short fiber non-woven fabric may be uneven.
以下、実施例によって本発明をさらに詳しく説明するが、本発明はこの実施例に限定されるものではない。なお、実施例中の部数や百分率は質量基準である。実施例5及び6は参考例である。
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to this example. The number of copies and percentages in the examples are based on mass. Examples 5 and 6 are reference examples.
実施例1
炭素短繊維(平均繊維長5mm)と叩解リヨセル繊維とPVAバインダー繊維(クラレ製、製品名:VPB107−1)とを、表1記載の配合比率(質量基準)で水に投入して、10分間混合分散した後、湿紙を傾斜ワイヤー方式で、一層抄きで湿式抄造し、表面温度130℃のヤンキードライヤーで乾燥し、抄造速度20m/minで、坪量50g/m2の炭素短繊維不織布を得た。
Example 1
Short carbon fibers (average fiber length 5 mm), beaten lyocell fibers, and PVA binder fibers (manufactured by Kuraray, product name: VPB107-1) are added to water at the blending ratio (mass basis) shown in Table 1 for 10 minutes. After mixing and dispersing, the wet paper is wet-made by single-layer papermaking by the inclined wire method, dried by a Yankee dryer with a surface temperature of 130 ° C., and a carbon short fiber non-woven fabric having a papermaking speed of 20 m / min and a basis weight of 50 g / m 2. Got
実施例2〜8
繊維の配合を表1記載内容に変えた以外は、実施例1と同様に実施例2〜8の炭素短繊維不織布を得た。
Examples 2-8
The carbon short fiber non-woven fabrics of Examples 2 to 8 were obtained in the same manner as in Example 1 except that the composition of the fibers was changed to the contents shown in Table 1.
比較例1〜4
繊維の配合を表1記載内容に変えた以外は、実施例1と同様に比較例1〜4の炭素短繊維不織布を得た。
Comparative Examples 1 to 4
The carbon short fiber non-woven fabrics of Comparative Examples 1 to 4 were obtained in the same manner as in Example 1 except that the composition of the fibers was changed to the contents shown in Table 1.
実施例9〜12
炭素短繊維の平均繊維長を表1の値に変えた以外は、実施例1と同様に実施例9〜12の炭素短繊維不織布を得た。
Examples 9-12
The carbon short fiber non-woven fabrics of Examples 9 to 12 were obtained in the same manner as in Example 1 except that the average fiber length of the carbon short fibers was changed to the value shown in Table 1.
実施例13〜17
炭素短繊維不織布の坪量を表1の値に変えた以外は、実施例1と同様に実施例13〜17の炭素短繊維不織布を得た。
Examples 13-17
The carbon short fiber non-woven fabrics of Examples 13 to 17 were obtained in the same manner as in Example 1 except that the basis weight of the carbon short fiber non-woven fabric was changed to the values shown in Table 1.
実施例18〜21
繊維の配合を表1記載内容に変えた以外は、実施例1と同様に実施例18〜21の炭素短繊維不織布を得た。
Examples 18-21
The carbon short fiber non-woven fabrics of Examples 18 to 21 were obtained in the same manner as in Example 1 except that the composition of the fibers was changed to the contents shown in Table 1.
表1に記載されている繊維の詳細は、以下のとおりである。 The details of the fibers listed in Table 1 are as follows.
叩解リヨセル:リヨセル繊維(繊度1.4dtex、繊維長3mm)を、ダブルディスクリファイナーを用いて処理し、平均繊維径14.0μmの幹部から平均繊維径1μm以下の枝部を発生させるように調製した繊維。
叩解針葉樹パルプ:ろ水度500mlCSFとなるように調製した天然針葉樹パルプ。
叩解リンター:リンターを5質量%濃度になるようにイオン交換水中に分散させ、高圧ホモジナイザーを用いて50MPaの圧力で20回繰り返し処理して、質量平均繊維長0.33mmとなるように調整した繊維。
PET繊維:繊度1.7デシテックス、繊維長 5mm
アラミド繊維:繊度0.9デシテックス、繊維長 5mm
PETバインダー:ポリエチレンテレフタレート未延伸バインダー繊維、繊度1.2デシテックス、繊維長5mm
PP/PEバインダー:ポリプロピレン/ポリエチレン芯鞘型バインダー繊維、繊度0.8デシテックス、繊維長5mm、芯鞘面積比:1/1
Beating lyocell: Lyocell fibers (fineness 1.4 dtex, fiber length 3 mm) were treated with a double disc refiner and prepared so as to generate branches having an average fiber diameter of 1 μm or less from a trunk having an average fiber diameter of 14.0 μm. fiber.
Beating softwood pulp: Natural softwood pulp prepared to have a free water content of 500 ml CSF.
Beating linter: A fiber adjusted to have a mass average fiber length of 0.33 mm by dispersing the linter in ion-exchanged water so as to have a concentration of 5% by mass and repeatedly treating the linter 20 times at a pressure of 50 MPa using a high-pressure homogenizer. ..
PET fiber: Fineness 1.7 decitex, fiber length 5 mm
Aramid fiber: Fineness 0.9 decitex, fiber length 5 mm
PET binder: Polyethylene terephthalate unstretched binder fiber, fineness 1.2 decitex, fiber length 5 mm
PP / PE binder: Polypropylene / polyethylene core-sheath type binder fiber, fineness 0.8 decitex, fiber length 5 mm, core-sheath area ratio: 1/1
実施例及び比較例において、作製した炭素短繊維不織布の網状構造体の有無と脱落繊維の評価結果を表2に示した。 Table 2 shows the presence or absence of a network structure of the produced short carbon fiber non-woven fabric and the evaluation results of the fallen fibers in Examples and Comparative Examples.
<網状構造体>
作製した炭素短繊維不織布をSEMで観察して、網状構造体の有無の確認を行い、その結果を評価した。
<Reticulated structure>
The produced short carbon fiber non-woven fabric was observed by SEM to confirm the presence or absence of a network structure, and the result was evaluated.
○:網状構造体が確認された。
△:網状構造体がわずかに確認された。
×:網状構造体が確認されなかった。
◯: A reticular structure was confirmed.
Δ: A small amount of reticulated structure was confirmed.
X: No reticular structure was confirmed.
<脱落繊維>
作製した炭素短繊維不織布の熱ロール接触面に3cm2のテープを貼り、5kgのステンレスの棒で一度圧をかけた後テープを剥がし、脱落した繊維を評価した。
<Fibers that have fallen off>
A 3 cm 2 tape was attached to the thermal roll contact surface of the produced short carbon fiber non-woven fabric, pressure was once applied with a 5 kg stainless rod, and then the tape was peeled off to evaluate the fibers that had fallen off.
○:脱落した繊維がほとんど見られなかった。
△:脱落した繊維がわずかに見られた。
×:脱落した繊維が多く見られた。
◯: Almost no fibers were shed.
Δ: Slightly shed fibers were observed.
X: Many fibers were shed.
<抄造性>
炭素短繊維不織布を抄造する際にロールや機械に付着した炭素短繊維を確認して、飛散状況の確認を行った。
○:飛散した炭素短繊維がほとんど見られなかった。
△:飛散した炭素短繊維がわずかに見られた
×:飛散した炭素短繊維が多く見られた。
<Paperability>
When making the carbon short fiber non-woven fabric, the carbon short fibers adhering to the roll or the machine were confirmed, and the scattering state was confirmed.
◯: Almost no scattered short carbon fibers were observed.
Δ: Slightly scattered carbon short fibers were observed. ×: Many scattered carbon short fibers were observed.
炭素短繊維を必須成分とする多孔質基材及びセルロース繊維を必須成分とする網状構造体とを含む炭素短繊維不織布である実施例1〜8においては、脱落繊維がほとんど見られず、優れた炭素短繊維不織布であることが分かる。また、実施例1及び2の結果から、セルロース繊維が再生セルロース繊維であっても(実施例1)、天然由来セルロース繊維であっても(実施例2)、いずれの場合でも問題無いことが分かる。また、実施例1及び2の炭素短繊維不織布は、炭素短繊維、セルロース繊維及びバインダー合成繊維からなる炭素短繊維不織布であるが、実施例3及び4の結果から、さらにバインダー能力を持たない合成繊維を含んでいても問題無いことが分かる。 In Examples 1 to 8 which are carbon short fiber non-woven fabrics containing a porous base material containing carbon short fibers as an essential component and a network structure containing cellulose fibers as an essential component, almost no shed fibers were observed, which was excellent. It can be seen that it is a carbon short fiber non-woven fabric. Further, from the results of Examples 1 and 2, it can be seen that there is no problem in either case whether the cellulose fiber is a regenerated cellulose fiber (Example 1) or a naturally derived cellulose fiber (Example 2). .. Further, the carbon short fiber non-woven fabrics of Examples 1 and 2 are carbon short fiber non-woven fabrics composed of carbon short fiber, cellulose fiber and binder synthetic fiber, but from the results of Examples 3 and 4, synthesis having no binder ability is further obtained. It can be seen that there is no problem even if it contains fibers.
また、バインダー繊維として、実施例7ではPVAバインダーとPETバインダーを併用し、実施例8ではPVAバインダーとPP/PEバインダーを併用しているが、どちらの炭素短繊維不織布も網状構造体を含み、脱落繊維がほとんど見られず、問題が無いことが分かる。また、バインダー繊維としてPVA繊維を含まず、PETバインダーのみを使用している実施例5では網状構造体の形成量がPVA繊維を含む場合よりも少なく、飛散繊維を抑制する効果が少ない傾向が見られた。バインダー繊維としてPVA繊維を含まず、PP/PEバインダーをのみを使用している実施例6でも同様に網状構造体が少なく、飛散繊維がやや多い傾向が確認された。これらのことからPVA繊維は網状構造体を形成しやすく、バインダー合成繊維の中でも特に優れていることが分かる。 Further, as the binder fiber, the PVA binder and the PET binder are used in combination in Example 7, and the PVA binder and the PP / PE binder are used in combination in Example 8, but both of the short carbon fiber non-woven fabrics contain a network structure. Almost no shed fibers are seen, indicating that there is no problem. Further, in Example 5 in which the PVA fiber is not contained as the binder fiber and only the PET binder is used, the amount of the network structure formed is smaller than that in the case where the PVA fiber is contained, and the effect of suppressing the scattered fiber tends to be small. Was done. Similarly, in Example 6 in which the PVA fiber was not contained as the binder fiber and only the PP / PE binder was used, it was confirmed that the network structure was small and the scattered fiber was slightly large. From these facts, it can be seen that the PVA fiber easily forms a network structure and is particularly excellent among the binder synthetic fibers.
これに対し、炭素短繊維及びバインダー合成繊維を含むがセルロース繊維を含まず、セルロース繊維を必須成分とする網状構造体を含まない比較例1及び2では、炭素短繊維同士の結着が弱く、脱落繊維が発生しやすい。そのため、炭素短繊維不織布を製造又は加工する際に脱落繊維が多く発生し、皮膚刺激、電気ショート等のトラブルが発生する可能性がある。 On the other hand, in Comparative Examples 1 and 2 containing short carbon fibers and synthetic binder fibers but not containing cellulose fibers and not containing a network structure containing cellulose fibers as an essential component, the binding between the short carbon fibers was weak. Fallen fibers are likely to occur. Therefore, a large amount of fallen fibers are generated when the carbon short fiber non-woven fabric is manufactured or processed, and there is a possibility that troubles such as skin irritation and electric short circuit may occur.
また、炭素短繊維とセルロース繊維のみを含み、バインダー合成繊維を含まない比較例3や、炭素短繊維とアラミドフィブリッドのみを含み、バインダー合成繊維及びセルロース繊維を含まない比較例4では、セルロース繊維を必須成分とする網状構造体が形成されておらず、脱落繊維が多く発生した。そのため、皮膚刺激、電気ショート等のトラブルが発生する可能性がある。 Further, in Comparative Example 3 containing only carbon short fibers and cellulose fibers and not containing binder synthetic fibers, and Comparative Example 4 containing only carbon short fibers and aramid fibrid and not containing binder synthetic fibers and cellulose fibers, cellulose fibers were used. A network structure containing the above as an essential component was not formed, and many fallen fibers were generated. Therefore, troubles such as skin irritation and electric short circuit may occur.
炭素短繊維を必須成分とする多孔質基材及びセルロース繊維を必須成分とする網状構造体とを含む炭素短繊維不織布である実施例9〜12においては、脱落繊維がほとんど見られず、優れた炭素短繊維不織布であることが分かる。炭素短繊維を必須成分とする多孔質基材及びセルロース繊維を必須成分とする網状構造体とを含むが、炭素短繊維の平均繊維長が1.0mmよりも短い実施例9においては、炭素短繊維一本辺りの結着数が少なく、繊維の脱落がやや見られ、抄造時に炭素短繊維が少し飛散する結果であり、炭素短繊維の平均繊維長は1.0mm以上であることが好ましいことが分かる。 In Examples 9 to 12, which are carbon short fiber non-woven fabrics containing a porous base material containing carbon short fibers as an essential component and a network structure containing cellulose fibers as an essential component, almost no shed fibers were observed, which was excellent. It can be seen that it is a carbon short fiber non-woven fabric. In Example 9, which includes a porous base material containing short carbon fibers as an essential component and a network structure containing cellulose fibers as an essential component, the average fiber length of the short carbon fibers is shorter than 1.0 mm, the short carbon fibers are used. The number of fibers bound around one fiber is small, the fibers are slightly shed, and the short carbon fibers are scattered a little during the fabrication. The average fiber length of the short carbon fibers is preferably 1.0 mm or more. I understand.
炭素短繊維を必須成分とする多孔質基材及びセルロース繊維を必須成分とする網状構造体とを含む炭素短繊維不織布である実施例13〜17においては、脱落繊維がほとんど見られず、優れた炭素短繊維不織布であることが分かる。坪量が10g/m2よりも小さい実施例13においては、炭素短繊維不織布の密度が低く、炭素短繊維同士の結着数が少ないことから繊維の脱落がやや見られ、抄造時に炭素短繊維が少し飛散する結果であり、炭素短繊維不織布の坪量は10g/m2以上であることが好ましいことが分かる。また、坪量が350g/m2以上である実施例17においては、抄造の際に均一に乾燥させることが難しく、乾燥状態の悪い箇所では網状構造体がやや形成されにくく、脱落繊維がやや発生しやすいという結果となった。 In Examples 13 to 17, which are non-woven fabrics of carbon short fibers containing a porous base material containing short carbon fibers as an essential component and a network structure containing cellulose fibers as an essential component, almost no shed fibers were observed, which was excellent. It can be seen that it is a carbon short fiber non-woven fabric. In Example 13 in which the basis weight is smaller than 10 g / m 2, the density of the carbon short fiber non-woven fabric is low, and the number of bonds between the carbon short fibers is small. Is scattered a little, and it can be seen that the basis weight of the carbon short fiber non-woven fabric is preferably 10 g / m 2 or more. Further, in Example 17 having a basis weight of 350 g / m 2 or more, it is difficult to uniformly dry during papermaking, a network structure is somewhat difficult to be formed in a poorly dried state, and shed fibers are slightly generated. The result was that it was easy to do.
炭素短繊維を必須成分とする多孔質基材及びセルロース繊維を必須成分とする網状構造体とを含む炭素短繊維不織布である実施例18〜21においては、脱落繊維が抑制されており、炭素短繊維の配合比率(質量基準)が10〜99%において、優れた炭素短繊維不織布が得られることが分かる。炭素短繊維の配合比率が98%と高い実施例21では、セルロース繊維及びバインダー合成繊維の量が少なく、形成される網状構造体がやや少ないことから、脱落繊維がやや発生しやすいという結果となった。 In Examples 18 to 21, which are carbon short fiber non-woven fabrics containing a porous base material containing carbon short fibers as an essential component and a network structure containing cellulose fibers as an essential component, shedding fibers are suppressed and carbon shorts are suppressed. It can be seen that an excellent short carbon fiber non-woven fabric can be obtained when the blending ratio (mass basis) of the fibers is 10 to 99%. In Example 21 in which the blending ratio of the short carbon fibers was as high as 98%, the amount of the cellulose fibers and the binder synthetic fibers was small, and the network structure formed was slightly small, so that the result was that the shed fibers were slightly generated. rice field.
本発明によれば、脱落繊維が抑制された炭素短繊維不織布を得ることができる。 According to the present invention, it is possible to obtain a short carbon fiber non-woven fabric in which shed fibers are suppressed.
1 炭素短繊維
2 網状構造体
1 Carbon
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017110967A JP6914106B2 (en) | 2017-06-05 | 2017-06-05 | Carbon short fiber non-woven fabric |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017110967A JP6914106B2 (en) | 2017-06-05 | 2017-06-05 | Carbon short fiber non-woven fabric |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018204144A JP2018204144A (en) | 2018-12-27 |
JP6914106B2 true JP6914106B2 (en) | 2021-08-04 |
Family
ID=64956562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017110967A Active JP6914106B2 (en) | 2017-06-05 | 2017-06-05 | Carbon short fiber non-woven fabric |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6914106B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12024434B2 (en) * | 2021-11-01 | 2024-07-02 | Wisconsin Alumni Research Foundation | Carbon-based composite materials with enhanced dynamic performance |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5464105A (en) * | 1977-10-24 | 1979-05-23 | Toyo Boseki | Production of adsorbing sheet |
JP5599072B2 (en) * | 2011-04-15 | 2014-10-01 | 三菱製紙株式会社 | Filter media |
JP6791467B2 (en) * | 2016-07-22 | 2020-11-25 | 三菱製紙株式会社 | Method for manufacturing carbon short fiber resin structure and carbon short fiber resin structure |
-
2017
- 2017-06-05 JP JP2017110967A patent/JP6914106B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018204144A (en) | 2018-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4866332B2 (en) | Water-swellable fibrillated fiber and sheet-like material using the same | |
JP6976767B2 (en) | Carbon short fiber wet non-woven fabric and carbon short fiber reinforced resin composition | |
JP4086729B2 (en) | Filter media and filter media for liquid filtration | |
JP6713929B2 (en) | FIBER ASSEMBLY, LIQUID ABSORBABLE SHEET PRODUCT USING THE SAME, AND FIBER ASSEMBLY MANUFACTURING METHOD | |
JP6914106B2 (en) | Carbon short fiber non-woven fabric | |
JP7211701B2 (en) | Short carbon fiber wet-laid nonwoven fabric and carbon fiber reinforced resin | |
JP2020158912A (en) | Wet nonwoven fabric of short carbon fiber, and carbon fiber reinforced resin | |
JPWO2019131588A1 (en) | Separator and separator for alkaline manganese batteries consisting of the separator | |
JP7030472B2 (en) | Carbon staple fiber wet non-woven fabric | |
JP7211791B2 (en) | Short carbon fiber wet-laid nonwoven fabric and carbon fiber reinforced resin | |
JP6211882B2 (en) | Wet non-woven fabric and separator | |
JP2010196220A (en) | Low density nonwoven fabric | |
JP2013148601A (en) | Cleaning sheet base material for electrophotographic device | |
JP6625941B2 (en) | Method for producing carbon fiber sheet | |
JP4285683B2 (en) | Sound absorbing material and manufacturing method thereof | |
JP2021095646A (en) | Carbon short fiber nonwoven fabric and carbon fiber-reinforced plastic | |
JP6963954B2 (en) | Wet non-woven fabric manufacturing method | |
JP2020133055A (en) | Carbon short fiber wet type nonwoven fabric and carbon fiber-reinforced resin | |
JP2019131931A (en) | Carbon short fiber wet non-woven fabric and carbon fiber-reinforced resin | |
JP2017172083A (en) | Carbon short fiber nonwoven fabric and composite | |
JP2023098385A (en) | Carbon fiber reinforced elastic polymer composite | |
JP6747825B2 (en) | Fiber sheet | |
JP2016137459A (en) | Nonwoven fabric for filter, and filter medium for filter | |
JP2022148272A (en) | Carbon fiber composite material precursor and carbon fiber composite material | |
JP7282056B2 (en) | Wet laid nonwoven fabric containing carbon fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191128 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200908 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20201026 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210106 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210615 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210713 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6914106 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |