[go: up one dir, main page]

JP6777710B2 - Radar transmit / receive antenna protection - Google Patents

Radar transmit / receive antenna protection Download PDF

Info

Publication number
JP6777710B2
JP6777710B2 JP2018201399A JP2018201399A JP6777710B2 JP 6777710 B2 JP6777710 B2 JP 6777710B2 JP 2018201399 A JP2018201399 A JP 2018201399A JP 2018201399 A JP2018201399 A JP 2018201399A JP 6777710 B2 JP6777710 B2 JP 6777710B2
Authority
JP
Japan
Prior art keywords
carbon
component
fiber
length
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018201399A
Other languages
Japanese (ja)
Other versions
JP2019023312A (en
Inventor
弘 片山
弘 片山
西川 浩二
浩二 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Polymer Ltd
Original Assignee
Daicel Polymer Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Polymer Ltd filed Critical Daicel Polymer Ltd
Publication of JP2019023312A publication Critical patent/JP2019023312A/en
Application granted granted Critical
Publication of JP6777710B2 publication Critical patent/JP6777710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

本発明は、ミリ波レーダ用として適した、ミリ波の遮蔽性能を有している成形体用の熱可塑性樹脂組成物と、それから得られる成形体に関する。 The present invention relates to a thermoplastic resin composition for a molded product having millimeter wave shielding performance suitable for millimeter wave radar, and a molded product obtained from the thermoplastic resin composition.

車両の自動運転や衝突防止を目的としてミリ波レーダが利用されている。
ミリ波レーダ装置は、自動車の前面に取り付けられており、電波を送受信するアンテナが組み込まれた高周波モジュール、該電波を制御する制御回路、アンテナおよび制御回路を収納するハウジング、アンテナの電波の送受信を覆うレドームを備えている(特許文献1の背景技術)。
このように構成されたミリ波レーダ装置は、アンテナからミリ波を送受信して、障害物との相対距離や相対速度等を検出することができる。
Millimeter-wave radar is used for the purpose of automatic driving of vehicles and collision prevention.
The millimeter-wave radar device is mounted on the front of an automobile and has a high-frequency module incorporating an antenna that transmits and receives radio waves, a control circuit that controls the radio waves, a housing that houses the antenna and the control circuit, and transmits and receives radio waves from the antenna. It is provided with a radome to cover (background technique of Patent Document 1).
The millimeter-wave radar device configured in this way can transmit and receive millimeter waves from the antenna to detect the relative distance to the obstacle, the relative speed, and the like.

アンテナは、目的とする障害物以外の路面などに反射したものも受信することがあるため、装置の検出精度が低下するおそれがある。
このような問題を解決するため、特許文献1のミリ波レーダ装置では、アンテナと制御回路との間に電波を遮蔽する遮蔽部材を設けている。
前記遮蔽部材は、レドームよりも誘電損失の大きい誘電損失層または磁気損失層のいずれかの層に導電体層を積層させている電波吸収材を使用することが記載されている。
前記誘電損失層は、カーボンナノチューブ、カーボンマイクロコイル、シュンガイトカーボン、カーボンブラック、膨張黒鉛、カーボンファイバーのうちの少なくとも一つから選択されたカーボン材料からなるものが記載されている(段落番号0023)。
前記磁気損失層は、六方晶フェライトからなるものが記載されている(段落番号0023)。
さらに前記誘電損失層または前記磁気損失層は、前記カーボン材料または前記六方晶フェライトよりも高電気抵抗率を有する物質(絶縁性高分子材料または絶縁性無機材料)を含有しているものが好ましいことが記載されている(段落番号0024)。
Since the antenna may also receive objects reflected on the road surface other than the target obstacle, the detection accuracy of the device may decrease.
In order to solve such a problem, the millimeter wave radar device of Patent Document 1 is provided with a shielding member that shields radio waves between the antenna and the control circuit.
It is described that the shielding member uses a radio wave absorber in which a conductor layer is laminated on either a dielectric loss layer or a magnetic loss layer having a larger dielectric loss than the radome.
The dielectric loss layer is described as being made of a carbon material selected from at least one of carbon nanotubes, carbon microcoils, shungite carbon, carbon black, expanded graphite, and carbon fibers (paragraph number 0023).
The magnetic loss layer is described as being made of hexagonal ferrite (paragraph number 0023).
Further, the dielectric loss layer or the magnetic loss layer preferably contains a substance (insulating polymer material or insulating inorganic material) having a higher electrical resistivity than the carbon material or the hexagonal ferrite. Is described (paragraph number 0024).

特開2007−74662号公報JP-A-2007-74662

KEC情報,No.225,2013年4月号,p36−41KEC Information, No. 225, April 2013, pp. 36-41

本発明は、ミリ波レーダ用として適した、ミリ波の遮蔽性能を有している成形体用の熱可塑性樹脂組成物と、それから得られる成形体を提供することを課題とする。 An object of the present invention is to provide a thermoplastic resin composition for a molded product having millimeter wave shielding performance suitable for millimeter wave radar, and a molded product obtained from the thermoplastic resin composition.

本発明は、課題の解決手段として、(A)熱可塑性樹脂、(B)繊維長3〜30mmの炭素長繊維0.5〜5質量%を含有する、ミリ波の遮蔽性能を有している成形体用の熱可塑性樹脂組成物を提供する。 The present invention has millimeter-wave shielding performance containing (A) a thermoplastic resin and (B) 0.5 to 5% by mass of carbon length fibers having a fiber length of 3 to 30 mm as a means for solving the problems. Provided is a thermoplastic resin composition for a molded product.

本発明は、他の課題の解決手段として、
請求項1〜4のいずれか1項に記載の熱可塑性樹脂組成物からなるミリ波の遮蔽性能を有している成形体であって、
前記成形体中に残存する(B)成分の炭素長繊維に由来する炭素繊維の重量平均繊維長が1mm以上であり、
前記成形体の表面抵抗率が1×105〜109Ω/□の範囲である、ミリ波の遮蔽性能を有している成形体を提供する。
The present invention provides a means for solving other problems.
A molded product made of the thermoplastic resin composition according to any one of claims 1 to 4 and having millimeter wave shielding performance.
The weight average fiber length of the carbon fibers derived from the carbon length fibers of the component (B) remaining in the molded product is 1 mm or more.
Provided is a molded product having a millimeter-wave shielding performance in which the surface resistivity of the molded product is in the range of 1 × 10 5 to 10 9 Ω / □.

本発明の熱可塑性樹脂組成物から得られる成形体は、ミリ波の遮蔽性能が優れていることから、特にミリ波レーダの送受信アンテナの保護部材用として適している。 The molded product obtained from the thermoplastic resin composition of the present invention is particularly suitable as a protective member for a transmission / reception antenna of a millimeter wave radar because it has excellent millimeter wave shielding performance.

ミリ波の遮蔽性能(電磁波シールド性)の測定方法の説明図。Explanatory drawing of measurement method of millimeter wave shielding performance (electromagnetic wave shielding property). 実施例および比較例における電磁波シールド性の測定結果を示すグラフ。The graph which shows the measurement result of the electromagnetic wave shielding property in an Example and a comparative example.

<熱可塑性樹脂組成物>
(A)成分の熱可塑性樹脂は特に制限されるものではなく、用途に応じて適宜選択することができる。
(A)成分としては、ポリプロピレン、脂肪族ポリアミド、芳香族ポリアミド、ポリブチレンテレフタレート、ポリカーボネート、およびこれらの混合物から選ばれるものが好ましい。
<Thermoplastic resin composition>
The thermoplastic resin of the component (A) is not particularly limited, and can be appropriately selected depending on the intended use.
As the component (A), one selected from polypropylene, aliphatic polyamide, aromatic polyamide, polybutylene terephthalate, polycarbonate, and a mixture thereof is preferable.

(B)成分の炭素長繊維は、公知のポリアクリロニトリル系、ピッチ系、レーヨン系等からなるものを用いることができるが、ポリアクリロニトリル系の炭素長繊維が好ましい。
(B)成分の炭素長繊維は、金属が表面被覆されたものを含む。かかる表面被覆の方法としては特に限定されるものではなく、例えば公知の各種メッキ法(例えば、電解メッキ、無電解メッキ、溶融メッキなど)、真空蒸着法、イオンプレーティング法、CVD法(例えば熱CVD、MOCVD、プラズマCVDなど)、PVD法、およびスパッタリング法などを挙げることができる。中でもメッキ法が好適に利用される。
表面を被覆する金属としては、銀、銅、ニッケル、およびアルミニウムなどが挙げられ、ニッケルが金属層の耐腐食性の点から好ましい。金属被覆層の厚みは好ましくは0.1〜1μm、より好ましくは0.2〜0.5μmである。
(B)成分の炭素長繊維は、ミリ波の遮蔽性能を高めるため、繊維長が3〜30mmであり、繊維長が5〜20mmが好ましく、6〜15mmがより好ましい。
As the carbon filament of the component (B), a known polyacrylonitrile-based, pitch-based, rayon-based or the like can be used, but the polyacrylonitrile-based carbon filament is preferable.
The carbon filaments of the component (B) include those whose surface is coated with a metal. The surface coating method is not particularly limited, and is, for example, various known plating methods (for example, electrolytic plating, electroless plating, hot-dip plating, etc.), vacuum deposition method, ion plating method, CVD method (for example, thermal). (CVD, MOCVD, plasma CVD, etc.), PVD method, sputtering method and the like can be mentioned. Above all, the plating method is preferably used.
Examples of the metal for coating the surface include silver, copper, nickel, and aluminum, and nickel is preferable from the viewpoint of corrosion resistance of the metal layer. The thickness of the metal coating layer is preferably 0.1 to 1 μm, more preferably 0.2 to 0.5 μm.
The carbon length fiber of the component (B) has a fiber length of 3 to 30 mm, preferably a fiber length of 5 to 20 mm, and more preferably 6 to 15 mm in order to enhance the shielding performance of millimeter waves.

(B)成分の炭素長繊維は、(A)成分と(B)成分との分散性を高めるため、炭素繊維を長さ方向に揃えた束ねた状態のものに溶融させた(A)成分の熱可塑性樹脂を含浸させ一体化させたものを3〜30mmに切断したもの(樹脂含浸炭素長繊維束)が好ましい。
このような樹脂含浸炭素長繊維束は、ダイスを用いた周知の製造方法により製造することができ、例えば、特開2011−57811号公報の段落番号0019および参考製造例1など、特開平6−313050号公報の段落番号0007、特開2007−176227号公報の段落番号0023のほか、特公平6−2344号公報(樹脂被覆長繊維束の製造方法並びに成形方法)、特開平6−114832号公報(繊維強化熱可塑性樹脂構造体およびその製造法)、特開平6−293023号公報(長繊維強化熱可塑性樹脂組成物の製造方法)、特開平7−205317号公報(繊維束の取り出し方法および長繊維強化樹脂構造物の製造方法)、特開平7−216104号公報(長繊維強化樹脂構造物の製造方法)、特開平7−251437号公報(長繊維強化熱可塑性複合材料の製造方法および製造装置)、特開平8−118490号公報(クロスヘッドダイおよび長繊維強化樹脂構造物の製造方法)などに記載の製造方法を適用することができる。
また、プラストロン(登録商標;ダイセルポリマー株式会社)などの市販品を利用することもできる。
The carbon filaments of the component (B) are the components of the component (A) obtained by melting the carbon fibers in a bundled state aligned in the length direction in order to enhance the dispersibility between the components (A) and the component (B). A product impregnated with a thermoplastic resin and integrated, cut into 3 to 30 mm (resin-impregnated carbon long fiber bundle) is preferable.
Such a resin-impregnated carbon filament bundle can be produced by a well-known production method using a die. For example, paragraph No. 0019 of JP2011-57811A and Reference Production Example 1 can be used in JP-A-6-. In addition to paragraph number 0007 of JP-A-313050 and paragraph number 0023 of JP-A-2007-176227, JP-A-6-2344 (method for producing and molding a resin-coated long fiber bundle), JP-A-6-114832. (Fiber-reinforced thermoplastic resin structure and its production method), JP-A-6-293023 (Method for producing long fiber-reinforced thermoplastic resin composition), JP-A-7-205317 (Method and length of fiber bundle extraction) (Method for manufacturing fiber reinforced resin structure), JP-A-7-216104 (Method for manufacturing long fiber reinforced resin structure), JP-A-7-251437 (Method for manufacturing long fiber reinforced thermoplastic composite material and manufacturing apparatus) ), JP-A-8-118490 (method for producing a crosshead die and a long fiber reinforced resin structure) and the like can be applied.
In addition, commercially available products such as Plastron (registered trademark; Daicel Polymer Co., Ltd.) can also be used.

(B)成分として樹脂含浸炭素長繊維束を使用するとき、樹脂含浸炭素長繊維束中の(B)成分の炭素長繊維の含有割合は、10〜50質量%が好ましく、10〜40質量%がより好ましく、10〜30質量%がさらに好ましい。
なお、この場合に樹脂含浸炭素長繊維束に含まれている(A)成分の熱可塑性樹脂は、(A)成分の含有量として計算する。
When a resin-impregnated carbon long fiber bundle is used as the component (B), the content ratio of the carbon long fiber of the component (B) in the resin-impregnated carbon long fiber bundle is preferably 10 to 50% by mass, preferably 10 to 40% by mass. Is more preferable, and 10 to 30% by mass is further preferable.
In this case, the thermoplastic resin of the component (A) contained in the resin-impregnated carbon filament bundle is calculated as the content of the component (A).

組成物中における(B)成分の炭素長繊維の含有割合は、ミリ波の遮蔽性能を高めるため、0.5〜5質量%であり、0.5〜3質量%が好ましく、0.8〜2質量%がより好ましい。 The content ratio of the carbon filament of the component (B) in the composition is 0.5 to 5% by mass, preferably 0.5 to 3% by mass, and 0.8 to 0.8 to enhance the shielding performance of millimeter waves. 2% by mass is more preferable.

本発明の熱可塑性樹脂組成物は、課題を解決できる範囲において、公知の樹脂添加剤を含有することができる。
公知の樹脂添加剤としては、酸化防止剤、耐熱安定剤、紫外線吸収剤などの安定剤、帯電防止剤、難燃剤、難燃助剤、染料や顔料などの着色剤、潤滑剤、可塑剤、結晶化促進剤、結晶核剤などを挙げることができる。
The thermoplastic resin composition of the present invention can contain a known resin additive as long as the problem can be solved.
Known resin additives include antioxidants, heat-resistant stabilizers, stabilizers such as ultraviolet absorbers, antistatic agents, flame retardants, flame retardant aids, colorants such as dyes and pigments, lubricants, and plasticizers. Examples thereof include a crystallization accelerator and a crystal nucleating agent.

<成形体>
本発明の成形体は、上記した熱可塑性樹脂組成物を成形したものであり、形状および大きさなどは用途に応じて選択することができる。
<Molded body>
The molded product of the present invention is a molded product obtained by molding the above-mentioned thermoplastic resin composition, and the shape, size, and the like can be selected according to the intended use.

本発明の成形体は、ミリ波(所定周波数帯域の電磁波)の遮蔽性能を高めるため、残存する(B)成分の炭素長繊維に由来する炭素繊維の重量平均繊維長が1mm以上であることが好ましく、2mm以上がより好ましく、3mm以上がさらに好ましい。
重量平均繊維長は実施例に記載の方法により測定されるものである。
In the molded body of the present invention, in order to enhance the shielding performance of millimeter waves (electromagnetic waves in a predetermined frequency band), the weight average fiber length of the carbon fibers derived from the carbon length fibers of the remaining component (B) is 1 mm or more. Preferably, 2 mm or more is more preferable, and 3 mm or more is further preferable.
The weight average fiber length is measured by the method described in Examples.

また本発明の成形体は、残存する(B)成分の炭素長繊維に由来する炭素繊維の繊維長が1mm以上のものの含有割合は60質量%以上が好ましく、70質量%以上がより好ましく、80質量%であることがさらに好ましい。
さらに本発明の成形体は、残存する(B)成分の炭素長繊維に由来する炭素繊維の繊維長が2mm以上のものの含有割合は40質量%以上が好ましく、50質量%以上がより好ましく、60質量%以上であることがさらに好ましい。
Further, in the molded product of the present invention, the content ratio of the carbon fibers derived from the carbon filaments of the remaining component (B) having a fiber length of 1 mm or more is preferably 60% by mass or more, more preferably 70% by mass or more, and more preferably 80. It is more preferably by mass%.
Further, in the molded product of the present invention, the content ratio of the carbon fibers derived from the carbon filaments of the remaining component (B) having a fiber length of 2 mm or more is preferably 40% by mass or more, more preferably 50% by mass or more, and 60. It is more preferably mass% or more.

本発明の成形体は、ミリ波の遮蔽性能を有しているものであり、ミリ波の遮蔽性能を有しているとは、実施例の測定方法で求められるミリ波(所定周波数帯域の電磁波)における電磁波シールド性(放射波の透過阻害性)で評価されるものである。
本発明の成形体における電磁波シールド性は、30dB以上であり、40dB以上であることがより好ましく、50dB以上がさらに好ましい。
本発明におけるミリ波の周波数帯域は、300mm(1GHz)〜1mm(300GHz)の範囲であり、20mm(15GHz)〜3mm(100GHz)の範囲がより好ましい。
ミリ波の遮蔽性能は、実施例に記載の方法により測定されるものである。
The molded body of the present invention has millimeter-wave shielding performance, and having millimeter-wave shielding performance means that millimeter waves (electromagnetic waves in a predetermined frequency band) obtained by the measurement method of Examples are used. ) Is evaluated by the electromagnetic wave shielding property (radiation wave transmission inhibitory property).
The electromagnetic wave shielding property of the molded product of the present invention is 30 dB or more, more preferably 40 dB or more, and further preferably 50 dB or more.
The frequency band of the millimeter wave in the present invention is in the range of 300 mm (1 GHz) to 1 mm (300 GHz), more preferably in the range of 20 mm (15 GHz) to 3 mm (100 GHz).
The millimeter wave shielding performance is measured by the method described in the examples.

本発明の成形体は、前記のように平均残存繊維長が長いことから、(B)成分の含有量が少量であるにも拘わらず、ミリ波の遮蔽性能に加えて導電性も示す。
本発明の成形体の体積抵抗率は1×102〜109Ω・mの範囲であり、好ましくは1×103〜108Ω・mの範囲である。
同様に本発明の成形体の表面抵抗率は1×105〜109Ω/□の範囲であり、好ましくは1×106〜108Ω/□の範囲である。
Since the molded product of the present invention has a long average residual fiber length as described above, it exhibits conductivity in addition to millimeter-wave shielding performance even though the content of the component (B) is small.
The volume resistivity of the molded product of the present invention is in the range of 1 × 10 2 to 10 9 Ω · m, preferably in the range of 1 × 10 3 to 10 8 Ω · m.
Similarly, the surface resistivity of the molded product of the present invention is in the range of 1 × 10 5 to 10 9 Ω / □, preferably in the range of 1 × 10 6 to 10 8 Ω / □.

本発明の成形体は、上記した熱可塑性樹脂組成物を射出成形、プレス成形などの公知の樹脂成形方法を適用して製造することができる。
本発明の成形体は、ミリ波レーダ用として適しており、特にミリ波レーダの送受信アンテナの保護部材用として適している。
The molded product of the present invention can be produced by applying a known resin molding method such as injection molding or press molding to the above-mentioned thermoplastic resin composition.
The molded product of the present invention is suitable for millimeter-wave radar, and is particularly suitable for a protective member for a transmission / reception antenna of a millimeter-wave radar.

製造例1(樹脂含浸炭素長繊維束の製造)
炭素長繊維(トレカT700SC,引張強度4.9GPa)からなる繊維束(約24000本の繊維の束)を、予備加熱装置による150℃の加熱を経て、クロスヘッドダイに通した。
そのとき、クロスヘッドダイには、2軸押出機,シリンダー温度280℃)から溶融状態のポリプロピレン(サンアロマー(株)製,PMB60A)を供給し、繊維束にポリプロピレンを含浸させた。
その後、クロスヘッドダイ出口の賦形ノズルで賦形し、整形ロールで形を整えた後、ペレタイザーにより所定長さに切断し、長さ8mmのペレット(円柱状成形体)を得た。
炭素長繊維長さは前記ペレット長さと同一となる。このようにして得たペレットは、炭素長繊維が長さ方向にほぼ平行になっていた。
Production Example 1 (Production of resin-impregnated carbon filament bundle)
A fiber bundle (bundle of about 24,000 fibers) composed of long carbon fibers (Trading Card T700SC, tensile strength 4.9 GPa) was passed through a crosshead die after being heated at 150 ° C. by a preheating device.
At that time, the crosshead die was supplied with polypropylene in a molten state (manufactured by SunAllomer Ltd., PMB60A) from a twin-screw extruder, cylinder temperature 280 ° C.), and the fiber bundle was impregnated with polypropylene.
Then, it was shaped with a shaping nozzle at the outlet of the crosshead die, shaped with a shaping roll, and then cut to a predetermined length with a pelletizer to obtain pellets (cylindrical molded body) having a length of 8 mm.
The carbon length fiber length is the same as the pellet length. In the pellets obtained in this way, the carbon filaments were substantially parallel in the length direction.

実施例1
製造例1により得たペレット(炭素長繊維含有量40質量%)3質量%と、ポリプロピレン樹脂(サンアロマー(株)製,PMB60A)のペレット97質量%を使用し、射出成形機(J-150EII;(株)日本製鋼所製)により、成形温度240℃、金型温度60℃で成形して成形体を得た。
得られた成形体を使用して、表1に示す各測定を実施した。
Example 1
Using 3% by mass of pellets (carbon length fiber content 40% by mass) obtained in Production Example 1 and 97% by mass of polypropylene resin (PMB60A manufactured by SunAllomer Ltd.), an injection molding machine (J-150EII; A molded product was obtained by molding at a molding temperature of 240 ° C. and a mold temperature of 60 ° C. by Japan Steel Works, Ltd.).
Each measurement shown in Table 1 was carried out using the obtained molded product.

比較例1
製造例により得たペレット(炭素長繊維含有量40質量%)を二軸押出機((株)日本製鋼所;二軸押出機TEX30α)に供給して再度ペレットを成形して、炭素短繊維含有ペレット(円柱状成形体)を得た。
この炭素短繊維含有ペレットと3質量%と、ポリプロピレン樹脂(サンアロマー(株)製 PMB60A)のペレット97質量%を使用し、射出成形機(J-150EII;(株)日本製鋼所製)により、成形温度240℃、金型温度60℃で成形して成形体を得た。
得られた成形体を使用して、表1に示す各測定を実施した。
Comparative Example 1
The pellets (carbon long fiber content 40% by mass) obtained in the production example were supplied to a twin-screw extruder (Japan Steel Works, Ltd .; twin-screw extruder TEX30α), and the pellets were molded again to contain short carbon fibers. Pellets (cylindrical molded product) were obtained.
Molded by an injection molding machine (J-150EII; Japan Steel Works, Ltd.) using 3% by mass of these carbon short fiber-containing pellets and 97% by mass of polypropylene resin (PMB60A manufactured by SunAllomer Ltd.). A molded product was obtained by molding at a temperature of 240 ° C. and a mold temperature of 60 ° C.
Each measurement shown in Table 1 was carried out using the obtained molded product.

比較例2
製造例により得たペレット(炭素長繊維含有量40質量%)25質量%と、ポリプロピレン樹脂(サンアロマー(株)製 PMB60A)のペレット75質量%を使用し、射出成形機(J-150EII;(株)日本製鋼所製)により、成形温度240℃、金型温度60℃で成形して成形体を得た。
得られた成形体を使用して、表1に示す各測定を実施した。
Comparative Example 2
Using 25% by mass of pellets (carbon length fiber content 40% by mass) obtained in the production example and 75% by mass of polypropylene resin (PMB60A manufactured by SunAllomer Ltd.), an injection molding machine (J-150EII; ) Made by Japan Steel Works) to obtain a molded product by molding at a molding temperature of 240 ° C. and a mold temperature of 60 ° C.
Each measurement shown in Table 1 was carried out using the obtained molded product.

(1)重量平均繊維長
成形品から約3gの試料を切出し、硫酸によりPPを溶解除去して炭素繊維を取り出した。取り出した繊維の一部(500本)から重量平均繊維長を求めた。計算式は、特開2006−274061号公報の〔0044〕、〔0045〕を使用した。
(1) Weight average fiber length About 3 g of a sample was cut out from the molded product, PP was dissolved and removed with sulfuric acid, and carbon fibers were taken out. The weight average fiber length was calculated from a part of the extracted fibers (500 fibers). As the calculation formula, [0044] and [0045] of JP-A-2006-274061 were used.

(2)電磁波シールド性
図1に示す測定装置を使用した。
上下方向に正対させた1対のアンテナ(広帯域アンテナ;シュワルツベック,BBHA9120A,2−18GHz)11、12の間に測定対象となる成形体10(縦150mm、横150mm、厚み2mm)を保持した。アンテナ12と成形体10の間隔は85mm、成形体10とアンテナ11との間隔は10mmである。
この状態にて、下側のアンテナ12から電磁波(1〜18GHz)を放射して、測定対象となる成形体10を透過した電磁波を上側のアンテナ11で受信して、下記式1から電磁波シールド性(放射波の透過阻害性)を求めた。
式1のS21は、透過電磁波と入射電磁波の比を表すSパラメータ(式2)で、ネットワークアナライザにより測定できる。
式1では、電磁波シールド性(dB)を正の値で表すため、Sパラメータの逆数の対数をとった。図1の測定装置では、0〜約55dBの範囲が測定可能で、電磁波シールド性が測定上限を超える場合は表1において「>55(dB)」と表記した。
表1に測定結果を示し、電磁波シールド性の変化を図2に示す。
電磁波シールド性=20log(1/|S21|)(単位:dB) (式1)
21=(透過電磁波)/(入射電磁波) (式2)
(2) Electromagnetic wave shielding property The measuring device shown in FIG. 1 was used.
A molded body 10 (length 150 mm, width 150 mm, thickness 2 mm) to be measured was held between a pair of antennas (broadband antenna; Schwarzbeck, BBHA9120A, 2-18 GHz) 11 and 12 facing in the vertical direction. .. The distance between the antenna 12 and the molded body 10 is 85 mm, and the distance between the molded body 10 and the antenna 11 is 10 mm.
In this state, an electromagnetic wave (1 to 18 GHz) is radiated from the lower antenna 12, the electromagnetic wave transmitted through the molded body 10 to be measured is received by the upper antenna 11, and the electromagnetic wave shielding property is obtained from the following equation 1. (Inhibition of radiation wave transmission) was determined.
S 21 of Equation 1 is an S parameter (Equation 2) representing the ratio of the transmitted electromagnetic wave to the incident electromagnetic wave, and can be measured by a network analyzer.
In Equation 1, since the electromagnetic wave shielding property (dB) is represented by a positive value, the logarithm of the reciprocal of the S parameter is taken. With the measuring device of FIG. 1, the range of 0 to about 55 dB can be measured, and when the electromagnetic wave shielding property exceeds the measurement upper limit, it is described as “> 55 (dB)” in Table 1.
The measurement results are shown in Table 1, and the changes in the electromagnetic wave shielding property are shown in FIG.
Electromagnetic wave shielding property = 20log (1 / | S 21 |) (Unit: dB) (Equation 1)
S 21 = (transmitted electromagnetic wave) / (incident electromagnetic wave) (Equation 2)

(3)引張強さ(MPa)、引張呼び歪み(%)
JIS K7161に準じて引張強さ、引張呼び歪みを測定した。
(3) Tensile strength (MPa), tensile nominal strain (%)
Tensile strength and tensile nominal strain were measured according to JIS K7161.

(4)密度
ISO1183に準じて密度を測定した。
(4) Density The density was measured according to ISO1183.

(5)表面抵抗率及び体積抵抗率
表面抵抗率が5×107Ω/□以下、体積抵抗率が2×105Ω・m以下の試料については、低抵抗率計[三菱化学(株)製、ロレスターGP(MCP−T600)]を用い、JIS K7194に準じて表面抵抗率、体積抵抗率を測定した。
表面抵抗率が1×108Ω/□以上、体積抵抗率が1×104Ω・m以上の試料は高抵抗率計[三菱化学(株)製、ハイレスターUP(MCP−HT450)]を用い、JIS K6911に準じて表面抵抗率、体積抵抗率を測定した。
なお、例えば表1中、実施例1の「1.1E+07」との表記は「1.1×107」を示す。
比較例1及び比較例2の「>1.0E+13(Ω/□)」、「>1.0E+9(Ω・m)」は、高抵抗率計の測定上限が、表面抵抗率は1×1013Ω/□、体積抵抗率は1×109Ω・mであるため、抵抗率がこれらより高いことを表している。
実施例1〜3の「5〜10E+7(Ω/□)」の記載は、表面抵抗率が低抵抗率計の測定上限より高く、高抵抗率計の測定下限より低いことを表している。
(5) Surface resistivity and volume resistivity For samples with a surface resistivity of 5 × 10 7 Ω / □ or less and a volume resistivity of 2 × 10 5 Ω · m or less, a low resistivity meter [Mitsubishi Chemical Co., Ltd. Lorester GP (MCP-T600)] was used, and the surface resistivity and volume resistivity were measured according to JIS K7194.
For samples with a surface resistivity of 1 x 10 8 Ω / □ or more and a volume resistivity of 1 x 10 4 Ω · m or more, use a high resistivity meter [Mitsubishi Chemical Co., Ltd., High Lester UP (MCP-HT450)]. The surface resistivity and volume resistivity were measured according to JIS K6911.
Incidentally, for example, in Table 1, denoted with "1.1 E + 07" in Example 1 indicates "1.1 × 10 7".
For "> 1.0E + 13 (Ω / □)" and "> 1.0E + 9 (Ω · m)" in Comparative Example 1 and Comparative Example 2, the upper limit of measurement of the high resistivity meter is set, and the surface resistivity is 1 × 10 13 Since Ω / □ and the volume resistivity are 1 × 10 9 Ω · m, it indicates that the resistivity is higher than these.
The description of "5 to 10E + 7 (Ω / □)" in Examples 1 to 3 indicates that the surface resistivity is higher than the measurement upper limit of the low resistivity meter and lower than the measurement lower limit of the high resistivity meter.

Figure 0006777710
Figure 0006777710

表中、PPはポリプロピレン、CFは炭素繊維を示す。
電磁波シールド性は、数値が大きくなるほどミリ波の遮蔽性能が優れていることを示している。
実施例1と比較例1、実施例3と比較例2の対比から、同量であれば長繊維を使用することで電磁波シールド性を高められることが確認できた。
比較例3では、短繊維の炭素繊維の含有量を増加させることで電磁波シールド性が高められることが確認されたが、比較例3では、実施例1の16倍量以上もの炭素繊維を使用しているにも拘わらず、実施例1の方が電磁波シールド性に優れていた。
比較例4では、炭素長繊維の含有量を増加させると、実施例1〜3を超える電磁波シールド性を得られることが確認されたが、この場合も実施例1の16倍量以上もの炭素繊維を使用しており、経済的に不利であるとともに密度が大きく、成形体の軽量化にも不利である。
In the table, PP indicates polypropylene and CF indicates carbon fiber.
As for the electromagnetic wave shielding property, the larger the value, the better the millimeter wave shielding performance.
From the comparison between Example 1 and Comparative Example 1 and Example 3 and Comparative Example 2, it was confirmed that the electromagnetic wave shielding property can be enhanced by using long fibers if the amounts are the same.
In Comparative Example 3, it was confirmed that the electromagnetic wave shielding property was enhanced by increasing the content of the carbon fibers of the short fibers, but in Comparative Example 3, 16 times or more the amount of carbon fibers as in Example 1 was used. Despite this, Example 1 was superior in electromagnetic wave shielding property.
In Comparative Example 4, it was confirmed that when the content of the long carbon fibers was increased, an electromagnetic wave shielding property exceeding that of Examples 1 to 3 could be obtained, but in this case as well, the amount of carbon fibers was 16 times or more that of Example 1. It is economically disadvantageous, has a high density, and is also disadvantageous in reducing the weight of the molded product.

表1および図2に示す周波数帯域は1〜18GHzであるが、前記範囲の電磁波シールド性が表1および図2に示す状態であるときには、1〜300GHzの周波数帯域においても表皮深さが厚みより十分小さくなることから、炭素繊維配合樹脂が損失媒質として振る舞うので、減衰定数がGHz領域では周波数が高くなるほど大きくなり、高い電磁波シールド性を示すことは知られている。
この事実は、例えば非特許文献1の記載、特にp39−p40にかけての「2.3 損失媒質を利用する電磁遮へい」の記載と「図9 導電材の2層構造の遮へい特性」から確認できる。
The frequency band shown in Table 1 and FIG. 2 is 1 to 18 GHz, but when the electromagnetic wave shielding property in the above range is in the state shown in Table 1 and FIG. 2, the skin depth is higher than the thickness even in the frequency band of 1 to 300 GHz. It is known that since the carbon fiber-blended resin behaves as a loss medium because it is sufficiently small, the attenuation constant increases as the frequency increases in the GHz region, and exhibits high electromagnetic wave shielding properties.
This fact can be confirmed, for example, from the description of Non-Patent Document 1, especially the description of "2.3 Electromagnetic shielding using a loss medium" and "Fig. 9 Shielding characteristics of the two-layer structure of the conductive material" from p39 to p40.

Claims (4)

(A)熱可塑性樹脂、
(B)繊維長5〜30mmの炭素長繊維0.5〜5質量%
を含有する熱可塑性樹脂組成物からなる、波長1〜300GHzの範囲の電磁波の遮蔽性能を有している成形体からなるレーダの送受信アンテナの保護部材であって、
(B)成分の炭素長繊維が、炭素繊維を長さ方向に揃えた束ねた状態のものに対して、溶融させた(A)成分の熱可塑性樹脂を含浸させ一体化させたものを5〜30mmに切断したものであり、
前記成形体中の(B)成分の炭素長繊維に由来する炭素繊維の重量平均繊維長が2.5mm以上であり、
前記成形体中の(B)成分の炭素長繊維に由来する炭素繊維の繊維長が1mm以上のものの含有割合が60質量%以上であり、
前記成形体中の(B)成分の炭素長繊維に由来する炭素繊維の繊維長が2mm以上のものの含有割合が40質量%以上である、電磁波の遮蔽性能を有している成形体からなるレーダの送受信アンテナの保護部材。
(A) Thermoplastic resin,
(B) Carbon length fiber 0.5 to 5% by mass with fiber length 5 to 30 mm
The made of a thermoplastic resin composition containing, a protective member of the transmitting and receiving antennas of Relais over Da, such a molded body having a shielding performance electromagnetic wavelength in the range of 1~300GHz,
The carbon filaments of the component (B) are bundled with the carbon fibers aligned in the length direction, and the melted thermoplastic resin of the component (A) is impregnated and integrated. It was cut to 30 mm and
The weight average fiber length of the carbon fiber derived from the carbon length fiber of the component (B) in the molded product is 2.5 mm or more.
The content ratio of the carbon fibers derived from the carbon filaments of the component (B) in the molded product having a fiber length of 1 mm or more is 60% by mass or more.
The content ratio of the fiber length of the carbon fibers derived from long carbon fiber of the component (B) in the molded body is more than 2mm is 40 mass% or more, that Do a molded body having an electromagnetic wave shielding performance of the the protective member of the transmitting and receiving antennas of les over da.
(A)成分の熱可塑性樹脂が、ポリプロピレン、脂肪族ポリアミド、芳香族ポリアミド、ポリブチレンテレフタレート、ポリカーボネートから選ばれるものである、請求項1記載の電磁波の遮蔽性能を有している成形体からなるレーダの送受信アンテナの保護部材。 The thermoplastic resin of the component (A) is selected from polypropylene, aliphatic polyamide, aromatic polyamide, polybutylene terephthalate, and polycarbonate, and is a molded product having the electromagnetic wave shielding performance according to claim 1. Relais chromatography da protective member of the transmitting and receiving antennas. 電磁波が、波長1〜100GHzの範囲のものである、請求項1または2記載の電磁波の遮蔽性能を有している成形体からなるレーダの送受信アンテナの保護部材。 Electromagnetic wave is in a range of wavelengths. 1 to 100 GHz, according to claim 1 or 2 electromagnetic protection member Relais over da transmit and receive antennas, such a molded body having a shielding performance according. 前記成形体の表面抵抗率が1×105〜109Ω/□の範囲である、請求項1〜3のいずれか1項記載の電磁波の遮蔽性能を有している成形体からなるレーダの送受信アンテナの保護部材。 The ranges surface resistivity of 1 × 10 5 ~10 9 Ω / □ of the molded article, such a molded article has a shielding performance of electromagnetic waves according to any one of claims 1 to 3 Relais Protective material for transmitting and receiving antennas of radar.
JP2018201399A 2013-05-30 2018-10-26 Radar transmit / receive antenna protection Active JP6777710B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013113883 2013-05-30
JP2013113883 2013-05-30

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014078311A Division JP6467140B2 (en) 2013-05-30 2014-04-07 Thermoplastic resin composition for molded article having millimeter wave shielding performance

Publications (2)

Publication Number Publication Date
JP2019023312A JP2019023312A (en) 2019-02-14
JP6777710B2 true JP6777710B2 (en) 2020-10-28

Family

ID=65368436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018201399A Active JP6777710B2 (en) 2013-05-30 2018-10-26 Radar transmit / receive antenna protection

Country Status (1)

Country Link
JP (1) JP6777710B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322144A (en) * 1993-05-13 1994-11-22 Kobe Steel Ltd Thin-wall highly rigid carbon fiber-reinforced synthetic resin injection compression molding
US7078098B1 (en) * 2000-06-30 2006-07-18 Parker-Hannifin Corporation Composites comprising fibers dispersed in a polymer matrix having improved shielding with lower amounts of conducive fiber
DE19903701C5 (en) * 1999-01-30 2006-12-14 Asahi Kasei Kabushiki Kaisha Process for producing a thermoplastic molded body containing carbon fibers
JP4438302B2 (en) * 2003-03-20 2010-03-24 東レ株式会社 Molding material and molded product
US20060280938A1 (en) * 2005-06-10 2006-12-14 Atkinson Paul M Thermoplastic long fiber composites, methods of manufacture thereof and articles derived thererom
JP2007074662A (en) * 2005-09-09 2007-03-22 Hitachi Ltd Millimeter wave radar system
WO2007050467A1 (en) * 2005-10-24 2007-05-03 Ocv Intellectual Capital, Llc Long fiber thermoplastic process for conductive composites and composites formed thereby
JP2008150485A (en) * 2006-12-18 2008-07-03 Toray Ind Inc Fiber-reinforced resin composition for molding and fiber-reinforced resin molded article
US7737880B2 (en) * 2008-10-22 2010-06-15 Honeywell International Inc. Microwave and millimeterwave radar sensors
DE112012001758T5 (en) * 2011-04-19 2014-02-06 Mazda Motor Corp. Obstacle detection device for a vehicle
JP5629916B2 (en) * 2011-05-13 2014-11-26 三菱エンジニアリングプラスチックス株式会社 Fiber / resin composite composition pellet for electromagnetic shielding, resin composition for electromagnetic shielding, and molded article thereof

Also Published As

Publication number Publication date
JP2019023312A (en) 2019-02-14

Similar Documents

Publication Publication Date Title
JP6467140B2 (en) Thermoplastic resin composition for molded article having millimeter wave shielding performance
CN105359224B (en) Cable with polymer composite core
KR102480208B1 (en) resin molding
KR101469683B1 (en) Methods for Preparing of Electromagnetic Shielding Composite Using Copper-Nickel Plated Carbon Fiber Prepared by Electroless-Electronic Continuous Process and Electromagnetic Shielding Material Prepared by the Methods
CN111279808B (en) Electromagnetic wave shielding molded article
KR101212671B1 (en) Emi/rfi shielding polymer composite
US20250011579A1 (en) Electromagnetic wave shielding molded article
Zhang et al. Design and fabrication of long‐carbon‐fiber‐reinforced polyamide‐6/nickel powder composites for electromagnetic interference shielding and high mechanical performance
JP6777710B2 (en) Radar transmit / receive antenna protection
KR101742973B1 (en) Polymer composite with electromagnetic absorbing ability and high thermal conductivity and manufacturing method of the same
KR101742974B1 (en) Polymer composite with electromagnetic shielding and absorbing ability and manufacturing method of the same
KR102034035B1 (en) Composite for shielding electromagnetic wave
Duan et al. Effect of a coupling agent on the electromagnetic and mechanical properties of carbon black/acrylonitrile–butadiene–styrene composites
iPolycond Consortium Introduction to conductive polymer composites
EP4393988A1 (en) Polypropylene compositions with enhanced microwave absorption and reduced microwave reflection
JP2024141165A (en) Carbon fiber reinforced molding
CN111264090A (en) Electromagnetic wave shielding and absorbing molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201008

R150 Certificate of patent or registration of utility model

Ref document number: 6777710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250