[go: up one dir, main page]

JP2019023312A - Protective member of transmission/reception antenna of millimeter wave radar - Google Patents

Protective member of transmission/reception antenna of millimeter wave radar Download PDF

Info

Publication number
JP2019023312A
JP2019023312A JP2018201399A JP2018201399A JP2019023312A JP 2019023312 A JP2019023312 A JP 2019023312A JP 2018201399 A JP2018201399 A JP 2018201399A JP 2018201399 A JP2018201399 A JP 2018201399A JP 2019023312 A JP2019023312 A JP 2019023312A
Authority
JP
Japan
Prior art keywords
fiber
carbon
millimeter wave
component
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018201399A
Other languages
Japanese (ja)
Other versions
JP6777710B2 (en
Inventor
弘 片山
Hiroshi Katayama
弘 片山
西川 浩二
Koji Nishikawa
浩二 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Polymer Ltd
Original Assignee
Daicel Polymer Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Polymer Ltd filed Critical Daicel Polymer Ltd
Publication of JP2019023312A publication Critical patent/JP2019023312A/en
Application granted granted Critical
Publication of JP6777710B2 publication Critical patent/JP6777710B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

To provide a thermoplastic resin composition from which a formed body excellent in millimeter wave shielding performance is obtained.SOLUTION: A protective member of a transmission/reception antenna of a millimeter wave radar is a formed body which is formed of a thermoplastic resin composition that contains (A) a thermoplastic resin and (B) 0.5-5 mass% of a carbon long fiber with a fiber length of 3-30 mm and contains no glass fiber, in which the carbon long fiber of the component (B) is a substance obtained by cutting a substance obtained by impregnating a substance where carbon fibers are bundled while being aligned in a length direction with the thermoplastic resin of the melted component (A) and integrating the substances with each other into 3-30 mm., and has millimeter wave shielding performance, where a weight average fiber length of the carbon fiber derived from the carbon long fiber of the component (B) in the formed body is 1 mm or more, a content ratio of a substance with a fiber length of the carbon fiber derived from the carbon long fiber of the component (B) in the formed body of 1 mm or more is 60 mass% or more, a content ratio of a substance with a fiber length of the carbon fiber derived from the carbon long fiber of the component (B) in the formed body of 2 mm or more is 40 mass% or more, and the protective member is formed of a formed body having millimeter wave shielding performance.SELECTED DRAWING: None

Description

本発明は、ミリ波レーダ用として適した、ミリ波の遮蔽性能を有している成形体用の熱可塑性樹脂組成物と、それから得られる成形体に関する。   The present invention relates to a thermoplastic resin composition for a molded article having a millimeter-wave shielding performance suitable for a millimeter wave radar, and a molded article obtained therefrom.

車両の自動運転や衝突防止を目的としてミリ波レーダが利用されている。
ミリ波レーダ装置は、自動車の前面に取り付けられており、電波を送受信するアンテナが組み込まれた高周波モジュール、該電波を制御する制御回路、アンテナおよび制御回路を収納するハウジング、アンテナの電波の送受信を覆うレドームを備えている(特許文献1の背景技術)。
このように構成されたミリ波レーダ装置は、アンテナからミリ波を送受信して、障害物との相対距離や相対速度等を検出することができる。
Millimeter wave radar is used for the purpose of automatic driving of vehicles and collision prevention.
The millimeter wave radar device is attached to the front of an automobile, and includes a high frequency module incorporating an antenna for transmitting and receiving radio waves, a control circuit for controlling the radio waves, a housing for housing the antenna and the control circuit, and transmission and reception of radio waves from the antennas. A covering radome is provided (background art of Patent Document 1).
The millimeter wave radar device configured as described above can detect a relative distance, a relative speed, and the like with an obstacle by transmitting and receiving millimeter waves from an antenna.

アンテナは、目的とする障害物以外の路面などに反射したものも受信することがあるため、装置の検出精度が低下するおそれがある。
このような問題を解決するため、特許文献1のミリ波レーダ装置では、アンテナと制御回路との間に電波を遮蔽する遮蔽部材を設けている。
前記遮蔽部材は、レドームよりも誘電損失の大きい誘電損失層または磁気損失層のいずれかの層に導電体層を積層させている電波吸収材を使用することが記載されている。
前記誘電損失層は、カーボンナノチューブ、カーボンマイクロコイル、シュンガイトカーボン、カーボンブラック、膨張黒鉛、カーボンファイバーのうちの少なくとも一つから選択されたカーボン材料からなるものが記載されている(段落番号0023)。
前記磁気損失層は、六方晶フェライトからなるものが記載されている(段落番号0023)。
さらに前記誘電損失層または前記磁気損失層は、前記カーボン材料または前記六方晶フェライトよりも高電気抵抗率を有する物質(絶縁性高分子材料または絶縁性無機材料)を含有しているものが好ましいことが記載されている(段落番号0024)。
Since the antenna may receive the antenna reflected on the road surface other than the target obstacle, the detection accuracy of the apparatus may be lowered.
In order to solve such a problem, the millimeter wave radar device of Patent Document 1 includes a shielding member that shields radio waves between the antenna and the control circuit.
It is described that the shielding member uses a radio wave absorber in which a conductor layer is laminated on either a dielectric loss layer or a magnetic loss layer having a dielectric loss larger than that of the radome.
The dielectric loss layer is made of a carbon material selected from at least one of carbon nanotubes, carbon microcoils, sungite carbon, carbon black, expanded graphite, and carbon fibers (paragraph number 0023).
The magnetic loss layer is made of hexagonal ferrite (paragraph number 0023).
Further, the dielectric loss layer or the magnetic loss layer preferably contains a substance (insulating polymer material or insulating inorganic material) having a higher electric resistivity than the carbon material or the hexagonal ferrite. (Paragraph number 0024).

特開2007−74662号公報JP 2007-74662 A

KEC情報,No.225,2013年4月号,p36−41KEC Information, No. 225, April 2013, p36-41

本発明は、ミリ波レーダ用として適した、ミリ波の遮蔽性能を有している成形体用の熱可塑性樹脂組成物と、それから得られる成形体を提供することを課題とする。   An object of the present invention is to provide a thermoplastic resin composition for a molded article having a millimeter-wave shielding performance suitable for a millimeter-wave radar and a molded article obtained therefrom.

本発明は、課題の解決手段として、(A)熱可塑性樹脂、(B)繊維長3〜30mmの炭素長繊維0.5〜5質量%を含有する、ミリ波の遮蔽性能を有している成形体用の熱可塑性樹脂組成物を提供する。   As a means for solving the problems, the present invention has a millimeter wave shielding performance containing (A) a thermoplastic resin and (B) 0.5 to 5% by mass of carbon fiber having a fiber length of 3 to 30 mm. A thermoplastic resin composition for a molded body is provided.

本発明は、他の課題の解決手段として、
請求項1〜4のいずれか1項に記載の熱可塑性樹脂組成物からなるミリ波の遮蔽性能を有している成形体であって、
前記成形体中に残存する(B)成分の炭素長繊維に由来する炭素繊維の重量平均繊維長が1mm以上であり、
前記成形体の表面抵抗率が1×105〜109Ω/□の範囲である、ミリ波の遮蔽性能を有している成形体を提供する。
The present invention provides a solution to other problems.
A molded body having a millimeter-wave shielding performance comprising the thermoplastic resin composition according to any one of claims 1 to 4,
The weight average fiber length of the carbon fiber derived from the carbon long fiber of the component (B) remaining in the molded body is 1 mm or more,
Provided is a molded article having a millimeter wave shielding performance, wherein the molded article has a surface resistivity in the range of 1 × 10 5 to 10 9 Ω / □.

本発明の熱可塑性樹脂組成物から得られる成形体は、ミリ波の遮蔽性能が優れていることから、特にミリ波レーダの送受信アンテナの保護部材用として適している。   Since the molded product obtained from the thermoplastic resin composition of the present invention has excellent millimeter wave shielding performance, it is particularly suitable as a protective member for a transmission / reception antenna of a millimeter wave radar.

ミリ波の遮蔽性能(電磁波シールド性)の測定方法の説明図。Explanatory drawing of the measuring method of millimeter wave shielding performance (electromagnetic wave shielding property). 実施例および比較例における電磁波シールド性の測定結果を示すグラフ。The graph which shows the measurement result of the electromagnetic wave shielding property in an Example and a comparative example.

<熱可塑性樹脂組成物>
(A)成分の熱可塑性樹脂は特に制限されるものではなく、用途に応じて適宜選択することができる。
(A)成分としては、ポリプロピレン、脂肪族ポリアミド、芳香族ポリアミド、ポリブチレンテレフタレート、ポリカーボネート、およびこれらの混合物から選ばれるものが好ましい。
<Thermoplastic resin composition>
The thermoplastic resin as the component (A) is not particularly limited and can be appropriately selected depending on the application.
The component (A) is preferably selected from polypropylene, aliphatic polyamide, aromatic polyamide, polybutylene terephthalate, polycarbonate, and mixtures thereof.

(B)成分の炭素長繊維は、公知のポリアクリロニトリル系、ピッチ系、レーヨン系等からなるものを用いることができるが、ポリアクリロニトリル系の炭素長繊維が好ましい。
(B)成分の炭素長繊維は、金属が表面被覆されたものを含む。かかる表面被覆の方法としては特に限定されるものではなく、例えば公知の各種メッキ法(例えば、電解メッキ、無電解メッキ、溶融メッキなど)、真空蒸着法、イオンプレーティング法、CVD法(例えば熱CVD、MOCVD、プラズマCVDなど)、PVD法、およびスパッタリング法などを挙げることができる。中でもメッキ法が好適に利用される。
表面を被覆する金属としては、銀、銅、ニッケル、およびアルミニウムなどが挙げられ、ニッケルが金属層の耐腐食性の点から好ましい。金属被覆層の厚みは好ましくは0.1〜1μm、より好ましくは0.2〜0.5μmである。
(B)成分の炭素長繊維は、ミリ波の遮蔽性能を高めるため、繊維長が3〜30mmであり、繊維長が5〜20mmが好ましく、6〜15mmがより好ましい。
As the carbon long fiber of component (B), known polyacrylonitrile-based, pitch-based, rayon-based and the like can be used, but polyacrylonitrile-based carbon long fibers are preferable.
(B) The carbon long fiber of a component contains what the metal surface-coated. The surface coating method is not particularly limited. For example, various known plating methods (for example, electrolytic plating, electroless plating, hot-dip plating, etc.), vacuum deposition methods, ion plating methods, CVD methods (for example, thermal methods) CVD, MOCVD, plasma CVD, etc.), PVD method, sputtering method and the like. Of these, the plating method is preferably used.
Examples of the metal covering the surface include silver, copper, nickel, and aluminum. Nickel is preferable from the viewpoint of the corrosion resistance of the metal layer. The thickness of the metal coating layer is preferably 0.1 to 1 μm, more preferably 0.2 to 0.5 μm.
The carbon long fiber (B) has a fiber length of 3 to 30 mm, preferably a fiber length of 5 to 20 mm, and more preferably 6 to 15 mm in order to improve millimeter wave shielding performance.

(B)成分の炭素長繊維は、(A)成分と(B)成分との分散性を高めるため、炭素繊維を長さ方向に揃えた束ねた状態のものに溶融させた(A)成分の熱可塑性樹脂を含浸させ一体化させたものを3〜30mmに切断したもの(樹脂含浸炭素長繊維束)が好ましい。
このような樹脂含浸炭素長繊維束は、ダイスを用いた周知の製造方法により製造することができ、例えば、特開2011−57811号公報の段落番号0019および参考製造例1など、特開平6−313050号公報の段落番号0007、特開2007−176227号公報の段落番号0023のほか、特公平6−2344号公報(樹脂被覆長繊維束の製造方法並びに成形方法)、特開平6−114832号公報(繊維強化熱可塑性樹脂構造体およびその製造法)、特開平6−293023号公報(長繊維強化熱可塑性樹脂組成物の製造方法)、特開平7−205317号公報(繊維束の取り出し方法および長繊維強化樹脂構造物の製造方法)、特開平7−216104号公報(長繊維強化樹脂構造物の製造方法)、特開平7−251437号公報(長繊維強化熱可塑性複合材料の製造方法および製造装置)、特開平8−118490号公報(クロスヘッドダイおよび長繊維強化樹脂構造物の製造方法)などに記載の製造方法を適用することができる。
また、プラストロン(登録商標;ダイセルポリマー株式会社)などの市販品を利用することもできる。
(B) The carbon long fiber of the component is a component of the component (A) in which the carbon fibers are melted in a bundle in the length direction in order to increase the dispersibility of the component (A) and the component (B). What is obtained by impregnating and integrating a thermoplastic resin into 3 to 30 mm (resin-impregnated carbon long fiber bundle) is preferable.
Such a resin-impregnated carbon long fiber bundle can be manufactured by a known manufacturing method using a die, such as paragraph number 0019 of Japanese Patent Application Laid-Open No. 2011-57811 and Reference Production Example 1, etc. In addition to paragraph number 0007 of Japanese Patent No. 313050, paragraph number 0023 of Japanese Patent Laid-Open No. 2007-176227, Japanese Patent Publication No. 6-2344 (manufacturing method and molding method of resin-coated long fiber bundle), Japanese Patent Laid-Open No. 6-114732. (Fiber-reinforced thermoplastic resin structure and method for producing the same), JP-A-6-293023 (method for producing a long fiber-reinforced thermoplastic resin composition), JP-A-7-205317 (method for taking out a fiber bundle and length thereof) Manufacturing method of fiber reinforced resin structure), JP-A-7-216104 (manufacturing method of long fiber reinforced resin structure), JP-A-7-25143 No. 8 (manufacturing method and manufacturing apparatus of long fiber reinforced thermoplastic composite material), JP-A-8-118490 (manufacturing method of crosshead die and long fiber reinforced resin structure), etc. Can do.
Commercial products such as Plastron (registered trademark; Daicel Polymer Co., Ltd.) can also be used.

(B)成分として樹脂含浸炭素長繊維束を使用するとき、樹脂含浸炭素長繊維束中の(B)成分の炭素長繊維の含有割合は、10〜50質量%が好ましく、10〜40質量%がより好ましく、10〜30質量%がさらに好ましい。
なお、この場合に樹脂含浸炭素長繊維束に含まれている(A)成分の熱可塑性樹脂は、(A)成分の含有量として計算する。
When the resin-impregnated carbon long fiber bundle is used as the component (B), the content of the carbon long fiber of the component (B) in the resin-impregnated carbon long fiber bundle is preferably 10 to 50% by mass, and 10 to 40% by mass. Is more preferable, and 10-30 mass% is further more preferable.
In this case, the thermoplastic resin of component (A) contained in the resin-impregnated carbon long fiber bundle is calculated as the content of component (A).

組成物中における(B)成分の炭素長繊維の含有割合は、ミリ波の遮蔽性能を高めるため、0.5〜5質量%であり、0.5〜3質量%が好ましく、0.8〜2質量%がより好ましい。   The content ratio of the carbon long fiber of the component (B) in the composition is 0.5 to 5% by mass, preferably 0.5 to 3% by mass, and is preferably 0.8 to 0.5% in order to improve the millimeter wave shielding performance. 2 mass% is more preferable.

本発明の熱可塑性樹脂組成物は、課題を解決できる範囲において、公知の樹脂添加剤を含有することができる。
公知の樹脂添加剤としては、酸化防止剤、耐熱安定剤、紫外線吸収剤などの安定剤、帯電防止剤、難燃剤、難燃助剤、染料や顔料などの着色剤、潤滑剤、可塑剤、結晶化促進剤、結晶核剤などを挙げることができる。
The thermoplastic resin composition of the present invention can contain a known resin additive as long as the problem can be solved.
Known resin additives include antioxidants, heat stabilizers, stabilizers such as UV absorbers, antistatic agents, flame retardants, flame retardant aids, colorants such as dyes and pigments, lubricants, plasticizers, Examples thereof include crystallization accelerators and crystal nucleating agents.

<成形体>
本発明の成形体は、上記した熱可塑性樹脂組成物を成形したものであり、形状および大きさなどは用途に応じて選択することができる。
<Molded body>
The molded body of the present invention is obtained by molding the thermoplastic resin composition described above, and the shape, size, and the like can be selected depending on the application.

本発明の成形体は、ミリ波(所定周波数帯域の電磁波)の遮蔽性能を高めるため、残存する(B)成分の炭素長繊維に由来する炭素繊維の重量平均繊維長が1mm以上であることが好ましく、2mm以上がより好ましく、3mm以上がさらに好ましい。
重量平均繊維長は実施例に記載の方法により測定されるものである。
The molded article of the present invention may have a weight average fiber length of 1 mm or more of carbon fibers derived from the remaining carbon fibers of the component (B) in order to improve the shielding performance of millimeter waves (electromagnetic waves in a predetermined frequency band). Preferably, it is 2 mm or more, more preferably 3 mm or more.
The weight average fiber length is measured by the method described in Examples.

また本発明の成形体は、残存する(B)成分の炭素長繊維に由来する炭素繊維の繊維長が1mm以上のものの含有割合は60質量%以上が好ましく、70質量%以上がより好ましく、80質量%であることがさらに好ましい。
さらに本発明の成形体は、残存する(B)成分の炭素長繊維に由来する炭素繊維の繊維長が2mm以上のものの含有割合は40質量%以上が好ましく、50質量%以上がより好ましく、60質量%以上であることがさらに好ましい。
In the molded product of the present invention, the content ratio of the carbon fiber derived from the remaining carbon fiber of component (B) having a fiber length of 1 mm or more is preferably 60% by mass or more, more preferably 70% by mass or more, and 80 More preferably, it is mass%.
Further, in the molded article of the present invention, the content ratio of the carbon fiber having a fiber length of 2 mm or more derived from the remaining carbon fiber of the component (B) is preferably 40% by mass or more, more preferably 50% by mass or more. More preferably, it is at least mass%.

本発明の成形体は、ミリ波の遮蔽性能を有しているものであり、ミリ波の遮蔽性能を有しているとは、実施例の測定方法で求められるミリ波(所定周波数帯域の電磁波)における電磁波シールド性(放射波の透過阻害性)で評価されるものである。
本発明の成形体における電磁波シールド性は、30dB以上であり、40dB以上であることがより好ましく、50dB以上がさらに好ましい。
本発明におけるミリ波の周波数帯域は、300mm(1GHz)〜1mm(300GHz)の範囲であり、20mm(15GHz)〜3mm(100GHz)の範囲がより好ましい。
ミリ波の遮蔽性能は、実施例に記載の方法により測定されるものである。
The molded body of the present invention has a millimeter wave shielding performance. The millimeter wave shielding performance means that a millimeter wave (electromagnetic wave in a predetermined frequency band) obtained by the measurement method of the example is used. ) In the electromagnetic wave shielding property (radiation wave transmission inhibition property).
The electromagnetic wave shielding property in the molded article of the present invention is 30 dB or more, more preferably 40 dB or more, and further preferably 50 dB or more.
The millimeter-wave frequency band in the present invention is in the range of 300 mm (1 GHz) to 1 mm (300 GHz), and more preferably in the range of 20 mm (15 GHz) to 3 mm (100 GHz).
The millimeter wave shielding performance is measured by the method described in the examples.

本発明の成形体は、前記のように平均残存繊維長が長いことから、(B)成分の含有量が少量であるにも拘わらず、ミリ波の遮蔽性能に加えて導電性も示す。
本発明の成形体の体積抵抗率は1×102〜109Ω・mの範囲であり、好ましくは1×103〜108Ω・mの範囲である。
同様に本発明の成形体の表面抵抗率は1×105〜109Ω/□の範囲であり、好ましくは1×106〜108Ω/□の範囲である。
Since the molded article of the present invention has a long average residual fiber length as described above, it exhibits conductivity in addition to the millimeter wave shielding performance even though the content of the component (B) is small.
The volume resistivity of the molded article of the present invention is in the range of 1 × 10 2 to 10 9 Ω · m, preferably in the range of 1 × 10 3 to 10 8 Ω · m.
Similarly, the surface resistivity of the molded article of the present invention is in the range of 1 × 10 5 to 10 9 Ω / □, and preferably in the range of 1 × 10 6 to 10 8 Ω / □.

本発明の成形体は、上記した熱可塑性樹脂組成物を射出成形、プレス成形などの公知の樹脂成形方法を適用して製造することができる。
本発明の成形体は、ミリ波レーダ用として適しており、特にミリ波レーダの送受信アンテナの保護部材用として適している。
The molded body of the present invention can be produced by applying the above-described thermoplastic resin composition to a known resin molding method such as injection molding or press molding.
The molded article of the present invention is suitable for millimeter wave radar, and particularly suitable for a protective member for a transmission / reception antenna of millimeter wave radar.

製造例1(樹脂含浸炭素長繊維束の製造)
炭素長繊維(トレカT700SC,引張強度4.9GPa)からなる繊維束(約24000本の繊維の束)を、予備加熱装置による150℃の加熱を経て、クロスヘッドダイに通した。
そのとき、クロスヘッドダイには、2軸押出機,シリンダー温度280℃)から溶融状態のポリプロピレン(サンアロマー(株)製,PMB60A)を供給し、繊維束にポリプロピレンを含浸させた。
その後、クロスヘッドダイ出口の賦形ノズルで賦形し、整形ロールで形を整えた後、ペレタイザーにより所定長さに切断し、長さ8mmのペレット(円柱状成形体)を得た。
炭素長繊維長さは前記ペレット長さと同一となる。このようにして得たペレットは、炭素長繊維が長さ方向にほぼ平行になっていた。
Production Example 1 (Production of resin-impregnated carbon long fiber bundle)
A fiber bundle (a bundle of about 24,000 fibers) made of long carbon fibers (Torayca T700SC, tensile strength 4.9 GPa) was passed through a crosshead die through heating at 150 ° C. by a preheating device.
At that time, molten polypropylene (manufactured by Sun Allomer Co., Ltd., PMB60A) was supplied to the crosshead die from a twin screw extruder, cylinder temperature of 280 ° C., and the fiber bundle was impregnated with polypropylene.
Then, after shaping with a shaping nozzle at the exit of the crosshead die and shaping with a shaping roll, the pellet was cut into a predetermined length by a pelletizer to obtain a pellet (cylindrical shaped body) having a length of 8 mm.
The carbon long fiber length is the same as the pellet length. The pellets thus obtained had carbon long fibers substantially parallel to the length direction.

実施例1
製造例1により得たペレット(炭素長繊維含有量40質量%)3質量%と、ポリプロピレン樹脂(サンアロマー(株)製,PMB60A)のペレット97質量%を使用し、射出成形機(J-150EII;(株)日本製鋼所製)により、成形温度240℃、金型温度60℃で成形して成形体を得た。
得られた成形体を使用して、表1に示す各測定を実施した。
Example 1
Using 3% by mass of pellets (carbon long fiber content of 40% by mass) obtained in Production Example 1 and 97% by mass of pellets of polypropylene resin (manufactured by Sun Allomer Co., Ltd., PMB60A), an injection molding machine (J-150EII; The product was molded at a molding temperature of 240 ° C. and a mold temperature of 60 ° C. by Nippon Steel Works, Ltd.
Each measurement shown in Table 1 was implemented using the obtained molded object.

比較例1
製造例により得たペレット(炭素長繊維含有量40質量%)を二軸押出機((株)日本製鋼所;二軸押出機TEX30α)に供給して再度ペレットを成形して、炭素短繊維含有ペレット(円柱状成形体)を得た。
この炭素短繊維含有ペレットと3質量%と、ポリプロピレン樹脂(サンアロマー(株)製 PMB60A)のペレット97質量%を使用し、射出成形機(J-150EII;(株)日本製鋼所製)により、成形温度240℃、金型温度60℃で成形して成形体を得た。
得られた成形体を使用して、表1に示す各測定を実施した。
Comparative Example 1
The pellets obtained from the production example (carbon long fiber content: 40% by mass) were supplied to a twin screw extruder (Japan Steel Works, Ltd .; twin screw extruder TEX30α), and the pellets were molded again to contain carbon short fibers. A pellet (cylindrical shaped body) was obtained.
Using this carbon short fiber-containing pellet, 3% by mass, and 97% by mass of a polypropylene resin (PMB60A manufactured by Sun Allomer Co., Ltd.), molding is performed using an injection molding machine (J-150EII; manufactured by Nippon Steel Works Co., Ltd.). A molded body was obtained by molding at a temperature of 240 ° C. and a mold temperature of 60 ° C.
Each measurement shown in Table 1 was implemented using the obtained molded object.

比較例2
製造例により得たペレット(炭素長繊維含有量40質量%)25質量%と、ポリプロピレン樹脂(サンアロマー(株)製 PMB60A)のペレット75質量%を使用し、射出成形機(J-150EII;(株)日本製鋼所製)により、成形温度240℃、金型温度60℃で成形して成形体を得た。
得られた成形体を使用して、表1に示す各測定を実施した。
Comparative Example 2
An injection molding machine (J-150EII; Co., Ltd.) was used by using 25% by mass of pellets (carbon long fiber content: 40% by mass) and 75% by mass of polypropylene resin (PMB60A manufactured by Sun Allomer Co., Ltd.). ) Manufactured by Nippon Steel Works) and molded at a molding temperature of 240 ° C. and a mold temperature of 60 ° C. to obtain a compact.
Each measurement shown in Table 1 was implemented using the obtained molded object.

(1)重量平均繊維長
成形品から約3gの試料を切出し、硫酸によりPPを溶解除去して炭素繊維を取り出した。取り出した繊維の一部(500本)から重量平均繊維長を求めた。計算式は、特開2006−274061号公報の〔0044〕、〔0045〕を使用した。
(1) Weight average fiber length A sample of about 3 g was cut out from the molded product, and PP was dissolved and removed with sulfuric acid, and carbon fibers were taken out. The weight average fiber length was determined from a part (500) of the extracted fibers. As the calculation formula, [0044] and [0045] of JP-A-2006-274061 were used.

(2)電磁波シールド性
図1に示す測定装置を使用した。
上下方向に正対させた1対のアンテナ(広帯域アンテナ;シュワルツベック,BBHA9120A,2−18GHz)11、12の間に測定対象となる成形体10(縦150mm、横150mm、厚み2mm)を保持した。アンテナ12と成形体10の間隔は85mm、成形体10とアンテナ11との間隔は10mmである。
この状態にて、下側のアンテナ12から電磁波(1〜18GHz)を放射して、測定対象となる成形体10を透過した電磁波を上側のアンテナ11で受信して、下記式1から電磁波シールド性(放射波の透過阻害性)を求めた。
式1のS21は、透過電磁波と入射電磁波の比を表すSパラメータ(式2)で、ネットワークアナライザにより測定できる。
式1では、電磁波シールド性(dB)を正の値で表すため、Sパラメータの逆数の対数をとった。図1の測定装置では、0〜約55dBの範囲が測定可能で、電磁波シールド性が測定上限を超える場合は表1において「>55(dB)」と表記した。
表1に測定結果を示し、電磁波シールド性の変化を図2に示す。
電磁波シールド性=20log(1/|S21|)(単位:dB) (式1)
21=(透過電磁波)/(入射電磁波) (式2)
(2) Electromagnetic wave shielding property The measuring apparatus shown in FIG. 1 was used.
Between a pair of antennas (broadband antennas; Schwartzbeck, BBHA9120A, 2-18 GHz) 11 and 12 that face each other in the vertical direction, a molded object 10 (length 150 mm, width 150 mm, thickness 2 mm) to be measured is held. . The distance between the antenna 12 and the molded body 10 is 85 mm, and the distance between the molded body 10 and the antenna 11 is 10 mm.
In this state, an electromagnetic wave (1 to 18 GHz) is radiated from the lower antenna 12, and the electromagnetic wave transmitted through the molded body 10 to be measured is received by the upper antenna 11. (Radiation wave transmission inhibition) was determined.
S 21 in Equation 1 is an S parameter (Equation 2) that represents the ratio of transmitted electromagnetic wave and incident electromagnetic wave, and can be measured by a network analyzer.
In Equation 1, since the electromagnetic wave shielding property (dB) is expressed by a positive value, the logarithm of the reciprocal of the S parameter is taken. In the measuring apparatus of FIG. 1, a range of 0 to about 55 dB can be measured, and when the electromagnetic wave shielding property exceeds the upper limit of measurement, “> 55 (dB)” is shown in Table 1.
Table 1 shows the measurement results, and FIG. 2 shows the change in electromagnetic shielding properties.
Electromagnetic shielding property = 20 log (1 / | S 21 |) (unit: dB) (Formula 1)
S 21 = (transmitted electromagnetic wave) / (incident electromagnetic wave) (Formula 2)

(3)引張強さ(MPa)、引張呼び歪み(%)
JIS K7161に準じて引張強さ、引張呼び歪みを測定した。
(3) Tensile strength (MPa), Nominal tensile strain (%)
Tensile strength and nominal tensile strain were measured according to JIS K7161.

(4)密度
ISO1183に準じて密度を測定した。
(4) Density The density was measured according to ISO 1183.

(5)表面抵抗率及び体積抵抗率
表面抵抗率が5×107Ω/□以下、体積抵抗率が2×105Ω・m以下の試料については、低抵抗率計[三菱化学(株)製、ロレスターGP(MCP−T600)]を用い、JIS K7194に準じて表面抵抗率、体積抵抗率を測定した。
表面抵抗率が1×108Ω/□以上、体積抵抗率が1×104Ω・m以上の試料は高抵抗率計[三菱化学(株)製、ハイレスターUP(MCP−HT450)]を用い、JIS K6911に準じて表面抵抗率、体積抵抗率を測定した。
なお、例えば表1中、実施例1の「1.1E+07」との表記は「1.1×107」を示す。
比較例1及び比較例2の「>1.0E+13(Ω/□)」、「>1.0E+9(Ω・m)」は、高抵抗率計の測定上限が、表面抵抗率は1×1013Ω/□、体積抵抗率は1×109Ω・mであるため、抵抗率がこれらより高いことを表している。
実施例1〜3の「5〜10E+7(Ω/□)」の記載は、表面抵抗率が低抵抗率計の測定上限より高く、高抵抗率計の測定下限より低いことを表している。
(5) Surface resistivity and volume resistivity For samples having a surface resistivity of 5 × 10 7 Ω / □ or less and a volume resistivity of 2 × 10 5 Ω · m or less, a low resistivity meter [Mitsubishi Chemical Corporation Manufactured, Lorester GP (MCP-T600)], and surface resistivity and volume resistivity were measured according to JIS K7194.
For samples with a surface resistivity of 1 × 10 8 Ω / □ or more and a volume resistivity of 1 × 10 4 Ω · m or more, use a high resistivity meter [manufactured by Mitsubishi Chemical Corporation, High Lester UP (MCP-HT450)]. The surface resistivity and volume resistivity were measured according to JIS K6911.
For example, in Table 1, the notation “1.1E + 07” in Example 1 indicates “1.1 × 10 7 ”.
In Comparative Examples 1 and 2, “> 1.0E + 13 (Ω / □)” and “> 1.0E + 9 (Ω · m)” are the upper limit of measurement of the high resistivity meter, and the surface resistivity is 1 × 10 13. Since Ω / □ and volume resistivity are 1 × 10 9 Ω · m, the resistivity is higher than these.
The description of “5-10E + 7 (Ω / □)” in Examples 1 to 3 indicates that the surface resistivity is higher than the measurement upper limit of the low resistivity meter and lower than the measurement lower limit of the high resistivity meter.

Figure 2019023312
Figure 2019023312

表中、PPはポリプロピレン、CFは炭素繊維を示す。
電磁波シールド性は、数値が大きくなるほどミリ波の遮蔽性能が優れていることを示している。
実施例1と比較例1、実施例3と比較例2の対比から、同量であれば長繊維を使用することで電磁波シールド性を高められることが確認できた。
比較例3では、短繊維の炭素繊維の含有量を増加させることで電磁波シールド性が高められることが確認されたが、比較例3では、実施例1の16倍量以上もの炭素繊維を使用しているにも拘わらず、実施例1の方が電磁波シールド性に優れていた。
比較例4では、炭素長繊維の含有量を増加させると、実施例1〜3を超える電磁波シールド性を得られることが確認されたが、この場合も実施例1の16倍量以上もの炭素繊維を使用しており、経済的に不利であるとともに密度が大きく、成形体の軽量化にも不利である。
In the table, PP represents polypropylene and CF represents carbon fiber.
The electromagnetic wave shielding property indicates that the higher the numerical value, the better the millimeter wave shielding performance.
From the comparison between Example 1 and Comparative Example 1 and Example 3 and Comparative Example 2, it was confirmed that the electromagnetic shielding properties could be improved by using long fibers if the amount was the same.
In Comparative Example 3, it was confirmed that the electromagnetic wave shielding property was improved by increasing the content of the short-fiber carbon fiber, but in Comparative Example 3, carbon fiber that is 16 times the amount of Example 1 or more was used. Nevertheless, Example 1 was superior in electromagnetic wave shielding properties.
In Comparative Example 4, it was confirmed that when the content of the carbon long fiber was increased, electromagnetic wave shielding properties exceeding Examples 1 to 3 could be obtained. This is economically disadvantageous and has a large density, which is also disadvantageous for reducing the weight of the molded body.

表1および図2に示す周波数帯域は1〜18GHzであるが、前記範囲の電磁波シールド性が表1および図2に示す状態であるときには、1〜300GHzの周波数帯域においても表皮深さが厚みより十分小さくなることから、炭素繊維配合樹脂が損失媒質として振る舞うので、減衰定数がGHz領域では周波数が高くなるほど大きくなり、高い電磁波シールド性を示すことは知られている。
この事実は、例えば非特許文献1の記載、特にp39−p40にかけての「2.3 損失媒質を利用する電磁遮へい」の記載と「図9 導電材の2層構造の遮へい特性」から確認できる。
The frequency band shown in Table 1 and FIG. 2 is 1 to 18 GHz. When the electromagnetic wave shielding property in the above range is in the state shown in Table 1 and FIG. 2, the skin depth is more than the thickness even in the frequency band of 1 to 300 GHz. Since the carbon fiber compounded resin behaves as a loss medium because it is sufficiently small, it is known that the attenuation constant increases as the frequency increases in the GHz region and exhibits high electromagnetic shielding properties.
This fact can be confirmed from, for example, the description of Non-Patent Document 1, particularly “2.3 Electromagnetic Shielding Using Loss Medium” from p39 to p40 and “FIG. 9 Shielding Characteristics of Two-Layer Structure of Conductive Material”.

Claims (4)

(A)熱可塑性樹脂、
(B)繊維長3〜30mmの炭素長繊維0.5〜5質量%
を含有し、ガラス繊維を含有しておらず、
(B)成分の炭素長繊維が、炭素繊維を長さ方向に揃えた束ねた状態のものに対して、溶融させた(A)成分の熱可塑性樹脂を含浸させ一体化させたものを3〜30mmに切断したものである熱可塑性樹脂組成物からなる、ミリ波の遮蔽性能を有している成形体からなるミリ波レーダの送受信アンテナの保護部材であって、
前記成形体中の(B)成分の炭素長繊維に由来する炭素繊維の重量平均繊維長が1mm以上であり、
前記成形体中の(B)成分の炭素長繊維に由来する炭素繊維の繊維長が1mm以上のものの含有割合が60質量%以上であり、
前記成形体中の(B)成分の炭素長繊維に由来する炭素繊維の繊維長が2mm以上のものの含有割合が40質量%以上である、ミリ波の遮蔽性能を有している成形体からなるミリ波レーダの送受信アンテナの保護部材。
(A) thermoplastic resin,
(B) Carbon long fiber having a fiber length of 3 to 30 mm 0.5 to 5% by mass
Contains no glass fiber,
(B) The carbon long fibers of component (3) are obtained by impregnating the melted thermoplastic resin of component (A) with a bundle of carbon fibers bundled in the length direction. A protective member for a transmission / reception antenna of a millimeter wave radar comprising a molded article having a millimeter wave shielding performance, comprising a thermoplastic resin composition cut to 30 mm,
The weight average fiber length of the carbon fibers derived from the carbon long fibers of the component (B) in the molded body is 1 mm or more,
The content ratio of the carbon fiber having a fiber length of 1 mm or more derived from the carbon long fiber of the component (B) in the molded body is 60% by mass or more,
The carbon fiber derived from the carbon long fiber of the component (B) in the molded body is a molded body having a millimeter-wave shielding performance in which the content ratio of the fiber length of 2 mm or more is 40% by mass or more. Protective member for millimeter wave radar transmission / reception antenna.
(A)成分の熱可塑性樹脂が、ポリプロピレン、脂肪族ポリアミド、芳香族ポリアミド、ポリブチレンテレフタレート、ポリカーボネートから選ばれるものである、請求項1記載のミリ波の遮蔽性能を有している成形体からなるミリ波レーダの送受信アンテナの保護部材。   The thermoplastic resin as the component (A) is selected from polypropylene, aliphatic polyamide, aromatic polyamide, polybutylene terephthalate, and polycarbonate. This is a protection member for a transmitting / receiving antenna of a millimeter wave radar. ミリ波が、波長1〜300GHzの範囲のものである、請求項1または2記載のミリ波の遮蔽性能を有している成形体からなるミリ波レーダの送受信アンテナの保護部材。   The protective member for a transmission / reception antenna of a millimeter wave radar comprising a molded body having a millimeter wave shielding performance according to claim 1 or 2, wherein the millimeter wave has a wavelength in the range of 1 to 300 GHz. 前記成形体の表面抵抗率が1×105〜109Ω/□の範囲である、請求項1〜3のいずれか1項記載のミリ波の遮蔽性能を有している成形体からなるミリ波レーダの送受信アンテナの保護部材。 The millimeter made of a molded article having a millimeter wave shielding performance according to any one of claims 1 to 3, wherein the molded article has a surface resistivity in a range of 1 x 10 5 to 10 9 Ω / □. Protective member for transmission / reception antenna of wave radar.
JP2018201399A 2013-05-30 2018-10-26 Radar transmit / receive antenna protection Active JP6777710B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013113883 2013-05-30
JP2013113883 2013-05-30

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014078311A Division JP6467140B2 (en) 2013-05-30 2014-04-07 Thermoplastic resin composition for molded article having millimeter wave shielding performance

Publications (2)

Publication Number Publication Date
JP2019023312A true JP2019023312A (en) 2019-02-14
JP6777710B2 JP6777710B2 (en) 2020-10-28

Family

ID=65368436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018201399A Active JP6777710B2 (en) 2013-05-30 2018-10-26 Radar transmit / receive antenna protection

Country Status (1)

Country Link
JP (1) JP6777710B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322144A (en) * 1993-05-13 1994-11-22 Kobe Steel Ltd Thin-wall highly rigid carbon fiber-reinforced synthetic resin injection compression molding
US6051307A (en) * 1999-01-30 2000-04-18 Asahi Kasei Kogyo Kabushiki Kaisha Thermoplastic molded article containing carbon fiber
JP2004502816A (en) * 2000-06-30 2004-01-29 パーカー−ハニフイン・コーポレーシヨン Composites comprising fibers dispersed in a polymer matrix having improved shielding with less amount of conductive fibers
JP2004285147A (en) * 2003-03-20 2004-10-14 Toray Ind Inc Molding material and its molded article
JP2007074662A (en) * 2005-09-09 2007-03-22 Hitachi Ltd Millimeter wave radar equipment
US20070134482A1 (en) * 2005-10-24 2007-06-14 Hager Thomas P Long fiber thermoplastic process for conductive composites and composites formed thereby
JP2008150485A (en) * 2006-12-18 2008-07-03 Toray Ind Inc Fiber-reinforced resin composition for molding and fiber-reinforced resin molded article
JP2008540818A (en) * 2005-06-10 2008-11-20 ゼネラル・エレクトリック・カンパニイ Thermoplastic long fiber composite, method for producing the same, and product obtained therefrom
JP2010101890A (en) * 2008-10-22 2010-05-06 Honeywell Internatl Inc Microwave and millimeter wave radar sensor
WO2012144150A1 (en) * 2011-04-19 2012-10-26 マツダ株式会社 Obstacle detection device for vehicle
JP2012236944A (en) * 2011-05-13 2012-12-06 Mitsubishi Engineering Plastics Corp Fiber/resin composite composition pellet for shielding electromagnetic waves, resin composition for shielding electromagnetic waves and molded article thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06322144A (en) * 1993-05-13 1994-11-22 Kobe Steel Ltd Thin-wall highly rigid carbon fiber-reinforced synthetic resin injection compression molding
US6051307A (en) * 1999-01-30 2000-04-18 Asahi Kasei Kogyo Kabushiki Kaisha Thermoplastic molded article containing carbon fiber
JP2004502816A (en) * 2000-06-30 2004-01-29 パーカー−ハニフイン・コーポレーシヨン Composites comprising fibers dispersed in a polymer matrix having improved shielding with less amount of conductive fibers
JP2004285147A (en) * 2003-03-20 2004-10-14 Toray Ind Inc Molding material and its molded article
JP2008540818A (en) * 2005-06-10 2008-11-20 ゼネラル・エレクトリック・カンパニイ Thermoplastic long fiber composite, method for producing the same, and product obtained therefrom
JP2007074662A (en) * 2005-09-09 2007-03-22 Hitachi Ltd Millimeter wave radar equipment
US20070134482A1 (en) * 2005-10-24 2007-06-14 Hager Thomas P Long fiber thermoplastic process for conductive composites and composites formed thereby
JP2008150485A (en) * 2006-12-18 2008-07-03 Toray Ind Inc Fiber-reinforced resin composition for molding and fiber-reinforced resin molded article
JP2010101890A (en) * 2008-10-22 2010-05-06 Honeywell Internatl Inc Microwave and millimeter wave radar sensor
WO2012144150A1 (en) * 2011-04-19 2012-10-26 マツダ株式会社 Obstacle detection device for vehicle
JP2012236944A (en) * 2011-05-13 2012-12-06 Mitsubishi Engineering Plastics Corp Fiber/resin composite composition pellet for shielding electromagnetic waves, resin composition for shielding electromagnetic waves and molded article thereof

Also Published As

Publication number Publication date
JP6777710B2 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
JP6467140B2 (en) Thermoplastic resin composition for molded article having millimeter wave shielding performance
CN105359224B (en) Cable with polymer composite core
KR101469683B1 (en) Methods for Preparing of Electromagnetic Shielding Composite Using Copper-Nickel Plated Carbon Fiber Prepared by Electroless-Electronic Continuous Process and Electromagnetic Shielding Material Prepared by the Methods
US12122900B2 (en) Electromagnetic wave shielding molded article
KR101212671B1 (en) Emi/rfi shielding polymer composite
US20250011579A1 (en) Electromagnetic wave shielding molded article
CN103450665A (en) Long-carbon-fiber-reinforced nylon composite material with electromagnetic shielding function and preparation method thereof
KR101742973B1 (en) Polymer composite with electromagnetic absorbing ability and high thermal conductivity and manufacturing method of the same
JP6777710B2 (en) Radar transmit / receive antenna protection
KR101742974B1 (en) Polymer composite with electromagnetic shielding and absorbing ability and manufacturing method of the same
CN108059765A (en) A kind of conductive polymeric composite and preparation method thereof
US5746956A (en) Process and apparatus for manufacturing aluminum laminally filled plastic pellets for shielding electromagnetic interference
JP6700759B2 (en) Molded body
EP4393988A1 (en) Polypropylene compositions with enhanced microwave absorption and reduced microwave reflection
EP3706526B1 (en) Electromagnetic wave shielding/absorbing molded article
JP2024141165A (en) Carbon fiber reinforced molding
iPolycond Consortium Introduction to conductive polymer composites
WO2019088063A1 (en) Electromagnetic wave shielding/absorbing molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201008

R150 Certificate of patent or registration of utility model

Ref document number: 6777710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250