以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、共通の構成要素については、共通の指示符号を図中に付して説明する。また、本発明は以下の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で、任意に変更可能であることは言うまでもない。
本発明は、図1,2に示す光変調器8に適用される。この光変調器8は、基板11と、基板11上に形成されてなり伝搬する光の位相を変調する光導波路12と、この基板11において光導波路12を被覆するように積層されるバッファ層14と、変調電界の方向が光の伝搬方向に対して略垂直になるように光導波路12の上面に設けられた電極83と、光導波路12を介して互いに対向するように設けられた第1の端面84並びに第2の端面85と、第1の端面84と同一の平面を形成するように光導波路12の上部に配設され接着剤により接着される第1の保護部材86と、第2の端面85と同一の平面を形成するように光導波路12の上部に配設され接着剤により接着される第2の保護部材87と、第1の端面84並びに第1の保護部材86の端面86aとの間で形成される平面91上に接着剤の耐熱温度よりも低い温度条件下で被着された単層又は多層の気相成長膜からなる入射側反射膜93と、第2の端面85並びに第2の保護部材87の端面87aとの間で形成される平面92上に接着剤の耐熱温度よりも低い温度条件下で被着された単層又は多層の気相成長膜からなる出射側反射膜94と、電極83の一端側に配設され周波数fmの変調信号を発振する発振器16と、電極83の他端側に配設される終端抵抗18とを備えている。
基板11は、例えば引き上げ法により育成された3~4インチ径のLiNbO3やGaAs等の大型結晶をウェハ状に切り出したものである。この切り出した基板11上には、機械研磨や化学研磨等の処理を施す。
光導波路12は、入射側反射膜93から出射側反射膜94にかけて貫通するように形成され、共振された光を伝搬させるべく形成されている。この光導波路12を構成する層の屈折率は、基板11等の他層よりも高く設定されている。光導波路12に入射した光は、光導波路12の境界面で全反射しながら伝搬する。一般に、この光導波路12は、基板11中においてTi原子を拡散させることにより、或いは基板11上へのエピタキシャル成長させることにより作製することができる。
なお、この光導波路12として、LiNbO3結晶光導波路を適用してもよい。このLiNbO3結晶光導波路は、LiNbO3等からなる基板11表面にTiを拡散させることにより形成することができる。このTiが拡散された領域については他の領域よりも屈折率が高くなるところ、光を閉じ込めることができるため、光を伝搬させることができる光導波路12を形成することができる。このような方法に基づいて作製したLiNbO3結晶型の光導波路12は、屈折率が電界に比例して変化するポッケルス効果や、屈折率が電界の自乗に比例して変化するカー効果等の電気光学効果を有するため、かかる物理現象を利用して光の変調を行うことができる。
バッファ層14は、光導波路12における光の伝搬損失を抑えるべくこれを被覆するものである。ちなみに、このバッファ層14の膜厚をあまりに厚くし過ぎると、電界強度が下がり、変調効率が低下するため、光の伝搬損失が大きくならない範囲においてなるべく膜厚を薄く設定するようにしてもよい。
電極83は、例えばTiやPt、Au等の金属材料からなり、発振器16から供給された周波数fmの変調信号を光導波路12に駆動入力することにより、光導波路12内を伝搬する光に位相変調をかける。
第1の保護部材86並びに第2の保護部材87は、それぞれ基板11の材質に対応する部材から構成される。第1の保護部材86並びに第2の保護部材87は、基板11と同一の材質から構成してもよい。また上記平面91を形成する第1の保護部材86の端面86aと第1の端面84とが、互いに同一の結晶方位を有するように加工されていてもよく、同様に上記平面92を形成する第2の保護部材87の端面87aと第2の端面85とが、互いに同一の結晶方位を有するように加工されていてもよい。
入射側反射膜93及び出射側反射膜94は、光導波路12に入射した光を共振させるために互いに平行となるように設けられたものであり、光導波路12を通過する光を往復反射させることにより共振させる光共振器5を構成する。
入射側反射膜93は、図示しない光源から周波数ν1の光が入射される。また、この入射側反射膜93は、出射側反射膜94により反射されて、かつ光導波路12を通過した光を反射する。出射側反射膜94は、光導波路12を通過した光を反射する。またこの出射側反射膜94は、光導波路12を通過した光を一定の割合で外部に出射する。
入射側反射膜93及び出射側反射膜94は、蒸着法、イオンプレーティング法、化学気相成長法(CVD)あるいはスパッタリング法等を用いて上記気接着剤の耐熱温度よりも低い温度条件下で成膜された蒸着膜やスパッタ膜などからなる単層又は多層の気相成長膜として、それぞれ平面91,92一面に亘って形成される。
終端抵抗18は、電極83の終端に取り付けられる抵抗器であり、終端における電気信号の反射を防止することにより、その波形の乱れを防ぐ。
図3は、入射側反射膜93が形成される平面91上を図2中A方向から示している。
光導波路12の光入射端を含む第1の端面84と保護部材86の端面86aとにより、同一の平面91が形成されている。この形成される平面91は、傾き0.05°以下である。この傾き0.05°の平面91に対して、1/e2ビーム径10μmの光が傾き0.05°の端面で反射される場合における損失を計算すると、4×10-4であり、入射側反射膜93の反射率と比較して無視できるほど小さい。
このように第1の端面91並びに第2の端面92を光導波路12に対して略垂直に形成させることにより、これに単層又は多層の気相成長膜として被着される入射側反射膜93並びに出射側反射膜94により光を効率よく共振させることができる。
上述の如き構成からなる光変調器8において、入射側反射膜93を介して外部から入射された光は光導波路12内を往路方向へ伝搬し出射側反射膜94により反射されるとともに一部外部へ透過する。この出射側反射膜94を反射した光は光導波路12内を復路方向へ伝搬して入射側反射膜93により反射される。これが繰り返されることにより、光は光導波路12内を共振することになる。
また、光が光導波路12内を往復する時間に同期した電気信号を電極83を介して駆動入力とすることにより、光がこの光変調器8内を1回だけ通過する場合と比較して、数十倍以上の深い位相変調をかけることが可能となる。また入射される光の周波数ν1を中心として、数百本ものサイドバンドを広帯域にわたり生成することができる。ちなみに、この生成される各サイドバンドの周波数間隔は、全て入力された電気信号の周波数fmと同等である。このため、光変調器8は、多数のサイドバンドにより構成される光周波数コム発生器としても適用可能となる。
次に、本発明を適用した光変調器8の作製方法につき図4を用いて説明をする。
先ずステップS11において、LiNbO3結晶からなる基板11の表面にフォトレジストのパターンを作製し、そこにTiを蒸着させる。次にこのフォトレジストを除去することにより、ミクロンサイズの幅で構成されるTiの細線を作製する。
次にステップS12へ移行し、このTiの細線が形成された基板11を加熱することにより、Ti原子を基板11中に熱拡散させて光導波路12を形成する。
次にステップS13へ移行し、バッファ層14としてのSiO2薄膜を基板11表面に蒸着させる。このステップS13では、SiO2ウェハを基板11表面に貼り付ける方法によりバッファ層14を形成させるようにしてもよい。かかる場合には、後述するステップS14における電極の取り付け領域を考慮して、この蒸着させたバッファ層14を研磨することにより適当な膜厚に制御するようにしてもよい。
次にステップS14へ移行し、バッファ層14上に電極83を形成させる。次にステップS15へ移行し、光導波路12の上部において保護部材86,87を接着する。この保護部材86,87の接着方法については、接着剤で貼り付けるようにしてもよいし、他の手法に基づいて直接的に接合するようにしてもよい。この保護部材86,87は、基板11をLiNbO3結晶で構成した場合には、同一材質としてのLiNbO3により構成してもよい。このステップS15においては、貼り付けた保護部材86,87につき、それぞれ端面86a,87aが第1の端面84,第2の端面85との間で、それぞれ平面91,92を形成することができるように、切り揃える。
上記光導波路12の上部において保護部材86,87を接着する場合に使用する接着剤は、エポキシ系やアクリル系等の熱硬化型光学用接着剤又は光硬化型光学用接着剤が使用される。
最後にステップS16へ移行し、この得られた平面91,92を光導波路12に対して垂直な平面に研磨する。そしてこの研磨された光導波路12に対して垂直な平面91,92上に入射側反射膜93、出射側反射膜94をそれぞれ一面に亘って形成させる。
ここで、入射側反射膜93、出射側反射膜94は、蒸着法、スパッタ法、化学気相成長法等により、単層又は多層の気相成長膜として平面91,92上に被着形成される。
気相成長膜として入射側反射膜93、出射側反射膜94を形成する際には、上記光導波路12の上部において保護部材86,87を接着する使用された光学用接着剤の耐熱温度以下を蒸着処理の温度条件とし、例えば、ガラス転移温度Tgが比較的に高いエポキシメタクレート系の紫外線硬化型光学接着剤を使用する場合にはチップ表面温度が200°C以下を蒸着処理の温度条件とし、ガラス転移温度Tgがエポキシメタクレート系よりも低いエポキシ系やアクリル系の紫外線硬化型光学接着剤を使用する場合には蒸着処理の温度条件を低く設定する必要がある。蒸着処理の温度条件は、ガラス転移温度Tgがよりも高い光学接着剤を使用することにより、高く設定することができる。
このように、本発明を適用した光変調器8では、各端部において保護部材86,87を貼り付けて構成するため、従来において、端面最上部の角に位置していた光導波路12の端面が図3に示すように平面91(92)の略中央部に移動する。その結果、ステップS16における研磨時において平面91(92)の角が欠けた場合においても、光導波路12の端面が欠けることがなくなる。即ち、光導波路12の端面そのものが欠けにくくなる構成とすることが可能となる。これにより、光導波路12の各端面からの光損失を極力抑えることが可能となる。
また、保護部材86,87の材質を基板11の材質に対応する最適な材質で構成することにより、ステップS16における研磨速度を基板11における第1の端面84,第2の端面85から端面86a,87aにかけて均一にすることができる。これにより、光導波路12の端面が加工時に丸くなることがなくなり、平坦な研磨面からなる光導波路12に対して垂直な平面91,92を得ることができ、光導波路12端面における反射損失を最小限に抑えることが可能となる。また、各平面91,92を構成する端面の結晶方位を同一にすることにより、反射損失を更に抑え込むことも可能となる。
さらに、この保護部材86,87をあえて設けることにより、ステップS16における研磨の精度が向上し、得られる平面91(92)の光導波路12に対する垂直性も向上する。その結果、かかる垂直性の逸脱による光損失も最小限に抑えることが可能となる。
また、この保護部材86,87を設けることにより、単層又は多層の気相成長膜として被着すべき入射側反射膜93並びに出射側反射膜94が平面91,92から他の側面に成膜粒子の側面への回り込み、ならびに、側面方向から飛来した成膜粒子の端面への回り込みによる膜厚の変化を抑えることができる。このため、反射率を確保する上で重要となる光導波路12の端面付近の膜厚を最適化することができ、反射率をより向上させることができる。
また、入射側反射膜93、出射側反射膜94は、基板11における第1の端面84,第2の端面85から端面86a,87aにかけて広範囲に亘って形成されているため、非常に安定であり、剥がれにくく、さらに製膜の再現性をも向上させることが可能となる。
実際に、保護部材86,87を設けたことによる効果を実験的に検証すべく、保護部材86,87を貼り付けた後の平面91(92)の研磨を行ったところ、光導波路12の端面部分における欠けや曲がりは一切発生せず、単層又は多層の気相成長膜からなる入射側反射膜93、出射側反射膜94の被着に適した、平坦な光学研磨が施されていることを確認することができる。
特に第1の保護部材86並びに第2の保護部材87を、基板11と同一の材質から構成し、また平面91,92を形成する保護部材86,87の端面86a,87aと第1の端面84,第2の端面85とが、互いに同一の結晶方位を有するように加工することにより、結晶の硬度が両者間で同一となるため、研磨速度の違いにより平面91,92が傾くこともなくなる。
このように、本発明を適用した光変調器8では、各端部において保護部材86,87を貼り付けることにより、光導波路12の端面を平面91(92)の略中央部に移動させることができるため、光導波路12の端面の欠けや丸まり、光導波路12と平面91,92間の垂直性の確保、平面91,92における研磨精度の向上、入射側反射膜93及び出射側反射膜94の剥がれや回り込みの抑制、入射側反射膜93及び出射側反射膜94における反射率の向上、設計した反射特性の実現、反射膜の性能再現性向上が可能となる。その結果、入射側反射膜93及び出射側反射膜94より構成される光共振器5のフィネスを向上させることができ、性能のよい光変調器、光周波数コム発生器を再現性よく作製することが可能となり、歩留まりを向上させることも可能となる。
実際に上述の構成からなる光変調器8を、研磨された平面91,92上において、反射率97%からなる反射膜93,94を接着剤の耐熱温度よりも低い温度条件下で単層又は多層の気相成長膜として被着させることにより作製した結果、光導波路12の結晶長を27.4mmとした場合(以下、短共振器という。)において、最高61ものフィネスを得ることができ、また、光導波路12の結晶長を54.7mmとした場合(以下、長共振器という。)において、最高38ものフィネスを得ることができた。従来の導波路型の光共振器(IEEE Photonics Technology Letters,Vol.8, No. 10,1996)のフィネスは、30が最高であったことから、この端面研磨、コーティングの精度を向上させた光変調器8は、フィネスを大幅に向上させることができることが分かる。特に、作製した光変調器8のサンプル6個全てにつき、30以上のフィネスを得ることができ、作製プロセスの再現性が高いことも示されている。
すなわち、光導波路12を上面から形成させるための基板11と同じ硬さを持つ保護部材86,87を、少なくともその一の端面が上記光導波路12における光入射端又は光出射端を含む上記基板11の端面と同一の平面91,92を形成するように上記光導波路12の上部に光学用接着剤で貼り付けて配設し、上記保護部材86,87の端面と上記基板11の端面を研磨することにより、上記光導波路12の光入射端又は光出射端を含む平坦な研磨面として、上記光導波路12に対して垂直な平面91,92を形成することができる。また、上記接着剤で貼り付けられた上記保護部材86,87の端面と上記基板11の端面とで形成される平面91,92の全てに亘り上記接着剤の耐熱温度よりも低い温度条件下で単層又は多層の気相成長膜として反射膜を被着させるので、上記接着剤の加熱による放散ガスによるXTIA気相成長膜の光学特性を劣化や接着部の強度低下による気相成長膜の物理的な変形などの悪影響を被ることなく、各反射膜93,94として単層又は多層の気相成長膜を端面最上部の角の部分で剥がれることなく安定して被着させることができる。これにより、光導波路12端面の角の加工時における欠けや丸まりを抑え、各反射膜93,94につき端面最上部の角の部分で剥がれることなく安定して被着させることができ、反射膜93,94の反射率や共振器のフィネスを向上させ、デバイスそのものの機能を高めることが可能となる。
図5は、光導波路12における往路方向又は復路方向のうち何れか一の伝搬方向あたりの光共振器5の内部損失を示している。この図5では、上述した長共振器で構成される光変調器8につきの伝搬方向あたりの損失を3個のサンプルに亘り測定してプロットし(図中●で示す)、また短共振器で構成される光変調器8につきの伝搬方向あたりの損失を3個のサンプルに亘り測定してプロットし(図中■で示す)、得られた各プロットを直線で近似している。
この得られた直線より、長さlの光共振器5の光導波路12における伝搬方向あたりの内部損失Lsは、反射膜93,94における反射率をR、光導波路12における単位長さあたりの損失をαとするとき、損失そのものが小さい場合においてLs=αl-lnRで表される。測定されたフィネスをFとしたとき、一伝搬方向あたりの損失Lsは、Ls=π/Fと求められる。測定したフィネスFから内部損失Lsを求め、これをグラフ化すると、図5に示すように光導波路12の結晶長が長くなるにつれ、光導波路12による内部損失が増加することが分かる。
ちなみに、この図5において光共振器5の長さが0である場合における内部損失は、結晶端面において生じた損失に基づくものである。即ち、反射率97%(透過率3%)の反射膜93,94がコーティングされているため、最低3%の損失が生じることになる。しかしこの図5より、平面91,92における反射膜93,94への透過以外に目立った損失がないことが分かる。
光導波路の導波損失率と鏡の透過率を一致させることが共振器のフィネスと透過率を高め共振器の性能を上げることにつながる。光コム発生器として使用可能な光導波路の損失率はおおむね片道当たり1%~5%の範囲に入っているため、反射率が95%~99%の範囲にある反射膜93,94を被着させると性能の良い光共振器を製作することができる。
同様に、この光変調器8を光周波数コム発生器に応用した場合には、保護部材86,87を貼り付けた状態で平面91,92の研磨と接着剤の耐熱温度よりも低い温度条件下で気相成長膜として入射側反射膜93及び出射側反射膜94の被着を行うため、これら反射膜93,94の反射率を向上させることが可能となる。その結果、光共振器5のフィネスを向上させることができ、サイドバンドの発生周波数帯域を拡大させることもできる。
ちなみに、この光変調器8を光周波数コム発生器に応用する場合には、入射側反射膜93を、光導波路12内へ入射させる光のみ透過させ、光導波路12内において発生させたサイドバンドを反射する狭帯域フィルタに置換してもよい。このような狭帯域フィルタに置換することにより、入射させる光からサイドバンドへの変換効率を向上させることができる。
同様に、出射側反射膜94は、出力スペクトルフラット化のためのフィルタに置換してもよい。通常の光周波数コム発生器において、得られるサイドバンドの光強度は、その次数の増加とともに指数関数的に減少する。そこで出射側反射膜94を、次数に応じた光強度の減少を相殺するような特性を持つフィルタに代替させることにより、得られる各サイドバンドの光強度を平坦化させることが可能となる。
なお、入射側反射膜93及び出射側反射膜94それぞれにつき、上述した各フィルタに置換してもよいし、何れか一方の反射膜93,94につき上述した各フィルタに置換してもよい。
なお、本発明を適用した光変調器8並びにこれを応用した光周波数コム発生器は、平面91,92に対して直接的に入射側反射膜93並びに出射側反射膜94を形成させるモノリシック型で構成されている。換言すれば、この光変調器8は、平面91,92と空間的に離間した位置に各反射膜93,94を設ける構成ではないため、光共振器5のFSR(Free Spectral Range)は、ステップS16における研磨後の光導波路12を構成する結晶の平面91から平面92に至るまでの結晶長さに支配される。このため、光変調器8は、光共振器5のFSRの整数倍が所望の変調周波数となるようにきわめて精密な結晶長さの制御が要求される。
例えば、光共振器5のFSRを周波数fFSRに一致させる場合、光導波路12の群屈折率ngと、入射側反射膜93及び出射側反射膜94の群遅延時間の平均値τgを考慮して、光導波路12の結晶長さ(基板11における第1の端面84から第2の端面85に至るまでの間隔)Lを以下の式(1)
L=c/2ngfFSR-cτg/ng・・・・・・・・・・・(1)
(cは真空中の光速度)
に合わせることにより、光共振器5のFSRをfFSRに一致させることができ、変調効率を大幅に向上させることが可能となる。
なお本発明は、上述した実施の形態に限定されるものではない。例えば図6に示すような光変調器9にも適用することができる。この光変調器9において上述した光変調器8と同一の構成、要素については、図1,2における説明を引用し、ここでの説明を省略する。
光変調器9は、基板11と、基板11上に形成されてなり伝搬する光の位相を変調する光導波路12と、光導波路12の上面に設けられたウェハ95と、変調電界の方向が光の伝搬方向に対して略垂直になるようにウェハ95の上面に設けられた電極83と、光導波路12を介して互いに対向するように設けられた第1の端面84並びに第2の端面85と、第1の端面84並びにウェハ95の端面96aとの間で形成される平面101上に接着剤の耐熱温度よりも低い温度条件下で被着された単層又は多層の気相成長膜からなる入射側反射膜93と、第2の端面85並びにウェハ95の端面97aとの間で形成される平面102上に接着剤の耐熱温度よりも低い温度条件下で被着された単層又は多層の気相成長膜からなる出射側反射膜94とを備えている。
この光変調器9においても、上述した光変調器8と同様に、周波数fmの変調信号を発振する図示しない発振器と、図示しない終端抵抗が接続される。
ウェハ95は、SiO2等からなり、光導波路12と略同一の長さでコ字状となるように構成される。このウェハ95は端部のみ厚く構成され、電極83が配設される中央部分のみ薄く構成する。これにより光導波路12内を伝搬する光につき電極83から変調電界を効率よく印加することができる。
このウェハ95は、上述したバッファ層14としての役割を担い、基板11の表面直下に形成されてなる光導波路12を被覆することにより光損失を抑える。またこのウェハ95は、上述した光変調器8における第1の保護部材86並びに第2の保護部材87としての役割も担い、それぞれ端面96a,97aが第1の端面84,第2の端面85との間で、それぞれ平面101,102を形成することができるように切り揃えられている。
このウェハ95を配設する場合には、端部の厚みに合わせたSiO2のウェハを基板11上に貼り付け、次に電極83を設ける部分につき切削していくことで、図6に示すようなコ字状に仕上げることが可能となる。
即ち、この光変調器9は、光変調器8と同等の効果が得られるとともに、保護部材を取り付ける手間を省くことができるという利点がある。
なお、本発明は、上述した実施の形態に限定されるものではない。例えば図7に示すような往復変調型の光変調器51にも適用することができる。この光変調器51において上述した光変調器8と同一の構成、要素については、図1,2における説明を引用し、ここでの説明を省略する。
また、上記光変調器51は、光導波路12の一の端部につき高反射膜としての単層又は多層の気相成長膜からなる出射側反射膜94を設け、他の端部につき単層又は多層の気相成長膜からなる反射防止膜63を設けることにより、図7に示すように、いわゆる往復変調型の光変調器51として動作させることもできる。
光変調器51は、図7(a)に示すように、基板11と、基板11上に形成されてなり伝搬する光の位相を変調する光導波路12と、この基板11において光導波路12を被覆するように積層されるバッファ層14と、変調電界の方向が光の伝搬方向に対して略垂直になるように光導波路12の上面に設けられた電極83と、光導波路12の上部に配設される第1の保護部材86並びに第2の保護部材87と、平面91上に接着剤の耐熱温度よりも低い温度条件下で被着された単層又は多層の気相成長膜からなる反射防止膜63と、平面92上に接着剤の耐熱温度よりも低い温度条件下で被着された単層又は多層の気相成長膜からなる出射側反射膜94とを備えている。
また、この光変調器51を実際に使用する場合には、更に図7(b)に示すように、図示しない光源からの入力光を伝送し或いは光変調器51から出力される出力光を外部へ伝送するための光ファイバ等で構成される光伝送路23と、上記入力光並びに出力光を分離するための光サーキュレータ21と、この光サーキュレータ21に光接続されるフォーカサー22からなる光学系が実装され、電極83の一端側に配設され周波数fmの変調信号を発振する発振器16と、電極83の他端側に移相器19a、反射器19bとがさらに配設される。
反射防止膜63は、第1の端面84並びに第1の保護部材86の端面86aとの間で形成される平面91上に接着剤の耐熱温度よりも低い温度条件下で被着される。この反射防止膜63は、低反射膜により構成されていてもよいし、無コートで構成することにより、低反射膜を被着したのと同等の効果が得られるようにしてもよい。
フォーカサー22は、光サーキュレータ21を通過した入力光を光導波路12の端部へ集束させるとともに、光導波路12の端部から反射防止膜63を透過した出力光を集光してこれを光サーキュレータ21へ送る。このフォーカサー22は、光導波路12の径に応じたスポット径となるように入力光を光結合させるためのレンズ等で構成してもよい。
このような構成からなる光変調器51は、光導波路12の一の端部につき高反射膜としての出射側反射膜94を設け、他の端部につき反射防止膜63を設けることにより、いわゆる往復変調型の光変調器として動作する。光導波路12に入射された入力光は、光導波路12を伝搬しながら変調され、端面の出射側反射膜94により反射された後、再び光導波路12を伝搬して反射防止膜63を透過してフォーカサー22側に出射され出力光となる。同時に、発振器16から供給される周波数fmの電気信号は、入力光を変調しつつ電極83上を伝搬した後、反射器19bにより反射されることになる。
この光変調器51では、上記電極83 に対して発振器16より発振された周波数fmの変調信号を供給すると、当該変調信号は、電極83を往路方向へ伝搬することになり、光導波路12内を往路方向へ伝搬する光につき位相を変調させることができる。電極83上を往路方向へ伝搬した変調信号は、そのまま反反射器19bにより反射され、移相器19aにより位相調整された上で、今度は電極83を復路方向へ伝搬することになる。これにより、光導波路12内を復路方向へ伝搬する光につき位相変調させることができる。ちなみに、この移相器19aにより調整される位相は、光導波路12内を復路方向へ伝搬する光につき施される位相変調が、往路方向へ伝搬する光に対する移相変調と同様になるようにしてもよい。
この光変調器51では、光導波路12を往路方向へ伝搬する光のみならず、復路方向へ伝搬する光についても位相変調を施すことができるため変調効率を増加させることができる。
また、この光変調器51では、光が光導波路12内を往復する時間に同期した電気信号を電極83から駆動入力とすることにより、光導波路12を1回だけ通過する場合に比べ、数十倍以上の深い位相変調をかけることが可能となる。これにより、広帯域にわたるサイドバンドを有する光周波数コムを生成することができ、隣接したサイドバンドの周波数間隔は、全て入力された電気信号の周波数fmと同等になる。
また、この光変調器51は、光を狭小な光導波路12に押し込めて変調させることができるため、変調指数を大きくすることができ、光周波数コム発生器1として機能して、バルク型の光周波数コム発生器と比較して発生するサイドバンド数やサイドバンドの光量を多くすることができる。
なお、この光変調器51を用いた光周波数コム発生器1では、反射器19bより反射されて移相器19aにより調整される変調信号の位相を、電極83の形状、変調信号の周波数fm、並びに光導波路12の群屈折率ngに応じて調整することにより、光の位相に高精度に合わせ込むことことにより、光導波路12を往路方向へ伝搬する光のみならず復路方向へ伝搬する光についても高効率に位相変調を施すことができ、変調効率を最大2倍近くまで増加させることができる。また、電極83へ印加する電圧を上げることなく、変調効率を効果的に向上させることができるため、消費電力を削減でき、光周波数コム発生器1を配設するヘテロダイン検波系自体をスリムにすることができ、コストを大幅に削減することができる。
また、この光変調器51は、図7(c)に示すように、発振器25並びに終端抵抗27を電極83の一端側に設け、発振器25から供給される電気信号を電極83上において伝搬させた上で、これを電極83の他端側で反射させるようにしてもよい。このとき、発振器25から供給される電気信号と、電極83の他端側で反射された電気信号を分けるためのアイソレータ26を設けるようにしてもよい。また、この光変調器51では、反射率の高い単層又は多層の気相成長膜からなる入射側反射膜93を接着剤の耐熱温度よりも低い温度条件下で被着させる。これにより光導波路12内部において光を共振させることができる。また、この入射側反射膜93の代替として、上述した低反射率の反射防止膜63を接着剤の耐熱温度よりも低い温度条件下で被着させるようにしてもよい。これにより、光を光導波路12内において一度だけ往復させつつ、位相変調を施すことも可能となる。
この光変調器51では、出射側反射膜94により反射される光の位相に合わせて電気信号の反射位相を調整することにより、電極83を往復する電気信号それぞれにより光の位相を変調させることができるため、変調効率を増大させることができる。特に、保護部材86,87を貼り付けることにより、上述の如く膜63,93,94の剥がれや欠け等を抑え、フィネスをより向上させた光変調器51では、光変調効率をさらに増大させることが可能となる。
また、これら光変調器51を光周波数コム発生器に適用した場合において、電極を往復する電気信号により、光導波路12内で共振する光につき往復変調を施すことが可能となる。かかる場合において、発生させたサイドバンドの各周波数(波長)における強度分布は、図8に示すように、電極83へ印加する電気信号の変調周波数を25GHzとし、そのパワーを0.5Wとした場合において、光導波路12内に加わる変調の大きさとして表される変調指数は、伝搬方向あたりπラジアンである。この結果より、位相を半波長動かすために必要な電圧として定義される半波長電圧Vπは、7.1Vであることが分かる。
短共振器で構成される光変調器8は、長共振器で構成される光変調器8と比較して、上述の如くフィネスが高い分、サイドバンドの発生の効率は高く、またサイドバンドの発生周波数帯域幅Δfは11THzに達する。また、短共振器で構成される光変調器8の電極83の長さは、僅か20mmであるが、長共振器で構成される光変調器8と比較して遜色のない変調効率が得られる。即ち、往復変調が有効に作用していることが分かる。
なお、この光変調器51は、電気信号を反射させる代わりに、信号源としての発振器16の出力を分割することにより、電極83の両端から電気信号を別々に駆動入力するようにしてもよいし、電極83の両端にそれぞれ別の発振器16を接続することにより、これを実行するようにしてもよい。
なお、本発明は、例えば図9に示すような光導波路型のレーザー発振器52にも適用することができる。このレーザー発振器52において、上述した光変調器8と同一の構成要素については、図1,2における説明を引用し、ここでの説明を省略する。
レーザー発振器52は、図9に示すように、基板11と、基板11上に形成されてなる光導波路12と、この基板11において光導波路12を被覆するように積層されるバッファ層14と、光導波路12の上部に配設される第1の保護部材86並びに第2の保護部材87と、平面91上に接着剤の耐熱温度よりも低い温度条件下で被着された単層又は多層の気相成長膜からなる入射側反射膜93と、平面92上に接着剤の耐熱温度よりも低い温度条件下で被着された単層又は多層の気相成長膜からなる出射側反射膜94とを備え、入射側反射膜93と出射側反射膜94との間で光共振器5を構成する。また、このレーザー発振器52を実際に使用する場合には、波長λ0の光を出射する励起光源28が実装される。
このレーザー発振器52における光導波路12中には、例えばエルビウムイオンのような、入射側反射膜93を介して入射された光を吸収して媒質固有の光の波長に対して増幅特性を有する増幅媒質を拡散させる。これにより、光導波路12を光の増幅媒質として働かせることが可能となる。またこのような増幅媒質としての光導波路12に対して、適当な波長の光を入射させると、エネルギー準位で決まる固有の波長に対する光の増幅器として作用することになる。また、自然放出遷移により発生した光を増幅して発振する発振器としても作用することになる。レーザー発振するのは、光共振器5内における増幅率が損失率を上回った場合であるから、保護部材86,87を貼り付けて反射膜93,94の剥がれや欠け等を防止しつつ光導波路12の端面における反射特性を高めることにより、光共振器5内の損失率も低くなることから、レーザー発振の閾値を低下させることができる。
光導波路12内に特別な増幅媒質を導入しなくても、この光導波路12としてLiNbO3結晶のような非線形光学結晶で構成することにより、光導波路12内に入射される光によって誘起される非線形分極により、当該入射される光とは異なる波長に増幅利得を持たせることが可能となる。例えば、周期分極反転構造を持つ非線形光学結晶を用いて光導波路12を構成しても良い。
このレーザー発振器52における光共振器5を構成する入射側反射膜93は、励起光源28からの光に対して低反射率であり、かつ光導波路12により発振される光の波長に対して高反射率の膜を使用してもよい。また、この光共振器5を構成する出射側反射膜94は、光導波路12により発振される光の波長に対して最適な出力カップリングが可能な反射率を有する膜を使用してもよい。
ちなみに、このレーザー発振器52を光パラメトリック発振器として適用してもよい。かかる場合には、発振が起こるのは光共振器5内の増幅率が損失率を上回った場合であるから、保護部材86,87を貼り付けた反射膜93,94の剥がれや欠けのない高フィネスの光共振器5を構成することにより、発振の閾値を低下させることができる。
上述の如くレーザー発振器52やこれを適用する光パラメトリック発振器において光導波路12を用いる利点は、光を狭い領域に閉じ込めることができることと、電界強度が高めることができることによる増幅率の向上である。特にこのレーザー発振器52等では、従来の発振器と比較して高いフィネスを得ることができるため、光導波路12を用いることの利点がさらに助長されることになる。
なお本発明は、例えば図10に示すようなモードが同期された光を発振するレーザー発振器53にも適用することができる。このモードが同期された光とは、等しい周波数間隔で発振している多数のモードの位相を揃えたものである。このレーザー発振器53において、上述した光変調器8並びにレーザー発振器52と同一の構成、要素については、図1,2,9における説明を引用し、ここでの説明を省略する。
レーザー発振器53は、図10(a),(b)に示すように、基板11と、基板11上に形成されてなり伝搬する光の位相を変調する光導波路12と、この基板11において光導波路12を被覆するように積層されるバッファ層14と、変調電界の方向が光の伝搬方向に対して略垂直になるように光導波路12の上面に設けられた電極83と、光導波路12の上部に配設される第1の保護部材86並びに第2の保護部材87と、平面91上に接着剤の耐熱温度よりも低い温度条件下で被着された単層又は多層の気相成長膜からなる入射側反射膜93と、平面92上に接着剤の耐熱温度よりも低い温度条件下で被着された単層又は多層の気相成長膜からなる出射側反射膜94とを備え、入射側反射膜93と出射側反射膜94との間で光共振器5を構成する。また、このレーザー発振器53を実際に使用する場合には、波長λ0の光を出射する励起光源28が実装され、更に電極83の一端側に配設され周波数fmの変調信号を発振する発振器16と、電極83の他端側に配設される終端抵抗18とが配設される。この入射側反射膜93と出射側反射膜94とは、それぞれレーザー発振する多モード間の位相同期をとる機能を有する。
このような構成からなるレーザー発振器53では、上述したレーザー発振器52において光導波路12の上部に電極83を配設することにより、各モードにつき同期がとられたモード同期レーザーの発振が可能となる。ここで、光共振器5のFSRの整数倍に一致する周波数の変調信号を発振器16から駆動入力することにより、多モードの光を発振する光導波路12の電気光学効果に基づき、各モードの位相同期が施される結果、モード同期レーザーを発振するレーザー発振器として動作することになる。
このモード同期が施されると、レーザー発振器53より発振される光の時間波形は、増幅周波数帯域幅の逆数程度の時間幅を持つ短パルスとなる。また、周波数軸の波形は、一定の周波数間隔でサイドバンドが配列する光周波数コムとなる。このため、レーザー発振器53に対する制御を最適化させることにより、光の周波数測定への応用や多波長光源への応用も可能となる。またこのレーザー発振器53を、上述したレーザー発振器52と同様に光パラメトリック発振器として適用してもよいことは勿論である。特にこのレーザー発振器53は、保護部材86,87が貼り付けられているため反射膜93,94の剥がれや欠けがなく、光共振器5全体のフィネスを向上させることができ、モード同期レーザーを効率よく発振させることが可能となる。
ちなみに、レーザー発振器53におけるモード同期は、上述した電気光学効果を利用するものに限定されるものではなく、光共振器5内における光学素子の非線形効果を利用するものであればいかなる現象に基づくものであってもよい。例えば、LiNbO3結晶を光導波路12に用いることにより、その効果をより際立たせることも可能となる。
なお、本発明は、例えば図11に示すような変形ファブリペロー(FP)電気光学変調器54にも適用することができる。この変形FP電気光学変調器54において、上述した光変調器8並びにレーザー発振器52と同一の構成、要素については、図1,2,9における説明を引用し、ここでの説明を省略する。
変形FP電気光学変調器54は、図11に示すように、基板11と、基板11上に形成されてなり伝搬する光の位相を変調する光導波路12と、この基板11において光導波路12を被覆するように積層されるバッファ層14と、変調電界の方向が光の伝搬方向に対して略垂直になるように光導波路12の上面に設けられた電極83と、光導波路12の上部に配設される第1の保護部材86並びに第2の保護部材87と、平面91上に接着剤の耐熱温度よりも低い温度条件下で被着された単層又は多層の気相成長膜からなる入射側反射膜93と、平面92上に接着剤の耐熱温度よりも低い温度条件下で被着された単層又は多層の気相成長膜からなる出射側反射膜94とを備え、入射側反射膜93と出射側反射膜94との間で光共振器5を構成する。また、この変形FP電気光学変調器54を実際に使用する場合には、反射鏡31が実装され、必要な場合には、更に電極の一端側に配設され周波数fmの変調信号を発振する図示しない発振器と、電極の他端側に配設される図示しない終端抵抗とが配設される。
反射鏡31は、外部から供給される光を透過させ変形FP電気光学変調器54側の光導波路12の端部へ導くとともに、当該光導波路12の端部から出射された光を反射する。即ち、この反射鏡31を設けることにより、光導波路12内へ入射させる光のみ透過させ、光導波路12内で発生させたサイドバンドを反射することができるため、入射させる光からサイドバンドへの変換効率を向上させることができる。即ち、このような構成からなる変形FP電気光学変調器54では、入射側反射膜93を、光導波路12内へ入射させる光のみ透過させ発生させたサイドバンドを反射する狭帯域フィルタに置換した場合と同様の効果を得ることができる。特にこの変形FP電気光学変調器54では、保護部材86,87が貼り付けられているため反射膜93,94の剥がれや欠けがなく、光共振器5全体のフィネスを向上させることができるため、サイドバンドへの変換効率をより高めることが可能となる。
なお、本発明を適用した光変調器8は更に以下に説明する通信システム55に適用することもできる。
通信システム55は、例えば、WDM通信方式に基づいて符号分割多重接続を行うシステムが適用され、図12(a)に示すように、歩行者が携帯可能な移動体端末としての携帯通信機器57と、携帯通信機器57との間で無線信号の送受信を行うことにより通信を中継するための複数の基地局58と、接続された光ファイバ通信網35,38を介して基地局58を含めたネットワーク全体における通信を制御するホスト制御装置59とを備えている。
携帯通信機器57は、各地区に設けられた基地局58との間で無線信号を送受信すべく、車載或いは携帯できるように構成されている。即ち、この携帯通信機器57は、例えばファクシミリ通信やパーソナルコンピュータ等に搭載されてデータ通信を行うための装置を含むものであるが、一般には音声による通話を行うための携帯電話やPHS(パーソナルハンディホンシステム)等であり、特に小型軽量で携帯性に特化した機器として構成されている。
各基地局58には、図12(a)に示すように光変調器8が搭載される。光変調器8における電極83には、携帯通信機器57との間でマイクロ波を送受信するためのアンテナ33が接続されている。また、この光変調器8は、ホスト制御装置59から光ファイバ通信網35を介して伝送された光の一部が入射側反射膜93を介して光導波路12内へ入射される。この光導波路12内へ入射された光は、略平行に配設された入射側反射膜93並びに出射側反射膜94により共振されることになる。またこの光変調器8では、携帯通信機器57から供給されるマイクロ波をアンテナ33を介して受信し、かかるマイクロ波に応じた変調信号を電極83を介して光導波路12内を伝搬する光に印加することができるため、携帯通信機器57からの送信情報に応じた位相変調をこれに施すことが可能となる。なお、光変調器8は、位相変調した光を出射側反射膜94を介して出射させる。出射された光は光ファイバ通信網38を介してホスト制御装置59へ伝送されることになる。
ホスト制御装置59は、基地局58へ伝送するための光を発生させ、また基地局58において変調された光を光電変換して検波出力を得る。即ち、このホスト制御装置59は、様々な基地局からの検波出力を一括管理することができる。
このような通信システム55では、ホスト制御装置59から出力された光を光ファイバ通信網35を介して基地局58へ伝送する。基地局58は、この伝送された光を光変調器8における光導波路12内を伝搬させるとともに、更にマイクロ波に応じた位相変調を施した上で、光ファイバ通信網38を介してこれをホスト制御装置59へ伝送する。
即ち、基地局58へ伝送される光は、当該基地局58周辺にある携帯通信機器57から発呼された場合に、上述したマイクロ波に含まれる通話内容に応じた位相変調が施されることになる。一方、この基地局58へ伝送される光は、当該基地局58周辺にある携帯通信機器57から発呼されなかった場合に、上述した位相変調が施されることはなくなる。ホスト制御装置59では、基地局58から光ファイバ通信網38を介して伝送される光につき位相変調が施されていた場合には、これを光電変換することにより、通話内容に応じた検波出力を取得することが可能となる。
この通信システム55では、保護部材86,87を貼り付けた高フィネスの共振器を有する光変調器8を基地局58へ搭載するため、光導波路12内を伝搬する光の往復回数を増やすことができ、光変調器8自体の感度を向上させることが可能となる。
なお、この通信システム55では、図12(b)に示すように、一芯双方向で光伝送するようにしてもよいことは勿論である。
さらに、本発明を適用した光変調器8では、図1に示すように光導波路12の往路方向(復路方向)の結晶長LC1を27mm(又は54mm)程度になるように調整されていてもよい。かかる結晶長にすることにより奏する効果につき、以下において説明する。
光導波路12における往路方向(復路方向)へ伝播する光の損失率をLo1としたとき、かかる損失率Lo1と光導波路12の結晶長LC1との関係を図13(a)に示す。結晶長LC1が増加していくにつれて、伝播する光の損失は徐々に大きくなることが示されている。また図13(b)は、かかる結晶長LC1に対するフィネスの関係を示している。この図13(b)に示すようにフィネスは、一般にπ/Lo1で表されるが、結晶長LC1が小さいほど高くなることがわかる。
光変調器8の性能指数は、Vπ/(フィネス)で表すことができる(Vπは光位相をπラジアン変調するために要する電圧)。この性能指数が小さいほど光変調器8として、また当該光変調器8を用いた光周波数コム発生器として、性能がより優れていることになる。
図14は、これらフィネスや損失率Lo1に基づいて計算した性能指数を結晶長LC1との関係において示している。この図14において、lmは、結晶長LC1に対する電極83の長さの差分を表している。一般に光導波路12の両端から数mmは電極を設けることができないため、このlmを6mmとした場合と、lmを1mmとした場合を例に挙げて計算をしている。
この図14に示すようにlm=6mmである場合において、結晶長LC1が15~30mmのときに性能指数が小さくなることが分かる。またかかる性能指数の結晶長LC1に対応するFSRをプロットすると、2.5GHz付近において最も優れた性能となることが分かる。ちなみに、この図14における傾向をシミュレーションする上において、変調周波数を25GHzとし、電極83によるマイクロ波の伝送損失を-10dB/50mm@25GHzと仮定し、さらに変調効率は、往復変調時においてPin=0.43W、結晶長LC1=27mm(電極83の長さが21mmのとき)である場合に変調指数がπラジアンであることを考慮し、さらに光の伝送損失αが-0.0106/cmである場合を仮定している。また、ミラーの反射率は、結晶長に応じた損失率に対して最適化されている。
このため、lm=6mmである場合において、光導波路12の結晶長LC1を27mm程度とすることにより、光変調器8としての性能をより向上させることが可能となる。ちなみに、この結晶長LC1は27mmにある場合に限定されるものではなく、24±6mmの範囲であればいかなる長さで構成されていてもよい。なお、実用上の結晶長LC1は、光通信分野における時分割多重化(TDM:Time Division Multiplex)光通信における10GHzや波長割多重化(WDM:Wavelenth Division Multiplex)光通信における25GHzの最大公約数である5GHzの整数分の1とするのが好適であり、27mmは2.5GHzに相当している。
また、結晶長LC1に対応するFSRのプロットが1.25GHzである場合においても、同様に優れた性能が示されることから、これに対応する結晶長LC1を54mm程度で構成してもよい。
またlm=1mmである場合においても、同様にシミュレーションすると、10GHz程度で優れた性能が示されることから、結晶長LC1をこれに対応させることで、光変調器8としての性能をより高めることが可能となる。
なお、上記図4に示した本発明を適用した光変調器8の作製方法では、ステップS11、S12の光導波路12の作製工程において、Ti原子を基板11中に熱拡散させて光導波路12を形成したが、LiNbO3結晶を安息香酸に浸すことによりLiをH+に置換させるプロトン交換法にこれを代替してもよい。
ここで、光導波路に閉じ込めた光を共振させる導波路型光共振器を用いた光コム発生器における光コム発生において、直交する偏光成分は、光コム発生器の共振周波数をレーザー周波数に一致させるための制御を不安定にすることがあり、制御点のずれ、制御の発振等の原因となり、光コムを例えば測定対象までの距離や高さを測定する計測装置に利用する場合に、直交する偏光成分が計測誤差の要因になっていたが、例えば図1に示すような構成の単一の偏波成分に対してのみ導波モードが存在している領域として形成された光導波路12Aを有する導波路型光変調器8Aを採用して、光コム発生に寄与しない直交偏光成分の出力を抑制して、偏光消光比の向上をはかり、単一偏光度を高めた光コム出力を得られるようにすることにより、光導波路の透過モード波形に変形が生じることがなく、共振器制御を安定化することができ、光コム発生器としての安定化、光コムを含む計測装置の精度向上、誤差の低減などを図ることができる。
図15に示す導波路型光変調器8Aは、単一の偏波成分に対してのみ導波モードが存在している領域として形成された光導波路12A以外の構成は図1に示した導波路型光変調器8と同じなので、同一構成要素については、同一符号を付して示すことにより、詳細な説明を省略する。
図16は、導波路型光変調器8Aの側面図である。
この導波路型光変調器8Aにおいて、光導波路12Aは、入射側反射防止膜63から出射側反射防止膜64にかけて貫通するように少なくとも電気光学効果を有する基板11にて単一の偏波成分に対してのみ導波モードが存在している領域として形成されている。
入射側反射防止膜63を介して光導波路12Aに入射した光は、単一の偏波成分のみが光導波路12Aの境界面で全反射しながら伝搬する。
ここで、単一の偏光成分のみ通す光導波路12Aは、特定の偏光成分にのみ屈折率の変化をもたらす光導波路形成法、例えば、プロトン交換法により、電気光学効果を有する基板11にて単一の偏波成分に対してのみ屈折率が高い領域として形成することができる。
この光導波路12Aは、例えば、LiNbO3等からなる基板11に、プロトン交換法により単一の偏波成分に対してのみ導波モードが存在している領域として形成することができる。
また、光導波路12Aは、基板11中においてTi原子を拡散させることにより、或いは基板11上へのエピタキシャル成長させることにより作製する際に、屈折率分布を工夫することにより導波モードを単一偏光に限定した領域として形成することができる。この光導波路12Aには、例えばLiNbO3結晶光導波路を用いることができ、LiNbO3等からなる基板11表面にTiを拡散させることにより形成することができる。このTiが拡散された領域については他の領域よりも屈折率が高くなり、単一の偏波成分の光を閉じ込めることができるため、単一の偏波成分の光を伝搬させることができる光導波路12Aを形成することができる。直交する両方の偏波成分に対して屈折率は高くなるが、単一の偏波成分に対してのみ導波モードが成立する条件もある。
このような方法に基づいて作製したLiNbO3結晶型の光導波路12Aは、屈折率が電界に比例して変化するポッケルス効果や、屈折率が電界の自乗に比例して変化するカー効果等の電気光学効果を有するため、かかる物理現象を利用して単一の偏波成分の光の変調を行うことができる。
バッファ層14は、光導波路12Aにおける単一の偏波成分の光の伝搬損失を抑えるべくこれを被覆するものである。ちなみに、このバッファ層14の膜厚をあまりに厚くし過ぎると、電界強度が下がり、変調効率が低下するため、単一の偏波成分の光の伝搬損失が大きくならない範囲においてなるべく膜厚を薄く設定するようにしてもよい。
電極83は、例えばTiやPt、Au等の金属材料からなり、発振器16から供給された周波数fmの変調信号を光導波路12Aに駆動入力することにより、光導波路12A内を伝搬する光に位相変調をかける。
第1の保護部材86並びに第2の保護部材87は、それぞれ基板11の材質に対応する部材から構成される。第1の保護部材86並びに第2の保護部材87は、基板11と同一の材質から構成してもよい。また上記平面91を形成する第1の保護部材86の端面86aと第1の端面84とが、互いに同一の結晶方位を有するように加工されていてもよく、同様に上記平面92を形成する第2の保護部材87の端面87aと第2の端面85とが、互いに同一の結晶方位を有するように加工されていてもよい。
入射側反射防止膜63は、第1の端面84並びに第1の保護部材86の端面86aとの間で形成される光導波路12Aに対して垂直な平面91上に単層又は多層の気相成長膜として被着形成される。出射側反射防止膜64は、第2の端面85並びに第2の保護部材87の端面87aとの間で形成される光導波路12Aに対して垂直な平面92上に接着剤の耐熱温度よりも低い温度条件下で単層又は多層の気相成長膜として被着形成される。これらの反射防止膜63,64は、低反射膜により構成されていてもよいし、無コートで構成することにより、低反射膜を被着したのと同等の効果が得られるようにしてもよい。
終端抵抗18は、電極83の終端に取り付けられる抵抗器であり、終端における電気信号の反射を防止することにより、その波形の乱れを防ぐ。
次に、本発明を適用した光変調器8Aの作製方法につき図17を用いて説明をする。
先ずステップS21において、LiNbO3結晶からなる基板11の表面にフォトレジストのパターン13を作製する。
次にステップS22へ移行し、表面にフォトレジストのパターン13が作製されたLiNbO3結晶の基板11をプロトン交換液例えば安息香酸に浸漬した状態で加熱して、基板11の表面層部分のLiをH+に置換させるプロトン交換法によって、単一の偏波成分に対してのみ導波モードが存在している領域として光導波路12Aを形成する。
なお、このステップS21、S22の光導波路12Aの作製工程においては、プロトン交換法に限定されるものではなく、例えば、ステップS21において、LiNbO3結晶からなる基板11の表面にフォトレジストのパターン13を作製し、LiNbO3結晶からなる基板11の表面にTiを蒸着させ、このフォトレジストを除去することにより、ミクロンサイズの幅で構成されるTiの細線を作製して、次のステップS22において、このTiの細線が形成された基板11を加熱することにより、Ti原子を基板11中に熱拡散させて単一の偏波成分に対してのみ導波モードが存在している領域として光導波路12Aを形成するTi拡散法にこれを代替してもよい。
次にステップS23へ移行し、レジストパターン13を除去して基板11表面にバッファ層14としてのSiO2薄膜を蒸着させる。このステップS23では、SiO2ウェハを基板11表面に貼り付ける方法によりバッファ層14を形成させるようにしてもよい。かかる場合には、次のステップS24における電極の取り付け領域を考慮して、この蒸着させたバッファ層24を研磨することにより適当な膜厚に制御するようにしてもよい。
次にステップS24へ移行し、バッファ層14上に電極83を形成させる。
次にステップS25へ移行し、光導波路12Aの上部において保護部材86,87を接着する。この保護部材86,87の接着方法については、接着剤で貼り付けるようにしてもよいし、他の手法に基づいて直接的に接合するようにしてもよい。この保護部材86,87は、基板11をLiNbO3結晶で構成した場合には、同一材質としてのLiNbO3により構成してもよい。このステップS25においては、貼り付けた保護部材86,87につき、それぞれ端面86a,87aが第1の端面84,第2の端面85との間で、それぞれ平面91,92を形成することができるように、切り揃える。
最後にステップS26へ移行し、この得られた平面91,92を光導波路12Aに対して垂直な平面に研磨する。そしてこの研磨された光導波路12Aに対して垂直な平面91,92上に接着剤の耐熱温度よりも低い温度条件下で入射側反射防止膜63、出射側反射防止膜64をそれぞれ一面に亘って気相成長膜として形成させる。
このように、本発明を適用した光変調器8Aでは、各端部において保護部材86,87を貼り付けて構成するため、従来において、端面最上部の角に位置していた光導波路12Aの端面が平面91(92)の略中央部に移動する。その結果、ステップS26における研磨時において平面91(92)の角が欠けた場合においても、光導波路12Aの端面が欠けることがなくなる。即ち、光導波路12Aの端面そのものが欠けにくくなる構成とすることが可能となる。これにより、光導波路12Aの各端面からの光損失を極力抑えることが可能となる。
また、保護部材86,87の材質を基板11の材質に対応する最適な材質で構成することにより、ステップS26における研磨速度を基板11における第1の端面84,第2の端面85から端面86a,87aにかけて均一にすることができる。これにより、光導波路12Aの端面が加工時に丸くなることがなくなり、平坦な研磨面からなる平面91,92を得ることができ、光導波路12Aの端面における反射損失を最小限に抑えることが可能となる。また、各平面91,92を構成する端面の結晶方位を同一にすることにより、反射損失を更に抑え込むことも可能となる。
さらに、この保護部材86,87をあえて設けることにより、ステップS26における研磨の精度が向上し、得られる平面91(92)の光導波路12Aに対する垂直性も向上する。その結果、かかる垂直性の逸脱による光損失も最小限に抑えることが可能となる。
また、入射側反射防止膜63、出射側反射防止膜64は、基板11における第1の端面84,第2の端面85から端面86a,87aにかけて広範囲に亘って接着剤の耐熱温度よりも低い温度条件下で気相成長膜として形成されているため、非常に安定であり、剥がれにくく、さらに成膜の再現性をも向上させることが可能となる。
実際に、保護部材86,87を設けたことによる効果を実験的に検証すべく、保護部材86,87を貼り付けた後の平面91(92)の研磨を行ったところ、光導波路12Aの端面部分における欠けや曲がりは一切発生せず、単層又は多層の気相成長膜からなる入射側反射防止膜63,出射反射防止膜64の被着に適した、平坦な光学研磨が施されていることを確認することができた。
特に第1の保護部材86並びに第2の保護部材87を、基板11と同一の材質から構成し、また平面91,92を形成する保護部材86,87の端面86a,87aと第1の端面84,第2の端面85とが、互いに同一の結晶方位を有するように加工することにより、結晶の硬度が両者間で同一となるため、研磨速度の違いにより平面91,92が傾くこともなくなる。
このような構成の光変調器8Aでは、入射側反射防止膜63を介して入射され光導波路12Aを伝搬される単一の偏波成分のみ光が、発振器16から供給された周波数fmの変調信号により位相変調されて、出射側反射防止膜64を介して出射される。しかも、本発明を適用した光変調器8Aでは、各端部において保護部材86,87を貼り付けることにより、光導波路12Aの端面を平面91(92)の略中央部に移動させることができるため、光導波路12Aの端面の欠けや丸まり、光導波路12Aと平面91,92間の垂直性の確保、平面91,92における研磨精度の向上が可能となり、歩留まりを向上させることも可能となる。
ここで、入射された光の単一の偏波成分のみが伝搬されるプロトン交換法により作製された単一偏光型光導波路と、入射された光の直交する偏波成分のみ両方が伝搬されるTi拡散法により作製された直交偏光型光導波路について、図18、図19、図20に示すように、幅W1=1.9[mm]、長さL1=27.4[mm]、厚みT1=0.5[mm]のLiNbO3結晶基板11に3本の光導波路112A,112B、112Cを形成し、光導波路112A,112B、112Cの上部に幅W2=1.9[mm]、長さL2=1.5[mm]、厚みT2=0.5[mm]の保護部材86,87を接着して、保護部材86,87の端面とLiNbO3結晶基板11の端面を研磨することにより、3本の光導波路112A,112B、112Cの入射面と出射面を平面に仕上げたLiNbO3結晶基板ブロックとして、それぞれ3本の光導波路112A,112B、112Cの光路幅W3が6.0[μm]、6.3[μm]、6.6[μm]、6.9[μm]、7.2[μm]、7.5[μm]の6種類のサンプルを10個作製して、3本の光導波路112A,112B、112Cの入射面A1、B1、C1と出射面A2、B2、C2における反射率を測定し、各サンプルのフィネスと透過率を求めたところ、次のような結果が得られた。
すなわち、直交偏光型光導波路のフィネスは、30~45程度であったのに対し、単一偏光型光導波路では、50~65程度のフィネスが得られる。また、直交偏光型光導波路の透過率は、12.5~25[%]程度であったのに対し、単一偏光型光導波路では、20~32.5[%]程度の透過率が得られている。
なお、この光変調器8Aは、単一の偏波成分に対してのみ導波モードが存在している領域として形成された光導波路12Aの一の端部につき高反射膜としての出射側反射膜94を設け、他の端部につき反射防止膜63を設けることにより、上記光変調器8と同様に、上述した図7a,図7b,図7cに示した構成のいわゆる往復変調型の光変調器として動作させることもできる。
また、上記光変調器8Aは、上記ステップS26において、平面91,92を互いに平行に研磨し、この研磨された平面91,92上に、上記入射側反射防止膜63と出射側反射防止膜64に替えて、入射側反射膜93と出射側反射膜94を、それぞれ一面に亘って形成させることにより、光コム発生器1Aとして機能する。
すなわち、光コム発生器1Aにおいて、入射側反射膜93及び出射側反射膜94は、光導波路12Aに入射した光を共振させるために互いに平行となるように設けられたものであり、光導波路12Aを通過する光を往復反射させることにより共振させる光共振器5を構成する。
第1の端面84並びに第2の端面85を光導波路12Aに対して略垂直に形成させることにより、これに被着される単層又は多層の気相成長膜からなる入射側反射膜93並びに出射側反射膜94により単一の偏波成分の光を効率よく共振させることができる。
上述の如き構成からなる光コム発生器1Aにおいて、入射側反射膜93を介して外部から入射された光は、単一の偏波成分の光が光導波路12A内を往路方向へ伝搬し出射側反射膜94により反射されるとともに一部外部へ透過する。この出射側反射膜94を反射した単一の偏波成分の光は光導波路12A内を復路方向へ伝搬して入射側反射膜93により反射される。これが繰り返されることにより、単一の偏波成分の光で光導波路12A内を共振することになる。
また、単一の偏波成分の光が光導波路12A内を往復する時間に同期した電気信号を電極83を介して駆動入力とすることにより、単一の偏波成分の光がこの光変調器8A内を1回だけ通過する場合と比較して、数十倍以上の深い位相変調をかけることが可能となる。また入射される光の周波数ν1を中心として、数百本ものサイドバンドを広帯域にわたり生成することができる。ちなみに、この生成される各サイドバンドの周波数間隔は、全て入力された電気信号の周波数fmと同等である。したがって、光変調器8Aは、入射側反射防止膜63及び出射側反射防止膜64を入射側反射膜93及び出射側反射膜94に置き換えることにより、多数のサイドバンドにより構成される単一の偏波成分の光コムを発生する光コム発生器1Aとして機能する。
すなわち、光コム発生器1Aは、共振手段を構成する入射側反射膜93から出射側反射膜94にかけて貫通するように少なくとも電気光学効果を有する基板11にて単一の偏波成分に対してのみ導波モードが存在している領域として形成された光導波路12Aを備えているので、入射側反射膜93を介して入射された光の単一の偏波成分のみが、光導波路12Aを伝搬されて、出射側反射膜94を介して単一の偏波成分のみの光変調出力として光コムを発生することができる。
ここで、本発明に係る光変調器8,8A,51において、変調信号が供給される光導波路12Aの上面に設けられた電極83は、例えば図21に示すような構成の導波路型光変調器8B(光コム発生器1B)のように、リッジ構造を有するものとすることによって、光変調効率をさらに向上させることができる。
この導波路型光変調器8B(光コム発生器1B)は、図15,16に示した導波路型光変調器8A(光コム発生器1A)における電極83をリッジ構造を有するものにしたものであって、上述した光変調器8A(光コム発生器1A)と同一の構成要素については、図15,16における説明を引用し、ここでの説明を省略する。
この導波路型光変調器8B(光コム発生器1B)において、基板11は、例えば引き上げ法により育成された3~4インチ径のLiNbO3やGaAs等の大型結晶をウェハ状に切り出したものである。この切り出した基板11上には、機械研磨や化学研磨等の処理を施されることにより、リッジ構造を有する電極83Aを形成するための凸条部20が設けられる。
光導波路12Aは、プロトン交換法やTi拡散法により、入射端から出射端にかけて貫通するように形成され、単一の偏波成分の光を伝搬させるべく単一の偏波成分に対してのみ導波モードが存在している領域として形成として形成されている。
この光導波路12Aを構成する層の屈折率は、基板11等の他層よりも単一の偏波成分に対してのみ屈折率が高く設定されている。光導波路12Aに入射した光は、単一の偏波成分のみが光導波路12Aの境界面で全反射しながら伝搬する。
このような方法に基づいて作製したLiNbO3結晶型の光導波路12Aは、屈折率が電界に比例して変化するポッケルス効果や、屈折率が電界の自乗に比例して変化するカー効果等の電気光学効果を有するため、かかる物理現象を利用して単一の偏波成分の光の変調を行うことができる。
リッジ構造を有する電極83Aは、凸条部20上に形成された主電極を有し、例えばTiやPt、Au等の金属材料からなる。凸条部20上に主電極が形成されたリッジ構造を有する電極83Aは、発振器16から供給された周波数fmの変調信号を光導波路12Aに駆動入力とすることにより、光導波路12A内を伝搬する光に位相変調をかける。
このような構造の導波路型光変調器8B(光コム発生器1B)の作製方法について、図22を用いて説明をする。
すなわち、先ずステップS31において、LiNbO3結晶からなる基板11の表面にフォトレジストのパターン13を作製する。
次にステップS32へ移行し、表面にフォトレジストのパターン13が作製されたLiNbO3結晶の基板11をプロトン交換液例えば安息香酸に浸漬した状態で加熱して、基板11の表面層部分のLiをH+に置換させるプロトン交換法によって、単一の偏波成分に対してのみ導波モードが存在している領域として光導波路12Aを形成する。
なお、このステップS31、S32の光導波路12Aの作製工程においては、プロトン交換法に限定されるものではなく、例えば、ステップS31において、LiNbO3結晶からなる基板11の表面にフォトレジストのパターン13を作製し、LiNbO3結晶からなる基板11の表面にTiを蒸着させ、このフォトレジストを除去することにより、ミクロンサイズの幅で構成されるTiの細線を作製して、次のステップS32において、このTiの細線が形成された基板11を加熱することにより、Ti原子を基板11中に熱拡散させて単一の偏波成分に対してのみ導波モードが存在している領域として光導波路12Aを形成するTi拡散法にこれを代替してもよい。
次にステップS33へ移行し、光導波路12Aが形成された基板11のレジストパターン13を除去し、さらに、機械研磨や化学研磨等の処理により、図23に示すように、リッジ構造を有する電極83Aを形成するための凸条部20が設けられる。
次にステップS34へ移行し、バッファ層14としてのSiO2薄膜を基板11表面に蒸着させる。このステップS34では、SiO2ウェハを基板11表面に貼り付ける方法によりバッファ層14を形成させるようにしてもよい。かかる場合には、後述するステップS35における電極の取り付け領域を考慮して、この蒸着させたバッファ層14を研磨することにより適当な膜厚に制御するようにしてもよい。
次にステップS35へ移行し、図24の要部縦断面に示すように、基板11のバッファ層14上にリッジ構造を有する電極83Aを形成させる。
次にステップS36へ移行し、光導波路12Aの上部において保護部材86,87を接着する。この保護部材86,87の接着方法については、接着剤で貼り付けるようにしてもよいし、他の手法に基づいて直接的に接合するようにしてもよい。この保護部材86,87は、基板11をLiNbO3結晶で構成した場合には、同一材質としてのLiNbO3により構成してもよい。このステップS36においては、貼り付けた保護部材86,87につき、それぞれ端面86a,87aが第1の端面84,第2の端面85との間で、それぞれ平面91,92を形成することができるように、切り揃える。
本発明を適用した光変調器8Bでは、最後のステップS37において、この得られた平面91,92を光導波路12Aに対して垂直な平面に研磨して、この研磨された平面91,92上に接着剤の耐熱温度よりも低い温度条件下で気相成長膜として入射側反射防止膜63、出射側反射防止膜64をそれぞれ一面に亘って形成させる。
また、本発明を適用した光コム発生器1Bでは、上記ステップS37において、平面91,92を互いに平行に研磨し、この研磨された光導波路12Aに対して垂直な平面91,92上に、上記入射側反射防止膜63と出射側反射防止膜64に替えて、入射側反射膜93と出射側反射膜94を、それぞれ一面に亘って接着剤の耐熱温度よりも低い温度条件下で気相成長膜として形成させる。
このような構成の光変調器8B、光コム発生器1Bでは、入射端から入射され光導波路12Aを伝搬される単一の偏波成分のみ光に対して、リッジ構造を有する電極83Aに発振器16から供給された周波数fmの変調信号により、効率よく位相変調をかけることができる。
しかも、本発明を適用した光変調器8B、光コム発生器1Bでは、各端部において保護部材86,87を貼り付けることにより、光導波路12Aの端面を平面91(92)の略中央部に移動させることができるため、光導波路12Aの端面の欠けや丸まり、光導波路12Aと平面91,92間の垂直性の確保、平面91,92における研磨精度の向上が可能となり、歩留まりを向上させることも可能となる。
また、光コム発生器1Bでは、入射側反射膜93を介して外部から入射された光は光導波路12A内を往路方向へ単一の偏波成分のみが伝搬し出射側反射膜94により反射されるとともに一部外部へ透過する。この出射側反射膜94を反射した単一の偏波成分の光は光導波路12A内を復路方向へ伝搬して入射側反射膜93により反射される。これが繰り返されることにより、単一の偏波成分の光が光導波路12A内を共振することになる。
また、単一の偏波成分の光が光導波路12A内を往復する時間に同期した電気信号を電極83Aを介して駆動入力とすることにより、単一の偏波成分の光がこの光変調器8B内を1回だけ通過する場合と比較して、数十倍以上の深い位相変調をかけることが可能となる。また入射される光の周波数ν1を中心として、数百本ものサイドバンドを広帯域にわたり生成することができる。ちなみに、この生成される各サイドバンドの周波数間隔は、全て入力された電気信号の周波数fmと同等である。したがって、光変調器8Bは、多数のサイドバンドにより構成される単一の偏波成分の光コムを発生する光コム発生器1Bとして機能する。
このように、本発明を適用した光コム発生器1Bでは、共振手段を構成する入射側反射膜93から出射側反射膜94にかけて貫通するように少なくとも電気光学効果を有する基板にて単一の偏波成分に対してのみ導波モードが存在している領域として形成された光導波路12Aを備えているので、入射側反射膜93を介して入射された光の単一の偏波成分のみが、光導波路12Aを伝搬されて、出射側反射膜94を介して単一の偏波成分のみの光変調出力として光コムを発生することができ、また、各端部において保護部材86,87を貼り付けて構成するため、従来において、端面最上部の角に位置していた光導波路12Aの端面が平面91(92)の略中央部に移動する。その結果、ステップS37における研磨時において平面91(92)の角が欠けた場合においても、光導波路12Aの端面が欠けることがなくなる。即ち、光導波路12Aの端面そのものが欠けにくくなる構成とすることが可能となる。これにより、光導波路12Aの各端面からの光損失を極力抑えることが可能となる。
しかも、この光変調器8Bは、図24の要部縦断面に示すように、基板11のバッファ層14上に形成されたリッジ構造を有する電極83Aを備えているので、さらに、変調効率を向上させることができる。
ここで、この光変調器8Bにおいて、基板11のバッファ層14上に形成されたリッジ構造を有する電極83Aのリッジ幅RWを10、12、14、16、及び18[μm]、リッジ溝の平均深さAVD(Average depths)を3.3、2.96、4.79、及び4.72[μm]とした光変調器8Aの試料を作成して、25GHzにおける駆動電圧(AC Vpi)と直流駆動電圧(DC Vpi)を実測して結果を図25、図26に示す。Vpiは位相をπラジアン変調するために必要な電圧である。
すなわち、リッジ構造を有さない電極構造の従来の光変調器では、25GHzにおける駆動電圧(AC Vpi)が8~10V程度で、直流駆動電圧(DC Vpi)は、6~6.5V程度であったのに対し、リッジ構造を有する電極83Aを備える光変調器8Bでは、25GHzにおける駆動電圧(AC Vpi)が3.5~7.5V程度で、直流駆動電圧(DC Vpi)は、5~6V程度になっている。
このようにリッジ構造を設けることにより、25GHzにおける駆動電圧(AC Vpi)は、リッジ構造の無い場合と比較して平均的な電圧が元の約70%に低下しており、電力ではおよそ50%の低下に相当する。また、直流駆動電圧(DC Vpi)は、リッジ構造の無い場合と比較して平均的な電圧が元の約80%に低下しており、電力ではおよそ50%の低下に相当する。
すなわち、この光変調器8B、光コム発生器1Bでは、光導波路12Aの基板11と同じ硬さを持つ保護部材から構成され、上記保護部材における少なくとも一の端面が上記光導波路12Aにおける光入射端又は光出射端を含む上記基板11の端面と同一の平面を形成するように上記光導波路12Aの上部に配設される第1の保護部材86並びに第2の保護部材87を備え、上記保護部材86、87の端面と上記基板11の端面を研磨することにより形成される光導波路12Aに対して垂直な平面に入射側反射防止膜63又は入射側反射膜93及び出射側反射防止膜64又は出射側反射膜94が接着剤の耐熱温度よりも低い温度条件下でそれぞれ単層又は多層の気相成長膜として被着されているので、光導波路端面に欠けが発生することを防ぐとともに、高反射膜取り付けの安定化を図り、入射側反射膜93及び出射側反射膜94より構成される光共振器5のフィネスを向上させることができ、しかも、リッジ構造を有する電極83Aを備えることにより駆動電力を低減することができる。
したがって、上述の如き構成の光変調器8A、8B、光変調器51は、光導波路12Aを上面から形成させるための基板11と同じ硬さを持つ保護部材86,87を、少なくともその一の端面が上記光導波路12Aにおける光入射端又は光出射端を含む上記基板11の端面と同一の平面を形成するように上記光導波路12Aの上部に配設し、上記保護部材86,87の端面と上記基板11の端面を研磨することにより形成された上記光導波路12Aに対して垂直な平面上に共振手段を構成する単層又は多層の気相成長膜からなる入射側反射膜93並びに出射側反射膜94を被着させるので、光導波路端面の角の加工時における欠けや丸まりを抑え、各反射膜につき端面最上部の角の部分で剥がれることなく安定して被着させることができ、反射膜の反射率や光共振器のフィネスを向上させ、デバイスそのものの機能を高めることができ、共振手段を構成する入射側反射膜93から出射側反射膜94にかけて貫通するように少なくとも電気光学効果を有する基板11にて単一の偏波成分に対してのみ導波モードが存在している領域として形成された光導波路12Aを備えることにより、入射側反射膜93を介して入射された光の単一の偏波成分のみが、光導波路12Aを伝搬されて、出射側反射膜94を介して単一の偏波成分のみの光変調出力として安定した光コムを発生することができる光コムを発生器1、1Aとして機能する。
上述の如き光変調器8B、光変調器51における光導波路12Aは、入射側反射膜93から出射側反射膜94にかけて貫通するように少なくとも電気光学効果を有する基板11にて単一の偏波成分に対してのみ導波モードが存在している領域として形成され、リッジ構造を有する電極83Aを設けることにより、単一の偏波成分のみのレーザー光や光コムを出力することのできる低電力型のレーザー光源や光コム発生器を構築することができる。
また、光変調器8A、8B(光コム発生器1A、1B)においても、反射率が95%~99%の範囲にある反射膜93,94を被着させることにより、光導波路12Aの導波損失率と反射膜93,94の透過率を一致させて共振器のフィネスと透過率を高め共振器の性能を上げることができる。
次に、本発明を適用した低電力型光コムモジュールを利用した光コム発生器210の構成を図27のブロック図に示す。
この光コム発生器210は、本発明を適用した低電力型光コムモジュール200Aから出力される光コムの一部を分岐する光カップラ211と、光カップラ211により分岐された光を検出する光検出器212と、この光検出器212により得られる光検出信号が供給される制御回路213などを備える。
光コムモジュール200Aは、図示しないレーザー光源からレーザー光が入射されるとともに、バイアス・ティー214を介してRF変調信号が入力されることにより、入射されたレーザー光の単一の偏波成分に対してRF変調信号により位相変調をかけることにより、光コムを発生して出力する。この光コムモジュール200Aは、温度調節回路219による温度制御によって、光導波路に設けられた入射側反射膜と出射側反射膜による共振手段の共振長が制御されるようになっている。
制御回路213は、光検出信号から制御目標に対する誤差を求め、その誤差がゼロとなるような制御信号を生成してバイアス・ティー214に供給する。
光コムモジュール200AのDCバイアスに加えることにより、光コムモジュール200Aの共振周波数を入力レーザー周波数に追従させることができる。
制御回路213は、プリント基板単体の場合やRFミキサやアイソレータとプリント基板の組み合わせの場合もある。光検出器212の光検出信号と同期信号のミキシングによって制御目標からの誤差量に応じた制御信号を作り出す。
同期信号としてRF変調信号源の出力の一部を使うことができる。その場合、光検出器212の動作帯域はRF駆動周波数以上であることが必要である。
制御回路213では、位相調整器を介してミキサに光検出信号と同期信号を入力して得られる信号の低周波数成分を取って誤差信号とする。または同期信号としてRF駆動信号は別の変調信号(ディザ信号)を使用することが可能である。レーザー周波数または光コムモジュール200Aの共振周波数に、共振モードのFSRと比べて小さい振幅の変調を与えておいて、光検出器212の出力信号と同期信号のミキシングを行う。ディザ信号周波数が低ければ、光検出信号をアナログ・デジタル変換器によりデジタル信号に変換したのちにデジタル信号処理の積和演算で誤差信号を生成することも可能である。
誤差信号の周波数特性を調整したものが制御信号としてバイアス・ティー214経由で光コムモジュール200AのDCバイアスに加えられる。一般的には、誤差信号は比例、積分、微分の各機能を持った回路に入力され、それらの成分の振幅調整により制御ループの周波数特性が決まり、光コムモジュール200Aの共振周波数が入力レーザーの発振周波数に追従するように制御される。
また、本発明を適用した低電力型光コムモジュールを利用した光コム発生器220の構成を図28のブロック図に示す。
この光コム発生器220は、本発明を適用した低電力型光コムモジュール200Aの反射光を利用して共振器制御を行うもので、低電力型光コムモジュール100Aの反射光の一部が光カップラ211により分岐されて光検出器212に入射されるようになっている。
この光コム発生器220における各構成要素は図27に示した光コム発生器210の構成要素と同じであり、対応する構成要素について、図28中に同一符号を付して詳細な説明を省略する。
制御回路213は光検出器212により得られる光検出信号から制御目標に対する誤差を求め、その誤差がゼロとなるような制御信号を出力する。その制御信号を光コムモジュールのDCバイアスに加えることにより光コムモジュール200Aの共振周波数を入力レーザー周波数に追従させることができる。
さらに、本発明を適用した低電力型光コムモジュールは、例えば、図29に示すような構成の光コム光源300を構築することができる。
この光コム光源300は、単一周波数発振のレーザー光源301、レーザー光源301から出射された単一周波数のレーザー光を2つのレーザー光に分離する光カップラや光ビームスプリッタ等の分離光学系302、分離光学系302により分離された一方のレーザー光の周波数をシフトする周波数シフタ305、それぞれ低電力型光コムモジュールを用いた2つの光コム発生器(OFCG1、OFCG2)320A,320B等を備える。
この光コム光源300では、1台の単一周波数発振のレーザー光源301から出射されるレーザー光が分離光学系302により2つのレーザー光に分離されて2台の光コム発生器(OFCG1,OFCG2)320A,320Bに入力されるようになっている。
2台の光コム発生器320A,320Bは、互いに異なる周波数fmと周波数fm+Δfmで発振する発振器303A,303Bにより駆動される。それぞれの発振器303A,303Bは、共通の基準発振器304により位相同期されることにより、fmとfm+Δfmとの相対周波数が安定になる。光コム発生器(OFCG2)320Bの前には、音響光学周波数シフタ(AOFS)のような周波数シフタ305を設けて、入力されたレーザー光にこの周波数シフタ305により周波数faの光周波数シフトを与えるようになっている。これにより、キャリア周波数間のビート周波数が直流信号ではなく周波数faの交流信号になる。その結果、キャリア周波数の高周波側サイドバンドのビート信号と低周波側サイドバンドのビート信号がビート信号のキャリア周波数間のビート周波数faを挟んで相対する周波数領域に発生するため位相比較に都合が良い。
2つの光コム発生器(OFCG1,OFCG2)320A,320Bは、それぞれ本発明を適用した低電力型光コムモジュールにより構成されるもので、入力されるレーザー光の単一の偏波成分のみを位相変調することにより、単一の偏波成分の光コムを出力することができる。
この光コム光源300は、1台の単一周波数発振のレーザー光源301を共通として、2台の光コム発生器(OFCG1、OFCG2)320A,320Bの中心周波数と周波数間隔の異なる二つの光コムを発生するもので、例えば、本件発明者が先に提案している特許5231883号に係る距離計や光学的三次元形状測定機における第1及び第2の光源、すなわち、それぞれ周期的に強度又は位相が変調され、互いに変調周期が異なる干渉性のある基準光と測定光を出射する第1及び第2の光源として上記光コム光源300を用いることにより、2つの光コム発生器(OFCG1、OFCG2)320A,320Bの偏波成分の計測用の光コム出力を測定対象の表面にスキャンしながら照射して、表面からの反射光を照射ポイント一点一点について検出して距離(高さ)計算を行うことにより、安定した測定動作行う距離計や光学的三次元形状測定機の測定系を構築することができる。
図30は、上記光コム光源300を用いて構成した光コム距離計400の構成を示すブロック図である。
図30のブロック図に示す光コム距離計400は、光周波数コム干渉計を用いて距離を測定するものであって、第1、第2の光コム光源401、402から出射される中心周波数と周波数間隔の異なる二つの光周波数コムをそれぞれ周期的に強度又は位相が変調され、互いに変調周期が異なる干渉性のある基準光S1と測定光S2として干渉光学系410を介して基準面404と測定面405に照射し、上記基準面404と測定面405に照射する基準光S1と測定光S2との干渉光S3を基準光検出器403により検出するとともに、上記基準面404により反射された基準光S1’と上記測定面305により反射された測定光S2’との干渉光S4を測定光検出器406により検出し、信号処理部407により、上記基準光検出器403により干渉光S3を検出した干渉信号と上記測定光検出器406により干渉光S4を検出した干渉信号の時間差から、光速と測定波長における屈折率から上記基準面404までの距離L1と上記測定面405までの距離L2の差を求めることができる。なお、干渉計や検出器の形態は複数ある。
この光コム距離計400は、光学スキャン装置と組み合わせることにより、測定光S2を測定対象の表面にスキャンしながら照射して、表面からの反射光を照射ポイント一点一点について検出して距離(高さ)計算を行い、スキャンの座標と距離(高さ)の分布から対象物の表面形状が得られる光コム形状計測器を構成することができる。スキャナ光学系には様々な形態がある。テレセントリック光学系を使用すると測定範囲内で対象物に向かってほぼ垂直に光が入射するようにすることができる。
また、例えば、本件発明者が先に提案している特許5336921号や特許5363231号に係る振動計測装置における光源、すなわち、所定の周波数間隔のスペクトルであり、互いに変調周波数及び中心周波数が異なり、互いに位相同期され干渉性のある参照光と測定光とを出射する光源部として上記光コム光源300を用いることにより、2つの光コム発生器(OFCG1、OFCG2)320A,320Bから出射される単一の偏波成分の光コムを波長毎に分派する素子を介して波長によって異なる場所に照射して、安定した多点振動計測動作行う振動計測装置の測定系を構築することができる。
ここで、直交モードが混在する偏光成分を透過する光導波路を用いた光コム発生器により得られる光コムを用いる計測装置では、図35に○印を付して示すように、直交偏光成分による透過モード波形に変形が生じることがあり、しかも、発生する場所(主モードに対する相対位置)がばらばらであり、極小部が複数になるため制御の不安定要因になるが、単一の偏光成分のみ通す光導波路を用いることにより、図31に示すように、透過モード波形に変形が生じることがなくなり、光コム発生器としての安定化、光コムを含む計測装置の精度向上、誤差の低減などを図ることができる。
すなわち、光コム発生に直交する偏光成分は光コムを計測に利用する場合に、距離、高さの計測誤差の要因になり、また、光コム発生に直交する偏光成分は、光コム発生器の共振周波数をレーザー周波数に一致させるための制御を不安定にすることがあり、制御点のずれ、制御の発振の原因となり、また、光コムを計測に利用する場合に、距離、高さの計測誤差の要因になっていたが、単一の偏光成分のみ通過させる光導波路を用いて光コム発生を行うことにより、光コム発生に寄与しない直交偏光成分の出力が抑制され、光コム出力の偏光消光比を向上させ、単一偏光度を高めることができ、共振器制御を安定化させ、不要な干渉信号を除去して、光コムを用いた距離計測や形状計測における計測誤差を除去して計測精度の向上、システム全体の信頼性向上等を実現することができる。