JP7115289B2 - 加飾フィルム及びそれを用いた加飾成形体の製造方法 - Google Patents
加飾フィルム及びそれを用いた加飾成形体の製造方法 Download PDFInfo
- Publication number
- JP7115289B2 JP7115289B2 JP2018236797A JP2018236797A JP7115289B2 JP 7115289 B2 JP7115289 B2 JP 7115289B2 JP 2018236797 A JP2018236797 A JP 2018236797A JP 2018236797 A JP2018236797 A JP 2018236797A JP 7115289 B2 JP7115289 B2 JP 7115289B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- decorative film
- polypropylene
- propylene
- ethylene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Graft Or Block Polymers (AREA)
- Laminated Bodies (AREA)
Description
さらに、加飾成形条件、すなわち真空下において加飾フィルムを加熱するという工程において、耐候性を付与するために樹脂に添加したヒンダードアミン系光安定剤や紫外線吸収剤が著しく揮発していることをつきとめた。本発明者らは、良好な接着性を有するシール層を含むことで、低温かつ短時間での加飾成形を可能にし、ヒンダードアミン系光安定剤や紫外線吸収剤が揮発する前に加飾成形を完了させることにより、耐候性の低下を抑えることができることを見出し、本発明を完成するに至った。
(a1)メルトフローレート(230℃、2.16kg荷重)(MFR(A))は、0.5g/10分を超える。
(b1)メルトフローレート(230℃、2.16kg荷重)(MFR(B))とMFR(A)とは、関係式(b-1)を満たす。
MFR(B)<MFR(A) ・・・式(b-1)
(a2)メタロセン触媒系プロピレン系重合体である。
(a3)融解ピーク温度(Tm(A))は、150℃未満である。
(a4)GPC測定により得られる分子量分布(Mw/Mn(A))は、1.5~3.5である。
(b2)融解ピーク温度(Tm(B))とTm(A)とは、関係式(b-2)を満たす。
Tm(B)>Tm(A) ・・・式(b-2)
(a5)結晶化温度(Tc(A))は、100℃未満である。
(b3)結晶化温度(Tc(B))とTc(A)とは、関係式(b-3)を満たす。
Tc(B)>Tc(A) ・・・式(b-3)
(c1)エチレン含量[E(C)]は、65重量%以上である。
(c2)密度は、0.850~0.950g/cm3である。
(c3)メルトフローレート(230℃、2.16kg荷重)(MFR(C))は、0.1~100g/10分である。
(d1)プロピレン及びブテンのうちの少なくとも1つを主成分とする熱可塑性エラストマーである。
(d2)密度は0.850~0.950g/cm3である。
(d3)メルトフローレート(230℃、2.16kg荷重)(MFR(D))は、0.1~100g/10分である。
(d4)引張弾性率がポリプロピレン系樹脂(A)よりも小さい。
(e1)脂環式炭化水素基及び芳香族炭化水素基のうちの少なくとも1つを含有する。
(x1)示差熱走査型熱量計(DSC)で求めた樹脂組成物(X5)の等温結晶化時間(t(X5))(秒)が、以下の式(x-1)を満たす。
t(X5)≧1.5×t(A) ・・・式(x-1)
(式中t(A)はポリプロピレン系樹脂(A)の結晶化開始温度よりも10℃高い温度で測定したポリプロピレン系樹脂(A)の等温結晶化時間(秒)を表し、t(X5)はポリプロピレン系樹脂(A)の結晶化開始温度よりも10℃高い温度で測定した樹脂組成物(X5)の等温結晶化時間(秒)である。)
(f1)融解ピーク温度(Tm(F))が、110~170℃である。
(f2)プロピレン単独重合体又はプロピレン-エチレンランダム共重合体からなる成分(F1)を5~97重量%、前記成分(F1)よりもエチレン含量が多いプロピレン-エチレンランダム共重合体からなる成分(F2)を3~95重量%含有する。
(c4)融解ピーク温度(Tm(C))は、30~130℃である。
(c5)エチレンと炭素数3~20のα-オレフィンとのランダム共重合体である。
(d5)融解ピーク温度(Tm(D))が30~170℃である。
(f3)プロピレン-エチレンブロック共重合体(F)中のエチレン含量が0.15~85重量%である。
(f4)前記成分(F1)のエチレン含量が0~6重量%の範囲にある。
(f5)前記成分(F2)のエチレン含量が、5~90重量%の範囲にある。
(a1)メルトフローレート(230℃、2.16kg荷重)(MFR(A))は、0.5g/10分を超える。
(b1)メルトフローレート(230℃、2.16kg荷重)(MFR(B))とMFR(A)とは、関係式(b-1)を満たす。
MFR(B)<MFR(A) ・・・式(b-1)
(a2)メタロセン触媒系プロピレン系重合体である。
(a3)融解ピーク温度(Tm(A))は、150℃未満である。
(a4)GPC測定により得られる分子量分布(Mw/Mn(A))は、1.5~3.5である。
(b2)融解ピーク温度(Tm(B))とTm(A)とは、関係式(b-2)を満たす。
Tm(B)>Tm(A) ・・・式(b-2)
(a5)結晶化温度(Tc(A))は、100℃未満である。
(b3)結晶化温度(Tc(B))とTc(A)とは、関係式(b-3)を満たす。
Tc(B)>Tc(A) ・・・式(b-3)
(c1)エチレン含量[E(C)]は、65重量%以上である。
(c2)密度は、0.850~0.950g/cm3である。
(c3)メルトフローレート(230℃、2.16kg荷重)(MFR(C))は、0.1~100g/10分である。
(d1)プロピレン及びブテンのうちの少なくとも1つを主成分とする熱可塑性エラストマーである。
(d2)密度は0.850~0.950g/cm3である。
(d3)メルトフローレート(230℃、2.16kg荷重)(MFR(D))は、0.1~100g/10分である。
(d4)引張弾性率がポリプロピレン系樹脂(A)よりも小さい。
(e1)脂環式炭化水素基及び芳香族炭化水素基のうちの少なくとも1つを含有する。
(x1)示差熱走査型熱量計(DSC)で求めた樹脂組成物(X5)の等温結晶化時間(t(X5))(秒)が、以下の式(x-1)を満たす。
t(X5)≧1.5×t(A) ・・・式(x-1)
(式中t(A)はポリプロピレン系樹脂(A)の結晶化開始温度よりも10℃高い温度で測定したポリプロピレン系樹脂(A)の等温結晶化時間(秒)を表し、t(X5)はポリプロピレン系樹脂(A)の結晶化開始温度よりも10℃高い温度で測定した樹脂組成物(X5)の等温結晶化時間(秒)である。)
(f1)融解ピーク温度(Tm(F))が、110~170℃である。
(f2)プロピレン単独重合体又はプロピレン-エチレンランダム共重合体からなる成分(F1)を5~97重量%、前記成分(F1)よりもエチレン含量が多いプロピレン-エチレンランダム共重合体からなる成分(F2)を3~95重量%含有する。
本明細書において、ヒンダードアミン系光安定剤及び紫外線吸収剤(以下、両者をまとめて「耐候剤」ということがある)とは樹脂等に配合することで、樹脂の耐候性を高めることができる材料である。
耐候剤は加飾成形条件下、すなわち真空下で加熱するという成形条件下で揮発しやすいが、良好な接着性を発揮するシール層(I)を含むことで、耐候剤が揮発する前に成形を完了することができ、耐候性の低下を抑えることができる。
本発明の加飾フィルムは、ポリプロピレン系樹脂(A)を含有する樹脂組成物(X)からなるシール層(I)を含む。シール層(I)は、三次元加飾熱成形の際に、樹脂成形体(基体)と接する層である。シール層(I)を設けることにより、三次元加飾熱成形の成形時間を短縮しても良好な接着性が発現するため、耐候剤が揮発する前に成形を完了させ、耐候性の低下を抑制することが可能となる。
以下、上記した基本的な実施形態、及び第1の実施形態~第6の実施形態を例に、シール層(I)の構成を具体的に説明する。
基本的な実施形態において、シール層(I)はポリプロピレン系樹脂(A)を含有する。基本的な実施形態において、ポリプロピレン系樹脂(A)は、緩和しやすい樹脂であることが好ましい。このようなポリプロピレン系樹脂(A)を含有するシール層(I)を設けることにより、三次元加飾熱成形の成形時間を短縮しても良好な接着性が発現するため、耐候剤が揮発する前に成形を完了させ、耐候性の低下を抑制することが可能となる。
1.メルトフローレート(MFR(A)):(a1)
基本的な実施形態において、ポリプロピレン系樹脂(A)のメルトフローレート(230℃、2.16kg荷重)MFR(A)は、0.5g/10分を超えることが必要であり、好ましくは1g/10分以上、より好ましくは2g/10分以上である。前記の範囲であると、三次元加飾熱成形時の緩和が十分に進行し十分な接着強度を発揮することができる。MFR(A)の上限に制限はないが、100g/10分以下であることが好ましい。前記の範囲であると、物性低下による接着強度の悪化が生じることがない。
基本的な実施形態のポリプロピレン系樹脂(A)は、チーグラー触媒、メタロセン触媒等により重合される樹脂であることができる。すなわち、ポリプロピレン系樹脂(A)は、チーグラー触媒系プロピレン重合体、メタロセン触媒系プロピレン重合体であることができる。
第1実施形態において、シール層(I)はポリプロピレン系樹脂(A)を含有する樹脂組成物(X1)からなる。第1実施形態において、ポリプロピレン系樹脂(A)は、溶融・緩和しやすい樹脂であることが好ましい。このようなポリプロピレン系樹脂(A)を含有する樹脂組成物(X1)からなるシール層(I)を設けることにより、三次元加飾熱成形の成形時間を短縮しても良好な接着性が発現するため、耐候剤が揮発する前に成形を完了させ、耐候性の低下を抑制することが可能となる。
1.メルトフローレート(MFR(A)):(a1)
第1実施形態において、ポリプロピレン系樹脂(A)のメルトフローレート(230℃、2.16kg荷重)MFR(A)は、0.5g/10分を超えることが必要であり、好ましくは1g/10分以上、より好ましくは2g/10分以上である。前記の範囲であると、三次元加飾熱成形時の緩和が十分に進行し十分な接着強度を発揮することができる。MFR(A)の上限に制限はないが、100g/10分以下であることが好ましい。前記の範囲であると、物性低下による接着強度の悪化が生じることがない。
ポリプロピレン系樹脂(A)のMw/Mnは、1.5~3.5であることが好ましく、より好ましくは2~3である。前記の範囲であると、相対的に緩和時間が長い成分が少なく、十分に緩和しやすいので好ましい。
ポリプロピレン系樹脂(A)の融解ピーク温度(DSC融解ピーク温度、本明細書で「融点」と称する場合もある。)(Tm(A))は、150℃未満であることが好ましく、より好ましくは145℃以下、さらに好ましくは140℃以下、特に好ましくは130℃以下である。前記の範囲であると、十分な接着強度を発揮することができる。Tm(A)が下がりすぎると、耐熱性が低下し成形体の使用において問題を生じる場合があるため、100℃以上であることが好ましく、より好ましくは110℃以上である。
第1実施形態のポリプロピレン系樹脂(A)は、メタロセン触媒により重合されるいわゆるメタロセン触媒系プロピレン系重合体であることが好ましい。メタロセン触媒は活性点が単一であることから、メタロセン触媒により重合されたプロピレン系重合体は、分子量分布や結晶性分布が狭く、融解・緩和しやすいことで、多くの熱を加えることなく基体との融着が可能となる。
α-オレフィンとしては、エチレン及び炭素数が3~8のα-オレフィンから選ばれる一種又は二種以上の組み合わせ等を用いることができる。
第2実施形態において、シール層(I)はポリプロピレン系樹脂(A)を含有する樹脂組成物(X2)からなる。第2実施形態において、ポリプロピレン系樹脂(A)は、結晶化開始が遅い樹脂であることが好ましい。このようなポリプロピレン系樹脂(A)を含有する樹脂組成物(X2)からなるシール層(I)を設けることにより、三次元加飾熱成形の成形時間を短縮しても良好な接着性が発現するため、耐候剤が揮発する前に成形を完了させ、耐候性の低下を抑制することが可能となる。
1.メルトフローレート(MFR(A)):(a1)
第2実施形態において、ポリプロピレン系樹脂(A)のメルトフローレート(230℃、2.16kg荷重)MFR(A)は、0.5g/10分を超えることが必要であり、好ましくは1g/10分以上、より好ましくは2g/10分以上である。前記の範囲であると、三次元加飾熱成形時の緩和が十分に進行し十分な接着強度を発揮することができる。MFR(A)の上限に制限はないが、100g/10分以下であることが好ましい。前記の範囲であると、物性低下による接着強度の悪化が生じることがない。
ポリプロピレン系樹脂(A)のMw/Mnは、好ましくは3.5~10であり、より好ましくは3.7~7である。前記の範囲であると、フィルム成形時に表面あれが発生しにくく、表面外観に優れるため好ましい。
ポリプロピレン系樹脂(A)の結晶化温度Tc(A)は、100℃未満であることが好ましく、より好ましくは97℃以下、さらに好ましくは93℃以下である。前記の範囲であると、十分な接着強度を発揮する。Tc(A)が下がりすぎると、耐熱性が低下し成形体の使用において問題を生じる場合があるため、65℃以上であることが好ましく、より好ましくは75℃以上である。
第2実施形態のポリプロピレン系樹脂(A)は、チーグラー触媒、メタロセン触媒等により重合される樹脂であることができる。すなわち、ポリプロピレン系樹脂(A)は、チーグラー触媒系プロピレン重合体、メタロセン触媒系プロピレン重合体であることができる。
α-オレフィンとしては、エチレン及び炭素数が3~8のα-オレフィンから選ばれる一種又は二種以上の組み合わせ等を用いることができる。
第3実施形態において、シール層(I)はポリプロピレン系樹脂(A)及びエチレン-α-オレフィンランダム共重合体(C)を含有する樹脂組成物(X3)を含む。このような樹脂組成物(X3)を含むシール層(I)を設けることにより、三次元加飾熱成形時のフィルム加熱時間が短くても十分な接着強度が発現する。
第3実施形態におけるポリプロピレン系樹脂(A)は、プロピレン単独重合体(ホモポリプロピレン)、プロピレン-α-オレフィン共重合体(ランダムポリプロピレン)、プロピレンブロック共重合体(ブロックポリプロピレン)等の様々なタイプのプロピレン系重合体、又はそれらの組み合わせを選択することができる。プロピレン系重合体は、プロピレンモノマー由来の重合単位を50mol%以上含んでいることが好ましい。プロピレン系重合体は、極性基含有モノマー由来の重合単位を含まないものであることが好ましい。
シール層(I)に含まれるポリプロピレン系樹脂(A)のメルトフローレート(230℃、2.16kg荷重)MFR(A)は、0.5g/10分を超えることが必要であり、好ましくは1g/10分以上、より好ましくは2g/10分以上である。前記の範囲であると、三次元加飾熱成形時の緩和が十分に進行し十分な接着強度を発揮することができる。MFR(A)の上限に制限はないが、100g/10分以下であることが好ましい。前記の範囲であると、物性低下による接着強度の悪化が生じることがない。
ポリプロピレン系樹脂(A)の融解ピーク温度(Tm(A))は、110℃以上であることが好ましく、115℃以上であることがより好ましく、120℃以上であることがさらに好ましい。前記の範囲であると、三次元加飾熱成形時の成形性が良好である。融解ピーク温度の上限に制限はないが、170℃以下であることが好ましく、前記の範囲であると、十分な接着強度を発揮することができる。
第3実施形態におけるポリプロピレン系樹脂(A)は、チーグラー触媒、メタロセン触媒等により重合される樹脂であることができる。すなわち、ポリプロピレン系樹脂(A)は、チーグラー触媒系プロピレン重合体、メタロセン触媒系プロピレン重合体であることができる。
第3実施形態のシール層(I)で用いられるエチレン-α-オレフィンランダム共重合体(C)は、下記の要件(c1)~(c3)、好ましくはさらに要件(c4)~(c5)を有するものである。
第3実施形態のエチレン-α-オレフィンランダム共重合体(C)のエチレン含量[E(C)]は、65重量%以上であることが好ましく、より好ましくは68重量%以上、さらに好ましくは70重量%以上である。前記の範囲であると、三次元加飾熱成形時に十分な接着強度を発揮し、フィルムの加熱時間を短くすることができる。エチレン含量[E(C)]の上限は特に制限されないが、95重量%以下であることが好ましい。
エチレン-α-オレフィンランダム共重合体(C)のエチレン含量[E(C)]は13C-NMR測定で得られる積分強度から求めることができる。
初めに、二種の繰り返し単位から構成される二元系共重合体におけるエチレン含量[E(C)]の算出方法について説明する。この場合、エチレン-α-オレフィン二元系共重合体のエチレン含量は(式-1)で求めることができる。
エチレン含量(mol%)=IE×100/(IE+IX)・・・(式-1)
エチレン含量(重量%)=[エチレン含量(mol%)×エチレンの分子量]×100/[エチレン含量(mol%)×エチレンの分子量+α-オレフィン含量(mol%)×α-オレフィンの分子量]
IE=(Iββ+Iγγ+Iβδ+Iγδ+Iδδ)/2+(Iαγ+Iαδ)/4・・・(式-2)
IX=Iαα+(Iαγ+Iαδ)/2・・・(式-3)
ここで、右辺のIの下つきの記号は、下記構造式(a)~(d)に記載の炭素を示す。例えばααはα-オレフィン連鎖に基づくメチレン炭素を示し、Iααはα-オレフィン連鎖に基づくメチレン炭素のシグナルの積分強度を表す。
α-オレフィンがプロピレンの場合、(式-2)及び(式-3)に以下の積分強度の値を代入し、エチレン含量[E(C)]を求める。
Iββ=I25.0-24.2
Iγγ=I30.8-30.6
Iβδ=I27.8-26.8
Iγδ=I30.6-30.2
Iδδ=I30.2-28.0
Iαα=I48.0-43.9
Iαγ+Iαδ=I39.0-36.2
化学シフトはヘキサメチルジシロキサンの13Cシグナルを1.98ppmに設定し、他の13Cによるシグナルの化学シフトはこれを基準とする。エチレン-プロピレン共重合体と同様に、エチレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、及びエチレン-1-オクテン共重合体についても下記する。
α-オレフィンが1-ブテンの場合、(式-2)及び(式-3)に以下の積分強度の値を代入し、エチレン含量[E(C)]を求める。
Iββ=I24.6-24.4
Iγγ=I30.9-30.7
Iβδ=I27.8-26.8
Iγδ=I30.5-30.2
Iδδ=I30.2-28.0
Iαα=I39.3-38.1
Iαγ+Iαδ=I34.5-33.8
α-オレフィンが1-ヘキセンの場合、(式-2)及び(式-3)に以下の積分強度の値を代入し、エチレン含量[E(C)]を求める。
Iββ=I24.5-24.4
Iγγ=I31.0-30.8
Iβδ=I27.5-27.0
Iγδ=I30.6-30.2
Iδδ=I30.2-28.0
Iαα=I40.0-39.0
Iαγ+Iαδ=I35.0-34.0
α-オレフィンが1-オクテンの場合、βδシグナルとαγ+αδシグナルに1-オクテンに基づくヘキシル分岐のメチレン炭素が重なる(以下の構造式の5B6及び6B6)。
Iβδ+I5B6=I27.6-26.7
Iαγ+Iαδ+I6B6=I35.0-34.0
Iββ=I24.7-24.2
Iγγ+Iγδ+Iδδ=I32.0-28.0
Iβδ=2/3×I27.6-26.7
Iαα=I40.8-39.6
Iαγ+Iαδ=Iβδ+2×Iββ
次に、三種の繰り返し単位から構成される三元系共重合体におけるエチレン含量[E(C)]の算出方法について説明する。例えば、エチレン-プロピレン-ブテン三元系共重合体のエチレン含量は、下記(式-4)で求めることができる。
エチレン含量(mol%)=IE×100/(IE+IP+IB)・・・(式-4)
エチレン含量(重量%)=[エチレン含量(mol%)×エチレンの分子量]×100/[エチレン含量(mol%)×エチレンの分子量+プロピレン含量(mol%)×プロピレンの分子量+ブテン含量(mol%)×ブテンの分子量]
ここで、IE、IP及びIBはそれぞれ、エチレン、プロピレン及びブテンについての積分強度であり、(式-5)、(式-6)及び(式-7)で求めることができる。
IE=(Iββ+Iγγ+Iβδ+Iγδ+Iδδ)/2+(Iαγ(P)+Iαδ(P)+Iαγ(B)+Iαδ(B))/4・・・(式-5)
IP=1/3×〔ICH3(P)+ICH(P)+Iαα(PP)+1/2×(Iαα(PB)+Iαγ(P)+Iαδ(P))〕・・・(式-6)
IB=1/4×〔(ICH3(B)+ICH(B)+I2B2+Iαα(BB))+1/2×(Iαα(PB)+Iαγ(B)+Iαδ(B))〕・・・(式-7)
ここで、添え字の(P)は、プロピレン由来のメチル基分岐に基づくシグナルであることを意味し、同様に(B)はブテン由来のエチル基分岐に基づくシグナルであることを意味する。
また、αα(PP)は、プロピレン連鎖に基づくメチレン炭素のシグナルを意味し、同様にαα(BB)はブテン連鎖に基づくメチレン炭素のシグナルを、αα(PB)はプロピレン-ブテン連鎖に基づくメチレン炭素のシグナルを意味する。
γγシグナルはエチレン連鎖が2個の構造式(c)で現れ、エチレン由来のγγの積分強度と構造式(c)のβδの積分強度には(式-8)が成り立つ。
Iβδ(構造式(c))=2×Iγγ・・・(式-8)
また、βδは、エチレン連鎖が3個以上の構造式(d)で現れ、構造式(d)のβδの積分強度はγδの積分強度と等しく(式-9)が成り立つ。
Iβδ(構造式(d))=Iγδ・・・(式-9)
よって、構造式(c)と構造式(d)に基づくβδは(式-10)で求まる。
Iβδ=Iβδ(構造式(c))+Iβδ(構造式(d))=2×Iγγ+Iγδ
・・・(式-10)
すなわち、Iγγ=(Iβδ-Iγδ)/2・・・(式-10’)
よって、(式-10’)を(式-5)に代入すると、IEは(式-11)に置き換えることができる。
IE=(Iββ+Iδδ)/2+(Iαγ(P)+Iαδ(P)+Iαγ(B)+Iαδ(B)+3×Iβδ+Iγδ)/4・・・(式-11)
ここで、βδシグナルは1-ブテンに基づくエチル分岐の重なりを補正し、(式-12)となる。
Iβδ=Iαγ(P)+Iαδ(P)+Iαγ(B)+Iαδ(B)-2×Iββ・・・(式-12)
(式-11)及び(式-12)より、IEは(式-13)となる。
IE=Iδδ/2+Iγδ/4-Iββ+Iαγ(P)+Iαδ(P)+Iαγ(B)+Iαδ(B)・・・(式-13)
(式-13)、(式-6)及び(式-7)に以下を代入し、エチレン含量を求める。
Iββ=I25.2-23.8
Iγδ=I30.4-30.2
Iδδ=I30.2-29.8
Iαγ(P)+Iαδ(P)=I39.5-37.3
Iαγ(B)+Iαδ(B)=I34.6-33.9
ICH3(P)=I22.6-19.0
ICH(P)=I29.5-27.6+I31.2-30.4+I33.4-32.8
Iαα(PP)=I48.0-45.0
ICH3(B)=I11.4-10.0
ICH(B)=I35.5-34.7+I37.4-36.8+I39.7-39.6
Iαα(BB)=I40.3-40.0
Iαα(PB)=I44.2-42.0
I2B2=I26.7-26.4
Macromolecules,Vol.10,NO.4,1977、
Macromolecules,Vol.36,No.11,2003、
Analytical Chemistry,Vol.76,No.19,2004、
Macromolecules,2001,34,4757-4767、
Macromolecules,Vol.25,No.1,1992。
エチレン-α-オレフィンランダム共重合体(C)の密度は、0.850~0.950g/cm3であることが好ましく、より好ましくは0.855~0.900g/cm3、さらに好ましくは0.860~0.890g/cm3である。前記の範囲であると、三次元加飾熱成形時に十分な接着強度を発揮し、さらにフィルム成形性も良好である。
エチレン-α-オレフィンランダム共重合体(C)のメルトフローレート(230℃、2.16kg荷重)(MFR(C))は、0.1~100g/10分であることが好ましく、より好ましくは0.5~50g/10分、さらに好ましくは1~30g/10分である。前記の範囲であると、三次元加飾熱成形の成形時間を短縮しても良好な接着性が発現する。
エチレン-α-オレフィンランダム共重合体(C)の融解温度ピーク(DSC融解ピーク温度)(Tm(C))は、30~130℃であることが好ましく、より好ましくは35~120℃、さらに好ましくは40~110℃である。前記の範囲であると、三次元加飾熱成形時に十分な接着強度を発揮することができる。
エチレン-α-オレフィンランダム共重合体(C)は、エチレンと炭素数3~20のα-オレフィンとの共重合体であることが好ましい。上記炭素数3~20のα-オレフィンとしては、具体的にはプロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-エイコセン等が挙げられる。これらの中では、特にプロピレン、1-ブテン、1-ヘキセン、1-オクテンが好ましく用いられる。
このようなエチレン-α-オレフィンランダム共重合体の市販品として、日本ポリエチレン(株)製のカーネルシリーズ、三井化学(株)製のタフマーPシリーズ、タフマーAシリーズ、デュポンダウ社製エンゲージEGシリーズ等が挙げられる。
第3実施形態において、シール層(I)を構成する樹脂組成物(X3)は、ポリプロピレン系樹脂(A)及びエチレン-α-オレフィンランダム共重合体(C)を主成分として含むものであり、ポリプロピレン系樹脂(A)とエチレン-α-オレフィンランダム共重合体(C)との混合物又は溶融混練物であってもよく、ポリプロピレン系樹脂(A)とエチレン-α-オレフィンランダム共重合体(C)との逐次重合物であってもよい。
樹脂組成物(X3)において、ポリプロピレン系樹脂(A)及びエチレン-α-オレフィンランダム共重合体(C)の重量比((A):(C))は、97:3~5:95の範囲で選択されることが好ましく、より好ましくは95:5~10:90、さらに好ましくは93:7~20:80である。前記の範囲であると、三次元加飾熱成形時に十分な接着強度を発揮し、フィルムの加熱時間を短くすることができる上、シール層(I)と層(II)の接着性が良好である。
第4実施形態において、シール層(I)はポリプロピレン系樹脂(A)及び熱可塑性エラストマー(D)を主成分として含む樹脂組成物(X4)を含む。このような樹脂組成物(X4)を含むシール層(I)を設けることにより、三次元加飾熱成形の成形時間を短縮しても良好な接着性が発現するため、耐候剤が揮発する前に成形を完了させ、耐候性の低下を抑制することが可能となる。
1.メルトフローレート(MFR(A)):(a1)
シール層(I)に含まれるポリプロピレン系樹脂(A)のメルトフローレート(230℃、2.16kg荷重)MFR(A)は、0.5g/10分を超えることが必要であり、好ましくは1g/10分以上、より好ましくは2g/10分以上である。前記の範囲であると、三次元加飾熱成形時の緩和が十分に進行し十分な接着強度を発揮することができる。MFR(A)の上限に制限はないが、100g/10分以下であることが好ましい。前記の範囲であると、物性低下による接着強度の悪化が生じることがない。
ポリプロピレン系樹脂(A)の融解ピーク温度(Tm(A))は、110℃以上であることが好ましく、115℃以上であることがより好ましく、120℃以上であることがさらに好ましい。前記の範囲であると、三次元加飾熱成形時の成形性が良好である。融解ピーク温度の上限に制限はないが、170℃以下であることが好ましく、前記の範囲であると、十分な接着強度を発揮することができる。
第4実施形態におけるポリプロピレン系樹脂(A)は、チーグラー触媒、メタロセン触媒等により重合される樹脂であることができる。すなわち、ポリプロピレン系樹脂(A)は、チーグラー触媒系プロピレン重合体、メタロセン触媒系プロピレン重合体であることができる。
第4実施形態のシール層(I)で用いられる熱可塑性エラストマー(D)は、下記の要件(d1)~(d4)を満たし、好ましくはさらに要件(d5)を有するものである。
本発明の熱可塑性エラストマー(D)はプロピレン及びブテンのうちの少なくとも1つを主成分とする熱可塑性エラストマーである。ここで、「プロピレン及びブテンのうちの少なくとも1つを主成分とする熱可塑エラストマー」は、(i)プロピレンを主成分とする熱可塑性エラストマー、(ii)ブテンを主成分とする熱可塑性エラストマー、(iii)プロピレンとブテンを合計した成分を主成分とする熱可塑性エラストマーを包含する。
また、熱可塑性エラストマー(D)はプロピレン及びブテンを両方含んでもよく、その場合は、プロピレンとブテンを合計した成分が熱可塑性エラストマー(D)の主成分となり、プロピレンとブテンの含有量の合計は好ましくは30wt%以上、より好ましくは40wt%以上、さらに好ましくは50wt%以上である。プロピレン及びブテンの両方が含まれる場合は、例えば、熱可塑性エラストマー(D)は、プロピレン及びブテンを合計して35wt%を超えて含有することができる。前記の範囲であると、三次元加飾熱成形時に十分な接着強度を発揮し、フィルムの加熱時間を短くすることができる。
熱可塑性エラストマー(D)の密度は0.850~0.950g/cm3であることが好ましく、より好ましくは0.855~0.940g/cm3、さらに好ましくは0.860~0.930g/cm3である。前記の範囲であると、三次元加飾熱成形時に十分な接着強度を発揮し、さらにフィルム成形性も良好になる。
熱可塑性エラストマー(D)のメルトフローレート(230℃、2.16kg荷重)MFR(D)は、0.1~100g/10分であることが好ましく、より好ましくは0.5~50g/10分、さらに好ましくは1~30g/10分である。前記の範囲であると、三次元加飾熱成形の成形時間を短縮しても良好な接着性が発現する。
熱可塑性エラストマー(D)の引張弾性率は、ポリプロピレン系樹脂(A)よりも小さいことが好ましい。より好ましくは、熱可塑性エラストマー(D)の引張弾性率は500MPa以下、さらに好ましくは450MPa以下である。前記の範囲であると、三次元加飾熱成形時に十分な接着強度を発揮することができる。
熱可塑性エラストマー(D)の融解ピーク温度(Tm(D))は、30~170℃であることが好ましく、より好ましくは35~168℃、さらに好ましくは40~165℃以上である。前記の範囲であると、三次元加飾熱成形時に十分な接着強度を発揮することができる。
上記プロピレン-エチレン共重合体、ブテン-エチレン共重合体又はプロピレン-エチレンーブテン共重合体のエチレン含量[E(D)]は、より好ましくは45wt%以下、さらに好ましくは40wt%以下であり、前記範囲であると三次元加飾熱成形時に十分な接着強度を発揮することができる。
熱可塑性エラストマー(D)がエチレンを含むエラストマーの場合、熱可塑性エラストマー(D)のエチレン含量[E(D)]は13C-NMR測定で得られた積分強度から求めることができる。
算出方法は、上記第3実施形態で説明したエチレン-α-オレフィンランダム共重合体(C)のエチレン含量[E(C)]の算出方法で挙げられた「算出方法1(二元系)」及び「算出方法2(三元系)」と同様である。
このような熱可塑性エラストマーは、市販品として、三井化学(株)製のタフマーXMシリーズ、タフマーBLシリーズ、タフマーPNシリーズや、エクソンモービルケミカル社製のVISTAMAXXシリーズ等を挙げることができる。
第4実施形態において、シール層(I)を構成する樹脂組成物(X4)は、ポリプロピレン系樹脂(A)及び熱可塑性エラストマー(D)を含む。前記樹脂組成物(X4)は、ポリプロピレン系樹脂(A)と熱可塑性エラストマー(D)との混合物又は溶融混練物であってもよいし、ポリプロピレン系樹脂(A)と熱可塑性エラストマー(D)との逐次重合物であってもよい。
樹脂組成物(X4)において、ポリプロピレン系樹脂(A)及び熱可塑性エラストマー(D)の重量比((A):(D))は、97:3~5:95で構成されることが好ましく、より好ましくは95:5~10:90、さらに好ましくは93:7~20:80である。前記の範囲であると、三次元加飾熱成形時に十分な接着強度を発揮し、フィルムの加熱時間を短くすることができる上、シール層(I)と層(II)の接着性が良好になる。
第5実施形態において、シール層(I)はポリプロピレン系樹脂(A)及び熱可塑性樹脂(E)を含有する樹脂組成物(X5)を含む。このような樹脂組成物(X5)を含むシール層(I)を設けることにより、三次元加飾熱成形の成形時間を短縮しても良好な接着性が発現するため、耐候剤が揮発する前に成形を完了させ、耐候性の低下を抑制することが可能となる。
第5実施形態におけるポリプロピレン系樹脂(A)は、プロピレン単独重合体(ホモポリプロピレン)、プロピレン-α-オレフィン共重合体(ランダムポリプロピレン)、プロピレンブロック共重合体(ブロックポリプロピレン)等の様々なタイプのプロピレン系重合体、又はそれらの組み合わせを選択することができる。プロピレン系重合体は、プロピレンモノマー由来の重合単位を50mol%以上含んでいることが好ましい。プロピレン系重合体は、極性基含有モノマー由来の重合単位を含まないものであることが好ましい。
シール層(I)に含まれるポリプロピレン系樹脂(A)のメルトフローレート(230℃、2.16kg荷重)MFR(A)は、0.5g/10分を超えることが必要であり、好ましくは1g/10分以上、より好ましくは2g/10分以上である。前記の範囲であると、三次元加飾熱成形時の緩和が十分に進行し十分な接着強度を発揮することができる。MFR(A)の上限に制限はないが、100g/10分以下であることが好ましい。前記の範囲であると、物性低下による接着強度の悪化が生じることがない。
ポリプロピレン系樹脂(A)の融解ピーク温度(Tm(A))は、110℃以上であることが好ましく、115℃以上であることがより好ましく、120℃以上であることがさらに好ましい。前記の範囲であると、三次元加飾熱成形時の成形性が良好である。融解ピーク温度の上限に制限はないが、170℃以下であることが好ましく、前記の範囲であると、十分な接着強度を発揮することができる。
第5実施形態におけるポリプロピレン系樹脂(A)は、チーグラー触媒、メタロセン触媒等により重合される樹脂であることができる。すなわち、ポリプロピレン系樹脂(A)は、チーグラー触媒系プロピレン重合体、メタロセン触媒系プロピレン重合体であることができる。
第5実施形態のシール層(I)で用いられる熱可塑性樹脂(E)は、ポリプロピレン系樹脂(A)に含有させることによって、ポリプロピレン系樹脂(A)の結晶化を遅らせる機能を有する成分である。ポリプロピレン系樹脂(A)の結晶化速度を遅らせることによって、加飾成形の際には、シール層(I)と基体表面とが熱融着する前に、シール層樹脂が結晶化(固化)して接着力が低下することを防ぐことができる。結果として、加飾フィルムの加熱時間が短くても強い接着力を発現する。このポリプロピレン系樹脂(A)の結晶化を遅らせる効果については、後述する樹脂組成物(X5)の等温結晶化時間で評価した。
本発明における熱可塑性樹脂(E)は、脂環式炭化水素基及び芳香族炭化水素基のうちの少なくとも1つを含有することが好ましい。熱可塑性樹脂(E)が前記特徴を有することによって、前記ポリプロピレン系樹脂(A)と混合した際に、ポリプロピレン系樹脂(A)の結晶化を遅らせる効果が発現し、基体との接着力及び基体表面についた傷を目立ちにくくする効果が高い。具体的には、脂環式炭化水素基としてはシクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロオクチル基、及びそれらの置換基誘導体、縮合環化体や架橋構造体等が挙げられ、とりわけシクロペンチル基、シクロへキシル基を含有していることが好ましい。芳香族炭化水素基としてはフェニル基、メチルフェニル基、ビフェニル基、インデニル基、フルオレニル基及びそれらの置換基誘導体や縮合環化体等が挙げられ、とりわけフェニル基、ビフェニル基、インデニル基を含有していることが好ましい。また、脂環式炭化水素基は、樹脂中に含まれる芳香族炭化水素基を水添することによって得られるものであってもよい。
市販品として、JSR(株)製のダイナロンシリーズ、クレイトンポリマージャパン(株)製のクレイトンGシリーズ、旭化成(株)製のタフテックシリーズ等が挙げられる。
第5実施形態において、シール層(I)を構成する樹脂組成物(X5)は、ポリプロピレン系樹脂(A)及び熱可塑性樹脂(E)を主成分として含むものであり、ポリプロピレン系樹脂(A)と熱可塑性樹脂(E)との混合物であってもよく、溶融混練物であってもよい。
樹脂組成物(X5)において、ポリプロピレン系樹脂(A)及び熱可塑性樹脂(E)の重量比((A):(E))は、97:3~5:95の範囲で選択されることが好ましく、より好ましくは95:5~10:90、さらに好ましくは93:7~20:80である。ここで複数の種類のポリプロピレン系樹脂(A)又は熱可塑性樹脂(E)が含まれていてもよく、例えば熱可塑性樹脂(E1)と熱可塑性樹脂(E2)を含む場合は、熱可塑性樹脂(E1)と熱可塑性樹脂(E2)の合計を熱可塑性樹脂(E)の重量とする。前記の範囲であると、三次元加飾熱成形時に十分な接着強度を発揮し、フィルムの加熱時間を短くすることができる。さらにシール層(I)と層(II)の接着性が良好である。
樹脂組成物(X5)は、示差熱走査型熱量計(DSC)で求めた樹脂組成物(X5)の等温結晶化時間(t(X5))(秒)が、以下の式(x-1)を満たすことが好ましく、より好ましくは式(x-2)、さらに好ましくは(x-3)を満たす。
t(X5)≧1.5×t(A)・・・式(x-1)
t(X5)≧2.0×t(A)・・・式(x-2)
t(X5)≧2.5×t(A)・・・式(x-3)
(式中t(A)はポリプロピレン系樹脂(A)の結晶化開始温度よりも10℃高い温度で測定したポリプロピレン系樹脂(A)の等温結晶化時間(秒)を表し、t(X5)はポリプロピレン系樹脂(A)の結晶化開始温度よりも10℃高い温度で測定した樹脂組成物(X5)の等温結晶化時間(秒)である。)
樹脂組成物(X5)の等温結晶化時間(t(X5))が前記範囲であると、加飾成形の際に、加飾フィルムのシール層(I)と基体表面とが熱融着するまでの時間を稼ぐことができ、高い接着力が発現する。
等温結晶化時間(t(X5))の上限については特に制限はないが、30t(A)≧t(X5)であるとフィルムの成形性が良好である。
本発明での等温結晶化時間とは、示差走査型熱量計(DSC)を用いて測定した値であり、JIS-K7121(2012)「プラスチックの転移温度測定方法」に準拠する。
また、ポリプロピレン系樹脂(A)の種類によっては、結晶化開始温度より10℃高い温度での測定でも、ポリプロピレン系樹脂(A)の等温結晶化時間が極端に短い(例えば120秒以下)又は長い(例えば3000秒以上)場合が発生する可能性がある。その場合は、結晶化開始温度より10±2℃高い温度で等温結晶化時間を測定してもよいものとする。ただし、そのような測定をした場合は樹脂組成物(X5)の等温結晶化時間もポリプロピレン系樹脂(A)の測定温度に合わせて測定しなければならない。
第6実施形態において、シール層(I)のポリプロピレン系樹脂(A)としてはプロピレン-エチレンブロック共重合体(F)を含有する樹脂組成物(X6)を用いる。このようなシール層(I)を設けることにより、三次元加飾熱成形の成形時間を短縮しても良好な接着性が発現するため、耐候剤が揮発する前に成形を完了させ、耐候性の低下を抑制することが可能となる。
第6実施形態で用いるプロピレン-エチレンブロック共重合体(F)は、プロピレン単独重合体又はプロピレン-エチレンランダム共重合体からなる成分(F1)と、成分(F1)よりも多くのエチレンを含有するプロピレン-エチレンランダム共重合体からなる成分(F2)を含有する。プロピレン-エチレンブロック共重合体(F)中のゴム成分である成分(F2)により樹脂成形体(基体)との接着力が向上する。プロピレン-エチレンブロック共重合体(F)は、第1重合工程でプロピレン単独又はプロピレン-エチレンランダム共重合体からなる成分(F1)を(共)重合し、第2重合工程で成分(F1)よりも多くのエチレンを含有するプロピレン-エチレンランダム共重合体からなる成分(F2)を逐次共重合して得られる。
第6実施形態におけるプロピレン-エチレンブロック共重合体(F)を構成する成分(F1)及び成分(F2)の配合比は、成分(F1)が5~97重量%、成分(F2)が3~95重量%であることが好ましい。より好ましくは、成分(F1)が30~95重量%かつ成分(F2)が5~70重量%であり、さらに好ましくは、成分(F1)が52~92重量%かつ成分(F2)が8~48重量%である。成分(F1)及び成分(F2)の割合が前記の範囲であると、十分な接着強度を発揮することができる。また、前記の範囲であるとフィルムがべたつかず、フィルム成形性が良好である。
プロピレン-エチレンブロック共重合体(F)のメルトフローレート(230℃、2.16kg荷重)MFR(F)は、0.5g/10分を超えることが必要であり、好ましくは1g/10分以上、より好ましくは2g/10分以上である。MFR(F)が前記の範囲であると、三次元加飾熱成形時にプロピレン-エチレンブロック共重合体(F)の緩和が十分に進行し十分な接着強度を発揮することができる。MFR(F)の上限には制限はないが、100g/10分以下であることが好ましい。前記の範囲であると、物性低下による接着強度の悪化が生じることがない。
プロピレン-エチレンブロック共重合体(F)の融点(融解ピーク温度)Tm(F)は、110~170℃であることが好ましく。より好ましくは113~169℃、さらに好ましくは115~168℃である。Tm(F)が前記の範囲であると、三次元加飾熱成形時の成形性が良好である。融解ピーク温度は主にエチレン含量の少ない成分(F1)、すなわち結晶性の高い成分(F1)に由来しており、共重合するエチレンの含量によって融解ピーク温度を変えることができる。
プロピレン-エチレンブロック共重合体(F)中のエチレン含量(以下、「E(F)」という。)は0.15~85重量%であることが好ましい。より好ましくは0.5~75重量%、さらに好ましくは2~50重量%である。E(F)が前記の範囲であると十分な接着強度を発揮することができ、また加飾フィルムの層(II)との接着性が良好でフィルム成形性にも優れる。
成分(F1)は融点が比較的高く、エチレン含量(以下、「E(F1)」という。)が0~6重量%の範囲にあるプロピレン単独重合体又はプロピレン-エチレンランダム共重合体であることが好ましい。より好ましくは0~5重量%である。E(F1)が前記の範囲であると、三次元加飾熱成形時の成形性が良好であるとともに、フィルムのベタツキが少なくフィルム成形性にも優れる。
成分(F2)は、そのエチレン含量(以下、「E(F2)」という。)が成分(F1)のエチレン含量E(F1)よりも多い。また、E(F2)が5~90重量%の範囲にあるプロピレン-エチレンランダム共重合体であることが好ましい。E(F2)は、より好ましくは7~80重量%、さらに好ましくは9~50重量%である。E(F2)が前記の範囲であると、十分な接着強度を発揮することができる。
本発明に用いるプロピレン-エチレンブロック共重合体(F)とそれを構成するプロピレン単独重合体又はプロピレン-エチレンランダム共重合体からなる成分(F1)及びプロピレン-エチレンランダム共重合体からなる成分(F2)は、以下の原料、重合方法によって好ましく製造することができる。本発明に用いるプロピレン-エチレンブロック共重合体(F)の製造方法について、以下に説明する。
本発明に用いられるプロピレン-エチレンブロック共重合体(F)を製造するに際し使用される触媒としては、マグネシウム、ハロゲン、チタン、電子供与体を触媒成分とするマグネシウム担持型触媒、三塩化チタンを触媒とする固体触媒成分と有機アルミニウムからなる触媒、又はメタロセン触媒が使用できる。具体的な触媒の製造法は特に限定されるものではないが、例として日本国特開2007-254671号公報に開示されたチーグラー触媒や日本国特開2010-105197号公報に開示されたメタロセン触媒を例示することができる。
前記触媒の存在下に行う重合工程は、成分(F1)を製造する第1重合工程、成分(F2)を製造する第2重合工程の多段階からなる。
第1重合工程は、プロピレン単独かプロピレン/エチレンの混合物を、前記触媒を加えた重合系に供給してプロピレン単独重合体又はプロピレン-エチレンランダム共重合体を製造して、全重合体量の5~97重量%に相当する量となるように成分(F1)を形成させる工程である。
第2重合工程は、第1重合工程に引き続いてプロピレン/エチレン混合物をさらに導入して、プロピレン-エチレンランダム共重合体を製造して、全重合体量の3~95重量%に相当する量となるように成分(F2)を形成させる工程である。
まず、成分(F1)と成分(F2)の重量比の制御方法について説明する。成分(F1)と成分(F2)の重量比は成分(F1)を製造する第1重合工程における製造量と成分(F2)を製造する第2重合工程における製造量によって制御する。例えば、成分(F1)の量を増やして成分(F2)の量を減らすためには、第1重合工程の製造量を維持したまま第2重合工程の製造量を減らせばよく、それは、第2重合工程の滞留時間を短くしたり、重合温度を下げたりすればよい。また、エタノールや酸素等の重合抑制剤を添加したり、元々添加している場合にはその添加量を増やしたりすることでも制御することができる。その逆もまた同様である。
成分(F1)の重量:成分(F2)の重量=W(F1):W(F2)
W(F1)=第1重合工程の製造量÷(第1重合工程の製造量+第2重合工程の製造量)×100
W(F2)=第2重合工程の製造量÷(第1重合工程の製造量+第2重合工程の製造量)×100
W(F1)+W(F2)=100
(ここで、W(F1)及びW(F2)はそれぞれプロピレン-エチレンブロック共重合体(F)における成分(F1)と成分(F2)の重量比率(百分率)である。)
E(F)=E(F1)×W(F1)/100 + E(F2)×W(F2)/100
(ここで、E(F)、E(F1)及びE(F2)はそれぞれ、プロピレン-エチレンブロック共重合体(F)、プロピレン単独重合体又はプロピレン-エチレンランダム共重合体からなる成分(F1)、及びプロピレン-エチレンランダム共重合体からなる成分(F2)のエチレン含有量であり、W(F1)及びW(F2)は上記と同様である。)
したがって、成分(F1)と成分(F2)の重量比が決まれば、すなわち、W(F1)とW(F2)が決まれば、E(F)はE(F1)とE(F2)によって一意的に定まる。つまり、成分(F1)と成分(F2)の重量比、E(F1)及びE(F2)の3つの因子を制御することによりE(F)を制御することができる。例えば、E(F)を高くする為にはE(F1)を高くしてもよいし、E(F2)を高くしてもよい。また、E(F2)がE(F1)よりも高いことに留意すれば、W(F1)を小さくしてW(F2)を大きくしてもよいことも容易に理解できよう。逆方向の制御方法も同様である。
MFR(F2)=exp{(loge[MFR(F)]-(W(F1)/100)×
loge[MFR(F1)])÷(W(F2)/100)}
(ここで、logeはeを底とする対数である。MFR(F)、MFR(F1)及びMFR(F2)はそれぞれ、プロピレン-エチレンブロック共重合体(F)、プロピレン単独重合体又はプロピレン-エチレンランダム共重合体からなる成分(F1)、及びプロピレン-エチレンランダム共重合体からなる成分(F2)のMFRであり、W(F1)及びW(F2)は上記と同様である。)
loge[MFR(F)]=(W(F1)/100)×loge[MFR(F1)]+(W(F2)/100)×loge[MFR(F2)]
を変形したものであり、当業界で日常的に使われるものである。
プロピレン-エチレンブロック共重合体(F)を用い、この共重合体中の各エチレン含有量を測定した。すなわち、第1重合工程終了時に得られたプロピレン単独重合体又はプロピレン-エチレンランダム共重合体からなる成分(F1)及び、第2重合工程を経て得られたプロピレン-エチレンブロック共重合体(F)における各々のエチレン含有量は、プロトン完全デカップリング法により以下の条件に従って測定した13C-NMRスペクトルを解析することにより求めた。
機種:日本電子(株)製 GSX-400又は同等の装置(炭素核共鳴周波数100MHz以上)
溶媒:o-ジクロロベンゼン+重ベンゼン(4:1(体積比))
濃度:100mg/mL
温度:130℃
パルス角:90°
パルス間隔:15秒
積算回数:5,000回以上
スペクトルの帰属は、例えば、Macromolecules 17,1950 (1984)等を参考に行えばよい。上記条件により測定されたスペクトルの帰属は下表の通りである。表中Sαα等の記号はCarmanら(Macromolecules 10, 536 (1977))の表記法に従い、Pはメチル炭素、Sはメチレン炭素、Tはメチン炭素をそれぞれ表わす。
[PPP]=k×I(Tββ) (1)
[PPE]=k×I(Tβδ) (2)
[EPE]=k×I(Tδδ) (3)
[PEP]=k×I(Sββ) (4)
[PEE]=k×I(Sβδ) (5)
[EEE]=k×{I(Sδδ)/2+I(Sγδ)/4} (6)
ここで括弧[ ]はトリアッドの分率を示し、例えば[PPP]は全トリアッド中のPPPトリアッドの分率である。したがって、
[PPP]+[PPE]+[EPE]+[PEP]+[PEE]+[EEE]=1
(7)
である。また、kは定数であり、Iはスペクトル強度を示し、例えば、I(Tββ)はTββに帰属される28.7ppmのピークの強度を意味する。上記(1)~(7)の関係式を用いることにより、各トリアッドの分率が求まり、さらに下式によりエチレン含有量が求まる。
エチレン含有量(モル%)=([PEP]+[PEE]+[EEE])×100
なお、エチレン含有量のモル%から重量%への換算は以下の式を用いて行う。
エチレン含有量(重量%)=(28×X/100)/{28×X/100+42×(1-X/100)}×100
ここで、Xはモル%表示でのエチレン含有量である。
上記の基本的な実施形態、及び第1実施形態から第6実施形態において、シール層(I)を構成する樹脂組成物(X)(樹脂組成物(X1)~(X6))には、本発明の効果を損なわない限り、ヒンダードアミン系光安定剤又は紫外線吸収剤を含む添加剤、フィラー、その他の樹脂成分等が含まれていてもよい。ただし、添加剤、フィラー、その他の樹脂成分等の総量は、樹脂組成物に対して50重量%以下であることが好ましい。
本発明の加飾フィルムに含まれる層(II)は、ポリプロピレン系樹脂(B)を含む樹脂組成物(Y)からなる。加飾フィルムに、層(II)を設けることにより、三次元加飾熱成形時にフィルムが破断したり暴れたりすることによる外観不良の発生を抑制することができる。これにより、加飾フィルムは、熱成形性を改良するための熱成形性に優れる熱硬化性樹脂層を含まなくてもよい。
次に、層(II)を構成するポリプロピレン系樹脂(B)について説明する。ポリプロピレン系樹脂(B)は、前記のポリプロピレン系樹脂(A)よりも、溶融・緩和しにくい樹脂であることが好ましい。
ポリプロピレン系樹脂(B)のメルトフローレート(230℃、2.16kg荷重)(MFR(B))は、ポリプロピレン系樹脂(A)のMFR(A)に比べて低いことが必要である。すなわち、下記関係式(b-1)を満たす。
MFR(B)<MFR(A) ・・・式(b-1)
ポリプロピレン系樹脂(B)のDSC測定における融解ピーク温度Tm(B)は、特に制限はないが、好ましくは150℃以上、より好ましくは155℃以上である。Tm(B)が前記の範囲であると、耐熱性、耐傷つき性、耐溶剤性が良好となる。
Tm(B)>Tm(A) ・・・式(b-2)
前記の範囲であると、熱成形性が良好となる。
ポリプロピレン系樹脂(B)のDSC測定における結晶化温度(Tc(B))は、ポリプロピレン系樹脂(A)の結晶化温度(Tc(A))よりも高いことが好ましく、下記関係式(b-3)を満たす。
Tc(B)>Tc(A) ・・・式(b-3)
前記の範囲であると、熱成形性が良好となる。
Tc(B)は、前記の範囲であれば特に制限はないが、好ましくは95℃以上、より好ましくは100℃以上である。
ポリプロピレン系樹脂(B)は、メタロセン触媒系プロピレン系重合体、チーグラー・ナッタ触媒系プロピレン系重合体等から選ぶことができる。チーグラー・ナッタ触媒系プロピレン系重合体が好ましい。
第1実施形態においては、層(II)は上記要件(b1)と(b2)を満たすことが好ましく、第2実施形態においては、層(II)は上記要件(b1)と(b3)を満たすことが好ましく、第3~6実施形態においては、層(II)は上記要件(b1)を満たす。
層(II)を構成する樹脂組成物(Y)には、ポリプロピレン系樹脂(B)の他に、ヒンダードアミン系光安定剤又は紫外線吸収剤を含む添加剤、フィラー、着色剤、その他の樹脂成分等が含まれていてもよい。すなわち、プロピレン系重合体(ポリプロピレン系樹脂(B))と添加剤、フィラー、着色剤、その他の樹脂成分等を含む樹脂組成物(ポリプロピレン系樹脂組成物)であってもよい。添加剤、フィラー、着色剤、その他の樹脂成分等の総量は、ポリプロピレン系樹脂組成物に対して50重量%以下であることが好ましい。
本発明における加飾フィルムは、ポリプロピレン系樹脂(A)を含有するシール層(I)、及びポリプロピレン系樹脂(B)を含有する層(II)を含む。加飾フィルムは、シール層(I)、層(II)の他に様々な構成を取ることが可能である。すなわち、加飾フィルムは、シール層(I)及び層(II)からなる二層フィルムであっても、シール層(I)及び層(II)と他の層からなる三層以上の多層フィルムであってもよい。なお、シール層(I)は、樹脂成形体(基体)に沿って貼着する。また、加飾フィルムは、その表面にシボ、エンボス、印刷、サンドプラスト、スクラッチ等が施されていてもよい。
本発明の加飾フィルムは、公知の様々な成形方法により製造することができる。
例えば、樹脂組成物(X)からなるシール層(I)と樹脂組成物(Y)からなる層(II)とを共押出成形する方法、シール層(I)及び層(II)とさらに他の層とを共押出成形する方法、あらかじめ押出成形した一方の層の片方の面の上に、他の層を熱及び圧力をかけて貼り合せる熱ラミネーション法、接着剤を介して貼り合せるドライラミネーション法及びウェットラミネーション法、あらかじめ押出成形した一方の層の片方の面の上に、ポリプロピレン系樹脂を溶融押出しする押出ラミネーション法やサンドラミネーション法等が挙げられる。加飾フィルムを形成するための装置としては、公知の共押出Tダイ成形機や、公知のラミネート成形機を用いることができる。この中で、生産性の観点から、共押出Tダイ成形機が好適に用いられる。
本発明において加飾される成形体(加飾対象)として、好ましくはポリプロピレン系樹脂又はポリプロピレン系樹脂組成物からなる各種樹脂成形体(以下、「基体」と言うことがある。)を用いることができる。樹脂成形体の成形方法は、特に制限されるものでなく、例えば射出成形、ブロー成形、プレス成形、押出成形等を挙げることができる。
本発明の加飾成形体の製造方法は、上述した加飾フィルムを準備するステップ、樹脂成形体を準備するステップ、減圧可能なチャンバーボックス中に、前記樹脂成形体及び前記加飾フィルムをセットするステップ、前記チャンバーボックス内を減圧するステップ、前記加飾フィルムを加熱軟化させるステップ、前記樹脂成形体に前記加飾フィルムを押し当てるステップ、並びに前記減圧したチャンバーボックス内を大気圧に戻す又は加圧するステップを含むことを特徴とする。
より具体的に代表的な成形方法を以下に例示する。
チャンバーボックス11及び12内の減圧は、空気だまりが発生しない程度であればよく、チャンバーボックス内の圧力が10kPa以下、好ましくは3kPa以下、より好ましくは1kPa以下である。
すなわち、ヒータによって加熱された加飾フィルムは、固体状態から加熱されることで熱膨張し結晶溶融に伴い一度たるみ、結晶融解が全体に進行すると分子が緩和することで一時的に張り戻るスプリングバックが観察され、その後、自重によって垂れ下がるという挙動を示すが、スプリングバック後には、フィルムは完全に結晶が融解しており、分子の緩和が十分であるため、十分な接着強度が得られる。
さらに、本発明の加飾フィルムは、驚くべきことに張り戻りが終了する前に加飾熱成形しても基体と強く接着することが可能であるため、熱成形の時間を短縮することができ、加飾フィルムに含まれるヒンダードアミン系光安定剤及び/又は紫外線吸収剤が揮発する前に成形を完了させることができる。
(緒物性の測定方法及び評価方法)
1.諸物性の測定方法
(i)メルトフローレート(MFR)
ISO 1133:1997 Conditions Mに準拠して、230℃、2.16kg荷重で測定した。単位はg/10分である。
示差走査熱量計(DSC)を用い、一旦200℃まで温度を上げて10分間保持した後、10℃/分の降温速度で40℃まで温度を降下させ、再び昇温速度10℃/分にて測定した際の、吸熱ピークトップの温度を融解ピーク温度(融点)とした。単位は℃である。
示差走査熱量計(DSC)を使用し、シート状にしたサンプル片を5mgアルミパンに詰め、50℃から一旦200℃まで昇温速度100℃/分で昇温し、5分間保持した後に、10℃/分で40℃まで降温して結晶化させた。この時の結晶化最大ピーク温度を結晶化温度(Tc)とした。
以下の装置と条件でGPC測定をおこないMw/Mnの算出をおこなった。
・装置:Waters社製GPC(ALC/GPC 150C)
・検出器:FOXBORO社製MIRAN 1A IR検出器(測定波長:3.42μm)
・カラム:昭和電工社製AD806M/S(3本)
・移動相溶媒:オルトジクロロベンゼン(ODCB)
・測定温度:140℃
・流速:1.0ml/min
・注入量:0.2ml
・試料の調製:試料は、ODCB(0.5mg/mLのBHTを含む)を用いて1mg/mLの溶液を調製し、140℃で約1時間を要して溶解させた。
F380、F288、F128、F80、F40、F20、F10、F4、F1、A5000、A2500、A1000
各々が0.5mg/mLとなるようにODCB(0.5mg/mLのBHTを含む)に溶解した溶液を0.2mL注入して、較正曲線を作成する。較正曲線は、最小二乗法で近似して得られる三次式を用いた。
なお、分子量への換算に使用する粘度式[η]=K×Mαは、以下の数値を用いた。
PS:K=1.38×10-4、α=0.7
PP:K=1.03×10-4、α=0.78
エチレン-α-オレフィンランダム共重合体(C)と熱可塑性エラストマー(D)の密度は、JIS K7112(1999)の密度勾配管法に従って、測定した。
熱可塑性エラストマー(D)の引張弾性率は、ASTM D638に準拠し、ASTM-IV射出スペシメン、23℃、引張り速度50mm/minで測定した。
エチレン-α-オレフィンランダム共重合体(C)のエチレン含量[E(C)]及び熱可塑性エラストマー(D)のエチレン含量[E(D)]は、上述した方法に基づき、13C-NMR測定で得られた積分強度から求めた。試料の調製と測定条件は以下の通りである。
試料であるエチレン-α-オレフィンランダム共重合体(C)又は熱可塑性エラストマー(D)の200mgをo-ジクロロベンゼン/重水素化臭化ベンゼン(C6D5Br)=4/1(体積比)2.4ml及び化学シフトの基準物質であるヘキサメチルジシロキサンと共に内径10mmφのNMR試料管に入れ溶解した。
13C-NMR測定は10mmφのクライオプローブを装着したブルカー・バイオスピン(株)製のAV400型NMR装置を用いて行った。
13C-NMR測定条件は、試料の温度120℃、パルス角を90°、パルス間隔を20秒、積算回数を512回とし、ブロードバンドデカップリング法で実施した。
プロピレン-エチレンブロック共重合体(F)、成分(F1)及び成分(F2)のエチレン含量は、上述した13C-NMRによるエチレン含量の測定法を用いて行った。
等温結晶化時間は、示差走査熱量計(DSC)を用い、上述した方法で測定した。
なお、ポリプロピレン系樹脂(A)及び樹脂組成物(X5)の等温結晶化時間を測定する場合は、ポリプロピレン系樹脂(A)及び樹脂組成物(X5)をそれぞれ二軸押出機にて溶融混練し、ポリプロピレン系樹脂(A)及び樹脂組成物(X5)のペレットを得て、それを用いて等温結晶化時間を測定した。二軸押出機には、テクノベル社製KZW-15を用い、スクリュー回転数は400RPM、混練温度は、ホッパ下から80℃、120℃、200℃(以降、ダイス出口まで同温度)の設定とした。
(1)熱成形性の評価
三次元加飾熱成形時の加飾フィルムのドローダウン状態、並びに基体に加飾フィルムを貼着した加飾成形体の加飾フィルムの貼着状態を目視にて観察し、以下に示した基準で評価した。
○:三次元加飾熱成形時に、加飾フィルムがドローダウンせずに基体と加飾フィルムとの接触が接触面全面にて同時に行われたため、接触ムラが発生せず、均一に貼着されている。
△:三次元加飾熱成形時に、加飾フィルムが若干ドローダウンしたため、基体中心から加飾フィルムと接触し、基体上面端部に接触ムラが発生。
×:三次元加飾熱成形時に、加飾フィルムが大きくドローダウンしたため、基体全面に接触ムラが発生。
株式会社ニトムズ社製「クラフト粘着テープ No.712N」を幅75mm、長さ120mmに切り出し、樹脂成形体(基体)の端部より75mm×120mmの範囲で樹脂成形体(基体)に貼り付けてマスキング処理を施した(基体表面露出部は幅45mm、長さ120mm)。樹脂成形体(基体)のマスキング面が加飾フィルムと接触するように三次元加飾熱成形装置NGF-0406-SWに設置し、三次元加飾熱成形を行った。
三次元加飾熱成形後の平板サンプルを、23℃50%RHで48時間保持した後、該平板から縦30mm横70mmに試験片を切り出し、東洋精機社製アトラス試験機Ci65AWにてブラックパネル温度89℃、湿度50%、放射照度100W/m2の条件で504MJのキセノンアークランプ光を、加飾成形体の加飾フィルム側に照射した。照射時間は以下の通りである。
照射時間(1).加飾フィルムがヒンダードアミン系光安定剤のみを含む場合:400hr
照射時間(2).加飾フィルムが紫外線吸収剤のみを含む場合:200hr
照射時間(3).加飾フィルムがヒンダードアミン系光安定剤及び紫外線吸収剤の両者を含む場合:600hr
照射後、試験片の表面を顕微鏡にて20倍に拡大して観察し評価した。なお、評価基準は以下の通りである。
○:照射表面に変化が観察されない、或いは汚れが観察されても僅かである。
×:照射表面で、微細なクラックが認められる。
得られた加飾成形体を粉砕し、樹脂成形体(基体)の製造と同様に射出成形によりリサイクル成形体を得、外観を目視で評価した。外観に優れるものを「○」とした。
1.樹脂成形体に用いたポリプロピレン系樹脂
以下のポリプロピレン系樹脂を用いた。
(Z-1):プロピレン単独重合体(MFR=40g/10分、Tm=165℃)、日本ポリプロ(株)製、商品名「ノバテック(登録商標)MA04H」
(Z-2):プロピレンエチレンブロック共重合体(MFR=30g/10分、Tm=164℃)、日本ポリプロ(株)製、商品名「ノバテック(登録商標)NBC03HR」
(Z-3):ポリプロピレン系樹脂(Z-2)60重量%に、MFR=1.0のEBR(三井化学(株)社製 タフマー(登録商標)A0550S)を20重量%、無機フィラー(日本タルク(株)社製 タルクP-6、平均粒径4.0μm)を20重量%ブレンドしたポリプロピレン系樹脂組成物
ポリプロピレン系樹脂(Z-1)~(Z-3)を用い、以下の方法で射出成形体を得た。
射出成形機:東芝機械株式会社製「IS100GN」、型締め圧100トン
シリンダー温度:200℃
金型温度:40℃
射出金型:幅×高さ×厚さ=120mm×120mm×3mmの平板
状態調整:温度23℃、湿度50%RHの恒温恒湿室にて5日間保持
[使用材料]
(1)ポリプロピレン系樹脂
以下のポリプロピレン系樹脂を用いた。
(A-1):メタロセン触媒によるプロピレン-α-オレフィン共重合体(MFR=7.0g/10分、Tm=125℃、Mw/Mn=2.5)、日本ポリプロ(株)製、商品名「ウィンテック(登録商標)WFX4M」
(A-2):メタロセン触媒によるプロピレン-α-オレフィン共重合体(MFR=25g/10分、Tm=125℃、Mw/Mn=2.4)、日本ポリプロ(株)製、商品名「ウィンテック(登録商標)WSX03」
(A-3):メタロセン触媒によるプロピレン-α-オレフィン共重合体(MFR=7.0g/10分、Tm=135℃、Mw/Mn=2.3)、日本ポリプロ(株)製、商品名「ウィンテック(登録商標)WFW4M」
(A-4):メタロセン触媒によるプロピレン-α-オレフィン共重合体(MFR=30g/10分、Tm=145℃、Mw/Mn=2.4)、日本ポリプロ(株)製、商品名「ウィンテック(登録商標)WMG03」
(B-2):チーグラー・ナッタ触媒によるプロピレン単独重合体(MFR=2.4g/10分、Tm=161℃、Tc=112℃)、日本ポリプロ(株)製、商品名「ノバテック(登録商標)FY6」
(B-1-1):ポリプロピレン系樹脂(B-1)100重量部に、ヒンダードアミン系光安定剤(BASF株式会社製、商標名「Tinuvin770」)を0.2重量部ブレンドしたポリプロピレン系樹脂組成物(MFR=0.4g/10分、Tm=161℃、Tc=114℃)
(B-1-2):ポリプロピレン系樹脂(B-1)100重量部に、ヒンダードアミン系光安定剤(BASF株式会社製、商標名「Chimassorb944」)を0.2重量部ブレンドしたポリプロピレン系樹脂組成物(MFR=0.4g/10分、Tm=161℃、Tc=114℃)
(B-1-3):ポリプロピレン系樹脂(B-1)100重量部に、ヒンダードアミン系光安定剤(株式会社ADEKA製、商標名「LA57」)を0.2重量部ブレンドしたポリプロピレン系樹脂組成物(MFR=0.4g/10分、Tm=161℃、Tc=114℃)
(B-1-4):ポリプロピレン系樹脂(B-1)100重量部に、ヒンダードアミン系光安定剤(株式会社ADEKA製、商標名「LA52」)を0.2重量部ブレンドしたポリプロピレン系樹脂組成物(MFR=0.4g/10分、Tm=161℃、Tc=114℃)
(B-1-5):ポリプロピレン系樹脂(B-1)100重量部に、紫外線吸収剤(株式会社ADEKA製、商標名「アデカスタブ1413」)を0.2重量部ブレンドしたポリプロピレン系樹脂組成物(MFR=0.4g/10分、Tm=161℃、Tc=114℃)
(B-1-6):ポリプロピレン系樹脂(B-1)100重量部に、ヒンダードアミン系光安定剤(BASF株式会社製、商標名「Tinuvin770」)を0.2重量部、さらに紫外線吸収剤(株式会社ADEKA製、商標名「アデカスタブ1413」)を0.2重量部ブレンドしたポリプロピレン系樹脂組成物(MFR=0.4g/10分、Tm=161℃、Tc=114℃)
(B-2-1):ポリプロピレン系樹脂(B-2)100重量部に、ヒンダードアミン系光安定剤(BASF株式会社製、商標名「Tinuvin770」)を0.2重量部ブレンドしたポリプロピレン系樹脂組成物(MFR=2.4g/10分、Tm=161℃、Tc=114℃)
(H-1-1):ポリプロピレン系樹脂(A-1)100重量部に、ヒンダードアミン系光安定剤(BASF株式会社製、商標名「Tinuvin770」)を0.2重量部ブレンドしたポリプロピレン系樹脂組成物(MFR=10g/10分、Tm=161℃)
・加飾フィルムの製造
口径30mm(直径)のシール層(I)用押出機-1、及び口径40mm(直径)の層(II)用押出機-2が接続された、リップ開度0.8mm、ダイス幅400mmの2種2層Tダイを用いた。シール層(I)用押出機-1にポリプロピレン系樹脂(A-1)を、層(II)用押出機-2にポリプロピレン系樹脂(B-1-1)をそれぞれ投入し、樹脂温度240℃、シール層(I)用押出機-1の吐出量を4kg/h、層(II)用押出機-2の吐出量を12kg/hの条件で溶融押出を行った。
樹脂成形体(基体)5として、上記により得られたポリプロピレン系樹脂(Z-1)からなる射出成形体を用いた。
三次元加飾熱成形装置として、布施真空株式会社製「NGF-0406-SW」を用いた。図2~7に示すように、加飾フィルム1を、シール層(I)が基体(樹脂成形体5)に対向するとともに長手方向がフィルムのMD方向となるように、幅250mm×長さ350mmで切り出し、開口部のサイズが210mm×300mmのフィルム固定用の治具13にセットした。樹脂成形体5は、治具13よりも下方に位置するテーブル14上に設置された、高さ20mmのサンプル設置台の上に、ニチバン株式会社製「ナイスタック NW-K15」を介して貼り付けた。治具13とテーブル14を上下チャンバーボックス11及び12内に設置し、上下チャンバーボックス11及び12を閉じてチャンバーボックス内を密閉状態とした。チャンバーボックスは、加飾フィルム1を介して上下に分割されている。上下チャンバーボックス11及び12を真空吸引し、大気圧(101.3kPa)から1.0kPaまで減圧した状態で、上チャンバーボックス11上に設置された遠赤外線ヒータ15を出力80%で始動させて加飾フィルム1を加熱した。加熱中も真空吸引を継続し、最終的に0.1kPaまで減圧した。加飾フィルム1が加熱され一時的にたるみ、その後、張り戻るスプリングバック現象が終了してから5秒後に、下チャンバーボックス12内に設置されたテーブル14を上方に移動させて、樹脂成形体5を加飾フィルム1に押し付け、直後に上チャンバーボックス11内の圧力が270kPaとなるように圧縮空気を送り込んで樹脂成形体5と加飾フィルム1を密着させた。このようにして、樹脂成形体5の上面及び側面に加飾フィルム1が貼着された三次元加飾熱成形品(加飾成形体6)を得た。評価結果を表2-1に示す。なお、耐候性の評価は、照射時間(1)の条件で行った。
実施例1-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-2)に変更した以外は、実施例1-1と同様に成形、評価を行った。評価結果を表2-1に示す。
実施例1-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-3)に変更した以外は、実施例1-1と同様に成形、評価を行った。評価結果を表2-1に示す。
実施例1-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-4)に変更した以外は、実施例1-1と同様に成形、評価を行った。評価結果を表2-1に示す。
実施例1-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-5)に変更し、耐候性の評価を照射時間(2)の条件で行った以外は、実施例1-1と同様に成形、評価を行った。評価結果を表2-1に示す。
実施例1-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-2-1)に変更した以外は、実施例1-1と同様に成形、評価を行った。評価結果を表2-1に示す。
実施例1-1の加飾フィルムの製造において、シール層(I)のポリプロピレン系樹脂(A-1)を、ポリプロピレン系樹脂(A-2)に変更した以外は、実施例1-1と同様に成形、評価を行った。評価結果を表2-1に示す。
実施例1-1の加飾フィルムの製造において、シール層(I)のポリプロピレン系樹脂(A-1)を、ポリプロピレン系樹脂(A-3)に変更した以外は、実施例1-1と同様に成形、評価を行った。評価結果を表2-1に示す。
実施例1-1の加飾フィルムの製造において、シール層(I)のポリプロピレン系樹脂(A-1)を、ポリプロピレン系樹脂(A-4)に変更した以外は、実施例1-1と同様に成形、評価を行った。評価結果を表2-1に示す。
・加飾フィルムの製造
口径30mm(直径)のシール層(I)用押出機-1、及び口径40mm(直径)の層(II)用押出機-2、及び口径30mm(直径)の表面加飾層(III)用押出機-3が接続された、リップ開度0.8mm、ダイス幅400mmの3種3層Tダイを用いた。シール層(I)用押出機-1にポリプロピレン系樹脂(A-1)を、層(II)用押出機-2にポリプロピレン系樹脂(B-1-1)を、表面加飾層(III)用押出機-3にポリプロピレン系樹脂(H-1-1)をそれぞれ投入し、樹脂温度240℃、押出機-1の吐出量を4kg/h、押出機-2の吐出量を8kg/h、押出機-3の吐出量を4kg/hの条件で溶融押出を行った。
実施例1-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-6)に変更し、耐候性の評価を照射時間(3)の条件で行った以外は、実施例1-1と同様に成形、評価を行った。評価結果を表2-2に示す。
実施例1-1の三次元加飾熱成形において、基体をポリプロピレン系樹脂(Z-2)からなる射出成形体に変更した以外は、実施例1-1と同様に成形、評価を行った。評価結果を表2-2に示す。
実施例1-1の三次元加飾熱成形において、基体をポリプロピレン系樹脂(Z-3)からなる射出成形体に変更した以外は、実施例1-1と同様に成形、評価を行った。評価結果を表2-2に示す。
実施例1-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1)に変更した以外は、実施例1-1と同様に成形、評価を行った。評価結果を表2-2に示す。
実施例1-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(H-1)に変更した以外は、実施例1-1と同様に成形、評価を行った。評価結果を表2-2に示す。
実施例1-1の加飾フィルムの製造において、シール層(I)のポリプロピレン系樹脂(A-1)を、ポリプロピレン系樹脂(B-1)に変更した以外は、実施例1-1と同様に成形、評価を行った。評価結果を表2-2に示す。
実施例1-1の加飾フィルムの製造において、シール層(I)のポリプロピレン系樹脂(A-1)を、ポリプロピレン系樹脂(B-1)に変更し、三次元加飾熱成形においてスプリングバック現象が終了してから40秒後に成形を行った以外は、実施例1-1と同様に成形、評価を行った。評価結果を表2-2に示す。
実施例1-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-5)に変更し、シール層(I)のポリプロピレン系樹脂(A-1)を、ポリプロピレン系樹脂(B-1)に変更し、三次元加飾熱成形においてスプリングバック現象が終了してから40秒後に成形を行い、耐候性の評価を照射時間(2)の条件で行った以外は、実施例1-1と同様に成形、評価を行った。評価結果を表2-2に示す。
[使用材料]
(試験例1)で使用したポリプロピレン系樹脂以外に、以下のポリプロピレン系樹脂を用いた。
(A-6):プロピレン-α-オレフィン共重合体(MFR=5.0g/10分、Tc=86℃、Mw/Mn=4.0)、日本ポリプロ(株)製、商品名「ノバテック(登録商標)FX4G」
(A-7):プロピレン-α-オレフィン共重合体(MFR=7.0g/10分、Tc=96℃、Mw/Mn=3.9)、日本ポリプロ(株)製、商品名「ノバテック(登録商標)FW4B」
(B-1-7):ポリプロピレン系樹脂(B-1)100重量部に、紫外線吸収剤(株式会社ADEKA製、商標名「LA-31G」)を0.2重量部ブレンドしたポリプロピレン系樹脂組成物(MFR=0.4g/10分、Tm=161℃、Tc=114℃)
(B-1-8):ポリプロピレン系樹脂(B-1)100重量部に、ヒンダードアミン系光安定剤(BASF株式会社製、商標名「Chimassorb944」)を0.2重量部、さらに紫外線吸収剤(株式会社ADEKA製、商標名「LA-31G」)を0.2重量部ブレンドしたポリプロピレン系樹脂組成物(MFR=0.4g/10分、Tm=161℃、Tc=114℃)
実施例1-1の加飾フィルムの製造において、シール層(I)のポリプロピレン系樹脂(A-1)を、ポリプロピレン系樹脂(A-6)に変更し、三次元加飾熱成形においてスプリングバック現象が終了してから10秒後に成形を行ったこと以外は、実施例1-1と同様に成形、評価を行った。評価結果を表3-1に示す。
実施例2-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-2)に変更した以外は、実施例2-1と同様に成形、評価を行った。評価結果を表3-1に示す。
実施例2-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-3)に変更した以外は、実施例2-1と同様に成形、評価を行った。評価結果を表3-1に示す。
実施例2-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-4)に変更した以外は、実施例2-1と同様に成形、評価を行った。評価結果を表3-1に示す。
実施例2-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-5)に変更し、耐候性の評価を照射時間(2)の条件で行った以外は、実施例2-1と同様に成形、評価を行った。評価結果を表3-1に示す。
実施例2-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-2-1)に変更した以外は、実施例2-1と同様に成形、評価を行った。評価結果を表3-1に示す。
実施例2-1の加飾フィルムの製造において、シール層(I)のポリプロピレン系樹脂(A-6)を、ポリプロピレン系樹脂(A-7)に変更した以外は、実施例2-1と同様に成形、評価を行った。評価結果を表3-1に示す。
・加飾フィルムの製造
口径30mm(直径)のシール層(I)用押出機-1、及び口径40mm(直径)の層(II)用押出機-2、及び口径30mm(直径)の表面加飾層(III)用押出機-3が接続された、リップ開度0.8mm、ダイス幅400mmの3種3層Tダイを用いた。シール層(I)用押出機-1にポリプロピレン系樹脂(A-6)を、層(II)用押出機-2にポリプロピレン系樹脂(B-1-1)を、表面加飾層(III)用押出機-3にポリプロピレン系樹脂(H-1-1)をそれぞれ投入し、樹脂温度240℃、押出機-1の吐出量を4kg/h、押出機-2の吐出量を8kg/h、押出機-3の吐出量を4kg/hの条件で溶融押出を行った。
実施例2-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-6)に変更し、耐候性の評価を照射時間(3)の条件で行った以外は、実施例2-1と同様に成形、評価を行った。評価結果を表3-1に示す。
実施例2-1の三次元加飾熱成形において、基体をポリプロピレン系樹脂(Z-2)からなる射出成形体に変更した以外は、実施例2-1と同様に成形、評価を行った。評価結果を表3-2に示す。
実施例2-1の三次元加飾熱成形において、基体をポリプロピレン系樹脂(Z-3)からなる射出成形体に変更した以外は、実施例2-1と同様に成形、評価を行った。評価結果を表3-2に示す。
実施例2-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)をポリプロピレン系樹脂(B-1-7)に変更し、耐候性の評価を照射時間(2)の条件で行った以外は、実施例2-1と同様に成形、評価を行った。評価結果を表3-2に示す。
実施例2-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)をポリプロピレン系樹脂(B-1-8)に変更し、耐候性の評価を照射時間(3)の条件で行った以外は、実施例2-1と同様に成形、評価を行った。評価結果を表3-2に示す。
実施例2-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1)に変更した以外は、実施例2-1と同様に成形、評価を行った。評価結果を表3-2に示す。
実施例2-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(H-1)に変更した以外は、実施例2-1と同様に成形、評価を行った。評価結果を表3-2に示す。
実施例2-1の加飾フィルムの製造において、シール層(I)のポリプロピレン系樹脂(A-6)を、ポリプロピレン系樹脂(B-1)に変更した以外は、実施例2-1と同様に成形、評価を行った。評価結果を表3-2に示す。
実施例2-1の加飾フィルムの製造において、シール層(I)のポリプロピレン系樹脂(A-6)を、ポリプロピレン系樹脂(B-1)に変更し、三次元加飾熱成形においてスプリングバック現象が終了してから40秒後に成形を行った以外は、実施例2-1と同様に成形、評価を行った。評価結果を表3-2に示す。
実施例2-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-5)に変更し、シール層(I)のポリプロピレン系樹脂(A-6)を、ポリプロピレン系樹脂(B-1)に変更し、三次元加飾熱成形においてスプリングバック現象が終了してから40秒後に成形を行い、耐候性の評価を照射時間(2)の条件で行った以外は、実施例2-1と同様に成形、評価を行った。評価結果を表3-2に示す。
[使用材料]
(試験例1)で使用した樹脂以外に、以下の樹脂を用いた。
(A-5):チーグラー・ナッタ触媒によるプロピレン-α-オレフィン共重合体(MFR=7.0g/10分、Tm=146℃、Tc=115℃、Mw/Mn=4.0、引張弾性率=1200MPa)、日本ポリプロ(株)製、商品名「ノバテック(登録商標)FW3GT」
以下のエチレン-α-オレフィンランダム共重合体を用いた。
(C-1):エチレン-ブテンランダム共重合体(MFR=6.8g/10分、Tm=66℃、密度=0.885g/cm3、エチレン含量=84重量%):三井化学(株)製、商品名「タフマーA4085S」
(C-2):エチレン-ブテンランダム共重合体(MFR=7.0g/10分、Tm=47℃、密度=0.860g/cm3、エチレン含量=73重量%):三井化学(株)製、商品名「タフマーA4050S」
(C-3):エチレン-オクテンランダム共重合体(MFR=2.0g/10分、Tm=77℃、密度=0.885g/cm3、エチレン含量=85重量%):デュポンダウ社製、商品名「エンゲージEG8003」
(C-4):エチレン-オクテンランダム共重合体(MFR=2.0g/10分、Tm=38℃、密度=0.860g/cm3、エチレン含量=75重量%):デュポンダウ社製、商品名「エンゲージEG8842」
(C-5):エチレン-ヘキセンランダム共重合体(MFR=3.5g/10分、Tm=60℃、密度=0.880g/cm3、エチレン含量=76重量%):日本ポリエチレン(株)製、商品名「カーネルKS340T」
(C-6):エチレン-プロピレンランダム共重合体(MFR=7.0g/10分、Tm=38℃、密度=0.860g/cm3、エチレン含量=73重量%):三井化学(株)製、商品名「タフマーP0280」
実施例1-1の加飾フィルムの製造において、シール層(I)のポリプロピレン系樹脂(A-1)を、ポリプロピレン系樹脂(A-5)とエチレン-α-オレフィンランダム共重合体(C-1)とを重量比が85:15となるようにブレンドしたものに変更し、三次元加飾熱成形においてスプリングバック現象が終了した直後(すなわちスプリングバック後の加熱時間が0秒)に成形を行ったこと以外は、実施例1-1と同様に成形、評価を行った。評価結果を表4-1に示す。
実施例3-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-2)に変更した以外は、実施例3-1と同様に成形、評価を行った。評価結果を表4-1に示す。
実施例3-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-3)に変更した以外は、実施例3-1と同様に成形、評価を行った。評価結果を表4-1に示す。
実施例3-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-4)に変更した以外は、実施例3-1と同様に成形、評価を行った。評価結果を表4-1に示す。
実施例3-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-5)に変更し、耐候性の評価を照射時間(2)の条件で行った以外は、実施例3-1と同様に成形、評価を行った。評価結果を表4-1に示す。
実施例3-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-2-1)に変更した以外は、実施例3-1と同様に成形、評価を行った。評価結果を表4-1に示す。
実施例3-1の加飾フィルムの製造において、シール層(I)に使用したエチレン-α-オレフィンランダム共重合体(C-1)を、エチレン-α-オレフィンランダム共重合体(C-2)に変更した以外は、実施例3-1と同様に成形、評価を行った。評価結果を表4-1に示す。
実施例3-1の加飾フィルムの製造において、シール層(I)に使用したエチレン-α-オレフィンランダム共重合体(C-1)を、エチレン-α-オレフィンランダム共重合体(C-3)に変更した以外は、実施例3-1と同様に成形、評価を行った。評価結果を表4-1に示す。
実施例3-1の加飾フィルムの製造において、シール層(I)に使用したエチレン-α-オレフィンランダム共重合体(C-1)を、エチレン-α-オレフィンランダム共重合体(C-4)に変更した以外は、実施例3-1と同様に成形、評価を行った。評価結果を表4-1に示す。
実施例3-1の加飾フィルムの製造において、シール層(I)に使用したエチレン-α-オレフィンランダム共重合体(C-1)を、エチレン-α-オレフィンランダム共重合体(C-5)に変更した以外は、実施例3-1と同様に成形、評価を行った。評価結果を表4-2に示す。
実施例3-1の加飾フィルムの製造において、シール層(I)に使用したエチレン-α-オレフィンランダム共重合体(C-1)を、エチレン-α-オレフィンランダム共重合体(C-6)に変更した以外は、実施例3-1と同様に成形、評価を行った。評価結果を表4-2に示す。
実施例3-1の加飾フィルムの製造において、シール層(I)の樹脂の配合比をポリプロピレン系樹脂(A-5):エチレン-α-オレフィンランダム共重合体(C-1)=70:30としたこと以外は、実施例3-1と同様に成形、評価を行った。評価結果を表4-2に示す。
実施例3-1の加飾フィルムの製造において、シール層(I)の樹脂の配合比をポリプロピレン系樹脂(A-5):エチレン-α-オレフィンランダム共重合体(C-1)=30:70としたこと以外は、実施例3-1と同様に成形、評価を行った。評価結果を表4-2に示す。
実施例3-1の加飾フィルムの製造において、シール層(I)に使用したポリプロピレン系樹脂(A-5)を、ポリプロピレン系樹脂(H-1)に変更した以外は、実施例3-1と同様に成形、評価を行った。評価結果を表4-2に示す。
・加飾フィルムの製造
口径30mm(直径)のシール層(I)用押出機-1、及び口径40mm(直径)の層(II)用押出機-2、及び口径30mm(直径)の表面加飾層(III)用押出機-3が接続された、リップ開度0.8mm、ダイス幅400mmの3種3層Tダイを用いた。シール層(I)用押出機-1にポリプロピレン系樹脂(A-5)とエチレン-α-オレフィンランダム共重合体(C-1)とを重量比が85:15となるようにブレンドしたものを、層(II)用押出機-2にポリプロピレン系樹脂(B-1-1)を、表面加飾層(III)用押出機-3にポリプロピレン系樹脂(H-1-1)をそれぞれ投入し、樹脂温度240℃、押出機-1の吐出量を4kg/h、押出機-2の吐出量を8kg/h、押出機-3の吐出量を4kg/hの条件で溶融押出を行った。
実施例3-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-6)に変更し、耐候性の評価を照射時間(3)の条件で行った以外は、実施例3-1と同様に成形、評価を行った。評価結果を表4-2に示す。
実施例3-1の三次元加飾熱成形において、基体をポリプロピレン系樹脂(Z-2)からなる射出成形体に変更した以外は、実施例3-1と同様に成形、評価を行った。評価結果を表4-2に示す。
実施例3-1の三次元加飾熱成形において、基体をポリプロピレン系樹脂(Z-3)からなる射出成形体に変更した以外は、実施例3-1と同様に成形、評価を行った。評価結果を表4-2に示す。
実施例3-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1)に変更した以外は、実施例3-1と同様に成形、評価を行った。評価結果を表4-3に示す。
実施例3-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(H-1)に変更した以外は、実施例3-1と同様に成形、評価を行った。評価結果を表4-3に示す。
実施例3-1の加飾フィルムの製造において、シール層(I)の樹脂を、ポリプロピレン系樹脂(B-1)のみに変更した以外は、実施例3-1と同様に成形、評価を行った。評価結果を表4-3に示す。
実施例3-1の加飾フィルムの製造において、シール層(I)の樹脂を、ポリプロピレン系樹脂(B-1)のみに変更し、三次元加飾熱成形においてスプリングバック現象が終了してから40秒後に成形を行った以外は、実施例3-1と同様に成形、評価を行った。評価結果を表4-3に示す。
実施例3-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-5)に変更し、シール層(I)の樹脂を、ポリプロピレン系樹脂(B-1)のみに変更し、三次元加飾熱成形においてスプリングバック現象が終了してから40秒後に成形を行い、耐候性の評価を照射時間(2)の条件で行った以外は、実施例3-1と同様に成形、評価を行った。評価結果を表4-3に示す。
[使用材料]
ポリプロピレン系樹脂
(試験例1)及び(試験例3)で使用したポリプロピレン系樹脂を使用した。
以下の熱可塑性エラストマーを用いた。
(D-1):プロピレンを主成分とするプロピレン-ブテンランダム共重合体(MFR=7.0g/10分、Tm=75℃、密度=0.885g/cm3、引張弾性率=290MPa、プロピレン含量=69重量%、ブテン含量=31重量%、エチレン含量[E]=0重量%):三井化学(株)製、商品名「タフマーXM7070」
(D-2):ブテン単独重合体(MFR=5.0g/10分、Tm=125℃、密度=0.915g/cm3、引張弾性率=430MPa、エチレン含量[E]=0重量%):三井化学(株)製、商品名「タフマーBL4000」
(D-3):プロピレンを主成分とするプロピレンーエチレン-ブテンランダム共重合体(MFR=6.0g/10分、Tm=160℃、密度=0.868g/cm3、引張弾性率=50MPa、プロピレン含量=84重量%、エチレン含量[E]=9重量%、ブテン含量=7重量%):三井化学(株)製、商品名「タフマーPN2060」
(D-4):プロピレンを主成分とするプロピレン-エチレンランダム共重合体(MFR=8.0g/10分、Tm=61℃、密度=0.871g/cm3、引張弾性率=45MPa、プロピレン含量=89重量%、エチレン含量[E]=11重量%):エクソンモービルケミカル社製、商品名「VISTAMAXX3000」
実施例1-1の加飾フィルムの製造において、シール層(I)のポリプロピレン系樹脂(A-1)を、ポリプロピレン系樹脂(A-5)と熱可塑性エラストマー(D-1)とを重量比が85:15となるようにブレンドしたものに変更した以外は、実施例1-1と同様に成形、評価を行った。評価結果を表5-1に示す。
実施例4-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-2)に変更した以外は、実施例4-1と同様に成形、評価を行った。評価結果を表5-1に示す。
実施例4-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-3)に変更した以外は、実施例4-1と同様に成形、評価を行った。評価結果を表5-1に示す。
実施例4-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-4)に変更した以外は、実施例4-1と同様に成形、評価を行った。評価結果を表5-1に示す。
実施例4-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-5)に変更し、耐候性の評価を照射時間(2)の条件で行った以外は、実施例4-1と同様に成形、評価を行った。評価結果を表5-1に示す。
実施例4-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-2-1)に変更した以外は、実施例4-1と同様に成形、評価を行った。評価結果を表5-1に示す。
実施例4-1の加飾フィルムの製造において、シール層(I)に使用した熱可塑性エラストマー(D-1)を、熱可塑性エラストマー(D-2)に変更した以外は、実施例4-1と同様に成形、評価を行った。評価結果を表5-1に示す。
実施例4-1の加飾フィルムの製造において、シール層(I)に使用した熱可塑性エラストマー(D-1)を、熱可塑性エラストマー(D-3)に変更した以外は、実施例4-1と同様に成形、評価を行った。評価結果を表5-1に示す。
実施例4-1の加飾フィルムの製造において、シール層(I)に使用した熱可塑性エラストマー(D-1)を、熱可塑性エラストマー(D-4)に変更した以外は、実施例4-1と同様に成形、評価を行った。評価結果を表5-1に示す。
実施例4-1の加飾フィルムの製造において、シール層(I)の樹脂の配合比をポリプロピレン系樹脂(A-5):熱可塑性エラストマー(D-1)=70:30としたこと以外は、実施例4-1と同様に成形、評価を行った。評価結果を表5-1に示す。
実施例4-1の加飾フィルムの製造において、シール層(I)の樹脂の配合比をポリプロピレン系樹脂(A-5):熱可塑性エラストマー(D-1)=30:70としたこと以外は、実施例4-1と同様に成形、評価を行った。評価結果を表5-1に示す。
実施例4-1の加飾フィルムの製造において、シール層(I)に使用したポリプロピレン系樹脂(A-5)を、ポリプロピレン系樹脂(H-1)に変更した以外は、実施例4-1と同様に成形、評価を行った。評価結果を表5-2に示す。
・加飾フィルムの製造
口径30mm(直径)のシール層(I)用押出機-1、及び口径40mm(直径)の層(II)用押出機-2、及び口径30mm(直径)の表面加飾層(III)用押出機-3が接続された、リップ開度0.8mm、ダイス幅400mmの3種3層Tダイを用いた。シール層(I)用押出機-1にポリプロピレン系樹脂(A-5)と熱可塑性エラストマー(D-1)とを重量比が85:15となるようにブレンドしたものを、層(II)用押出機-2にポリプロピレン系樹脂(B-1-1)を、表面加飾層(III)用押出機-3にポリプロピレン系樹脂(H-1-1)をそれぞれ投入し、樹脂温度240℃、押出機-1の吐出量を4kg/h、押出機-2の吐出量を8kg/h、押出機-3の吐出量を4kg/hの条件で溶融押出を行った。
実施例4-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-6)に変更し、耐候性の評価を照射時間(3)の条件で行った以外は、実施例4-1と同様に成形、評価を行った。評価結果を表5-2に示す。
実施例4-1の三次元加飾熱成形において、基体をポリプロピレン系樹脂(Z-2)からなる射出成形体に変更した以外は、実施例4-1と同様に成形、評価を行った。評価結果を表5-2に示す。
実施例4-1の三次元加飾熱成形において、基体をポリプロピレン系樹脂(Z-3)からなる射出成形体に変更した以外は、実施例4-1と同様に成形、評価を行った。評価結果を表5-2に示す。
実施例4-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1)に変更した以外は、実施例4-1と同様に成形、評価を行った。評価結果を表5-2に示す。
実施例4-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(H-1)に変更した以外は、実施例4-1と同様に成形、評価を行った。評価結果を表5-2に示す。
実施例4-1の加飾フィルムの製造において、シール層(I)の樹脂を、ポリプロピレン系樹脂(B-1)のみに変更した以外は、実施例4-1と同様に成形、評価を行った。評価結果を表5-2に示す。
実施例4-1の加飾フィルムの製造において、シール層(I)の樹脂を、ポリプロピレン系樹脂(B-1)のみに変更し、三次元加飾熱成形においてスプリングバック現象が終了してから40秒後に成形を行った以外は、実施例4-1と同様に成形、評価を行った。評価結果を表5-2に示す。
実施例4-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-5)に変更し、シール層(I)の樹脂を、ポリプロピレン系樹脂(B-1)のみに変更し、三次元加飾熱成形においてスプリングバック現象が終了してから40秒後に成形を行い、耐候性の評価を照射時間(2)の条件で行った以外は、実施例4-1と同様に成形、評価を行った。評価結果を表5-2に示す。
[使用材料]
ポリプロピレン系樹脂
シール層(I)のポリプロピレン系樹脂として、以下のポリプロピレン系樹脂を用いた。
(A-1):プロピレン-α-オレフィン共重合体(MFR=7.0g/10分、Tm=125℃、結晶化開始温度=97℃、等温結晶化時間(t)=570秒(107℃で測定))、日本ポリプロ(株)製、商品名「ウィンテック(登録商標)WFX4M」
(A-5):プロピレン-α-オレフィン共重合体(MFR=7.0g/10分、Tm=146℃、結晶化開始温度=111℃、等温結晶化時間(t)=263秒(121℃で測定))、日本ポリプロ(株)製、商品名「ノバテック(登録商標)FW3GT」
(A-8):プロピレンブロック共重合体(MFR=6.0g/10分、Tm=135℃、結晶化開始温度=99℃、等温結晶化時間(t)=478秒(109℃で測定))、日本ポリプロ(株)製、商品名「ウェルネクス(登録商標)RFG4VA」
(H-1):プロピレン単独重合体(MFR=10g/10分、Tm=161℃、結晶化開始温度=123℃、等温結晶化時間(t)=613秒(133℃で測定))、日本ポリプロ(株)製、商品名「ノバテック(登録商標)FA3KM」
以下の熱可塑性樹脂を用いた。
(E-1):水添スチレン系エラストマー(HSBR):JSR(株)製、商品名「ダイナロン1320P」
(E-2):スチレン系エラストマー(SEBS):クレイトンポリマージャパン(株)製、商品名「クレイトンG1645」
(E-3):脂環族系炭化水素樹脂:荒川化学(株)製、商品名「アルコンーP125」
実施例1-1の加飾フィルムの製造において、シール層(I)のポリプロピレン系樹脂(A-1)を、ポリプロピレン系樹脂(A-5)と熱可塑性樹脂(E-1)とを重量比が50:50となるようにブレンドしたものに変更し、三次元加飾熱成形においてスプリングバック現象が終了した直後(すなわちスプリングバック後の加熱時間が0秒)に成形を行ったこと以外は、実施例1-1と同様に成形、評価を行った。評価結果を表6-1に示す。
実施例5-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-2)に変更した以外は、実施例5-1と同様に成形、評価を行った。評価結果を表6-1に示す。
実施例5-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-3)に変更した以外は、実施例5-1と同様に成形、評価を行った。評価結果を表6-1に示す。
実施例5-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-4)に変更した以外は、実施例5-1と同様に成形、評価を行った。評価結果を表6-1に示す。
実施例5-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-5)に変更し、耐候性の評価を照射時間(2)の条件で行った以外は、実施例5-1と同様に成形、評価を行った。評価結果を表6-1に示す。
実施例5-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-2-1)に変更した以外は、実施例5-1と同様に成形、評価を行った。評価結果を表6-1に示す。
実施例5-1の加飾フィルムの製造において、シール層(I)に使用した熱可塑性樹脂(E-1)を、熱可塑性樹脂(E-2)に変更した以外は、実施例5-1と同様に成形、評価を行った。評価結果を表6-1に示す。
実施例5-1の加飾フィルムの製造において、シール層(I)に使用した熱可塑性樹脂(E-1)を、熱可塑性樹脂(E-3)に変更し、ポリプロピレン系樹脂(A-5)と熱可塑性樹脂(E-3)との配合比を85:15としたこと以外は、実施例5-1と同様に成形、評価を行った。評価結果を表6-1に示す。
実施例5-1の加飾フィルムの製造において、シール層(I)の樹脂の配合比をポリプロピレン系樹脂(A-5):熱可塑性樹脂(E-1)=70:30としたこと以外は、実施例5-1と同様に成形、評価を行った。評価結果を表6-1に示す。
実施例5-1の加飾フィルムの製造において、シール層(I)の樹脂の配合比をポリプロピレン系樹脂(A-5):熱可塑性樹脂(E-1)=30:70としたこと以外は、実施例5-1と同様に成形、評価を行った。評価結果を表6-1に示す。
実施例5-1の加飾フィルムの製造において、シール層(I)に使用したポリプロピレン系樹脂(A-5)を、ポリプロピレン系樹脂(H-1)に変更した以外は、実施例5-1と同様に成形、評価を行った。評価結果を表6-2に示す。
実施例5-1の加飾フィルムの製造において、シール層(I)に使用したポリプロピレン系樹脂(A-5)を、ポリプロピレン系樹脂(A-1)に変更した以外は、実施例5-1と同様に成形、評価を行った。評価結果を表6-2に示す。
実施例5-1の加飾フィルムの製造において、シール層(I)に使用したポリプロピレン系樹脂(A-5)を、ポリプロピレン系樹脂(A-8)に変更し、ポリプロピレン系樹脂(A-8)と熱可塑性樹脂(E-1)との配合比を70:30としたこと以外は、実施例5-1と同様に成形、評価を行った。評価結果を表6-2に示す。
・加飾フィルムの製造
口径30mm(直径)のシール層(I)用押出機-1、及び口径40mm(直径)の層(II)用押出機-2、及び口径30mm(直径)の表面加飾層(III)用押出機-3が接続された、リップ開度0.8mm、ダイス幅400mmの3種3層Tダイを用いた。シール層(I)用押出機-1にポリプロピレン系樹脂(A-5)と熱可塑性樹脂(E-1)とを重量比が50:50となるようにブレンドしたものを、層(II)用押出機-2にポリプロピレン系樹脂(B-1-1)を、表面加飾層(III)用押出機-3にポリプロピレン系樹脂(H-1-1)をそれぞれ投入し、樹脂温度240℃、押出機-1の吐出量を4kg/h、押出機-2の吐出量を8kg/h、押出機-3の吐出量を4kg/hの条件で溶融押出を行った。
実施例5-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-6)に変更し、耐候性の評価を照射時間(3)の条件で行った以外は、実施例5-1と同様に成形、評価を行った。評価結果を表6-2に示す。
実施例5-1の三次元加飾熱成形において、基体をポリプロピレン系樹脂(Z-2)からなる射出成形体に変更した以外は、実施例5-1と同様に成形、評価を行った。評価結果を表6-2に示す。
実施例5-1の三次元加飾熱成形において、基体をポリプロピレン系樹脂(Z-3)からなる射出成形体に変更した以外は、実施例5-1と同様に成形、評価を行った。評価結果を表6-2に示す。
実施例5-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1)に変更した以外は、実施例5-1と同様に成形、評価を行った。評価結果を表6-2に示す。
実施例5-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(H-1)に変更した以外は、実施例5-1と同様に成形、評価を行った。評価結果を表6-2に示す。
[使用材料]
(試験例1)で使用したポリプロピレン系樹脂以外に、以下のポリプロピレン系樹脂を用いた。
加飾フィルムのシール層(I)に用いるプロピレン-エチレンブロック共重合体(F)として、以下の製造例で得られたプロピレン-エチレンブロック共重合体(F-1)~(F-4)を用いた。重合条件及び重合結果を表7-1に、ポリマー分析の結果を表7-2に示す。
触媒組成の分析
Ti含有量:試料を精確に秤量し、加水分解した上で比色法を用いて測定した。予備重合後の試料については、予備重合ポリマーを除いた重量を用いて含有量を計算した。
ケイ素化合物含有量:試料を精確に秤量し、メタノールで分解した。ガスクロマトグラフィーを用いて標準サンプルと比較することにより、得られたメタノール溶液中のケイ素化合物濃度を求めた。メタノール中のケイ素化合物濃度と試料の重量から、試料に含まれるケイ素化合物の含有量を計算した。予備重合後の試料については、予備重合ポリマーを除いた重量を用いて含有量を計算した。
(1)固体触媒の調製
撹拌装置を備えた容量10Lのオートクレーブを充分に窒素で置換し、精製したトルエン2Lを導入した。ここに、室温で、マグネシウムジエトキシド[Mg(OEt)2]を200g投入し、四塩化チタン(TiCl4)を1Lゆっくりと添加した。温度を90℃に上げて、フタル酸ジ-n-ブチルを50ml導入した。その後、温度を110℃に上げて3時間反応を行った。反応生成物を精製したトルエンで充分に洗浄した。次いで、精製したトルエンを導入して全体の液量を2Lに調整した。室温でTiCl4を1L添加し、温度を110℃に上げて2時間反応を行った。反応生成物を精製したトルエンで充分に洗浄した。次いで、精製したトルエンを導入して全体の液量を2Lに調整した。室温でTiCl4を1L添加し、温度を110℃に上げて2時間反応を行った。反応生成物を精製したトルエンで充分に洗浄した。さらに、精製したn-ヘプタンを用いて、トルエンをn-ヘプタンで置換し、固体成分のスラリーを得た。このスラリーの一部をサンプリングして乾燥した。分析したところ、固体成分のTi含有量は2.7重量%であった。
上記で得られた固体触媒を用いて、以下の手順により予備重合を行った。上記のスラリーに精製したn-ヘプタンを導入して、固体触媒の濃度が20g/Lとなる様に調整した。スラリーを10℃に冷却した後、Et3Alのn-ヘプタン希釈液をEt3Alとして10g添加し、280gのプロピレンを4時間かけて供給した。プロピレンの供給が終わった後、さらに30分反応を継続した。次いで、気相部を窒素で充分に置換し、反応生成物を精製したn-ヘプタンで充分に洗浄した。得られたスラリーをオートクレーブから抜き出し、真空乾燥を行って予備重合触媒を得た。この予備重合触媒は、固体触媒1gあたり2.5gのポリプロピレンを含んでいた。分析したところ、この予備重合触媒のポリプロピレンを除いた部分には、Tiが1.0重量%、i-Pr2Si(OMe)2が8.3重量%含まれていた。
この予備重合触媒を用いて、以下の手順に従ってプロピレン-エチレンブロック共重合体(F)の製造を行った。
内容積2m3の流動床型重合槽が2個直列に繋がった2槽連続重合設備を用いてプロピレン-エチレンブロック共重合体(F)の製造を行った。プロピレン-エチレンブロック共重合体(F-1)の製造条件は、表7-1の6A-1に記載のとおりである。使用するプロピレン、エチレン、水素、窒素は一般的な精製触媒を用いて精製したものを使用した。第1重合槽における成分(F1)の製造量、及び、第2重合槽における成分(F2)の製造量は重合槽の温度制御に使用する熱交換器の冷却水温度の値から求めた。
第1重合槽を用いてプロピレンの単独重合を行った。重合温度は65℃、全圧は3.0MPaG(ゲージ圧、以下同様)、パウダーホールド量は40kgとした。重合槽に連続的にプロピレン、水素、及び、窒素を供給し、プロピレン及び水素の濃度がそれぞれ70.83mol%、0.92mol%となる様に調整した。助触媒として、Et3Alを5.0g/時間の速度で連続的に供給した。第1重合槽における成分(F1)の製造量が20.0kg/時間となる様に、上記で得られた予備重合触媒を重合槽に連続的に供給した。生成した成分(F1)は連続的に抜き出しを行い、パウダーホールド量が40kgで一定となる様に調整した。第1重合槽から抜き出した成分(F1)は第2重合槽に連続的に供給し、プロピレン-エチレンランダム共重合体からなる成分(F2)の製造を引き続いて行った。
第2重合槽を用いてプロピレンとエチレンのランダム共重合を行った。重合温度は65℃、全圧は2.0MPaG、パウダーホールド量は40kgとした。重合槽に連続的にプロピレン、エチレン、水素、及び、窒素を供給し、プロピレン、エチレン、及び、水素の濃度がそれぞれ54.29mol%、17.14mol%、0.41mol%となる様に調整した。重合抑制剤であるエタノールを連続的に供給することによって、第2重合槽におけるプロピレン-エチレンランダム共重合体成分(F2)の製造量が6.7kg/hとなる様に調整した。こうして生成したプロピレン-エチレンブロック共重合体(F)は連続的に抜き出しを行い、パウダーホールド量が40kgで一定となる様に調整を行った。第2重合槽から抜き出したプロピレン-エチレンブロック共重合体(F)は、さらに乾燥機に移送し、充分に乾燥を行った。
計算には以下の式を使用した。
E(F2)={E(F)-E(F1)×W(F1)/100}÷
(W(F2)/100)
(ここで、成分(F1)はプロピレン単独重合体なのでE(F1)は0重量%である。また上記の式は上述のE(F)について記載したものをE(F2)についてそれぞれ整理しなおしたものである。)
エチレン含有量E(F2)は38.0重量%であった。
表7-1の6A-2及び6A-3に記載の条件をそれぞれ用いた以外はプロピレン-エチレンブロック共重合体(F-1)の製造例と同様にして、プロピレン-エチレンブロック共重合体(F-2)及び(F-3)の製造を行った。
予備重合触媒の調製
(1)珪酸塩の化学処理
10リットルの撹拌翼の付いたガラス製セパラブルフラスコに、蒸留水3.75リットル、続いて濃硫酸(96%)2.5kgをゆっくりと添加した。50℃で、さらにモンモリロナイト(水澤化学社製ベンクレイSL;平均粒径=25μm、粒度分布=10~60μm)を1kg分散させ、90℃に昇温し、6.5時間その温度を維持した。50℃まで冷却後、このスラリーを減圧濾過し、ケーキを回収した。このケーキに蒸留水を7リットル加え再スラリー化後、濾過した。この洗浄操作を、洗浄液(濾液)のpHが、3.5を超えるまで実施した。回収したケーキを窒素雰囲気下110℃で終夜乾燥した。乾燥後の重量は707gであった。
先に化学処理した珪酸塩は、キルン乾燥機により乾燥を実施した。仕様、乾燥条件は以下の通りである。
回転筒:円筒状 内径50mm 加温帯550mm(電気炉)
かき上げ翼付き回転数:2rpm
傾斜角:20/520
珪酸塩の供給速度:2.5g/分
ガス流速:窒素 96リットル/時間
向流乾燥温度:200℃(粉体温度)
撹拌及び温度制御装置を有する内容積16リットルのオートクレーブを窒素で充分置換した。ここに、乾燥珪酸塩200gを導入し、混合ヘプタン1,160ml、さらにトリエチルアルミニウムのヘプタン溶液(0.60M)840mlを加え、室温で撹拌した。1時間後、混合ヘプタンにて洗浄し、珪酸塩スラリーを2,000mlに調製した。次に、先に調製した珪酸塩スラリーにトリイソブチルアルミニウムのヘプタン溶液(0.71M)9.6mlを添加し、25℃で1時間反応させた。平行して、(r)-ジクロロ[1,1’-ジメチルシリレンビス{2-メチル-4-(4-クロロフェニル)-4H-アズレニル}]ジルコニウム2,180mg(0.3mM)と混合ヘプタン870mlに、トリイソブチルアルミニウムのヘプタン溶液(0.71M)33.1mlを加えて、室温にて1時間反応させた混合物を、珪酸塩スラリーに加え、1時間撹拌後、混合ヘプタンを追加して5,000mlに調製した。
続いて、槽内温度を40℃昇温し、温度が安定したところでプロピレンを100g/時間の速度で供給し、温度を維持した。4時間後プロピレンの供給を停止し、さらに2時間維持した。
予備重合終了後、残モノマーをパージし、撹拌を停止させ約10分間静置後、上澄みを2,400mlデカントした。続いてトリイソブチルアルミニウム(0.71M)のヘプタン溶液9.5ml、さらに混合ヘプタンを5600ml添加し、40℃で30分間撹拌し、10分間静置した後に、上澄みを5600ml除いた。さらにこの操作を3回繰り返した。最後の上澄み液の成分分析を実施したところ有機アルミニウム成分の濃度は、1.23mモル/リットル、ジルコニウム(Zr)濃度は8.6×10-6g/Lであり、仕込み量に対する上澄み液中の存在量は0.016%であった。続いて、トリイソブチルアルミニウム(0.71M)のヘプタン溶液を170ml添加した後に、45℃で減圧乾燥を実施した。触媒1g当たりポリプロピレンを2.0g含む予備重合触媒が得られた。
第1重合工程:プロピレン-エチレンランダム共重合体からなる成分(F1)の製造
撹拌羽根を有する横型反応器(L/D=6、内容積100リットル)を十分に乾燥し、内部を窒素ガスで十分に置換した。ポリプロピレン粉体床の存在下、回転数30rpmで撹拌しながら、反応器の上流部に調整した予備重合触媒を(予備重合パウダーを除いた固体触媒量として)0.444g/時間、トリイソブチルアルミニウムを15.0mmol/時間で連続的に供給した。反応器の温度を65℃、圧力を2.00MPaGに保ち、且つ反応器内気相部のエチレン/プロピレンモル比が0.058、水素濃度が150ppmになるように、モノマー混合ガスを連続的に反応器内に流通させ、気相重合を行った。反応によって生じた重合体パウダーは、反応器内の粉体床量が一定になるように、反応器下流部より連続的に抜き出した。この時、定常状態になった際の重合体抜き出し量は10.0kg/時間であった。
第1重合工程で得られたプロピレン-エチレンランダム共重合体を分析したところ、エチレン含有量は1.7重量%であった。
撹拌羽根を有する横型反応器(L/D=6、内容積100リットル)に、第1重合工程より抜き出したプロピレン-エチレン共重合体を連続的に供給した。回転数25rpmで撹拌しながら、反応器の温度を70℃、圧力を1.88MPaGに保ち、且つ反応器内気相部のエチレン/プロピレンモル比が0.450、水素濃度が300ppmになるように、モノマー混合ガスを連続的に反応器内に流通させ、気相重合を行った。反応によって生じた重合体パウダーは、反応器内の粉体床量が一定になるように、反応器下流部より連続的に抜き出した。この時、重合体抜き出し量が18.0kg/時間になるように活性抑制剤として酸素を供給し、第2重合工程での重合反応量を制御した。
こうして得られたプロピレン-エチレンブロック共重合体(F-4)を分析したところ、MFRは7.0g/10分、エチレン含有量は6.3重量%であった。
製造例F-1~F-4で得られた各々のプロピレン-エチレンブロック共重合体(F)100重量部に対し、テトラキス[メチレン-3-(3’,5’-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン0.05重量部、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト0.10重量部、ステアリン酸カルシウム0.05重量部をタンブラーにてそれぞれ混合し均一化し、得られた混合物を35mm径の二軸押出機により230℃で溶融混練し、プロピレン-エチレンブロック共重合体F-1~F-4の各ペレットを得た。
実施例1-1の加飾フィルムの製造において、シール層(I)のポリプロピレン系樹脂(A-1)を、プロピレン-エチレンブロック共重合体(F-1)に変更し、三次元加飾熱成形においてスプリングバック現象が終了した直後(すなわちスプリングバック後の加熱時間が0秒)に成形を行ったこと以外は、実施例1-1と同様に成形、評価を行った。評価結果を表8―1に示す。
実施例6-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-2)に変更した以外は、実施例6-1と同様に成形、評価を行った。評価結果を表8-1に示す。
実施例6-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-3)に変更した以外は、実施例6-1と同様に成形、評価を行った。評価結果を表8-1に示す。
実施例6-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-4)に変更した以外は、実施例6-1と同様に成形、評価を行った。評価結果を表8-1に示す。
実施例6-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-5)に変更し、耐候性の評価を照射時間(2)の条件で行った以外は、実施例6-1と同様に成形、評価を行った。評価結果を表8-1に示す。
実施例6-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-2-1)に変更した以外は、実施例6-1と同様に成形、評価を行った。評価結果を表8-1に示す。
実施例6-1の加飾フィルムの製造において、シール層(I)に使用したプロピレン-エチレンブロック共重合体(F-1)を、プロピレン-エチレンブロック共重合体(F-2)に変更した以外は、実施例6-1と同様に成形、評価を行った。評価結果を表8-1に示す。
実施例6-1の加飾フィルムの製造において、シール層(I)に使用したプロピレン-エチレンブロック共重合体(F-1)を、プロピレン-エチレンブロック共重合体(F-3)に変更した以外は、実施例6-1と同様に成形、評価を行った。評価結果を表8-1に示す。
実施例6-1の加飾フィルムの製造において、シール層(I)に使用したプロピレン-エチレンブロック共重合体(F-1)を、プロピレン-エチレンブロック共重合体(F-4)に変更した以外は、実施例6-1と同様に成形、評価を行った。評価結果を表8-1に示す。
・加飾フィルムの製造
口径30mm(直径)のシール層(I)用押出機-1、及び口径40mm(直径)の層(II)用押出機-2、及び口径30mm(直径)の表面加飾層(III)用押出機-3が接続された、リップ開度0.8mm、ダイス幅400mmの3種3層Tダイを用いた。シール層(I)用押出機-1にプロピレン-エチレンブロック共重合体(F-1)を、層(II)用押出機-2にポリプロピレン系樹脂(B-1-1)を、表面加飾層(III)用押出機-3にポリプロピレン系樹脂(H-1-1)をそれぞれ投入し、樹脂温度240℃、押出機-1の吐出量を4kg/h、押出機-2の吐出量を8kg/h、押出機-3の吐出量を4kg/hの条件で溶融押出を行った。
実施例6-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-6)に変更し、耐候性の評価を照射時間(3)の条件で行った以外は、実施例6-1と同様に成形、評価を行った。評価結果を表8-2に示す。
実施例6-1の三次元加飾熱成形において、基体をポリプロピレン系樹脂(Z-2)からなる射出成形体に変更した以外は、実施例6-1と同様に成形、評価を行った。評価結果を表8-2に示す。
実施例6-1の三次元加飾熱成形において、基体をポリプロピレン系樹脂(Z-3)からなる射出成形体に変更した以外は、実施例6-1と同様に成形、評価を行った。評価結果を表8-2に示す。
実施例6-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1)に変更した以外は、実施例6-1と同様に成形、評価を行った。評価結果を表8-2に示す。
実施例6-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(H-1)に変更した以外は、実施例6-1と同様に成形、評価を行った。評価結果を表8-2に示す。
実施例6-1の加飾フィルムの製造において、シール層(I)のプロピレン-エチレンブロック共重合体(F-1)を、ポリプロピレン系樹脂(B-1)に変更した以外は、実施例6-1と同様に成形、評価を行った。評価結果を表8-2に示す。
実施例6-1の加飾フィルムの製造において、シール層(I)のプロピレン-エチレンブロック共重合体(F-1)を、ポリプロピレン系樹脂(B-1)に変更し、三次元加飾熱成形においてスプリングバック現象が終了してから40秒後に成形を行った以外は、実施例6-1と同様に成形、評価を行った。評価結果を表8-2に示す。
実施例6-1の加飾フィルムの製造において、層(II)のポリプロピレン系樹脂(B-1-1)を、ポリプロピレン系樹脂(B-1-5)に変更し、シール層(I)のプロピレン-エチレンブロック共重合体(F-1)を、ポリプロピレン系樹脂(B-1)に変更し、三次元加飾熱成形においてスプリングバック現象が終了してから40秒後に成形を行い、耐候性の評価を照射時間(2)の条件で行った以外は、実施例6-1と同様に成形、評価を行った。評価結果を表8-2に示す。
2 層(II)
3 シール層(I)
4 表面加飾層(III)
5 樹脂成形体(加飾対象、基体)
6 加飾成形体
11 上チャンバーボックス
12 下チャンバーボックス
13 治具
14 テーブル
15 ヒータ
Claims (16)
- 樹脂成形体上に熱成形によって貼着するための、ヒンダードアミン系光安定剤及び/又は紫外線吸収剤を含有する加飾フィルムであって、該加飾フィルムは、ポリプロピレン系樹脂(A)を含有するシール層(I)及びポリプロピレン系樹脂(B)を含有する層(II)を含み、
加飾フィルムの表面層は、ヒンダードアミン系光安定剤及び/又は紫外線吸収剤を含み、
前記ポリプロピレン系樹脂(A)は下記要件(a1)を満たし、前記ポリプロピレン系樹脂(B)は下記要件(b1)を満たし、
前記シール層(I)は、ポリプロピレン系樹脂(A)とエチレン-α-オレフィンランダム共重合体(C)との重量比率が97:3~5:95である樹脂組成物(X3)を含み、
前記エチレン-α-オレフィンランダム共重合体(C)は下記要件(c1)~(c3)を満たす加飾フィルム。
(a1)メルトフローレート(230℃、2.16kg荷重)(MFR(A))は、0.5g/10分を超える。
(b1)メルトフローレート(230℃、2.16kg荷重)(MFR(B))とMFR(A)とは、関係式(b-1)を満たす。
MFR(B)<MFR(A) ・・・式(b-1)
(c1)エチレン含量[E(C)]は、65重量%以上である。
(c2)密度は、0.850~0.950g/cm 3 である。
(c3)メルトフローレート(230℃、2.16kg荷重)(MFR(C))は、0.1~100g/10分である。 - 樹脂成形体上に熱成形によって貼着するための、ヒンダードアミン系光安定剤及び/又は紫外線吸収剤を含有する加飾フィルムであって、該加飾フィルムは、ポリプロピレン系樹脂(A)を含有するシール層(I)及びポリプロピレン系樹脂(B)を含有する層(II)を含み、
加飾フィルムの表面層は、ヒンダードアミン系光安定剤及び/又は紫外線吸収剤を含み、
前記ポリプロピレン系樹脂(A)は下記要件(a1)を満たし、前記ポリプロピレン系樹脂(B)は下記要件(b1)を満たし、
前記シール層(I)は、ポリプロピレン系樹脂(A)と熱可塑性エラストマー(D)との重量比率が97:3~5:95である樹脂組成物(X4)を含み、
前記熱可塑性エラストマー(D)は下記要件(d1)~(d4)を満たす加飾フィルム。
(a1)メルトフローレート(230℃、2.16kg荷重)(MFR(A))は、0.5g/10分を超える。
(b1)メルトフローレート(230℃、2.16kg荷重)(MFR(B))とMFR(A)とは、関係式(b-1)を満たす。
MFR(B)<MFR(A) ・・・式(b-1)
(d1)プロピレン及びブテンのうちの少なくとも1つを主成分とする熱可塑性エラストマーである。
(d2)密度は0.850~0.950g/cm 3 である。
(d3)メルトフローレート(230℃、2.16kg荷重)(MFR(D))は、0.1~100g/10分である。
(d4)引張弾性率がポリプロピレン系樹脂(A)よりも小さい。 - 樹脂成形体上に熱成形によって貼着するための、ヒンダードアミン系光安定剤及び/又は紫外線吸収剤を含有する加飾フィルムであって、該加飾フィルムは、ポリプロピレン系樹脂(A)を含有するシール層(I)及びポリプロピレン系樹脂(B)を含有する層(II)を含み、
加飾フィルムの表面層は、ヒンダードアミン系光安定剤及び/又は紫外線吸収剤を含み、
前記ポリプロピレン系樹脂(A)は下記要件(a1)を満たし、前記ポリプロピレン系樹脂(B)は下記要件(b1)を満たし、
前記シール層(I)は、ポリプロピレン系樹脂(A)と熱可塑性樹脂(E)との重量比率が97:3~5:95である樹脂組成物(X5)を含み、
前記熱可塑性樹脂(E)は下記要件(e1)を満たし、前記樹脂組成物(X5)は下記要件(x1)を満たす加飾フィルム。
(a1)メルトフローレート(230℃、2.16kg荷重)(MFR(A))は、0.5g/10分を超える。
(b1)メルトフローレート(230℃、2.16kg荷重)(MFR(B))とMFR(A)とは、関係式(b-1)を満たす。
MFR(B)<MFR(A) ・・・式(b-1)
(e1)脂環式炭化水素基及び芳香族炭化水素基のうちの少なくとも1つを含有する。
(x1)示差熱走査型熱量計(DSC)で求めた樹脂組成物(X5)の等温結晶化時間(t(X5))(秒)が、以下の式(x-1)を満たす。
t(X5)≧1.5×t(A) ・・・式(x-1)
(式中t(A)はポリプロピレン系樹脂(A)の結晶化開始温度よりも10℃高い温度で測定したポリプロピレン系樹脂(A)の等温結晶化時間(秒)を表し、t(X5)はポリプロピレン系樹脂(A)の結晶化開始温度よりも10℃高い温度で測定した樹脂組成物(X5)の等温結晶化時間(秒)である。) - 前記ポリプロピレン系樹脂(A)は、さらに下記要件(a2)~(a4)を満たし、前記ポリプロピレン系樹脂(B)は、さらに下記要件(b2)を満たす、請求項1~3のいずれか1項に記載の加飾フィルム。
(a2)メタロセン触媒系プロピレン系重合体である。
(a3)融解ピーク温度(Tm(A))は、150℃未満である。
(a4)GPC測定により得られる分子量分布(Mw/Mn(A))は、1.5~3.5である。
(b2)融解ピーク温度(Tm(B))とTm(A)とは、関係式(b-2)を満たす。
Tm(B)>Tm(A) ・・・式(b-2) - 前記ポリプロピレン系樹脂(A)は、さらに下記要件(a5)を満たし、前記ポリプロピレン系樹脂(B)は、さらに下記要件(b3)を満たす、請求項1~4のいずれか1項に記載の加飾フィルム。
(a5)結晶化温度(Tc(A))は、100℃未満である。
(b3)結晶化温度(Tc(B))とTc(A)とは、関係式(b-3)を満たす。
Tc(B)>Tc(A) ・・・式(b-3) - 前記ポリプロピレン系樹脂(A)は、下記要件(f1)及び(f2)を満たすプロピレン-エチレンブロック共重合体(F)である、請求項1~5のいずれか1項に記載の加飾フィルム。
(f1)融解ピーク温度(Tm(F))が、110~170℃である。
(f2)プロピレン単独重合体又はプロピレン-エチレンランダム共重合体からなる成分(F1)を5~97重量%、前記成分(F1)よりもエチレン含量が多いプロピレン-エチレンランダム共重合体からなる成分(F2)を3~95重量%含有する。 - 前記ポリプロピレン系樹脂(A)は、プロピレン-α-オレフィン共重合体である、請求項1~5のいずれか1項に記載の加飾フィルム。
- 前記Tm(A)は、140℃以下である、請求項4に記載の加飾フィルム。
- 前記エチレン-α-オレフィンランダム共重合体(C)は、さらに下記要件(c4)及び(c5)のうちの少なくとも1つの要件を満たす、請求項1に記載の加飾フィルム。
(c4)融解ピーク温度(Tm(C))は、30~130℃である。
(c5)エチレンと炭素数3~20のα-オレフィンとのランダム共重合体である。 - 前記熱可塑性エラストマー(D)は、エチレン含量が50wt%未満であるプロピレン-エチレン共重合体、エチレン含量が50wt%未満であるブテン-エチレン共重合体、エチレン含量が50wt%未満であるプロピレン-エチレンーブテン共重合体、プロピレン-ブテン共重合体、及びブテン単独重合体からなる群から選択される少なくとも1つの共重合体である、請求項2に記載の加飾フィルム。
- 前記熱可塑性エラストマー(D)は、さらに下記要件(d5)を満たす、請求項2又は10に記載の加飾フィルム。
(d5)融解ピーク温度(Tm(D))が30~170℃である。 - 前記熱可塑性樹脂(E)は、スチレン系エラストマーである、請求項3に記載の加飾フィルム。
- 前記熱可塑性樹脂(E)は、脂環族系炭化水素樹脂である、請求項3に記載の加飾フィルム。
- 前記プロピレン-エチレンブロック共重合体(F)は、さらに下記要件(f3)~(f5)のうちの少なくとも1つの要件を満たす、請求項6に記載の加飾フィルム。
(f3)プロピレン-エチレンブロック共重合体(F)中のエチレン含量が0.15~85重量%である。
(f4)前記成分(F1)のエチレン含量が0~6重量%の範囲にある。
(f5)前記成分(F2)のエチレン含量が、5~90重量%の範囲にある。 - 請求項1~14のいずれか一項に記載の加飾フィルムを準備するステップ、
樹脂成形体を準備するステップ、
減圧可能なチャンバーボックス中に、前記樹脂成形体及び前記加飾フィルムをセットするステップ、
前記チャンバーボックス内を減圧するステップ、
前記加飾フィルムを加熱軟化させるステップ、
前記樹脂成形体に前記加飾フィルムを押し当てるステップ、並びに
前記減圧したチャンバーボックス内を大気圧に戻す又は加圧するステップ
を含む加飾成形体の製造方法。 - 前記樹脂成形体は、プロピレン系樹脂組成物からなる、請求項15に記載の加飾成形体の製造方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017249129 | 2017-12-26 | ||
JP2017249129 | 2017-12-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019116090A JP2019116090A (ja) | 2019-07-18 |
JP7115289B2 true JP7115289B2 (ja) | 2022-08-09 |
Family
ID=67305059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018236797A Active JP7115289B2 (ja) | 2017-12-26 | 2018-12-18 | 加飾フィルム及びそれを用いた加飾成形体の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7115289B2 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000038459A (ja) | 1998-05-20 | 2000-02-08 | Sumitomo Chem Co Ltd | フィルム又はシート、積層構造体及びその用途 |
WO2006057361A1 (ja) | 2004-11-25 | 2006-06-01 | Mitsui Chemicals, Inc. | プロピレン系樹脂組成物およびその用途 |
JP2008101091A (ja) | 2006-10-18 | 2008-05-01 | Japan Polypropylene Corp | プロピレンブロック共重合体組成物及び自動車内装部品 |
JP2010105197A (ja) | 2008-10-28 | 2010-05-13 | Japan Polypropylene Corp | プロピレン系表面保護用フィルム |
WO2011129080A1 (ja) | 2010-04-16 | 2011-10-20 | 株式会社カネカ | 接着性樹脂組成物および成型体 |
JP2013014027A (ja) | 2011-06-30 | 2013-01-24 | Three M Innovative Properties Co | 真空圧空成形または真空成形により一体化された構造体、およびその製造方法 |
JP2013503756A (ja) | 2009-09-01 | 2013-02-04 | フイナ・テクノロジー・インコーポレーテツド | 多層ポリプロピレンフィルムおよびこれの製造方法および使用方法 |
-
2018
- 2018-12-18 JP JP2018236797A patent/JP7115289B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000038459A (ja) | 1998-05-20 | 2000-02-08 | Sumitomo Chem Co Ltd | フィルム又はシート、積層構造体及びその用途 |
WO2006057361A1 (ja) | 2004-11-25 | 2006-06-01 | Mitsui Chemicals, Inc. | プロピレン系樹脂組成物およびその用途 |
JP2008101091A (ja) | 2006-10-18 | 2008-05-01 | Japan Polypropylene Corp | プロピレンブロック共重合体組成物及び自動車内装部品 |
JP2010105197A (ja) | 2008-10-28 | 2010-05-13 | Japan Polypropylene Corp | プロピレン系表面保護用フィルム |
JP2013503756A (ja) | 2009-09-01 | 2013-02-04 | フイナ・テクノロジー・インコーポレーテツド | 多層ポリプロピレンフィルムおよびこれの製造方法および使用方法 |
WO2011129080A1 (ja) | 2010-04-16 | 2011-10-20 | 株式会社カネカ | 接着性樹脂組成物および成型体 |
JP2013014027A (ja) | 2011-06-30 | 2013-01-24 | Three M Innovative Properties Co | 真空圧空成形または真空成形により一体化された構造体、およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2019116090A (ja) | 2019-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8722804B2 (en) | Polymer blends and films made therefrom | |
JP4928741B2 (ja) | プロピレン系樹脂フィルム及びプロピレン系樹脂積層フィルム並びにそれらの用途 | |
KR20120059499A (ko) | 다중층 폴리프로필렌 필름과 이를 제조하고 사용하는 방법 | |
JP6642086B2 (ja) | 粗面フィルム用ポリプロピレン系樹脂組成物及びフィルム | |
US20150232589A1 (en) | Ethylene-Based Polymers and Articles Made Therefrom | |
US7722961B2 (en) | Resin composition and stretched film obtained by using the same | |
JP7115288B2 (ja) | 加飾フィルム及びそれを用いた加飾成形体の製造方法 | |
JP7120384B2 (ja) | 加飾フィルムを用いた加飾成形体の製造方法 | |
JP5160028B2 (ja) | ポリプロピレン系熱収縮性フィルム用樹脂組成物、及びそれを用いたポリプロピレン系熱収縮性フィルムとその用途 | |
JP7115289B2 (ja) | 加飾フィルム及びそれを用いた加飾成形体の製造方法 | |
JP7192543B2 (ja) | 加飾フィルム及びそれを用いた加飾成形体の製造方法 | |
JP7192545B2 (ja) | 加飾フィルム及びそれを用いた加飾成形体の製造方法 | |
CN109562611B (zh) | 装饰膜和使用其生产装饰成形体的方法 | |
JP6589369B2 (ja) | 無延伸艶消しフィルム用ポリプロピレン系樹脂組成物及びフィルム | |
WO2019098379A1 (ja) | 加飾フィルム及びそれを用いた加飾成形体の製造方法 | |
JP2019001139A (ja) | 多層二軸延伸フィルムおよび転写フィルム | |
JP2010247386A (ja) | ポリプロピレン系高周波ウエルダー成形シートの成形方法 | |
JP6874621B2 (ja) | 加飾フィルムおよびそれを用いた加飾成形体の製造方法 | |
JP6863203B2 (ja) | 加飾フィルムおよびそれを用いた加飾成形体の製造方法 | |
JP7315040B2 (ja) | 加飾フィルム及びそれを用いた加飾成形体の製造方法 | |
JP2014073625A (ja) | 加熱発泡用積層体 | |
JP7163997B2 (ja) | 加飾成形体の製造方法 | |
JP2014009247A (ja) | 押出ラミネート用ポリエチレン系樹脂組成物および積層体 | |
JP2012136665A (ja) | 押出ラミネート用エチレン系重合体組成物および積層体 | |
JP6863174B2 (ja) | 加飾フィルムおよびそれを用いた加飾成形体の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210205 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211217 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220118 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220317 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220628 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220711 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7115289 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |