[go: up one dir, main page]

JP7078696B2 - Film forming equipment, film forming method, and manufacturing method of electronic devices - Google Patents

Film forming equipment, film forming method, and manufacturing method of electronic devices Download PDF

Info

Publication number
JP7078696B2
JP7078696B2 JP2020195343A JP2020195343A JP7078696B2 JP 7078696 B2 JP7078696 B2 JP 7078696B2 JP 2020195343 A JP2020195343 A JP 2020195343A JP 2020195343 A JP2020195343 A JP 2020195343A JP 7078696 B2 JP7078696 B2 JP 7078696B2
Authority
JP
Japan
Prior art keywords
substrate
adsorption
film forming
voltage
support portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020195343A
Other languages
Japanese (ja)
Other versions
JP2021100107A (en
Inventor
博 石井
一史 柏倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Tokki Corp
Original Assignee
Canon Tokki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190172754A external-priority patent/KR102788970B1/en
Application filed by Canon Tokki Corp filed Critical Canon Tokki Corp
Priority to CN202011518651.1A priority Critical patent/CN113088870B/en
Publication of JP2021100107A publication Critical patent/JP2021100107A/en
Application granted granted Critical
Publication of JP7078696B2 publication Critical patent/JP7078696B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Physical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は、成膜装置、成膜方法及び電子デバイスの製造方法に関するものである。 The present invention relates to a film forming apparatus, a film forming method, and a method for manufacturing an electronic device.

有機EL表示装置(有機ELディスプレイ)の製造においては、有機EL表示装置を構成する有機発光素子(有機EL素子;OLED)を形成する際に、成膜装置の蒸発源から蒸発した蒸着材料を、画素パターンが形成されたマスクを介して、基板に蒸着させることで、有機物層や金属層を形成する。 In the manufacture of an organic EL display device (organic EL display), when forming an organic light emitting element (organic EL element; OLED) constituting the organic EL display device, the vapor deposition material evaporated from the evaporation source of the film forming apparatus is used. An organic layer or a metal layer is formed by depositing a film on a substrate through a mask on which a pixel pattern is formed.

上向蒸着方式(デポアップ)の成膜装置において、蒸発源は成膜装置の真空容器の下部に設けられ、基板は真空容器の上部に配置され、基板の下面に蒸着される。このような上向蒸着方式の成膜装置において、基板は成膜面である下面に形成された有機物層/電極層に損傷を与えないように下面の周縁を基板ホルダの支持部によって支持する。この場合、基板のサイズが大きくなるにつれて、基板ホルダの支持部で支持されていない基板の中央部が基板の自重によって撓み、これが蒸着精度を落とす一つの要因となっている。上向蒸着方式以外の方式の成膜装置においても、また、基板の自重による撓みは生じる可能性がある。 In the upward vapor deposition method (depot-up) film forming apparatus, the evaporation source is provided in the lower part of the vacuum vessel of the film forming apparatus, the substrate is arranged in the upper part of the vacuum vessel, and vapor deposition is carried out on the lower surface of the substrate. In such an upward vapor deposition type film forming apparatus, the substrate supports the peripheral edge of the lower surface by the support portion of the substrate holder so as not to damage the organic substance layer / electrode layer formed on the lower surface which is the film forming surface. In this case, as the size of the substrate increases, the central portion of the substrate that is not supported by the support portion of the substrate holder bends due to the weight of the substrate, which is one of the factors that reduce the vapor deposition accuracy. Even in a film forming apparatus of a method other than the upward thin-film deposition method, bending due to the weight of the substrate may occur.

基板の自重による撓みを低減するための方法として、静電チャックを使う技術が検討されている。つまり、基板の上部に静電チャックを設置し、基板ホルダの支持部によって支持された基板の上面を静電チャックに吸着させることで、基板の中央部が静電チャックの静電引力によって引っ張られるようになり、基板のたわみを低減することができる。 As a method for reducing the bending due to the weight of the substrate, a technique using an electrostatic chuck is being studied. That is, by installing the electrostatic chuck on the upper part of the substrate and adsorbing the upper surface of the substrate supported by the support portion of the substrate holder to the electrostatic chuck, the central portion of the substrate is pulled by the electrostatic attraction of the electrostatic chuck. Therefore, the deflection of the substrate can be reduced.

しかし、このように、静電チャックを使って基板を吸着する方法においては、成膜の後、静電チャックから基板を分離する際に、基板が破損したり、分離に時間がかかって全体的な工程時間(tact time)が増加するなどの問題があり得る。 However, in the method of adsorbing the substrate using the electrostatic chuck as described above, when the substrate is separated from the electrostatic chuck after film formation, the substrate is damaged or it takes time to separate the substrate as a whole. There may be a problem such as an increase in static electricity.

例えば、図9に示すように、基板S分離時に、基板ホルダの支持部220を基板Sから離隔させた状態で静電チャック240に印加されていた吸着電圧をオフ(OFF)にすると、静電チャック240から分離された基板Sが支持部220に落下する際に、基板Sに衝撃が加えられ、基板Sが破損する恐れがある。一方、このような破損防止のため、分離時に、基板支持部220を基板Sに実質的に接触させた状態にしておくと、基板Sが拘束され、基板分離にかかる時間が増加する。 For example, as shown in FIG. 9, when the adsorption voltage applied to the electrostatic chuck 240 is turned off (OFF) with the support portion 220 of the substrate holder separated from the substrate S when the substrate S is separated, electrostatic electricity is generated. When the substrate S separated from the chuck 240 falls on the support portion 220, an impact is applied to the substrate S, and the substrate S may be damaged. On the other hand, in order to prevent such damage, if the substrate support portion 220 is substantially in contact with the substrate S at the time of separation, the substrate S is restrained and the time required for the substrate separation increases.

そこで、本発明は、前記の課題に鑑み、静電チャックからの基板の分離をより効果的に行うことを目的とする。 Therefore, in view of the above problems, it is an object of the present invention to more effectively separate the substrate from the electrostatic chuck.

本発明の一実施形態による成膜装置は、マスクを介して基板に成膜材料を成膜する成膜装置であって、チャンバ内に配置され、前記基板の第1の辺の周縁部を支持する第1基板支持部と、前記チャンバ内に配置され、前記基板の前記第1の辺に対向する第2の辺の周縁部を支持する第2基板支持部と、前記チャンバ内の前記第1及び第2基板支持部の上方に配置され、前記基板を吸着するための基板吸着手段と、前記第1及び第2基板支持部をそれぞれ独立に昇降させる駆動部と、制御部と、を備え、前記制御部は、前記基板吸着手段からの前記基板の分離時に、前記第1基板支持部及び前記第2基板支持部を順次に下降させるように前記駆動部を制御することを特徴とする。
The film forming apparatus according to the embodiment of the present invention is a film forming apparatus for forming a film forming material on a substrate via a mask, and is arranged in a chamber to support the peripheral edge of the first side of the substrate. A first substrate support portion to be used, a second substrate support portion arranged in the chamber and supporting a peripheral edge portion of a second side facing the first side of the substrate, and the first substrate in the chamber. A substrate suction means for sucking the substrate , a drive unit for independently raising and lowering the first and second substrate support portions, and a control unit are provided above the second substrate support portion. The control unit is characterized in that the drive unit is controlled so as to sequentially lower the first substrate support portion and the second substrate support portion when the substrate is separated from the substrate suction means.

本発明の一実施形態による成膜方法は、成膜装置のチャンバ内で、基板に成膜材料を成膜する成膜方法であって、基板吸着手段に吸着された前記基板にマスクを介して成膜材料を成膜する成膜工程と、前記成膜工程の後に、前記基板の第1の辺の周縁部から前記基板の前記第1の辺に対向する第2の辺の周縁部に向かって、順次に、前記基板を前記基板吸着手段から分離する分離工程と、前記第1の辺の周縁部及び前記第2の辺の周縁部の分離が行われるタイミングに合わせて、前記第1の辺の周縁部を支持する第1基板支持部及び前記第2の辺の周縁部を支持する第2基板支持部をそれぞれ独立に昇降させる駆動部によって順次に下降させる下降工程と、を有することを特徴とする。

The film forming method according to the embodiment of the present invention is a film forming method for forming a film forming material on a substrate in a chamber of a film forming apparatus, and the film forming material is adsorbed on the substrate adsorbing means via a mask. After the film forming step of forming the film forming material and the film forming step, the peripheral portion of the first side of the substrate is directed toward the peripheral edge of the second side facing the first side of the substrate. Then, in accordance with the timing of the separation step of separating the substrate from the substrate suction means and the separation of the peripheral portion of the first side and the peripheral portion of the second side, the first Having a lowering step of sequentially lowering the first substrate support portion that supports the peripheral edge portion of the side and the second substrate support portion that supports the peripheral edge portion of the second side by a drive unit that independently raises and lowers the peripheral portion. It is a feature.

本発明の一実施形態による電子デバイスの製造方法は、前記成膜方法を用いて電子デバイスを製造することを特徴とする。 The method for manufacturing an electronic device according to an embodiment of the present invention is characterized in that the electronic device is manufactured by using the film forming method.

本発明によれば、静電チャックからの基板の分離をより効果的に行うことができる。 According to the present invention, the substrate can be more effectively separated from the electrostatic chuck.

なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 The effects described herein are not necessarily limited, and may be any of the effects described in the present disclosure.

図1は、電子デバイスの製造装置の一部の模式図である。FIG. 1 is a schematic diagram of a part of an electronic device manufacturing apparatus. 図2は、本発明の一実施形態による成膜装置の模式図である。FIG. 2 is a schematic view of a film forming apparatus according to an embodiment of the present invention. 図3は、本発明の一実施形態による基板支持ユニットを鉛直方向(Z方向)上方から見た平面図である。FIG. 3 is a plan view of the substrate support unit according to the embodiment of the present invention as viewed from above in the vertical direction (Z direction). 図4aは、本発明の一実施形態による静電チャックの吸着部の構成を説明する図である。FIG. 4a is a diagram illustrating a configuration of a suction portion of an electrostatic chuck according to an embodiment of the present invention. 図4bは、本発明の一実施形態による静電チャックの吸着部の構成を説明する図である。FIG. 4b is a diagram illustrating a configuration of a suction portion of an electrostatic chuck according to an embodiment of the present invention. 図4cは、本発明の一実施形態による静電チャックの吸着部の構成を説明する図である。FIG. 4c is a diagram illustrating a configuration of a suction portion of an electrostatic chuck according to an embodiment of the present invention. 図5は、本発明の一実施形態による基板分離工程を示す図である。FIG. 5 is a diagram showing a substrate separation step according to an embodiment of the present invention. 図6は、本発明の他の実施形態による基板分離工程を示す図である。FIG. 6 is a diagram showing a substrate separation step according to another embodiment of the present invention. 図7は、基板吸着時の偏り現象を模式的に示す概念図である。FIG. 7 is a conceptual diagram schematically showing the bias phenomenon at the time of substrate adsorption. 図8は、電子デバイスを示す模式図である。FIG. 8 is a schematic diagram showing an electronic device. 図9は、従来の基板分離工程を示す図である。FIG. 9 is a diagram showing a conventional substrate separation process.

以下、図面を参照しつつ本発明の好適な実施形態及び実施例を説明する。ただし、以下の実施形態及び実施例は本発明の好ましい構成を例示的に示すものにすぎず、本発明の範囲はそれらの構成に限定されない。また、以下の説明における、装置のハードウェア構成及びソフトウェア構成、処理フロー、製造条件、寸法、材質、形状などは、特に特定的な記載がないかぎりは、本発明の範囲をそれらのみに限定する趣旨のものではない。 Hereinafter, preferred embodiments and examples of the present invention will be described with reference to the drawings. However, the following embodiments and examples merely illustrate preferred configurations of the present invention, and the scope of the present invention is not limited to those configurations. Further, unless otherwise specified, the hardware configuration and software configuration, processing flow, manufacturing conditions, dimensions, materials, shapes, etc. of the apparatus in the following description are limited to those of the present invention. It is not the purpose.

本発明は、基板の表面に各種材料を堆積させて成膜を行う装置に適用することができ、真空蒸着によって所望のパターンの薄膜(材料層)を形成する装置に望ましく適用することができる。基板の材料としては、ガラス、高分子材料のフィルム、金属などの任意の材料を選択することができ、基板は、例えば、ガラス基板上にポリイミドなどのフィルムが積層された基板であってもよい。また、蒸着材料としても、有機材料、金属性材料(金属、金属酸化物など)などの任意の材料を選択してもいい。なお、以下の説明において説明する真空蒸着装置以外にも、スパッタ装置やCVD(Chemical Vapor Deposition)装置を含む成膜装置にも、本発明を適用することができる。本発明の技術は、具体的には、有機電子デバイス(例えば、有機発光素子、薄膜太陽電池)、光学部材などの製造装置に適用可能である。その中でも、蒸着材料を蒸発させてマスクを介して基板に蒸着させることで有機発光素子を形成する有機発光素子の製造装置は、本発明の好ましい適用例の一つである。 The present invention can be applied to an apparatus for depositing various materials on the surface of a substrate to form a film, and can be preferably applied to an apparatus for forming a thin film (material layer) having a desired pattern by vacuum deposition. As the material of the substrate, any material such as glass, a film of a polymer material, and a metal can be selected, and the substrate may be, for example, a substrate in which a film such as polyimide is laminated on a glass substrate. .. Further, as the vapor deposition material, any material such as an organic material and a metallic material (metal, metal oxide, etc.) may be selected. In addition to the vacuum vapor deposition apparatus described in the following description, the present invention can be applied to a film forming apparatus including a sputtering apparatus and a CVD (Chemical Vapor Deposition) apparatus. Specifically, the technique of the present invention can be applied to manufacturing equipment such as organic electronic devices (for example, organic light emitting devices, thin film solar cells), optical members, and the like. Among them, an apparatus for manufacturing an organic light emitting device that forms an organic light emitting device by evaporating a vapor deposition material and depositing it on a substrate via a mask is one of the preferred application examples of the present invention.

<電子デバイスの製造装置>
図1は、電子デバイスの製造装置の一部の構成を模式的に示す平面図である。
<Manufacturing equipment for electronic devices>
FIG. 1 is a plan view schematically showing a configuration of a part of an electronic device manufacturing apparatus.

図1の製造装置は、例えば、スマートフォン用の有機EL表示装置の表示パネルの製造に用いられる。スマートフォン用の表示パネルの場合、例えば、4.5世代の基板(約700mm×約900mm)や6世代のフルサイズ(約1500mm×約1850mm)又はハーフカットサイズ(約1500mm×約925mm)の基板に、有機EL素子の形成のための成膜を行った後、該基板を切り抜いて複数の小さなサイズのパネルに製作する。 The manufacturing apparatus of FIG. 1 is used, for example, for manufacturing a display panel of an organic EL display device for a smartphone. In the case of a display panel for smartphones, for example, on a 4.5 generation substrate (about 700 mm x about 900 mm), a 6 generation full size (about 1500 mm x about 1850 mm) or a half cut size (about 1500 mm x about 925 mm) substrate. After forming a film for forming an organic EL element, the substrate is cut out to produce a plurality of small-sized panels.

電子デバイスの製造装置は、一般的に、複数のクラスタ装置1と、クラスタ装置の間を繋ぐ中継装置とを含む。 The electronic device manufacturing device generally includes a plurality of cluster devices 1 and a relay device that connects the cluster devices.

クラスタ装置1は、基板Sに対する処理(例えば、成膜)を行う複数の成膜装置11と、使用前後のマスクMを収納する複数のマスクストック装置12と、その中央に配置される搬送室13と、を具備する。搬送室13は、図1に示すように、複数の成膜装置11およびマスクストック装置12のそれぞれと接続されている。 The cluster device 1 includes a plurality of film forming devices 11 for processing (for example, film forming) the substrate S, a plurality of mask stock devices 12 for accommodating masks M before and after use, and a transport chamber 13 arranged in the center thereof. And. As shown in FIG. 1, the transport chamber 13 is connected to each of the plurality of film forming apparatus 11 and the mask stock apparatus 12.

搬送室13内には、基板およびマスクを搬送する搬送ロボット14が配置されている。搬送ロボット14は、上流側に配置された中継装置のパス室15から成膜装置11へと基板Sを搬送する。また、搬送ロボット14は、成膜装置11とマスクストック装置12との間でマスクMを搬送する。搬送ロボット14は、例えば、多関節アームに、基板S又はマスクMを保持するロボットハンドが取り付けられた構造を有するロボットである。 In the transport chamber 13, a transport robot 14 that transports the substrate and the mask is arranged. The transfer robot 14 transfers the substrate S from the pass chamber 15 of the relay device arranged on the upstream side to the film forming device 11. Further, the transfer robot 14 transfers the mask M between the film forming apparatus 11 and the mask stock apparatus 12. The transfer robot 14 is, for example, a robot having a structure in which a robot hand for holding a substrate S or a mask M is attached to an articulated arm.

成膜装置11(蒸着装置とも呼ぶ)では、蒸発源に収納された蒸着材料がヒータによって加熱されて蒸発し、マスクを介して基板上に蒸着される。搬送ロボット14との基板Sの受け渡し、基板SとマスクMの相対位置の調整(アライメント)、マスクM上への基板Sの固定、成膜(蒸着)などの一連の成膜プロセスは、成膜装置11によって行われる。 In the film forming apparatus 11 (also referred to as a vapor deposition apparatus), the vapor deposition material stored in the evaporation source is heated by a heater and evaporated, and is vapor-deposited on the substrate via a mask. A series of film forming processes such as transfer of the substrate S to and from the transfer robot 14, adjustment (alignment) of the relative position between the substrate S and the mask M, fixing of the substrate S on the mask M, and film formation (deposited film) are performed. This is done by device 11.

マスクストック装置12には、成膜装置11での成膜工程に使われる新しいマスクと、使用済みのマスクとが、二つのカセットに分けて収納される。搬送ロボット14は、使用済みのマスクを成膜装置11からマスクストック装置12のカセットに搬送し、マスクストック装置12の他のカセットに収納された新しいマスクを成膜装置11に搬送する。 In the mask stock device 12, a new mask used in the film forming process in the film forming apparatus 11 and a used mask are separately stored in two cassettes. The transfer robot 14 transfers the used mask from the film forming apparatus 11 to the cassette of the mask stock device 12, and conveys a new mask stored in another cassette of the mask stock device 12 to the film forming apparatus 11.

クラスタ装置1には、基板Sの流れ方向において上流側からの基板Sを当該クラスタ装置1に伝達するパス室15と、当該クラスタ装置1で成膜処理が完了した基板Sを下流側の他のクラスタ装置に伝えるためのバッファー室16が連結される。搬送室13の搬送ロボット14は、上流側のパス室15から基板Sを受け取って、当該クラスタ装置1内の成膜装置11の一つ(例えば、成膜装置11a)に搬送する。また、搬送ロボット14は、当該クラスタ装置1での成膜処理が完了した基板Sを複数の成膜装置11の一つ(例えば、成膜装置11b)から受け取って、下流側に連結されたバッファー室16に搬送する。 The cluster device 1 includes a path chamber 15 that transmits the board S from the upstream side to the cluster device 1 in the flow direction of the board S, and another board S on the downstream side that has been film-formed by the cluster device 1. A buffer chamber 16 for transmitting to the cluster device is connected. The transfer robot 14 in the transfer chamber 13 receives the substrate S from the pass chamber 15 on the upstream side and transfers it to one of the film forming devices 11 (for example, the film forming device 11a) in the cluster device 1. Further, the transfer robot 14 receives the substrate S for which the film forming process in the cluster device 1 has been completed from one of the plurality of film forming devices 11 (for example, the film forming device 11b), and the buffer connected to the downstream side. Transport to room 16.

バッファー室16とパス室15との間には、基板の向きを変える旋回室17が設置される。旋回室17には、バッファー室16から基板Sを受け取って基板Sを180°回転させ、パス室15に搬送するための搬送ロボット18が設けられる。これにより、上流側のクラスタ装置と下流側のクラスタ装置で基板Sの向きが同じくなり、基板処理が容易になる。 A swivel chamber 17 for changing the direction of the substrate is installed between the buffer chamber 16 and the pass chamber 15. The swivel chamber 17 is provided with a transfer robot 18 for receiving the substrate S from the buffer chamber 16, rotating the substrate S by 180 °, and transporting the substrate S to the pass chamber 15. As a result, the orientation of the substrate S is the same between the cluster device on the upstream side and the cluster device on the downstream side, and the substrate processing becomes easy.

パス室15、バッファー室16、旋回室17は、クラスタ装置間を連結する、いわゆる中継装置であり、クラスタ装置の上流側及び/又は下流側に設置される中継装置は、パス室、バッファー室、旋回室のうち少なくとも1つを含む。 The pass chamber 15, the buffer chamber 16, and the swivel chamber 17 are so-called relay devices that connect the cluster devices, and the relay devices installed on the upstream side and / or the downstream side of the cluster device are the pass room, the buffer room, and the like. Includes at least one of the swivel chambers.

成膜装置11、マスクストック装置12、搬送室13、バッファー室16、旋回室17などは、有機発光素子の製造の過程で、高真空状態に維持される。パス室15は、通常低真空状態に維持されるが、必要に応じて高真空状態に維持されてもいい。 The film forming apparatus 11, the mask stock apparatus 12, the transport chamber 13, the buffer chamber 16, the swivel chamber 17, and the like are maintained in a high vacuum state in the process of manufacturing the organic light emitting element. The pass chamber 15 is usually maintained in a low vacuum state, but may be maintained in a high vacuum state if necessary.

本実施例では、図1を参照して、電子デバイスの製造装置の構成について説明したが、本発明はこれに限定されず、他の種類の装置やチャンバを有してもよく、これらの装置やチャンバ間の配置が変わってもいい。 In the present embodiment, the configuration of the electronic device manufacturing apparatus has been described with reference to FIG. 1, but the present invention is not limited to this, and other types of apparatus and chambers may be provided, and these devices may be provided. And the arrangement between the chambers may change.

以下、成膜装置11の具体的な構成について説明する。 Hereinafter, a specific configuration of the film forming apparatus 11 will be described.

<成膜装置>
図2は、成膜装置11の構成を示す模式図である。以下の説明においては、鉛直方向をZ方向とするXYZ直交座標系を用いる。成膜時に基板Sが水平面(XY平面)と平行となるよう固定された場合、基板Sの短手方向(短辺に平行な方向)をX方向、長手方向(長辺に平行な方向)をY方向とする。また、Z軸まわりの回転角をθで表す。
<Film formation device>
FIG. 2 is a schematic view showing the configuration of the film forming apparatus 11. In the following description, an XYZ Cartesian coordinate system with the vertical direction as the Z direction is used. When the substrate S is fixed so as to be parallel to the horizontal plane (XY plane) at the time of film formation, the lateral direction (direction parallel to the short side) of the substrate S is the X direction, and the longitudinal direction (direction parallel to the long side) is set. It is in the Y direction. Further, the rotation angle around the Z axis is represented by θ.

成膜装置11は、真空雰囲気又は窒素ガスなどの不活性ガス雰囲気に維持される真空容器21と、真空容器21の内部に設けられる、基板支持ユニット22と、マスク支持ユニット23と、静電チャック24と、蒸発源25とを含む。 The film forming apparatus 11 includes a vacuum vessel 21 maintained in a vacuum atmosphere or an atmosphere of an inert gas such as nitrogen gas, a substrate support unit 22 provided inside the vacuum vessel 21, a mask support unit 23, and an electrostatic chuck. 24 and the evaporation source 25.

基板支持ユニット22は、搬送室13に設けられた搬送ロボット14が搬送して来る基板Sを受取って保持する手段であり、基板ホルダとも呼ばれる。基板支持ユニット22は、基板の下面の周縁部を支持する支持部を含む。基板支持ユニット22の支持部の詳細構成については後述する。 The board support unit 22 is a means for receiving and holding the board S carried by the transfer robot 14 provided in the transfer chamber 13, and is also called a board holder. The board support unit 22 includes a support portion that supports the peripheral edge portion of the lower surface of the board. The detailed configuration of the support portion of the board support unit 22 will be described later.

基板支持ユニット22の下方には、マスク支持ユニット23が設けられる。マスク支持ユニット23は、搬送室13に設けられた搬送ロボット14が搬送して来るマスクMを受取って保持する手段であり、マスクホルダとも呼ばれる。 A mask support unit 23 is provided below the board support unit 22. The mask support unit 23 is a means for receiving and holding the mask M transported by the transfer robot 14 provided in the transfer chamber 13, and is also called a mask holder.

マスクMは、基板S上に形成する薄膜パターンに対応する開口パターンを有し、マスク支持ユニット23の上に載置される。特に、スマートフォン用の有機EL素子を製造するのに使われるマスクは、微細な開口パターンが形成された金属製のマスクであり、FMM(Fine Metal Mask)とも呼ぶ。 The mask M has an opening pattern corresponding to the thin film pattern formed on the substrate S, and is placed on the mask support unit 23. In particular, the mask used for manufacturing an organic EL element for a smartphone is a metal mask on which a fine opening pattern is formed, and is also called FMM (Fine Metal Mask).

基板支持ユニット22の上方には、基板を静電引力によって吸着し固定するための静電チャック24が設けられる。静電チャック24は、誘電体(例えば、セラミック材質)マトリックス内に金属電極などの電気回路が埋設された構造を有する。静電チャック24は、クーロン力タイプの静電チャックであってもよいし、ジョンソン・ラーベック力タイプの静電チャックであってもよいし、グラジエント力タイプの静電チャックであってもよい。静電チャック24は、グラジエント力タイプの静電チャックであることが好ましい。静電チャック24がグラジエント力タイプの静電チャックであることによって、基板Sが絶縁性基板である場合であっても、静電チャック24によって良好に吸着することができる。静電チャック24がクーロン力タイプの静電チャックである場合には、金属電極にプラス(+)及びマイナス(-)の電位が印加されると、誘電体マトリックスを通じて基板Sなどの被吸着体に金属電極と反対極性の分極電荷が誘導され、これら間の静電引力によって基板Sが静電チャック24に吸着固定される。 An electrostatic chuck 24 for attracting and fixing the substrate by electrostatic attraction is provided above the substrate support unit 22. The electrostatic chuck 24 has a structure in which an electric circuit such as a metal electrode is embedded in a dielectric (for example, ceramic material) matrix. The electrostatic chuck 24 may be a Coulomb force type electrostatic chuck, a Johnson-Labeck force type electrostatic chuck, or a gradient force type electrostatic chuck. The electrostatic chuck 24 is preferably a gradient force type electrostatic chuck. Since the electrostatic chuck 24 is a gradient force type electrostatic chuck, even when the substrate S is an insulating substrate, it can be satisfactorily adsorbed by the electrostatic chuck 24. When the electrostatic chuck 24 is a Coulomb force type electrostatic chuck, when positive (+) and negative (-) potentials are applied to the metal electrode, it is applied to the object to be adsorbed such as the substrate S through the dielectric matrix. A polarization charge having the opposite polarity to that of the metal electrode is induced, and the substrate S is attracted and fixed to the electrostatic chuck 24 by the electrostatic attraction between them.

静電チャック24は、一つのプレートで形成されてもよく、複数のサブプレートを有するように形成されてもいい。また、一つのプレートで形成される場合にも、その内部に複数の電気回路を含み、一つのプレート内で位置によって静電引力が異なるように制御してもいい。つまり、静電チャックは、埋設された電気回路の構造によって、複数の吸着部モジュールに分けることができる。静電チャック24の吸着部の構成及び吸着電圧印加の制御方式の詳細についても、基板支持ユニット22の支持部の動作制御と共に後述する。 The electrostatic chuck 24 may be formed of one plate or may be formed to have a plurality of sub-plates. Further, even when formed by one plate, a plurality of electric circuits may be included therein and controlled so that the electrostatic attraction is different depending on the position in one plate. That is, the electrostatic chuck can be divided into a plurality of suction unit modules according to the structure of the embedded electric circuit. The configuration of the suction portion of the electrostatic chuck 24 and the details of the control method for applying the suction voltage will be described later together with the operation control of the support portion of the substrate support unit 22.

静電チャック24の上部には、示してないが、成膜時にマスクMに磁力を印加し、マスクMを基板S側に引き寄せて基板Sに密着させるための磁力印加手段を設置することができる。磁力印加手段としてのマグネットは、永久磁石または電磁石からなることができ、複数のモジュールに区画されることができる。 Although not shown, a magnetic force applying means for applying a magnetic force to the mask M at the time of film formation and attracting the mask M to the substrate S side and bringing the mask M into close contact with the substrate S can be installed on the upper portion of the electrostatic chuck 24. .. The magnet as the magnetic force applying means can consist of a permanent magnet or an electromagnet and can be partitioned into a plurality of modules.

また、図2には図示しなかったが、静電チャック24の吸着面とは反対側に基板Sの温度上昇を抑える冷却機構(例えば、冷却板)を設けることで、基板S上に堆積された有機材料の変質や劣化を抑制するようにしてもよい。冷却板は、前記マグネットと一体に形成されることもできる。 Further, although not shown in FIG. 2, by providing a cooling mechanism (for example, a cooling plate) for suppressing the temperature rise of the substrate S on the side opposite to the suction surface of the electrostatic chuck 24, the particles are deposited on the substrate S. The deterioration or deterioration of the organic material may be suppressed. The cooling plate can also be formed integrally with the magnet.

蒸発源25は、基板に成膜される蒸着材料が収納されるるつぼ(不図示)、るつぼを加熱するためのヒータ(不図示)、蒸発源からの蒸発レートが一定になるまで蒸着材料が基板に飛散することを阻むシャッタ(不図示)などを含む。蒸発源25は、点(point)蒸発源や線状(linear)蒸発源など、用途に従って多様な構成を有することができる。 The evaporation source 25 includes a crucible (not shown) in which the vapor-film-deposited material formed on the substrate is stored, a heater for heating the crucible (not shown), and the vapor-filmed material on the substrate until the evaporation rate from the evaporation source becomes constant. Includes shutters (not shown) that prevent scattering. The evaporation source 25 can have various configurations depending on the application, such as a point evaporation source and a linear evaporation source.

図2に図示しなかったが、成膜装置11は、基板に蒸着された膜の厚さを測定するための膜厚モニタ(不図示)及び膜厚算出ユニット(不図示)を含む。 Although not shown in FIG. 2, the film forming apparatus 11 includes a film thickness monitor (not shown) and a film thickness calculation unit (not shown) for measuring the thickness of the film deposited on the substrate.

真空容器21の上部外側(大気側)には、基板Zアクチュエータ26、マスクZアクチュエータ27、静電チャックZアクチュエータ28、位置調整機構29などが設けられる。これらのアクチュエータと位置調整機構は、例えば、モータとボールねじ、或いはモータとリニアガイドなどで構成される。基板Zアクチュエータ26は、基板支持ユニット22を昇降(Z方向移動)させるための駆動手段である。基板Zアクチュエータ26の駆動による基板支持ユニット22の昇降制御の詳細については後述する。マスクZアクチュエータ27は、マスク支持ユニット23を昇降(Z方向移動)させるための駆動手段である。静電チャックZアクチュエータ28は、静電チャック24を昇降(Z方向移動)させるための駆動手段である。 A substrate Z actuator 26, a mask Z actuator 27, an electrostatic chuck Z actuator 28, a position adjusting mechanism 29, and the like are provided on the upper outer side (atmosphere side) of the vacuum vessel 21. These actuators and the position adjusting mechanism are composed of, for example, a motor and a ball screw, or a motor and a linear guide. The board Z actuator 26 is a driving means for raising and lowering (moving in the Z direction) the board support unit 22. The details of the elevating control of the substrate support unit 22 by driving the substrate Z actuator 26 will be described later. The mask Z actuator 27 is a driving means for raising and lowering (moving in the Z direction) the mask support unit 23. The electrostatic chuck Z actuator 28 is a driving means for raising and lowering (moving in the Z direction) the electrostatic chuck 24.

位置調整機構29は、静電チャック24と基板S、および/または基板SとマスクM間の、位置ずれを調整(アライメント)するための駆動手段である。つまり、位置調整機構29は、基板支持ユニット22及びマスク支持ユニット23に対して、静電チャック24を水平面に平行な面内でX方向、Y方向、θ方向のうちの少なくとも一つの方向に相対的に移動/回転させるための水平駆動機構である。なお、本実施形態では、基板支持ユニット22及びマスク支持ユニット23の水平面内での移動は固定し、静電チャック24をX、Y、θ方向に移動させるように位置調整機構を構成しているが、本発明はこれに限定されず、静電チャック24の水平方向への移動は固定し、基板支持ユニット22とマスク支持ユニット23をXYθ方向に移動させるように位置調整機構を構成してもよい。 The position adjusting mechanism 29 is a driving means for adjusting (aligning) the positional deviation between the electrostatic chuck 24 and the substrate S and / or between the substrate S and the mask M. That is, the position adjusting mechanism 29 relatives the electrostatic chuck 24 to the substrate support unit 22 and the mask support unit 23 in at least one of the X direction, the Y direction, and the θ direction in a plane parallel to the horizontal plane. It is a horizontal drive mechanism for moving / rotating. In this embodiment, the movement of the substrate support unit 22 and the mask support unit 23 in the horizontal plane is fixed, and the position adjustment mechanism is configured to move the electrostatic chuck 24 in the X, Y, and θ directions. However, the present invention is not limited to this, and even if the position adjustment mechanism is configured so that the movement of the electrostatic chuck 24 in the horizontal direction is fixed and the substrate support unit 22 and the mask support unit 23 are moved in the XYθ direction. good.

真空容器21の外側上面には、上述した駆動機構の他に、真空容器21の上面に設けられた透明窓を介して、基板S及びマスクMに形成されたアライメントマークを撮影するためのアライメント用カメラ20a、20bが設置される。アライメント用カメラ20a、20bによって撮影された画像から基板S上のアライメントマークとマスクM上のアライメントマークを認識することで、それぞれのXY位置やXY面内での相対ずれを計測することができる。 On the outer upper surface of the vacuum container 21, in addition to the drive mechanism described above, for alignment for photographing the alignment marks formed on the substrate S and the mask M through the transparent window provided on the upper surface of the vacuum container 21. Cameras 20a and 20b are installed. By recognizing the alignment mark on the substrate S and the alignment mark on the mask M from the images taken by the alignment cameras 20a and 20b, it is possible to measure the respective XY positions and relative deviations in the XY plane.

基板SとマスクMとの間のアライメントは、大まかに位置合わせを行う第1位置調整工程である第1アライメント(「ラフアライメント(rough alignment)」とも称す)と、高精度に位置合わせを行う第2位置調整工程である第2アライメント(「ファインアライメント(fine alignment)」とも称す)の2段階のアライメントを実施することできる。この場合、低解像度だが広視野の第1アライメント用のカメラ20aと、狭視野だが高解像の第2アライメント用のカメラ20bの2種類のカメラを用いるとよい。基板Sとマスク120のそれぞれについて、対向する一対の辺の2箇所に付されたアライメントマークを2台の第1アライメント用カメラ20aで測定し、基板S及びマスク120の四隅に付されたアライメントマークを4台の第2アライメント用カメラ20bで測定する。アライメントマーク及びその測定用カメラの数は、特に限定されず、例えば、ファインアライメントの場合、基板S及びマスク120の対向する二隅に付されたマークを2台のカメラで測定するようにしても良い。 The alignment between the substrate S and the mask M is the first alignment (also referred to as "rough alignment"), which is the first position adjustment step for roughly aligning, and the first alignment for performing high-precision alignment. It is possible to carry out a two-step alignment of a second alignment (also referred to as “fine alignment”), which is a two-position adjustment step. In this case, it is preferable to use two types of cameras, a low-resolution but wide-field first alignment camera 20a and a narrow-field but high-resolution second alignment camera 20b. For each of the substrate S and the mask 120, the alignment marks attached to two points on the pair of opposite sides are measured by the two first alignment cameras 20a, and the alignment marks attached to the four corners of the substrate S and the mask 120 are measured. Is measured by four second alignment cameras 20b. The number of alignment marks and measurement cameras thereof is not particularly limited. For example, in the case of fine alignment, the marks attached to the two opposite corners of the substrate S and the mask 120 may be measured by two cameras. good.

成膜装置11は、制御部(不図示)を具備する。制御部は、基板Sの搬送及びアライメント、蒸発源25の制御、成膜の制御などの機能を有する。制御部は、例えば、プロセッサ、メモリー、ストレージ、I/Oなどを持つコンピューターによって構成可能である。この場合、制御部の機能はメモリーまたはストレージに格納されたプログラムをプロセッサが実行することにより実現される。コンピューターとしては、汎用のパーソナルコンピューターを使用してもよく、組込み型のコンピューターまたはPLC(programmable logic controller)を使用してもよい。または、制御部の機能の一部または全部をASICやFPGAのような回路で構成してもよい。また、成膜装置ごとに制御部が設置されていてもよく、一つの制御部が複数の成膜装置を制御するように構成してもよい。 The film forming apparatus 11 includes a control unit (not shown). The control unit has functions such as transfer and alignment of the substrate S, control of the evaporation source 25, and control of film formation. The control unit can be configured by, for example, a computer having a processor, memory, storage, I / O, and the like. In this case, the function of the control unit is realized by the processor executing the program stored in the memory or the storage. As the computer, a general-purpose personal computer may be used, or an embedded computer or a PLC (programmable logical controller) may be used. Alternatively, a part or all of the functions of the control unit may be configured by a circuit such as an ASIC or FPGA. Further, a control unit may be installed for each film forming apparatus, or one control unit may be configured to control a plurality of film forming apparatus.

<基板支持ユニット>
基板支持ユニット22は、基板の下面の周縁部を支持する支持部を含む。図3は、基板支持ユニット22を鉛直方向(Z方向)上方から見た平面図であり、理解の便宜のために、基板Sが基板支持ユニット22上に載置され支持される様子を示しており、その他、基板S上部に配置される静電チャック24や基板Zアクチュエータ26などの駆動機構などは図示を省略している。
<Board support unit>
The substrate support unit 22 includes a support portion that supports the peripheral edge portion of the lower surface of the substrate. FIG. 3 is a plan view of the substrate support unit 22 viewed from above in the vertical direction (Z direction), and shows how the substrate S is placed and supported on the substrate support unit 22 for convenience of understanding. In addition, the driving mechanisms such as the electrostatic chuck 24 and the substrate Z actuator 26 arranged on the upper part of the substrate S are not shown.

示すように、基板支持ユニット22を構成する支持部は、それぞれ独立して昇降制御可能な支持部221、222を含み、これらの支持部221、222は、基板Sの対向する二つの辺の周縁部を支持するように設けられる。具体的に、基板Sの対向する二つの辺のうち一側辺(例えば、第1長辺)に沿って第1の支持部221が設置され、他側辺(第2長辺)に沿って第2の支持部222が設置される。図3には、第1の支持部221及び第2の支持部222が、それぞれ当該辺の方向に長く延びる一つの支持部材からなる構成を図示したが、第1の支持部221及び第2の支持部222は、当該辺の方向に沿って複数の支持部材が配置されて、それぞれ、第1の支持部221及び第2の支持部222を構成するようにしても良い。 As shown, the support portions constituting the substrate support unit 22 include support portions 221 and 222 that can be independently lifted and controlled, and these support portions 221 and 222 are peripheral edges of two opposing sides of the substrate S. It is provided to support the part. Specifically, the first support portion 221 is installed along one side side (for example, the first long side) of the two opposing sides of the substrate S, and along the other side side (second long side). A second support portion 222 is installed. FIG. 3 shows a configuration in which the first support portion 221 and the second support portion 222 are each composed of one support member extending long in the direction of the side thereof, but the first support portion 221 and the second support portion 221 are shown. In the support portion 222, a plurality of support members may be arranged along the direction of the side to form a first support portion 221 and a second support portion 222, respectively.

基板支持ユニット22をZ軸方向に昇降駆動するための駆動機構である前述した基板Zアクチュエータ26は、これらの各基板支持部221、222に対応して設置される。つまり、基板Sの対向する二つの長辺に対応する位置に2つの基板Zアクチュエータが設置され、それぞれ対応する基板支持部221、222に連結される。そして、これら各基板Zアクチュエータは、制御部により、対応する各基板支持部221,222をそれぞれ独立して昇降可能に制御される。 The above-mentioned substrate Z actuator 26, which is a drive mechanism for driving the substrate support unit 22 up and down in the Z-axis direction, is installed corresponding to each of the substrate support portions 221, 222. That is, two board Z actuators are installed at positions corresponding to the two opposite long sides of the board S, and are connected to the corresponding board support portions 221 and 222, respectively. Then, each of these substrate Z actuators is controlled by the control unit so that the corresponding substrate support portions 221 and 222 can be raised and lowered independently.

<静電チャック24の吸着部の構成>
図4a~図4cを参照して本発明の一実施形態による静電チャックの吸着部の構成について説明する。
<Structure of suction part of electrostatic chuck 24>
The configuration of the suction portion of the electrostatic chuck according to the embodiment of the present invention will be described with reference to FIGS. 4a to 4c.

図4aは、本実施形態の静電チャックシステム30の概念的なブロック図であり、図4bは、静電チャック24の模式的断面図であり、図4cは、静電チャック24の模式的な平面図である。 4a is a conceptual block diagram of the electrostatic chuck system 30 of the present embodiment, FIG. 4b is a schematic cross-sectional view of the electrostatic chuck 24, and FIG. 4c is a schematic diagram of the electrostatic chuck 24. It is a plan view.

本実施形態の静電チャックシステム30は、図4aに示したように、静電チャック24と、電圧印加部31と、電圧制御部32とを含む。 As shown in FIG. 4a, the electrostatic chuck system 30 of the present embodiment includes an electrostatic chuck 24, a voltage application unit 31, and a voltage control unit 32.

電圧印加部31は、静電チャック24の電極部に静電引力を発生させるための電圧を印加する。 The voltage application unit 31 applies a voltage for generating an electrostatic attraction to the electrode unit of the electrostatic chuck 24.

電圧制御部32は、静電チャックシステム30の吸着及び分離工程または成膜装置11の成膜工程の進行に応じて、電圧印加部31により電極部に加えられる電圧の大きさ、電圧の印加開始時点、電圧の維持時間、電圧の印加順番などを制御する。電圧制御部32は、例えば、静電チャック24の電極部に含まれる複数のサブ電極部241~249への電圧印加をサブ電極部別に独立的に制御することができる。本実施形態では、電圧制御部32が成膜装置11の制御部とは別途に具現されるが、本発明はこれに限定されず、成膜装置11の制御部に統合されてもいい。 The voltage control unit 32 starts applying the magnitude and voltage of the voltage applied to the electrode unit by the voltage application unit 31 according to the progress of the adsorption and separation process of the electrostatic chuck system 30 or the film formation process of the film forming apparatus 11. It controls the time point, voltage maintenance time, voltage application order, and so on. For example, the voltage control unit 32 can independently control the voltage application to the plurality of sub-electrode units 241 to 249 included in the electrode unit of the electrostatic chuck 24 for each sub-electrode unit. In the present embodiment, the voltage control unit 32 is embodied separately from the control unit of the film forming apparatus 11, but the present invention is not limited to this and may be integrated into the control unit of the film forming apparatus 11.

静電チャック24は、吸着面に被吸着体(例えば、基板S)を吸着するための静電吸着力を発生させる電極部を含み、電極部は複数のサブ電極部241~249を含むことができる。例えば、本実施形態の静電チャック24は、図4cに示したように、静電チャック24の長手方向(Y方向)および/または、静電チャック24の短手方向(X方向)に沿って、分割された複数のサブ電極部241~249を含む。 The electrostatic chuck 24 includes an electrode portion that generates an electrostatic adsorption force for adsorbing an object to be adsorbed (for example, the substrate S) on the adsorption surface, and the electrode portion may include a plurality of sub-electrode portions 241 to 249. can. For example, the electrostatic chuck 24 of the present embodiment has, as shown in FIG. 4c, along the longitudinal direction (Y direction) of the electrostatic chuck 24 and / or along the lateral direction (X direction) of the electrostatic chuck 24. , Includes a plurality of divided sub-electrode portions 241 to 249.

各々のサブ電極部は、静電吸着力を発生させるためにプラス(第1極性)及びマイナス(第2極性)の電位が印加される電極対33を含む。例えば、それぞれの電極対33は、基板吸着電圧としてプラス電位が印加される第1電極331と、基板吸着電圧としてマイナス電位が印加される第2電極332とを含む。基板分離電圧を印加するとは、基板吸着電圧と同じ極性で絶対値が小さい電圧、または、基板吸着電圧とは異なる極性の電圧を、第1電極331と第2電極332とに印加することである。第1電極331と第2電極332との電位差を0とすることも、基板分離電圧を印加することの一例である。この場合を、基板吸着電圧をオフするとも呼ぶ。 Each sub-electrode portion comprises an electrode pair 33 to which positive (first polar) and negative (second polar) potentials are applied to generate electrostatic adsorption forces. For example, each electrode pair 33 includes a first electrode 331 to which a positive potential is applied as a substrate adsorption voltage, and a second electrode 332 to which a negative potential is applied as a substrate adsorption voltage. Applying the substrate separation voltage means applying a voltage having the same polarity as the substrate adsorption voltage and having a small absolute value, or a voltage having a polarity different from the substrate adsorption voltage to the first electrode 331 and the second electrode 332. .. Setting the potential difference between the first electrode 331 and the second electrode 332 to 0 is also an example of applying the substrate separation voltage. This case is also referred to as turning off the substrate adsorption voltage.

第1電極331及び第2電極332は、図4cに図示したように、それぞれ櫛形状を有する。例えば、第1電極331及び第2電極332は、それぞれ複数の櫛歯部と、複数の櫛歯部に連結される基部とを含む。各電極331,332の基部は櫛歯部に電位を供給し、複数の櫛歯部は、被吸着体との間で静電吸着力を生じさせる。一つのサブ電極部において、第1電極331の各櫛歯部は、第2電極332の各櫛歯部と対向するように、交互に配置される。このように、各電極331,332の各櫛歯部が対向しかつ互いに入り組んだ構成とすることで、異なる電位が印加される電極間の間隔を狭くすることができ、大きな不平等電界を形成し、グラジエント力によって基板Sを吸着することができる。 The first electrode 331 and the second electrode 332 each have a comb shape as shown in FIG. 4c. For example, the first electrode 331 and the second electrode 332 each include a plurality of comb tooth portions and a base connected to the plurality of comb tooth portions. The base of each of the electrodes 331 and 332 supplies an electric potential to the comb tooth portion, and the plurality of comb tooth portions generate an electrostatic adsorption force with the object to be adsorbed. In one sub-electrode portion, each comb tooth portion of the first electrode 331 is alternately arranged so as to face each comb tooth portion of the second electrode 332. By forming the comb teeth of the electrodes 331 and 332 facing each other and intricately intertwined with each other in this way, the distance between the electrodes to which different potentials are applied can be narrowed, and a large unequal electric field is formed. However, the substrate S can be adsorbed by the gradient force.

本実施例においては、静電チャック24のサブ電極部241~249の各電極331,332が櫛形状を有すると説明したが、本発明はそれに限定されず、被吸着体との間で静電引力を発生させることができる限り、多様な形状を持つことができる。 In the present embodiment, it has been described that the electrodes 331 and 332 of the sub-electrode portions 241 to 249 of the electrostatic chuck 24 have a comb shape, but the present invention is not limited to this, and electrostatic electricity is generated between the electrodes and the object to be adsorbed. It can have a variety of shapes as long as it can generate an attractive force.

本実施形態の静電チャック24は、複数のサブ電極部に対応する複数の吸着部を有する。例えば、本実施例の静電チャック24は、図4cに図示したように、9つのサブ電極部241~249に対応する9つの吸着部を有するが、これに限定されず、基板Sの吸着をより精緻に制御するため、他の個数の吸着部を有してもいい。 The electrostatic chuck 24 of the present embodiment has a plurality of suction portions corresponding to a plurality of sub-electrode portions. For example, as shown in FIG. 4c, the electrostatic chuck 24 of the present embodiment has nine suction portions corresponding to the nine sub-electrode portions 241 to 249, but the suction is not limited to this, and the substrate S can be attracted. In order to control it more precisely, it may have another number of adsorption portions.

複数の吸着部は、物理的に一つのプレートが複数の電極部を持つことで具現されてもよく、物理的に分割された複数のプレートそれぞれが一つまたはそれ以上の電極部を持つことで具現されてもいい。図4cに示した実施例において、複数の吸着部それぞれが複数のサブ電極部それぞれに対応するように具現されてもよく、一つの吸着部が複数のサブ電極部を含むように具現されてもいい。 The plurality of adsorption portions may be embodied by physically one plate having a plurality of electrode portions, or by having each of the plurality of physically divided plates having one or more electrode portions. It may be embodied. In the embodiment shown in FIG. 4c, each of the plurality of adsorption portions may be embodied so as to correspond to each of the plurality of sub-electrode portions, or one adsorption portion may be embodied so as to include the plurality of sub-electrode portions. Good.

例えば、電圧制御部32によるサブ電極部241~249への電圧の印加を制御することで、後述するように、基板Sの吸着進行方向(X方向)と交差する方向(Y方向)に配置された3つのサブ電極部241、244、247が一つの吸着部を成すようにすることができる。すなわち、3つのサブ電極部241、244、247それぞれは、独立的に電圧制御が可能であるが、これら3つのサブ電極部241、244、247に同時に電圧が印加されるように制御することで、これら3つの電極部241、244、247が一つの吸着部として機能するようにすることができる。複数の吸着部それぞれに独立的に基板の吸着が行われることができる限り、その具体的な物理的構造及び電気回路的構造は変わり得る。 For example, by controlling the application of voltage to the sub-electrode units 241 to 249 by the voltage control unit 32, the substrate S is arranged in a direction (Y direction) intersecting the adsorption traveling direction (X direction) of the substrate S, as will be described later. The three sub-electrode portions 241 and 244, 247 can form one suction portion. That is, each of the three sub-electrode units 241 and 244, 247 can independently control the voltage, but by controlling so that the voltage is applied to these three sub-electrode units 241 and 244, 247 at the same time. , These three electrode portions 241 and 244, 247 can be made to function as one suction portion. As long as the substrate can be independently adsorbed to each of the plurality of adsorption portions, its specific physical structure and electric circuit structure may change.

<静電チャック24からの基板S分離工程>
以下、図5を参照して、本発明の一実施形態に係る基板分離の構成を説明する。
<Substrate S separation process from electrostatic chuck 24>
Hereinafter, the configuration of the substrate separation according to the embodiment of the present invention will be described with reference to FIG.

本発明は、静電チャックから基板を分離する際に、静電チャックに印加されていた吸着電圧を吸着領域別に順次にオフ(OFF)(または、分離電圧を吸着領域別に印加)させ、かつ、この静電チャックの吸着領域の制御と基板支持部の駆動制御を相互連動させることを特徴とする。具体的には、基板支持部を基板に接触させた状態で静電チャックの吸着領域を制御することによって一側の領域から部分的に分離が開始するようにし、この分離タイミングに合わせて、分離し始めた側から基板支持部も順次に下降させることを特徴とする。 In the present invention, when the substrate is separated from the electrostatic chuck, the adsorption voltage applied to the electrostatic chuck is sequentially turned off (OFF) for each adsorption region (or the separation voltage is applied for each adsorption region), and The feature is that the control of the suction region of the electrostatic chuck and the drive control of the substrate support portion are interlocked with each other. Specifically, by controlling the adsorption region of the electrostatic chuck with the substrate support portion in contact with the substrate, separation is partially started from the region on one side, and separation is performed according to this separation timing. It is characterized in that the substrate support portion is also sequentially lowered from the side where the static electricity is started.

図5は、このような静電チャックの吸着領域の制御と基板支持部の駆動制御との相互連動に基づいて、基板Sを一側の周縁部から対向する他側の周縁部に向かって順次に分離していく詳細工程を図示する。ここでは、静電チャック24の長辺方向(Y方向)に沿って配置される3つのサブ電極部241、244、247が第1の吸着部(C1)を構成し、静電チャック24の中央部の3つのサブ電極部242、245、248が第2の吸着部(C2)を構成し、残りの3つのサブ電極部243、246、249が第3の吸着部(C3)を構成することを前提として説明する。 In FIG. 5, the substrate S is sequentially moved from the peripheral edge portion on one side toward the peripheral edge portion on the opposite side based on the mutual interlocking between the control of the suction region of the electrostatic chuck and the drive control of the substrate support portion. The detailed process of separation is illustrated. Here, three sub-electrode portions 241 and 244, 247 arranged along the long side direction (Y direction) of the electrostatic chuck 24 form a first suction portion (C1), and are in the center of the electrostatic chuck 24. The three sub-electrode portions 242, 245, and 248 of the unit form the second adsorption portion (C2), and the remaining three sub-electrode portions 243, 246, and 249 form the third adsorption portion (C3). Will be explained on the premise of.

静電チャック24の全吸着領域(第1吸着部C1、第2吸着部C2、第3吸着部C3)に基板吸着電圧(ΔV1)が印加されて基板Sの全面が静電チャック24に吸着され、両側の基板支持部221、222も両方とも上昇し基板Sの両側周縁部と接触している状態で(図5a)、電圧制御部32は、第1の支持部221に対応する位置に配置された静電チャック24のサブ電極部、すなわち、第1の吸着部(C1)を構成する3つのサブ電極部241、244,247に印加されていた基板吸着電圧(ΔV1)をオフさせる(図5b)。これにより、第1吸着部(C1)に対応する基板Sの一側周縁部から部分的に分離が開始する。この分離開始タイミングに合わせて、基板Sの当該周縁部を支持する第1の支持部221を下降させる。 A substrate adsorption voltage (ΔV1) is applied to the entire adsorption region of the electrostatic chuck 24 (first adsorption portion C1, second adsorption portion C2, third adsorption portion C3), and the entire surface of the substrate S is attracted to the electrostatic chuck 24. The voltage control unit 32 is arranged at a position corresponding to the first support unit 221 in a state where both the substrate support portions 221 and 222 on both sides are also raised and in contact with the peripheral edges on both sides of the substrate S (FIG. 5a). The substrate adsorption voltage (ΔV1) applied to the sub-electrode portion of the electrostatic chuck 24, that is, the three sub-electrode portions 241 and 244, 247 constituting the first suction portion (C1) is turned off (FIG. 5b). As a result, separation starts partially from the one-side peripheral edge portion of the substrate S corresponding to the first adsorption portion (C1). At the same time as the separation start timing, the first support portion 221 that supports the peripheral portion of the substrate S is lowered.

続いて、電圧制御部32は、第2吸着部(C2)を構成する静電チャック24の中央部の3つのサブ電極部242、245、248に印加されていた基板吸着電圧(ΔV1)をオフさせるように制御し、これにより、一側周縁部から始まった基板分離が、対向する他側周縁部に向かって基板Sの中央部を含む基板Sの概略半分に該当する領域まで行われる(図5c)。 Subsequently, the voltage control unit 32 turns off the substrate adsorption voltage (ΔV1) applied to the three sub-electrode portions 242, 245, and 248 in the central portion of the electrostatic chuck 24 constituting the second adsorption portion (C2). As a result, the substrate separation starting from the peripheral edge portion on one side is performed toward the opposite peripheral edge portion on the other side up to a region corresponding to approximately half of the substrate S including the central portion of the substrate S (FIG. FIG. 5c).

最後に、電圧制御部32は、第3吸着部(C3)を構成する3つのサブ電極部243、246、249に印加されていた基板吸着電圧(ΔV1)をオフさせるように制御し、これにより、第3吸着部(C3)に対応する他側周縁部での基板分離が開始するタイミングに合わせて、基板Sの他側周縁部を支持する第2の支持部222を下降させる(図5d)。これにより、基板分離が完了する。 Finally, the voltage control unit 32 controls to turn off the substrate adsorption voltage (ΔV1) applied to the three sub-electrode units 243, 246, and 249 constituting the third adsorption unit (C3). , The second support portion 222 that supports the other side peripheral edge portion of the substrate S is lowered at the timing when the substrate separation at the other side peripheral edge portion corresponding to the third suction portion (C3) starts (FIG. 5d). .. This completes the substrate separation.

図5の各左側図面は、以上の分離進行過程を示す断面図であり、図5の各右側図面は、以上の各電圧印加段階での基板Sの分離状態を概念的に示した上面図(静電チャック24側から見た上面図)である。各段階での基板吸着領域を斜線で示している。 Each left side drawing of FIG. 5 is a cross-sectional view showing the above separation progress process, and each right side drawing of FIG. 5 is a top view conceptually showing the separation state of the substrate S at each of the above voltage application stages. It is a top view (top view) seen from the electrostatic chuck 24 side. The substrate adsorption area at each stage is shown by diagonal lines.

このように、本発明の一実施形態では、静電チャックから基板を分離する際に、静電チャックの吸着領域と基板支持部の駆動を相互連動させて制御することによって、基板を破損しないようにスムーズに分離させることができ、分離にかかる時間も短縮することが可能となる。 As described above, in one embodiment of the present invention, when the substrate is separated from the electrostatic chuck, the suction region of the electrostatic chuck and the drive of the substrate support are controlled by interlocking with each other so as not to damage the substrate. It can be separated smoothly and the time required for separation can be shortened.

図6は、本発明の他の一実施形態による基板分離の構成を説明するための図である。 FIG. 6 is a diagram for explaining a configuration of substrate separation according to another embodiment of the present invention.

本実施形態では、以上説明した基板分離時の静電チャックの吸着領域および基板支持部の駆動制御を、基板吸着時の吸着進行方向と関連付けて設定する。 In the present embodiment, the suction region of the electrostatic chuck and the drive control of the board support portion at the time of substrate separation described above are set in association with the suction progress direction at the time of substrate suction.

つまり、前述した実施形態では、基板分離工程について主に説明したが、基板吸着の際にも、同様に、静電チャックの吸着領域の制御、または基板支持部の駆動制御、またはこれら両方の制御を通じて、一側の領域から他側の領域に向かって順次に基板を吸着させていくことができる。 That is, in the above-described embodiment, the substrate separation step has been mainly described, but in the case of substrate adsorption, similarly, control of the adsorption region of the electrostatic chuck, drive control of the substrate support portion, or both of these are controlled. Through this, the substrate can be sequentially adsorbed from the region on one side toward the region on the other side.

例えば、基板Sを静電チャック24に吸着させる際に、静電チャック24に吸着電圧を印加した状態で、基板支持部221、222のうち第1の支持部221を先に上昇させて第1の支持部221によって支持された基板Sの一側周縁部から先に吸着が開始するようにし、続いて、対向する他側の第2の支持部222を上昇させ、吸着が基板Sの中央部を経て他側周縁部に向かって進行するようにすることができる。 For example, when the substrate S is attracted to the electrostatic chuck 24, the first support portion 221 of the substrate support portions 221 and 222 is raised first while the adsorption voltage is applied to the electrostatic chuck 24. Suction starts from one side peripheral portion of the substrate S supported by the support portion 221 of the above, and then the second support portion 222 on the opposite side is raised so that the adsorption starts from the central portion of the substrate S. It is possible to proceed toward the peripheral edge on the other side via.

また、基板分離時と同様に、静電チャック24に印加される基板吸着電圧を各吸着領域(第1吸着部C1、第2吸着部C2、第3吸着部C3)別に順次に印加することによって、基板Sの一側から他側に向かって順次に吸着が行われるようにすることもでき、このような吸着電圧の領域別印加と、前述した基板支持部の駆動制御とを連動させることもできる。 Further, as in the case of substrate separation, the substrate adsorption voltage applied to the electrostatic chuck 24 is sequentially applied to each adsorption region (first adsorption portion C1, second adsorption portion C2, third adsorption portion C3). It is also possible to sequentially perform adsorption from one side of the substrate S toward the other side, and it is also possible to link the application of the adsorption voltage for each region with the drive control of the substrate support portion described above. can.

図6a~図6cは、このような過程を通じて、基板Sの一側周縁部(第1吸着部C1)で吸着が開始され(図6a)、基板Sの中央部(第2の吸着部C2)を経て(図6b)、反対側の他側周縁部(第3吸着部C3)まで吸着が行われていく(図6c)工程を示している。 6a to 6c show that through such a process, adsorption is started at one side peripheral portion (first adsorption portion C1) of the substrate S (FIG. 6a), and the central portion of the substrate S (second adsorption portion C2). (FIG. 6b), the process of adsorbing to the other peripheral edge portion (third adsorption portion C3) on the opposite side is shown (FIG. 6c).

図6d~図6fは、こうして吸着が完了した基板Sに対して成膜を行った後、基板Sを静電チャック24から再び分離する工程を図示したもので、前述の実施形態で説明したように、静電チャック24に印加されていた基板吸着電圧(ΔV1)をオフさせる制御を吸着領域別に順次に制御するとともに、この基板分離のタイミングに合わせて、分離が開始する側の基板支持部を先に降下させ、その後、他側の基板支持部を下降させるように制御する。 6d to 6f show a step of forming a film on the substrate S for which adsorption has been completed and then separating the substrate S from the electrostatic chuck 24 again, as described in the above-described embodiment. In addition, the control to turn off the substrate adsorption voltage (ΔV1) applied to the electrostatic chuck 24 is sequentially controlled for each adsorption region, and the substrate support portion on the side where the separation starts is set according to the timing of the substrate separation. It is controlled to lower the substrate support portion on the other side first.

この基板分離時の静電チャック24の吸着領域の制御およびこれと連動した基板支持部221、222の駆動制御の基本動作は、前述した実施形態と同様なので、その詳細については説明を省略する。本実施形態で注目されたいことは、基板分離時の静電チャックの吸着領域および基板支持部の駆動制御の進行方向を、基板吸着時の吸着進行方向と逆方向に設定する点である。すなわち、図6d~図6fに示すように、基板分離時には、図6a~図6cの吸着進行方向(第1の支持部221によって支持された基板Sの一側領域から第2の支持部222によって支持された基板Sの他側領域に向かう方向)とは反対方向(第2の支持部222によって支持された基板Sの他側領域から第1の支持部221によって支持された基板Sの一側領域に向かう方向)に分離が行われるように、各吸着領域および基板支持部の駆動制御を行う。 Since the basic operation of the control of the suction region of the electrostatic chuck 24 and the drive control of the board support portions 221 and 222 linked thereto at the time of substrate separation is the same as that of the above-described embodiment, the details thereof will be omitted. What should be noted in this embodiment is that the suction region of the electrostatic chuck and the traveling direction of the drive control of the substrate support portion at the time of substrate separation are set in the direction opposite to the adsorption traveling direction at the time of substrate adsorption. That is, as shown in FIGS. 6d to 6f, at the time of substrate separation, the adsorption traveling direction of FIGS. 6a to 6c (from one side region of the substrate S supported by the first support portion 221 to the second support portion 222). One side of the substrate S supported by the first support portion 221 from the other side region of the substrate S supported by the second support portion 222 in the direction opposite to the direction (direction toward the other side region of the supported substrate S). Drive control is performed for each adsorption region and the substrate support portion so that the separation is performed in the direction toward the region).

基板を吸着する際に、静電チャックの吸着領域の制御、または基板支持部の順次駆動により一側の領域から他方の領域に向かって順次に基板を吸着させていく場合には、基板中央部に存在するたわみの影響で基板が吸着進行方向に偏った状態で静電チャックに吸着されることがあり得る。図7は、このような偏り現象を模式的に示した概念図である。基板の位置にこのような偏りが発生すると、次の工程であるマスクとのアライメント工程での移動量が増加したり、偏りが過度な場合には、以降の工程への搬送過程などで基板が落下する恐れもある。 When the substrate is adsorbed, the central portion of the substrate is used when the substrate is adsorbed sequentially from one region to the other by controlling the adsorption region of the electrostatic chuck or sequentially driving the substrate support portion. Due to the influence of the deflection existing in the substrate, the substrate may be adsorbed by the electrostatic chuck in a state of being biased in the adsorption advancing direction. FIG. 7 is a conceptual diagram schematically showing such a bias phenomenon. If such a bias occurs in the position of the substrate, the amount of movement in the alignment process with the mask, which is the next step, increases, or if the bias is excessive, the substrate is transferred to the subsequent processes. There is a risk of falling.

本実施形態では、基板分離時の吸着領域および基板支持部の駆動制御を、吸着進行と逆方向にすることで、基板吸着時に発生し得る基板の偏りを解消することができる。つまり、分離を吸着と逆方向にし、静電チャック24への吸着時に発生した吸着進行方向への偏りを、分離時に逆方向に還元させることによって、静電チャックから分離された基板が基板支持部に偏りなく元の位置に載置することができる。したがって、本実施形態によると、基板の偏りによるアライメント移動量の増加、基板落下などを防止することができる。 In the present embodiment, by setting the drive control of the adsorption region and the substrate support portion at the time of substrate separation in the direction opposite to the adsorption progress, it is possible to eliminate the bias of the substrate that may occur at the time of substrate adsorption. That is, the substrate separated from the electrostatic chuck is a substrate support portion by making the separation in the opposite direction to the adsorption and reducing the bias in the adsorption traveling direction generated at the time of adsorption to the electrostatic chuck 24 in the opposite direction at the time of separation. It can be placed in its original position without any bias. Therefore, according to the present embodiment, it is possible to prevent an increase in the amount of alignment movement due to the bias of the substrate, a drop of the substrate, and the like.

<成膜プロセス>
以下、本実施形態による成膜装置を用いた成膜方法について説明する。
<Film formation process>
Hereinafter, a film forming method using the film forming apparatus according to the present embodiment will be described.

真空容器21内のマスク支持ユニット23にマスクMが支持された状態で、基板Sが真空容器21内に搬入される。以上説明した基板吸着工程を 通じて、静電チャック24に基板Sを吸着させる。次いで、基板SとマスクMのアライメントを行った後、基板SとマスクMの相対位置ずれ量が所定の閾値より小さくなると、磁力印加手段を下降させ、基板SとマスクMを密着させた後、成膜材料を基板Sに成膜する。所望の厚さに成膜した後、磁力印加手段を上昇させて、マスクMを分離し、以上説明した基板分離工程を通じて静電チャック24から基板Sを分離した後、搬出する。 The substrate S is carried into the vacuum container 21 with the mask M supported by the mask support unit 23 in the vacuum container 21. The substrate S is adsorbed to the electrostatic chuck 24 through the substrate adsorption step described above. Next, after the substrate S and the mask M are aligned, when the relative positional deviation amount between the substrate S and the mask M becomes smaller than a predetermined threshold value, the magnetic force applying means is lowered to bring the substrate S and the mask M into close contact with each other. The film-forming material is formed on the substrate S. After forming a film to a desired thickness, the magnetic force applying means is raised to separate the mask M, and the substrate S is separated from the electrostatic chuck 24 through the substrate separation step described above, and then carried out.

<電子デバイスの製造方法>
次に、本実施形態の成膜装置を用いた電子デバイスの製造方法の一例を説明する。以下、電子デバイスの例として有機EL表示装置の構成及び製造方法を例示する。
<Manufacturing method of electronic devices>
Next, an example of a method for manufacturing an electronic device using the film forming apparatus of this embodiment will be described. Hereinafter, the configuration and manufacturing method of the organic EL display device will be illustrated as an example of the electronic device.

まず、製造する有機EL表示装置について説明する。図8(a)は有機EL表示装置60の全体図、図8(b)は1画素の断面構造を表している。 First, the organic EL display device to be manufactured will be described. FIG. 8A shows an overall view of the organic EL display device 60, and FIG. 8B shows a cross-sectional structure of one pixel.

図8(a)に示すように、有機EL表示装置60の表示領域61には、発光素子を複数備える画素62がマトリクス状に複数配置されている。詳細は後で説明するが、発光素子のそれぞれは、一対の電極に挟まれた有機層を備えた構造を有している。なお、ここでいう画素とは、表示領域61において所望の色の表示を可能とする最小単位を指している。本実施例にかかる有機EL表示装置の場合、互いに異なる発光を示す第1発光素子62R、第2発光素子62G、第3発光素子62Bの組合せにより画素62が構成されている。画素62は、赤色発光素子と緑色発光素子と青色発光素子の組合せで構成されることが多いが、黄色発光素子とシアン発光素子と白色発光素子の組み合わせでもよく、少なくとも1色以上であれば特に制限されるものではない。 As shown in FIG. 8A, a plurality of pixels 62 including a plurality of light emitting elements are arranged in a matrix in the display area 61 of the organic EL display device 60. Although the details will be described later, each of the light emitting elements has a structure including an organic layer sandwiched between a pair of electrodes. The pixel referred to here refers to the smallest unit capable of displaying a desired color in the display area 61. In the case of the organic EL display device according to this embodiment, the pixel 62 is composed of a combination of the first light emitting element 62R, the second light emitting element 62G, and the third light emitting element 62B, which emit light different from each other. The pixel 62 is often composed of a combination of a red light emitting element, a green light emitting element, and a blue light emitting element, but may be a combination of a yellow light emitting element, a cyan light emitting element, and a white light emitting element, and is particularly limited to at least one color. It is not limited.

図8(b)は、図8(a)のA-B線における部分断面模式図である。画素62は、基板63上に、陽極64と、正孔輸送層65と、発光層66R、66G、66Bのいずれかと、電子輸送層67と、陰極68と、を備える有機EL素子を有している。これらのうち、正孔輸送層65、発光層66R、66G、66B、電子輸送層67が有機層に当たる。また、本実施形態では、発光層66Rは赤色を発する有機EL層、発光層66Gは緑色を発する有機EL層、発光層66Bは青色を発する有機EL層である。発光層66R、66G、66Bは、それぞれ赤色、緑色、青色を発する発光素子(有機EL素子と記述する場合もある)に対応するパターンに形成されている。また、陽極64は、発光素子ごとに分離して形成されている。正孔輸送層65と電子輸送層67と陰極68は、複数の発光素子62R、62G、62Bと共通で形成されていてもよいし、発光素子毎に形成されていてもよい。なお、陽極64と陰極68とが異物によってショートするのを防ぐために、陽極64間に絶縁層69が設けられている。さらに、有機EL層は水分や酸素によって劣化するため、水分や酸素から有機EL素子を保護するための保護層70が設けられている。 FIG. 8B is a schematic partial cross-sectional view taken along the line AB of FIG. 8A. The pixel 62 has an organic EL element having an anode 64, a hole transport layer 65, any of the light emitting layers 66R, 66G, 66B, an electron transport layer 67, and a cathode 68 on the substrate 63. There is. Of these, the hole transport layer 65, the light emitting layer 66R, 66G, 66B, and the electron transport layer 67 correspond to the organic layer. Further, in the present embodiment, the light emitting layer 66R is an organic EL layer that emits red, the light emitting layer 66G is an organic EL layer that emits green, and the light emitting layer 66B is an organic EL layer that emits blue. The light emitting layers 66R, 66G, and 66B are formed in a pattern corresponding to a light emitting element (sometimes referred to as an organic EL element) that emits red, green, and blue, respectively. Further, the anode 64 is formed separately for each light emitting element. The hole transport layer 65, the electron transport layer 67, and the cathode 68 may be formed in common with the plurality of light emitting elements 62R, 62G, 62B, or may be formed for each light emitting element. An insulating layer 69 is provided between the anode 64 in order to prevent the anode 64 and the cathode 68 from being short-circuited by foreign matter. Further, since the organic EL layer is deteriorated by moisture and oxygen, a protective layer 70 for protecting the organic EL element from moisture and oxygen is provided.

図8(b)では正孔輸送層65や電子輸送層67が一つの層で示されているが、有機EL表示素子の構造によって、正孔ブロック層や電子ブロック層を含む複数の層で形成されてもよい。また、陽極64と正孔輸送層65との間には陽極64から正孔輸送層65への正孔の注入が円滑に行われるようにすることのできるエネルギーバンド構造を有する正孔注入層を形成することもできる。同様に、陰極68と電子輸送層67の間にも電子注入層が形成されることができる。 In FIG. 8B, the hole transport layer 65 and the electron transport layer 67 are shown as one layer, but they are formed of a plurality of layers including the hole block layer and the electron block layer due to the structure of the organic EL display element. May be done. Further, between the anode 64 and the hole transport layer 65, a hole injection layer having an energy band structure capable of smoothly injecting holes from the anode 64 into the hole transport layer 65 is provided. It can also be formed. Similarly, an electron injection layer can be formed between the cathode 68 and the electron transport layer 67.

次に、有機EL表示装置の製造方法の例について具体的に説明する。 Next, an example of a method for manufacturing an organic EL display device will be specifically described.

まず、有機EL表示装置を駆動するための回路(不図示)および陽極64が形成された基板63を準備する。 First, a circuit board (not shown) for driving the organic EL display device and a substrate 63 on which the anode 64 is formed are prepared.

陽極64が形成された基板63の上にアクリル樹脂をスピンコートで形成し、アクリル樹脂をリソグラフィ法により、陽極64が形成された部分に開口が形成されるようにパターニングし絶縁層69を形成する。この開口部が、発光素子が実際に発光する発光領域に相当する。 Acrylic resin is formed by spin coating on the substrate 63 on which the anode 64 is formed, and the acrylic resin is patterned by a lithography method so that an opening is formed in the portion where the anode 64 is formed to form an insulating layer 69. .. This opening corresponds to a light emitting region where the light emitting element actually emits light.

絶縁層69がパターニングされた基板63を第1の有機材料成膜装置に搬入し、基板保持ユニット及び静電チャックにて基板を保持し、正孔輸送層65を、表示領域の陽極64の上に共通する層として成膜する。正孔輸送層65は真空蒸着により成膜される。実際には正孔輸送層65は表示領域61よりも大きなサイズに形成されるため、高精細なマスクは不要である。 The substrate 63 in which the insulating layer 69 is patterned is carried into the first organic material film forming apparatus, the substrate is held by the substrate holding unit and the electrostatic chuck, and the hole transport layer 65 is placed on the anode 64 in the display region. A film is formed as a layer common to the above. The hole transport layer 65 is formed by vacuum deposition. In reality, the hole transport layer 65 is formed in a size larger than that of the display region 61, so that a high-definition mask is unnecessary.

次に、正孔輸送層65までが形成された基板63を第2の有機材料成膜装置に搬入し、基板保持ユニット及び静電チャックにて保持する。基板とマスクとのアライメントを行い、基板をマスク上に載置して、基板63の赤色を発する素子を配置する部分に、赤色を発する発光層66Rを成膜する。 Next, the substrate 63 on which the hole transport layer 65 is formed is carried into the second organic material film forming apparatus and held by the substrate holding unit and the electrostatic chuck. The substrate and the mask are aligned, the substrate is placed on the mask, and the light emitting layer 66R that emits red is formed on the portion of the substrate 63 where the element that emits red is arranged.

発光層66Rの成膜と同様に、第3の有機材料成膜装置により緑色を発する発光層66Gを成膜し、さらに第4の有機材料成膜装置により青色を発する発光層66Bを成膜する。発光層66R、66G、66Bの成膜が完了した後、第5の成膜装置により表示領域61の全体に電子輸送層67を成膜する。電子輸送層67は、3色の発光層66R、66G、66Bに共通の層として形成される。 Similar to the film formation of the light emitting layer 66R, the light emitting layer 66G that emits green is formed by the third organic material film forming apparatus, and the light emitting layer 66B that emits blue is further formed by the fourth organic material forming apparatus. .. After the film formation of the light emitting layers 66R, 66G, and 66B is completed, the electron transport layer 67 is formed on the entire display region 61 by the fifth film forming apparatus. The electron transport layer 67 is formed as a layer common to the light emitting layers 66R, 66G, and 66B of three colors.

電子輸送層67まで形成された基板を金属性蒸着材料成膜装置で移動させて陰極68を成膜する。 The substrate formed up to the electron transport layer 67 is moved by a metallic vapor deposition material film forming apparatus to form a cathode 68.

その後プラズマCVD装置に移動して保護層70を成膜して、有機EL表示装置60が完成する。 After that, it moves to a plasma CVD device to form a protective layer 70, and the organic EL display device 60 is completed.

絶縁層69がパターニングされた基板63を成膜装置に搬入してから保護層70の成膜が完了するまでは、水分や酸素を含む雰囲気にさらしてしまうと、有機EL材料からなる発光層が水分や酸素によって劣化してしまうおそれがある。従って、本例において、成膜装置間の基板の搬入搬出は、真空雰囲気または不活性ガス雰囲気の下で行われる。 From the time when the substrate 63 in which the insulating layer 69 is patterned is carried into the film forming apparatus until the film formation of the protective layer 70 is completed, when the substrate 63 is exposed to an atmosphere containing moisture or oxygen, a light emitting layer made of an organic EL material is formed. It may be deteriorated by moisture and oxygen. Therefore, in this example, the loading and unloading of the substrate between the film forming apparatus is performed in a vacuum atmosphere or an inert gas atmosphere.

前記実施例は本発明の一例を現わしたことで、本発明は前記実施例の構成に限定されないし、その技術思想の範囲内で適宜に変形しても良い。 Since the above-described embodiment shows an example of the present invention, the present invention is not limited to the configuration of the above-mentioned embodiment, and may be appropriately modified within the scope of the technical idea.

11:成膜装置、22:基板支持ユニット、221、222:支持部、23:マスク支持ユニット、24:静電チャック、241~249:サブ電極部
11: Film forming apparatus, 22: Substrate support unit, 221, 222: Support part, 23: Mask support unit, 24: Electrostatic chuck, 241-249: Sub-electrode part

Claims (16)

マスクを介して基板に成膜材料を成膜する成膜装置であって、
チャンバ内に配置され、前記基板の第1の辺の周縁部を支持する第1基板支持部と、
前記チャンバ内に配置され、前記基板の前記第1の辺に対向する第2の辺の周縁部を支持する第2基板支持部と、
前記チャンバ内の前記第1及び第2基板支持部の上方に配置され、前記基板を吸着するための基板吸着手段と、
前記第1及び第2基板支持部をそれぞれ独立に昇降させる駆動部と、
制御部と、を備え、
前記制御部は、前記基板吸着手段からの前記基板の分離時に、前記第1基板支持部及び前記第2基板支持部を順次に下降させるように前記駆動部を制御することを特徴とする成膜装置。
A film forming device that deposits a film forming material on a substrate via a mask.
A first substrate support portion that is arranged in the chamber and supports the peripheral edge portion of the first side of the substrate, and a first substrate support portion.
A second substrate support portion arranged in the chamber and supporting a peripheral edge portion of a second side facing the first side of the substrate, and a second substrate support portion.
A substrate adsorption means for adsorbing the substrate, which is arranged above the first and second substrate support portions in the chamber, and
A drive unit that raises and lowers the first and second substrate support portions independently, and
With a control unit,
The film forming unit is characterized in that the control unit controls the drive unit so as to sequentially lower the first substrate support portion and the second substrate support portion when the substrate is separated from the substrate adsorption means. Device.
前記制御部は、前記第1の辺の周縁部から前記第2の辺の周縁部に向かって順次に分離が行われるように前記基板吸着手段を制御するとともに、前記第1の辺の周縁部で分離が行われるタイミングに合わせて前記第1基板支持部を先に下降させ、その後、前記第2の辺の周縁部で分離が行われるタイミングに合わせて前記第2基板支持部を下降させるように制御することを特徴とする請求項1に記載の成膜装置。 The control unit controls the substrate adsorption means so that separation is sequentially performed from the peripheral edge portion of the first side toward the peripheral edge portion of the second side, and the peripheral edge portion of the first side. The first substrate support portion is lowered first according to the timing at which the separation is performed, and then the second substrate support portion is lowered at the timing when the separation is performed at the peripheral edge portion of the second side. The film forming apparatus according to claim 1, wherein the film forming apparatus is controlled to the above. 前記基板吸着手段は、吸着領域に印加される吸着電圧によって前記基板を吸着する静電チャックであり、前記吸着領域として、前記吸着電圧の印加状態を独立して制御可能な分割された複数の吸着領域を有し、
前記制御部は、前記基板の分離時、前記複数の吸着領域に印加されていた前記吸着電圧が前記第1の辺の周縁部から前記第2の辺の周縁部に向かう方向に順次にオフされるように制御することを特徴とする請求項1に記載の成膜装置。
The substrate adsorption means is an electrostatic chuck that adsorbs the substrate by an adsorption voltage applied to the adsorption region, and as the adsorption region, a plurality of divided adsorption states in which the application state of the adsorption voltage can be independently controlled. Has an area and
When the substrate is separated, the control unit sequentially turns off the adsorption voltage applied to the plurality of adsorption regions in the direction from the peripheral edge of the first side toward the peripheral edge of the second side. The film forming apparatus according to claim 1, wherein the film forming apparatus is controlled so as to be the same.
前記制御部は、前記基板吸着手段への前記基板の吸着時、前記第2の辺の周縁部から前記第1の辺の周縁部に向かって順次に吸着が行われるように前記基板吸着手段または前記第1及び第2基板支持部を制御することを特徴とする請求項1に記載の成膜装置。 When the substrate is adsorbed to the substrate adsorption means, the control unit is the substrate adsorption means or the substrate adsorption means so that adsorption is sequentially performed from the peripheral edge portion of the second side toward the peripheral edge portion of the first side. The film forming apparatus according to claim 1, wherein the first and second substrate support portions are controlled. 前記基板吸着手段は、吸着領域に印加される吸着電圧によって前記基板を吸着する静電チャックであり、前記吸着領域として、前記吸着電圧の印加状態を独立して制御可能な分割された複数の吸着領域を有し、
前記制御部は、前記基板の吸着時、前記複数の吸着領域に前記第2の辺の周縁部から前記第1の辺の周縁部に向かう方向に順次に前記吸着電圧が印加されるように制御することを特徴とする請求項4に記載の成膜装置。
The substrate adsorption means is an electrostatic chuck that adsorbs the substrate by an adsorption voltage applied to the adsorption region, and as the adsorption region, a plurality of divided adsorption states in which the application state of the adsorption voltage can be independently controlled. Has an area and
At the time of adsorption of the substrate, the control unit controls so that the adsorption voltage is sequentially applied to the plurality of adsorption regions in the direction from the peripheral edge portion of the second side toward the peripheral edge portion of the first side. The film forming apparatus according to claim 4, wherein the film forming apparatus is to be used.
前記制御部は、前記基板の吸着時、前記第2基板支持部、前記第1基板支持部の順に上昇させて、前記第2基板支持部が前記第1基板支持部よりも先に前記基板吸着手段に近接するように制御することを特徴とする請求項4に記載の成膜装置。 When the substrate is adsorbed, the control unit is raised in the order of the second substrate support portion and the first substrate support portion, and the second substrate support portion is adsorbed to the substrate before the first substrate support portion. The film forming apparatus according to claim 4, wherein the film forming apparatus is controlled so as to be close to the means. マスクを介して基板に成膜材料を成膜する成膜装置であって、
チャンバ内に配置され、前記基板の第1の辺の周縁部を支持する第1基板支持部と、
前記チャンバ内に配置され、前記基板の前記第1の辺に対向する第2の辺の周縁部を支持する第2基板支持部と、
前記チャンバ内の前記第1及び第2基板支持部の上方に配置され、静電気力によって前記基板を吸着するための基板吸着手段と、を備え、
前記基板吸着手段は、前記第1の辺の周縁部を吸着する第1吸着電極部と、前記第2の辺の周縁部を吸着する第2吸着電極部と、を含み、
前記第1吸着電極部及び前記第2吸着電極部のそれぞれは、吸着電圧としてプラスの電圧が印加される第1電極と、前記吸着電圧としてマイナスの電圧が印加される第2電極と、を含み、
前記基板吸着手段からの前記基板の分離時に、前記第1吸着電極部に分離電圧が印加され、かつ、前記第2吸着電極部に前記吸着電圧が印加された第1分離状態において、前記第1基板支持部前記第2基板支持部に対して独立に下降し、
前記分離電圧が印加された状態は、前記第1電極に、マイナスの電圧または前記吸着電圧より絶対値の小さいプラスの電圧が印加され、前記第2電極に、プラスの電圧または前記吸着電圧より絶対値の小さいマイナスの電圧が印加された状態、及び、前記第1電極と前記第2電極との間に電位差がない状態を含むことを特徴とする成膜装置。
A film forming device that deposits a film forming material on a substrate via a mask.
A first substrate support portion that is arranged in the chamber and supports the peripheral edge portion of the first side of the substrate, and a first substrate support portion.
A second substrate support portion arranged in the chamber and supporting a peripheral edge portion of a second side facing the first side of the substrate, and a second substrate support portion.
A substrate adsorption means, which is arranged above the first and second substrate supports in the chamber and for adsorbing the substrate by electrostatic force, is provided.
The substrate adsorption means includes a first adsorption electrode portion that adsorbs the peripheral edge portion of the first side, and a second adsorption electrode portion that adsorbs the peripheral edge portion of the second side.
Each of the first adsorption electrode portion and the second adsorption electrode portion includes a first electrode to which a positive voltage is applied as an adsorption voltage and a second electrode to which a negative voltage is applied as the adsorption voltage. ,
In the first separation state in which the separation voltage is applied to the first adsorption electrode portion and the adsorption voltage is applied to the second adsorption electrode portion when the substrate is separated from the substrate adsorption means, the first The substrate support portion descends independently of the second substrate support portion ,
In the state where the separation voltage is applied, a negative voltage or a positive voltage having an absolute value smaller than the adsorption voltage is applied to the first electrode, and a positive voltage or an absolute voltage higher than the adsorption voltage is applied to the second electrode. A film forming apparatus comprising a state in which a negative voltage having a small value is applied and a state in which there is no potential difference between the first electrode and the second electrode .
前記第1基板支持部が降下した後に、前記第1吸着電極部及び前記第2吸着電極部の両方に前記分離電圧が印加された第2分離状態において、前記第2基板支持部を下降させることを特徴とする請求項7に記載の成膜装置。 After the first substrate support portion is lowered, the second substrate support portion is lowered in the second separation state in which the separation voltage is applied to both the first suction electrode portion and the second suction electrode portion. The film forming apparatus according to claim 7 . 前記第1分離状態となる前に、前記第1吸着電極部及び前記第2吸着電極部の両方に前記吸着電圧が印加された吸着状態において、前記第1基板支持部及び前記第2基板支持部のそれぞれが前記基板吸着手段に吸着された前記基板に接していることを特徴とする請求項7または8に記載の成膜装置。 The first substrate support portion and the second substrate support portion in the adsorption state in which the adsorption voltage is applied to both the first adsorption electrode portion and the second adsorption electrode portion before the first separation state is reached. The film forming apparatus according to claim 7 or 8 , wherein each of the above is in contact with the substrate adsorbed by the substrate adsorption means. 前記基板吸着手段への前記基板の吸着時に、前記第2吸着電極部に前記吸着電圧を印加し、その後に、前記第1吸着電極部に前記吸着電圧を印加することを特徴とする請求項7乃至請求項9のいずれか一項に記載の成膜装置。 7. The invention is characterized in that, when the substrate is adsorbed to the substrate adsorption means, the adsorption voltage is applied to the second adsorption electrode portion, and then the adsorption voltage is applied to the first adsorption electrode portion. The film forming apparatus according to any one of claims 9 . 前記第2吸着電極部に前記吸着電圧を印加した後であって、前記第1吸着電極部に前記吸着電圧を印加する前に、前記第2基板支持部を前記第1基板支持部に対して独立に上昇させることを特徴とする請求項9に記載の成膜装置。 After applying the adsorption voltage to the second adsorption electrode portion and before applying the adsorption voltage to the first adsorption electrode portion, the second substrate support portion is attached to the first substrate support portion . The film forming apparatus according to claim 9 , wherein the film forming apparatus is raised independently. 前記第1吸着電極部に前記吸着電圧を印加した後に、前記第1基板支持部を上昇させることを特徴とする請求項11に記載の成膜装置。 The film forming apparatus according to claim 11 , wherein the first substrate support portion is raised after the adsorption voltage is applied to the first adsorption electrode portion. 前記基板吸着手段は、前記第1吸着電極部と前記第2吸着電極部との間に配置された少なくとも1つの第3吸着電極部を含むことを特徴とする請求項7乃至請求項12のいずれか一項に記載の成膜装置。 Any of claims 7 to 12 , wherein the substrate adsorption means includes at least one third adsorption electrode portion arranged between the first adsorption electrode portion and the second adsorption electrode portion. The film forming apparatus according to item 1. 成膜装置のチャンバ内で、基板に成膜材料を成膜する成膜方法であって、
基板吸着手段に吸着された前記基板にマスクを介して成膜材料を成膜する成膜工程と、
前記成膜工程の後に、前記基板の第1の辺の周縁部から前記基板の前記第1の辺に対向する第2の辺の周縁部に向かって、順次に、前記基板を前記基板吸着手段から分離する分離工程と、
前記第1の辺の周縁部及び前記第2の辺の周縁部の分離が行われるタイミングに合わせて、前記第1の辺の周縁部を支持する第1基板支持部及び前記第2の辺の周縁部を支持する第2基板支持部をそれぞれ独立に昇降させる駆動部によって順次に下降させる下降工程と、を有することを特徴とする成膜方法。
A film forming method for forming a film forming material on a substrate in the chamber of a film forming apparatus.
A film forming step of forming a film forming material on the substrate adsorbed by the substrate adsorbing means via a mask, and a film forming process.
After the film forming step, the substrate is sequentially adsorbed on the substrate from the peripheral edge of the first side of the substrate toward the peripheral edge of the second side facing the first side of the substrate. Separation process to separate from
The first substrate support portion that supports the peripheral edge portion of the first side and the second side surface are aligned with the timing at which the peripheral edge portion of the first side and the peripheral edge portion of the second side are separated. A film forming method comprising: a lowering step of sequentially lowering a second substrate supporting portion that supports a peripheral edge portion by a driving portion that independently raises and lowers each .
成膜装置のチャンバ内で、基板に成膜材料を成膜する成膜方法であって、
基板吸着手段の有する、前記基板の第1の辺の周縁部を吸着する第1吸着電極部と、前記基板の前記第1の辺に対向する第2の辺の周縁部を吸着する第2吸着電極部とに吸着電圧を印加することで、前記基板を前記基板吸着手段に吸着する吸着工程と、
前記吸着工程の後に、前記基板吸着手段に吸着された前記基板にマスクを介して成膜材料を成膜する成膜工程と、
前記成膜工程の後に、前記第1吸着電極部に分離電圧を印加する、または、前記第1吸着電極部に電圧を印加しない状態とする分離工程と、
前記分離工程の後に、前記第1の辺の周縁部を支持する第1基板支持部、及び、前記第2の辺の周縁部を支持する第2基板支持部を互いに独立に駆動する駆動部を用いて、前記第1基板支持部を、前記第2基板支持部に対して独立して下降させる下降工程と、を有することを特徴とする成膜方法。
A film forming method for forming a film forming material on a substrate in the chamber of a film forming apparatus.
The first adsorption electrode portion of the substrate adsorption means for adsorbing the peripheral edge of the first side of the substrate and the second adsorption for adsorbing the peripheral edge of the second side facing the first side of the substrate. A suction step of sucking the substrate to the substrate suction means by applying a suction voltage to the electrode portion,
After the adsorption step, a film forming step of forming a film forming material on the substrate adsorbed by the substrate adsorption means via a mask, and a film forming step.
After the film forming step, a separation step in which a separation voltage is applied to the first adsorption electrode portion or no voltage is applied to the first adsorption electrode portion.
After the separation step, a drive unit that independently drives the first substrate support portion that supports the peripheral edge portion of the first side and the second substrate support portion that supports the peripheral edge portion of the second side is provided. A film forming method comprising a lowering step of independently lowering the first substrate support portion with respect to the second substrate support portion .
請求項14または請求項15に記載の成膜方法を用いて、電子デバイスを製造することを特徴とする電子デバイスの製造方法。
A method for manufacturing an electronic device, which comprises manufacturing an electronic device by using the film forming method according to claim 14 .
JP2020195343A 2019-12-23 2020-11-25 Film forming equipment, film forming method, and manufacturing method of electronic devices Active JP7078696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011518651.1A CN113088870B (en) 2019-12-23 2020-12-21 Film forming apparatus, film forming method, and method for manufacturing electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190172754A KR102788970B1 (en) 2019-12-23 Film forming apparatus, film forming method and manufacturing method of electronic device
KR10-2019-0172754 2019-12-23

Publications (2)

Publication Number Publication Date
JP2021100107A JP2021100107A (en) 2021-07-01
JP7078696B2 true JP7078696B2 (en) 2022-05-31

Family

ID=76541385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020195343A Active JP7078696B2 (en) 2019-12-23 2020-11-25 Film forming equipment, film forming method, and manufacturing method of electronic devices

Country Status (3)

Country Link
JP (1) JP7078696B2 (en)
KR (1) KR20240011213A (en)
CN (1) CN113088870B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017220537A (en) 2016-06-07 2017-12-14 株式会社Screenラミナテック Method and device for separating workpiece comprising carrier substrate and resin layer
JP2019102801A (en) 2017-11-29 2019-06-24 キヤノントッキ株式会社 Film forming apparatus and method of manufacturing organic EL display device using the same
JP2019117926A (en) 2017-12-27 2019-07-18 キヤノントッキ株式会社 Electrostatic chuck, film forming apparatus, substrate suction method, substrate peeling method, film forming method, and method of manufacturing electronic device
JP2019216230A5 (en) 2018-11-27 2022-01-06

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3948325B2 (en) * 2002-04-02 2007-07-25 松下電器産業株式会社 Film substrate processing method
KR101960194B1 (en) * 2017-11-29 2019-03-19 캐논 톡키 가부시키가이샤 Film forming apparatus, film forming method and manufacturing method of organic el display device
KR102039233B1 (en) * 2017-12-26 2019-11-26 캐논 톡키 가부시키가이샤 Electrostatic chuck, film forming apparatus including electrostatic chuck, substrate holding and separating method, film forming method including the same, and manufacturing method of electronic device using the same
KR102427823B1 (en) * 2018-06-11 2022-07-29 캐논 톡키 가부시키가이샤 Electrostatic chuck system, film forming apparatus, adsorption process, film forming method and electronic device manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017220537A (en) 2016-06-07 2017-12-14 株式会社Screenラミナテック Method and device for separating workpiece comprising carrier substrate and resin layer
JP2019102801A (en) 2017-11-29 2019-06-24 キヤノントッキ株式会社 Film forming apparatus and method of manufacturing organic EL display device using the same
JP2019117926A (en) 2017-12-27 2019-07-18 キヤノントッキ株式会社 Electrostatic chuck, film forming apparatus, substrate suction method, substrate peeling method, film forming method, and method of manufacturing electronic device
JP2019216230A5 (en) 2018-11-27 2022-01-06

Also Published As

Publication number Publication date
CN113088870B (en) 2023-09-12
JP2021100107A (en) 2021-07-01
KR20240011213A (en) 2024-01-25
CN113088870A (en) 2021-07-09
KR20210080802A (en) 2021-07-01

Similar Documents

Publication Publication Date Title
JP7278541B2 (en) Electrostatic chuck system, film forming apparatus, adsorption method, film forming method, and electronic device manufacturing method
JP7190997B2 (en) Adsorption and alignment method, adsorption system, film formation method, film formation apparatus, and electronic device manufacturing method
JP7024044B2 (en) Film forming equipment, film forming method using this, and manufacturing method of electronic devices
CN110783248B (en) Electrostatic chuck system, film forming apparatus, suction and film forming method, and method for manufacturing electronic device
JP2023026436A (en) Adsorption device, position adjustment method for mask and substrate and deposition method
JP2020070491A (en) Alignment device, film deposition, alignment method, film deposition method, and electronic device manufacturing method
JP7069280B2 (en) Film forming equipment, film forming method, and manufacturing method of electronic devices
JP7078694B2 (en) Film forming equipment, film forming method, and manufacturing method of electronic devices
JP7007688B2 (en) Adsorption device, film forming device, adsorption method, film forming method and manufacturing method of electronic device
JP7021318B2 (en) Film forming equipment and control method of film forming equipment
JP7078696B2 (en) Film forming equipment, film forming method, and manufacturing method of electronic devices
JP7253367B2 (en) Electrostatic chuck system, film forming apparatus, adsorption method, film forming method, and electronic device manufacturing method
JP7262221B2 (en) Electrostatic chuck system, film forming apparatus, adsorption method, film forming method, and electronic device manufacturing method
JP2020070490A (en) Adsorption and alignment method, adsorption system, film deposition method, film deposition device, and electronic device manufacturing method
KR102788970B1 (en) Film forming apparatus, film forming method and manufacturing method of electronic device
JP2020050952A (en) Electrostatic chuck system, film deposition device, adsorbed body separation method, film deposition method, and electronic device manufacturing method
CN113005398B (en) Film forming apparatus, film forming method, and method for manufacturing electronic device
CN113005403B (en) Film forming apparatus, film forming method using the same, and method for manufacturing electronic device
KR102481907B1 (en) Film forming apparatus, film forming method and manufacturinh method of electronic device
KR20200014103A (en) Electrostatic chuk system, film formation apparatus, suction method, film formation method, and manufacturing method of electronic device
JP7162845B2 (en) Electrostatic chuck system, film forming apparatus, adsorption and separation method, film forming method, and electronic device manufacturing method
JP7224167B2 (en) Electrostatic chuck system, film forming apparatus, adsorption method, film forming method, and electronic device manufacturing method
JP7224172B2 (en) ELECTROSTATIC CHUCK SYSTEM, FILM FORMING APPARATUS, ATTACHED BODY SEPARATING METHOD, FILM FORMING METHOD, AND ELECTRONIC DEVICE MANUFACTURING METHOD
CN113005397A (en) Film forming apparatus, film forming method, and method for manufacturing electronic device
JP2020053662A (en) Electrostatic chuck system, deposition device, adsorbed body separation method, deposition method and manufacturing method for electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220519

R150 Certificate of patent or registration of utility model

Ref document number: 7078696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150