JP6728452B2 - 半導体装置 - Google Patents
半導体装置 Download PDFInfo
- Publication number
- JP6728452B2 JP6728452B2 JP2019114529A JP2019114529A JP6728452B2 JP 6728452 B2 JP6728452 B2 JP 6728452B2 JP 2019114529 A JP2019114529 A JP 2019114529A JP 2019114529 A JP2019114529 A JP 2019114529A JP 6728452 B2 JP6728452 B2 JP 6728452B2
- Authority
- JP
- Japan
- Prior art keywords
- transistor
- film
- oxide semiconductor
- insulating film
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004065 semiconductor Substances 0.000 title claims description 583
- 239000013078 crystal Substances 0.000 claims description 69
- 239000010408 film Substances 0.000 description 880
- 238000000034 method Methods 0.000 description 143
- 239000003990 capacitor Substances 0.000 description 123
- 239000010410 layer Substances 0.000 description 122
- 239000000463 material Substances 0.000 description 90
- 229910052760 oxygen Inorganic materials 0.000 description 74
- 239000001301 oxygen Substances 0.000 description 73
- 230000004888 barrier function Effects 0.000 description 71
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 70
- 239000011701 zinc Substances 0.000 description 62
- 229910052739 hydrogen Inorganic materials 0.000 description 54
- 239000001257 hydrogen Substances 0.000 description 53
- 239000000758 substrate Substances 0.000 description 47
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 45
- 230000006870 function Effects 0.000 description 45
- 230000002829 reductive effect Effects 0.000 description 43
- 229910052751 metal Inorganic materials 0.000 description 40
- 238000010438 heat treatment Methods 0.000 description 35
- 239000002184 metal Substances 0.000 description 33
- 238000010586 diagram Methods 0.000 description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 29
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 26
- 229910052710 silicon Inorganic materials 0.000 description 26
- 239000010703 silicon Substances 0.000 description 26
- 239000000203 mixture Substances 0.000 description 23
- 239000008188 pellet Substances 0.000 description 21
- 239000012535 impurity Substances 0.000 description 20
- 239000010936 titanium Substances 0.000 description 20
- 239000000523 sample Substances 0.000 description 19
- 229910052719 titanium Inorganic materials 0.000 description 19
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 18
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 17
- 229910052782 aluminium Inorganic materials 0.000 description 17
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 17
- 239000004973 liquid crystal related substance Substances 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 16
- 238000005229 chemical vapour deposition Methods 0.000 description 16
- 229910052721 tungsten Inorganic materials 0.000 description 16
- 239000010937 tungsten Substances 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 15
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 14
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 13
- 238000005530 etching Methods 0.000 description 13
- 238000004544 sputter deposition Methods 0.000 description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 12
- 239000000956 alloy Substances 0.000 description 12
- 229910052802 copper Inorganic materials 0.000 description 12
- 239000010949 copper Substances 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 238000004549 pulsed laser deposition Methods 0.000 description 11
- 229910052814 silicon oxide Inorganic materials 0.000 description 11
- 230000007547 defect Effects 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- 229910044991 metal oxide Inorganic materials 0.000 description 10
- 150000004706 metal oxides Chemical class 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- 239000011347 resin Substances 0.000 description 10
- 229920005989 resin Polymers 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 229910052581 Si3N4 Inorganic materials 0.000 description 9
- 238000004891 communication Methods 0.000 description 9
- 239000004020 conductor Substances 0.000 description 9
- 230000006378 damage Effects 0.000 description 9
- 238000003795 desorption Methods 0.000 description 9
- 239000007769 metal material Substances 0.000 description 9
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 9
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 9
- 229910052733 gallium Inorganic materials 0.000 description 8
- 150000002431 hydrogen Chemical class 0.000 description 8
- 229910052738 indium Inorganic materials 0.000 description 8
- 229910052698 phosphorus Inorganic materials 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000003860 storage Methods 0.000 description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 7
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 7
- 229910052796 boron Inorganic materials 0.000 description 7
- 238000010894 electron beam technology Methods 0.000 description 7
- -1 for example Substances 0.000 description 7
- 229910052750 molybdenum Inorganic materials 0.000 description 7
- 239000011733 molybdenum Substances 0.000 description 7
- 239000011574 phosphorus Substances 0.000 description 7
- 239000011787 zinc oxide Substances 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 238000002003 electron diffraction Methods 0.000 description 6
- 230000005669 field effect Effects 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 150000004767 nitrides Chemical class 0.000 description 6
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 6
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 6
- 239000002356 single layer Substances 0.000 description 6
- 238000012916 structural analysis Methods 0.000 description 6
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 5
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 239000011651 chromium Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000002159 nanocrystal Substances 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 229910052715 tantalum Inorganic materials 0.000 description 5
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 5
- 239000011800 void material Substances 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- 229910052726 zirconium Inorganic materials 0.000 description 5
- 229910052684 Cerium Inorganic materials 0.000 description 4
- 208000005156 Dehydration Diseases 0.000 description 4
- 229910052779 Neodymium Inorganic materials 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 4
- 230000018044 dehydration Effects 0.000 description 4
- 238000006297 dehydration reaction Methods 0.000 description 4
- 238000006356 dehydrogenation reaction Methods 0.000 description 4
- 229910000449 hafnium oxide Inorganic materials 0.000 description 4
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 4
- 229910003437 indium oxide Inorganic materials 0.000 description 4
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000003381 stabilizer Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 229910018137 Al-Zn Inorganic materials 0.000 description 3
- 229910018573 Al—Zn Inorganic materials 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 3
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000010893 electron trap Methods 0.000 description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 229910052746 lanthanum Inorganic materials 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 238000004611 spectroscopical analysis Methods 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- 229910001930 tungsten oxide Inorganic materials 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 2
- 240000002329 Inga feuillei Species 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 229910020833 Sn-Al-Zn Inorganic materials 0.000 description 2
- 229910020994 Sn-Zn Inorganic materials 0.000 description 2
- 229910009069 Sn—Zn Inorganic materials 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- GPBUGPUPKAGMDK-UHFFFAOYSA-N azanylidynemolybdenum Chemical compound [Mo]#N GPBUGPUPKAGMDK-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000002524 electron diffraction data Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229960001730 nitrous oxide Drugs 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 230000001151 other effect Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 2
- 238000006213 oxygenation reaction Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- 229910001936 tantalum oxide Inorganic materials 0.000 description 2
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 2
- 229910001928 zirconium oxide Inorganic materials 0.000 description 2
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910018120 Al-Ga-Zn Inorganic materials 0.000 description 1
- FIPWRIJSWJWJAI-UHFFFAOYSA-N Butyl carbitol 6-propylpiperonyl ether Chemical compound C1=C(CCC)C(COCCOCCOCCCC)=CC2=C1OCO2 FIPWRIJSWJWJAI-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- UOACKFBJUYNSLK-XRKIENNPSA-N Estradiol Cypionate Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H](C4=CC=C(O)C=C4CC3)CC[C@@]21C)C(=O)CCC1CCCC1 UOACKFBJUYNSLK-XRKIENNPSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241000700560 Molluscum contagiosum virus Species 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910020868 Sn-Ga-Zn Inorganic materials 0.000 description 1
- 229910020944 Sn-Mg Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910009369 Zn Mg Inorganic materials 0.000 description 1
- 229910007541 Zn O Inorganic materials 0.000 description 1
- 229910007573 Zn-Mg Inorganic materials 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- MDPILPRLPQYEEN-UHFFFAOYSA-N aluminium arsenide Chemical compound [As]#[Al] MDPILPRLPQYEEN-UHFFFAOYSA-N 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000007687 exposure technique Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 229910001195 gallium oxide Inorganic materials 0.000 description 1
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229940127554 medical product Drugs 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- RUFLMLWJRZAWLJ-UHFFFAOYSA-N nickel silicide Chemical compound [Ni]=[Si]=[Ni] RUFLMLWJRZAWLJ-UHFFFAOYSA-N 0.000 description 1
- 229910021334 nickel silicide Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 235000013842 nitrous oxide Nutrition 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/481—Internal lead connections, e.g. via connections, feedthrough structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6741—Group IV materials, e.g. germanium or silicon carbide
- H10D30/6743—Silicon
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6755—Oxide semiconductors, e.g. zinc oxide, copper aluminium oxide or cadmium stannate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/421—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs having a particular composition, shape or crystalline structure of the active layer
- H10D86/423—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs having a particular composition, shape or crystalline structure of the active layer comprising semiconductor materials not belonging to the Group IV, e.g. InGaZnO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/481—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs integrated with passive devices, e.g. auxiliary capacitors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/60—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs wherein the TFTs are in active matrices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D87/00—Integrated devices comprising both bulk components and either SOI or SOS components on the same substrate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D88/00—Three-dimensional [3D] integrated devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Semiconductor Memories (AREA)
- Thin Film Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Dram (AREA)
- Semiconductor Integrated Circuits (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Electrodes Of Semiconductors (AREA)
- Non-Volatile Memory (AREA)
- Electroluminescent Light Sources (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
Description
の一態様の技術分野は、物、方法、または、製造方法に関するものである。または、本発
明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション
・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発
明の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、照明
装置、蓄電装置、記憶装置、それらの駆動方法、または、それらの製造方法、を一例とし
て挙げることができる。
装置全般を指す。トランジスタなどの半導体素子をはじめ、半導体回路、演算装置、記憶
装置は、半導体装置の一態様である。撮像装置、表示装置、液晶表示装置、発光装置、電
気光学装置、発電装置(薄膜太陽電池、有機薄膜太陽電池等を含む)、及び電子機器は、
半導体装置を有している場合がある。
集積回路(IC)や画像表示装置(単に表示装置とも表記する)のような電子デバイスに
広く応用されている。トランジスタに適用可能な半導体材料としてシリコン系半導体材料
が広く知られているが、その他の材料として酸化物半導体が注目されている。
てトランジスタを作製する技術が開示されている(特許文献1及び特許文献2参照)。
ンジスタなどの半導体素子を高密度に集積した集積回路の要求が高まっている。例えば、
Tri−GateトランジスタとCOB(capacitor over bitlin
e)構造のMIMキャパシタが紹介されている(非特許文献1)。
する。
性の高い半導体装置を提供することを課題の一とする。または、新規な構成の半導体装置
を提供することを課題の一とする。
一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課
題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、
図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
トランジスタと、第1のトランジスタと互いに重なる第1の容量素子と、第2のトランジ
スタと互いに重なる第2の容量素子と、第2の容量素子と電気的に接続する第1の配線と
、を有し、第1の配線は、第2のトランジスタの電極と互いに重なる領域を有し、第1の
トランジスタと、第2のトランジスタと、第1の容量素子と、第2の容量素子とは電気的
に接続し、第1のトランジスタのチャネルは、単結晶半導体を有し、第2のトランジスタ
のチャネルは、酸化物半導体を有することを特徴とする半導体装置である。
なる第2のトランジスタと、第1のトランジスタと互いに重なる第1の容量素子と、第2
のトランジスタと互いに重なる第2の容量素子と、第2の容量素子と電気的に接続する第
1の配線と、を有し、第1の配線は、第2のトランジスタの電極と互いに重なる領域を有
し、第1のトランジスタと、第2のトランジスタと、第1の容量素子と、第2の容量素子
とは電気的に接続し、第1のトランジスタのチャネルは、単結晶半導体を有し、第2のト
ランジスタのチャネルは、酸化物半導体を有し、第1の容量素子の一方の電極は、凸部を
含み、第1の容量素子の他方の電極は、凹部を含むことを特徴とする半導体装置である。
第2の配線は、第1のトランジスタの電極と互いに重なる領域を有する。
なる第2のトランジスタと、第2のトランジスタと互いに重なる容量素子と、容量素子と
電気的に接続する第1の配線と、を有し、第1の配線は、第2のトランジスタの電極と互
いに重なる領域を有し、第1のトランジスタと、第2のトランジスタと、容量素子とは電
気的に接続し、第1のトランジスタのチャネルは、単結晶半導体を有し、第2のトランジ
スタのチャネルは、酸化物半導体を有することを特徴とする半導体装置である。
なる第2のトランジスタと、第2のトランジスタと互いに重なる容量素子と、容量素子と
電気的に接続する第1の配線と、を有し、第1の配線は、第2のトランジスタの電極と互
いに重なる領域を有し、第1のトランジスタのチャネルは、単結晶半導体を有し、第2の
トランジスタのチャネルは、酸化物半導体を有し、第1のトランジスタと、第2のトラン
ジスタと、容量素子とは電気的に接続し、容量素子の一方の電極は、凸部を含み、容量素
子の他方の電極は、凹部を含むことを特徴とする半導体装置である。
に位置する。
い。
って接続され、プラグは、銅またはタングステンを含むことが好ましい。
る。
半導体装置を提供することができる。または、新規な構成の半導体装置等を提供すること
ができる。なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、
本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以
外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明
細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更
し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態
の記載内容に限定して解釈されるものではない。
は同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同
様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されな
い。
ために付すものであり、数的に限定するものではない。
御するスイッチング動作などを実現することができる。本明細書におけるトランジスタは
、IGFET(Insulated Gate Field Effect Trans
istor)や薄膜トランジスタ(TFT:Thin Film Transistor
)を含む。
されている状態をいう。したがって、−5°以上5°以下の場合も含まれる。また、「略
平行」とは、二つの直線が−30°以上30°以下の角度で配置されている状態をいう。
また、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態
をいう。したがって、85°以上95°以下の場合も含まれる。また、「略垂直」とは、
二つの直線が60°以上120°以下の角度で配置されている状態をいう。
す。
[積層構造の構成例]
以下では、本発明の一態様の半導体装置に適用することのできる積層構造の例について
説明する。図3は、以下で示す積層構造10の断面概略図である。
配線層31、バリア膜41、第2の配線層32、第2の絶縁膜22、及び第2のトランジ
スタを含む第2の層12が、順に積層された積層構造を有している。
。また、第2の層12に含まれる第2のトランジスタは、第2の半導体材料を含んで構成
される。第1の半導体材料と第2の半導体材料は、同一の材料であってもよいが、異なる
半導体材料とすることが好ましい。第1のトランジスタ及び第2のトランジスタは、それ
ぞれ半導体膜、ゲート電極、ゲート絶縁膜、ソース電極及びドレイン電極(またはソース
領域及びドレイン領域)を有する。
としては、例えば、シリコンや炭化ケイ素、ゲルマニウム、ヒ化ガリウム、ガリウムヒ素
リン、窒化ガリウム等の半導体材料、III−V族半導体材料の代表的な半導体材料とし
て、B、Al、Ga、In、Tlから選択された一つ以上とN、P、As、Sbから選択
された一つ以上を組み合わせた化合物半導体材料、II−VI族半導体材料の代表的な半
導体材料として、Mg、Zn、Cd、Hgから選択された一つ以上とO、S、Se、Te
から選択された一つ以上を組み合わせた化合物半導体材料、有機半導体材料、または酸化
物半導体材料などが挙げられる。
半導体を用いた場合について説明する。
を有する層である。なお、バリア膜41はこの上方に設けられる電極または配線と、下方
に設けられる電極または配線とを電気的に接続するための開口やプラグを有していてもよ
い。例えば、第1の配線層31に含まれる配線または電極と、第2の配線層32に含まれ
る配線または電極とを電気的に接続するプラグを有する。
は、金属または合金材料のほか、導電性の金属窒化物を用いることができる。また、この
ような材料を含む層を単層で、若しくは2層以上積層して用いてもよい。
する。また、第1の絶縁膜21には、第1の層11に含まれる第1のトランジスタ、電極
または配線と、第1の配線層31に含まれる電極または配線とを電気的に接続するための
開口やプラグを有していてもよい。
する。また、第2の絶縁膜22には、第2の層12に含まれる第2のトランジスタ、電極
または配線と、第2の配線層32に含まれる電極または配線とを電気的に接続するための
開口やプラグを有していてもよい。
が脱離する酸化物材料を含むことが好ましい。好適には、化学量論的組成を満たす酸素よ
りも多くの酸素を含む酸化物を用いることが好ましい。第2の半導体材料として酸化物半
導体を用いた場合、第2の絶縁膜22から脱離した酸素が酸化物半導体に供給され、酸化
物半導体中の酸素欠損を低減することが可能となる。その結果、第2のトランジスタの電
気特性の変動を抑制し、信頼性を高めることができる。
が好ましい。または、水素や水などの放出を出来る限り低減させておくことが好ましい。
水素や水は酸化物半導体にとって電気特性の変動を引き起こす要因となりうる。また、バ
リア膜41を介して下層から上層へ拡散する水素や水は、バリア膜41により抑制するこ
とができるが、バリア膜41に設けられる開口やプラグ等を介して水素や水が上層に拡散
してしまう場合がある。
、水素や水の放出を低減させるため、バリア膜41を形成する前、またはバリア膜41に
プラグを形成するための開口を形成した直後に、バリア膜41よりも下層に含まれる水素
や水を除去するための加熱処理を施すことが好ましい。半導体装置を構成する導電膜など
の耐熱性や、トランジスタの電気特性が劣化しない程度であれば、加熱処理の温度は高い
ほど好ましい。具体的には、例えば450℃以上、好ましくは490℃以上、より好まし
くは530℃以上の温度とすればよいが、650℃以上で行ってもよい。不活性ガス雰囲
気下または減圧雰囲気下で1時間以上、好ましくは5時間以上、より好ましくは10時間
以上の加熱処理を行うことが好ましい。また、加熱処理の温度は第1の層11や第1の配
線層31に含まれる配線または電極の材料、及び第1の絶縁膜21に設けられるプラグの
材料の耐熱性を考慮して決定すればよいが、例えば当該材料の耐熱性が低い場合には、5
50℃以下、または600℃以下、または650以下、または800℃以下の温度で行え
ばよい。また、このような加熱処理は、少なくとも1回以上行えばよいが、複数回行うと
より好ましい。
もよぶ)によって測定される、基板表面温度が400℃での水素分子(m/z=2)の脱
離量が、300℃での水素分子の脱離量の130%以下が好ましく、110%以下である
ことがより好ましい。または、TDS分析によって基板表面温度が450℃での水素分子
の脱離量が、350℃での水素分子の脱離量の130%以下が好ましく、110%以下で
あることがより好ましい。
バリア膜41として、TDS分析によって基板表面温度が20℃から600℃の範囲にお
ける水素分子の脱離量が、2×1015個/cm2未満、好ましくは1×1015個/c
m2未満、より好ましくは5×1014個/cm2未満である材料を用いることが好まし
い。または、TDS分析によって基板表面温度が20℃から600℃の範囲における水分
子(m/z=18)の脱離量が、1×1016個/cm2未満、好ましくは5×1015
個/cm2未満、より好ましくは2×1012個/cm2未満である材料をバリア膜41
に用いることが好ましい。
た場合では、当該加熱処理は、シリコンの不対結合手(ダングリングボンドともいう)を
水素によって終端化する処理(水素化処理とも呼ぶ)を兼ねることができる。水素化処理
により第1の層11及び第1の絶縁膜21に含まれる水素の一部が脱離して第1のトラン
ジスタの半導体膜に拡散し、シリコン中のダングリングボンドを終端させることで、第1
のトランジスタの信頼性および静特性を向上させることができる。
酸化アルミニウム、酸化窒化アルミニウム、酸化ガリウム、酸化窒化ガリウム、酸化イッ
トリウム、酸化窒化イットリウム、酸化ハフニウム、酸化窒化ハフニウムなどが挙げられ
る。特に、酸化アルミニウムは水や水素に対するバリア性に優れているため好ましい。
層させて用いてもよい。例えば、酸化シリコンまたは酸化窒化シリコンを含む膜、金属酸
化物を含む膜などを積層させて用いてもよい。
料は、水素、水に加え酸素に対してもバリア性に優れた材料である。このような材料を用
いることで、第2の絶縁膜22を加熱した時に放出される酸素がバリア膜41よりも下層
に拡散することを抑制することができる。その結果、第2の絶縁膜22から放出され、第
2の層12中の第2のトランジスタの半導体膜に供給されうる酸素の量を増大させること
ができる。
する、または水素や水を除去し、さらにバリア膜41により水素や水が第2の層へ拡散す
ることを抑制する。また、バリア膜41は、水素や水の放出を抑制する。そのため、第2
の絶縁膜22や、第2の層に含まれる第2のトランジスタを構成する各層における水素及
び水の含有量を、極めて低いものとすることができる。例えば、第2の絶縁膜22、第2
のトランジスタの半導体膜、またはゲート絶縁膜に含まれる水素濃度を5×1018cm
−3未満、好ましくは1×1018cm−3未満、さらに好ましくは3×1017cm−
3未満にまで低減することができる。
含まれる第1のトランジスタと、第2の層12に含まれる第2のトランジスタのいずれに
おいても、高い信頼性を両立することが可能となり、極めて信頼性の高い半導体装置を実
現できる。
図1(A)は、本発明の一態様の半導体装置の回路図の一例である。図1(A)に示す
半導体装置は、第1のトランジスタ110と、第2のトランジスタ100と、容量素子1
30と、配線SLと、配線BLと、配線WLと、配線CLとを有する。
し、他方が配線SLと電気的に接続し、ゲートが第2のトランジスタ100のソースまた
はドレインの一方及び容量素子130の一方の電極と電気的に接続する。第2のトランジ
スタ100は、ソースまたはドレインの他方が配線BLと電気的に接続し、ゲートが配線
WLと電気的に接続する。容量素子130は、他方の電極が配線CLと電気的に接続する
。なお、第1のトランジスタ110のゲートと、第2のトランジスタ100のソースまた
はドレインの一方と、容量素子130の一方の電極の間のノードをノードFNと呼ぶ。
時に配線BLの電位に応じた電位をノードFNに与える。また、第2のトランジスタ10
0が非導通状態(オフ状態)のときに、ノードFNの電位を保持する機能を有する。すな
わち、図1(A)に示す半導体装置は、記憶装置のメモリセルとしての機能を有する。な
お、ノードFNと電気的に接続する液晶素子や有機EL(Electrolumines
cence)素子などの表示素子を有する場合、図1(A)の半導体装置は表示装置の画
素として機能させることもできる。
よって制御することができる。また、配線WLに与える電位によって第2のトランジスタ
100のしきい値電圧を制御することができる。第2のトランジスタ100として、オフ
電流の小さいトランジスタを用いることによって、非導通状態におけるノードFNの電位
を長期間に渡って保持することができる。したがって、半導体装置のリフレッシュ頻度を
低減することができるため、消費電力の小さい半導体装置を実現することができる。なお
、オフ電流の小さいトランジスタの一例として、酸化物半導体を用いたトランジスタが挙
げられる。
れる。このとき、ノードFNの電位によって、第2のトランジスタ100の見かけ上のし
きい値電圧が変動する。見かけ上のしきい値電圧の変動により、第1のトランジスタ11
0の導通状態、非導通状態が変化することを利用し、ノードFNに保持された電位の情報
をデータとして読み出すことができる。
る、もしくは、水素濃度の拡散・放出が抑制されているため、その結果、その上層の酸化
物半導体を用いたトランジスタは、極めて低いオフ電流を実現することができる。
アレイ)を構成することができる。
す。また、図2(A)に図1(B)の半導体装置を並べた上面図を示す。なお、各半導体
装置は、共通配線としての機能を有する配線CLを共有している。
100及び容量素子130が設けられている。また、半導体装置をマトリクス状に配置す
る際、図2(B)に示すように配線SL(低抵抗層113b)を隣の半導体装置と共有化
してもよい。
タ100、及び容量素子130を有する。第2のトランジスタ100は第1のトランジス
タ110の上方に設けられ、第1のトランジスタ110と第2のトランジスタ100の間
にはバリア膜120が設けられている。
部からなる半導体膜112、ゲート絶縁膜114、ゲート電極115、及びソース領域ま
たはドレイン領域として機能する低抵抗層113a及び低抵抗層113bを有する。
構成や駆動方法に応じて適切なトランジスタを用いればよい。
レイン領域となる低抵抗層113a及び低抵抗層113b等において、シリコン系半導体
などの半導体を含むことが好ましく、単結晶シリコンを含むことが好ましい。または、G
e(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、
GaAlAs(ガリウムアルミニウムヒ素)などを有する材料で形成してもよい。結晶格
子に応力を与え、格子間隔を変化させることで有効質量を制御したシリコンを用いた構成
としてもよい。またはGaAsとGaAlAs等を用いることで、第1のトランジスタ1
10をHEMT(High Electron Mobility Transisto
r)としてもよい。
加え、ヒ素、リンなどのn型の導電性を付与する元素、またはホウ素などのp型の導電性
を付与する元素を含む。
などのp型の導電性を付与する元素を含むシリコンなどの半導体材料、金属材料、合金材
料、または金属酸化物材料などの導電性材料を用いることができる。しきい値電圧を調整
するためにゲート電極を用いて仕事関数を調整することが好ましく、具体的にはゲート電
極に窒化チタンや窒化タンタルなどの材料を用いることが好ましい。さらに導電性と埋め
込み性を両立するためにゲート電極にタングステンやアルミニウムなどの金属材料を積層
として用いることが好ましく、特にタングステンを用いることが耐熱性の点で好ましい。
に対応する。
いてもよい。図4の一点鎖線より左側にトランジスタ160のチャネル長方向の断面を、
一点鎖線より右側にチャネル幅方向の断面を示す。図4に示すトランジスタ160はチャ
ネルが形成される半導体膜112(半導体基板の一部)が凸形状を有し、その側面及び上
面に沿ってゲート絶縁膜114、ゲート電極115a及びゲート電極115bが設けられ
ている。なお、ゲート電極115aは仕事関数を調整する材料を用いてもよい。このよう
なトランジスタ160は半導体基板の凸部を利用していることからFIN型トランジスタ
とも呼ばれる。なお、凸部の上部に接して、凸部を形成するためのマスクとして機能する
絶縁膜を有していてもよい。また、ここでは半導体基板の一部を加工して凸部を形成する
場合を示したが、SOI基板を加工して凸形状を有する半導体膜を形成してもよい。
絶縁膜124が順に積層して設けられている。
が好ましい。水素を含む絶縁膜122を第1のトランジスタ110上に設け、加熱処理を
行うことで絶縁膜122中の水素により半導体膜112中のダングリングボンドが終端さ
れ、第1のトランジスタ110の信頼性を向上させることができる。
差を平坦化する平坦化膜として機能する。絶縁膜123の上面は、平坦性を高めるために
化学機械研磨(CMP:Chemical Mechanical Polishing
)法等を用いた平坦化処理により平坦化されていてもよい。
ば設けなくてもよい。
a、低抵抗層113bと電気的に接続するプラグ161、プラグ163等が埋め込まれ、
第1のトランジスタ110のゲート電極115と電気的に接続するプラグ162等が埋め
込まれている。なお、本明細書等において、電極と、電極と電気的に接続する配線とが一
体物であってもよい。すなわち、配線の一部が電極として機能する場合や、電極の一部が
配線として機能する場合もある。
0における第1の絶縁膜21に相当する。
が設けられている。電極136はプラグ162と電気的に接続する。
130の他方の電極138が設けられている。なお、電極138は、配線CLと電気的に
接続されている。また、配線CLは、第2のトランジスタ100のゲート電極105と互
いに重なる領域を有している。
第1の配線層31に相当する。
)等の材料としては、金属材料、合金材料、または金属酸化物材料などの導電性材料を用
いることができる。耐熱性と導電性を両立するタングステンやモリブデンなどの高融点材
料を用いることが好ましく、特にタングステンを用いることが好ましい。また、銅などの
低抵抗導電性材料で形成することが好ましい。
電性材料を用いることができる。特に、アルミニウムや銅などの低抵抗導電性材料で形成
することが好ましい。上記のような材料を用いることで配線抵抗を低くすることができる
。
設けられ、絶縁膜125の上面は平坦化されていることが好ましい。
積層構造10におけるバリア膜41に相当する。バリア膜120の材料としては、上記バ
リア膜41についての記載を援用できる。
込まれる開口を有している。
造10における第2の配線層32に相当する。
て設けられ、第2のトランジスタ100の第2のゲート電極としての機能を有する。
物材料などの導電性材料を用いることができる。特に、耐熱性を要する場合にはタングス
テンやモリブデンなどの高融点材料を用いることが好ましい。また、導電性を考慮すると
、低抵抗な金属材料または合金材料を用いることが好ましく、アルミニウム、クロム、銅
、タンタル、チタンなどの金属材料、または当該金属材料を含む合金材料を単層で、また
は積層して用いてもよい。
属元素などの主成分以外の元素を含む金属酸化物を用いることが好ましい。このような金
属酸化物は、高い導電性を実現できる。例えば、In−Ga系酸化物、In−Zn系酸化
物、In−M−Zn系酸化物(MはAl、Ti、Ga、Y、Zr、La、Ce、Ndまた
はHf)などの金属酸化物に、上述の元素を含ませて導電性を高めた材料を用いることが
できる。
126を含む領域が積層構造10における第2の絶縁膜22に相当する。
。
の酸素を含む酸化物を用いることが好ましい。化学量論的組成を満たす酸素よりも多くの
酸素を含む酸化物膜は、加熱により一部の酸素が脱離する。化学量論的組成を満たす酸素
よりも多くの酸素を含む酸化物膜は、昇温脱離ガス分光法(TDS:Thermal D
esorption Spectroscopy)分析にて、酸素原子に換算しての酸素
の脱離量が1.0×1018atoms/cm3以上、好ましくは3.0×1020at
oms/cm3以上である酸化物膜である。なお、上記TDS分析時における膜の表面温
度としては100℃以上700℃以下、または100℃以上500℃以下の範囲が好まし
い。
ることが好ましい。または、金属酸化物を用いることもできる。なお、本明細書中におい
て、酸化窒化シリコンとは、その組成として窒素よりも酸素の含有量が多い材料を指し、
窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多い材料を示す。
ジスタ100を含む構成が、積層構造10における第2の層12に相当する。
106aの上面に接する酸化物半導体膜101aと、酸化物半導体膜101aの上面に接
する酸化物半導体膜101bと、酸化物半導体膜101bの上面に接し、酸化物半導体膜
101bと重なる領域で離間する電極103a及び電極103bと、酸化物半導体膜10
1bの上面、電極103aの上面、及び電極103bの上面に接する酸化物半導体膜10
1cと、酸化物半導体膜101c上のゲート絶縁膜104と、ゲート絶縁膜104及び酸
化物半導体膜101cを介して酸化物半導体膜101bと重なるゲート電極105とを有
する。また、第2のトランジスタ100を覆って、絶縁膜107、絶縁膜108、及び絶
縁膜127が設けられている。
、バリア膜120、絶縁膜126、絶縁膜106a、酸化物半導体膜101a、酸化物半
導体膜101b、及び電極103aに埋め込まれるように設けられる。また、電極136
及び電極103bと電気的に接続するプラグ165が絶縁膜125、バリア膜120、絶
縁膜126、絶縁膜106a、酸化物半導体膜101a、酸化物半導体膜101b、及び
電極103bに埋め込まれるように設けられる。
酸化物半導体膜131b及び電極103cが形成され、プラグ163及び電極103cと
電気的に接続するプラグ166が絶縁膜125、バリア膜120、絶縁膜126、絶縁膜
106b、酸化物半導体膜131a、酸化物半導体膜131b、及び電極103cに埋め
込まれるように設けられる。
、及び第2のトランジスタ100の電極103bを含むノードが、図1(A)に示すノー
ドFNに相当する。
)は、酸化物半導体膜101b(及び/または、酸化物半導体膜101a)などの半導体
膜の、表面、側面、上面、及び/または、下面の少なくとも一部(または全部)に設けら
れている。
部)は、酸化物半導体膜101b(及び/または、酸化物半導体膜101a)などの半導
体膜の、表面、側面、上面、及び/または、下面の少なくとも一部(または全部)と、接
触している。または、電極103a(及び/または、電極103b)の、少なくとも一部
(または全部)は、酸化物半導体膜101b(及び/または、酸化物半導体膜101a)
などの半導体膜の少なくとも一部(または全部)と、接触している。
部)は、酸化物半導体膜101b(及び/または、酸化物半導体膜101a)などの半導
体膜の、表面、側面、上面、及び/または、下面の少なくとも一部(または全部)と、電
気的に接続されている。または、電極103a(及び/または、電極103b)の、少な
くとも一部(または全部)は、酸化物半導体膜101b(及び/または、酸化物半導体膜
101a)などの半導体膜の一部(または全部)と、電気的に接続されている。
部)は、酸化物半導体膜101b(及び/または、酸化物半導体膜101a)などの半導
体膜の、表面、側面、上面、及び/または、下面の少なくとも一部(または全部)に、近
接して配置されている。または、電極103a(及び/または、電極103b)の、少な
くとも一部(または全部)は、酸化物半導体膜101b(及び/または、酸化物半導体膜
101a)などの半導体膜の一部(または全部)に、近接して配置されている。
部)は、酸化物半導体膜101b(及び/または、酸化物半導体膜101a)などの半導
体膜の、表面、側面、上面、及び/または、下面の少なくとも一部(または全部)の横側
に配置されている。または、電極103a(及び/または、電極103b)の、少なくと
も一部(または全部)は、酸化物半導体膜101b(及び/または、酸化物半導体膜10
1a)などの半導体膜の一部(または全部)の横側に配置されている。
部)は、酸化物半導体膜101b(及び/または、酸化物半導体膜101a)などの半導
体膜の、表面、側面、上面、及び/または、下面の少なくとも一部(または全部)の斜め
上側に配置されている。または、電極103a(及び/または、電極103b)の、少な
くとも一部(または全部)は、酸化物半導体膜101b(及び/または、酸化物半導体膜
101a)などの半導体膜の一部(または全部)の斜め上側に配置されている。
部)は、酸化物半導体膜101b(及び/または、酸化物半導体膜101a)などの半導
体膜の、表面、側面、上面、及び/または、下面の少なくとも一部(または全部)の上側
に配置されている。または、電極103a(及び/または、電極103b)の、少なくと
も一部(または全部)は、酸化物半導体膜101b(及び/または、酸化物半導体膜10
1a)などの半導体膜の一部(または全部)の上側に配置されている。
亜鉛(Zn)を含むことが好ましい。より好ましくは、In−M−Zn系酸化物(MはA
l、Ti、Ga、Ge、Y、Zr、Sn、La、CeまたはHf等の金属)で表記される
酸化物を含む。
、または半導体膜の上面に対し垂直に配向し、且つ隣接する結晶部間には粒界を有さない
酸化物半導体膜を用いることが好ましい。
高いトランジスタを実現できる。
後の実施の形態で詳細に説明する。
との間に、酸化物半導体膜を構成する金属元素のうち、少なくとも一の金属元素を構成元
素として含む第1の酸化物半導体膜を有することが好ましい。これにより、酸化物半導体
膜と、該酸化物半導体膜と重なる絶縁膜との界面にトラップ準位が形成されることを抑制
することができる。
上面及び底面が、酸化物半導体膜の界面準位形成防止のためのバリア膜として機能する酸
化物膜に接する構成とすることが好ましい。このような構成とすることにより、酸化物半
導体膜中及び界面においてキャリアの生成要因となる酸素欠損の生成及び不純物の混入を
抑制することが可能となるため、酸化物半導体膜を高純度真性化することができる。高純
度真性化とは、酸化物半導体膜を真性または実質的に真性にすることをいう。よって、当
該酸化物半導体膜を含むトランジスタの電気特性の変動を抑制し、信頼性の高い半導体装
置を提供することが可能となる。
、1×1017/cm3未満、1×1015/cm3未満、または1×1013/cm3
未満である。酸化物半導体膜を高純度真性化することで、トランジスタに安定した電気特
性を付与することができる。
れている。
られている。より具体的には、酸化物半導体膜101cは、その上面が電極103a及び
電極103bの下面、及びゲート絶縁膜104の下面に接して設けられている。
1bと同一の金属元素を一種以上含む酸化物を含む。
101bと酸化物半導体膜101cの境界は不明瞭である場合がある。
含み、代表的には、In系酸化物、Ga系酸化物、In−Ga系酸化物、In−Zn系酸
化物、In−M−Zn系酸化物(MはAl、Ti、Ga、Y、Zr、La、Ce、Ndま
たはHf)であり、且つ酸化物半導体膜101bよりも伝導帯の下端のエネルギーが真空
準位に近い材料を用いる。代表的には、酸化物半導体膜101a及び酸化物半導体膜10
1cの伝導帯の下端のエネルギーと、酸化物半導体膜101bの伝導帯の下端のエネルギ
ーとの差が、0.05eV以上、0.07eV以上、0.1eV以上、または0.15e
V以上、且つ2eV以下、1eV以下、0.5eV以下、または0.4eV以下とするこ
とが好ましい。
導体膜101cに、酸化物半導体膜101bに比べてスタビライザとして機能するGaの
含有量の多い酸化物を用いることにより、酸化物半導体膜101bからの酸素の放出を抑
制することができる。
2の原子数比のIn−Ga−Zn系酸化物を用いた場合、酸化物半導体膜101aまたは
酸化物半導体膜101cとして、例えばIn:Ga:Zn=1:3:2、1:3:4、1
:3:6、1:6:4、1:6:8、1:6:10、または1:9:6などの原子数比の
In−Ga−Zn系酸化物を用いることができる。なお、酸化物半導体膜101a、酸化
物半導体膜101b及び酸化物半導体膜101cの原子数比はそれぞれ、誤差として上記
の原子数比のプラスマイナス20%の変動を含む。また、酸化物半導体膜101aと酸化
物半導体膜101cは、組成の同じ材料を用いてもよいし、異なる組成の材料を用いても
よい。
導体膜101bとなる半導体膜を成膜するために用いるターゲットは、該ターゲットが含
有する金属元素の原子数比をIn:M:Zn=x1:y1:z1としたときに、x1/y
1の値が1/3以上6以下、好ましくは1以上6以下であり、z1/y1が1/3以上6
以下、好ましくは1以上6以下の原子数比の酸化物を用いることが好ましい。なお、z1
/y1を6以下とすることで、後述するCAAC−OS膜が形成されやすくなる。ターゲ
ットの金属元素の原子数比の代表例としては、In:M:Zn=1:1:1、3:1:2
などがある。
物を用いた場合、酸化物半導体膜101a、酸化物半導体膜101cとなる酸化物半導体
膜を成膜するために用いるターゲットは、該ターゲットが含有する金属元素の原子数比を
In:M:Zn=x2:y2:z2としたときに、x2/y2<x1/y1であり、z2
/y2の値が1/3以上6以下、好ましくは1以上6以下の原子数比の酸化物を用いるこ
とが好ましい。なお、z2/y2を6以下とすることで、後述するCAAC−OS膜が形
成されやすくなる。ターゲットの金属元素の原子数比の代表例としては、In:M:Zn
=1:3:4、1:3:6、1:3:8などがある。
bに比べて伝導帯の下端のエネルギーが真空準位に近い材料を用いることにより、酸化物
半導体膜101bに主としてチャネルが形成され、酸化物半導体膜101bが主な電流経
路となる。このように、チャネルが形成される酸化物半導体膜101bを、同じ金属元素
を含む酸化物半導体膜101a及び酸化物半導体膜101cで挟持することにより、これ
らの界面準位の生成が抑制され、トランジスタの電気特性における信頼性が向上する。
移動度、しきい値電圧等)に応じて適切な組成のものを用いればよい。また、必要とする
トランジスタの半導体特性を得るために、酸化物半導体膜101a、酸化物半導体膜10
1b及び酸化物半導体膜101cのキャリア密度や不純物濃度、欠陥密度、金属元素と酸
素の原子数比、原子間距離、密度等を適切なものとすることが好ましい。
膜101aと酸化物半導体膜101bとの混合領域を有する場合がある。また、酸化物半
導体膜101bと酸化物半導体膜101cとの間には、酸化物半導体膜101bと酸化物
半導体膜101cとの混合領域を有する場合がある。混合領域は、界面準位密度が低くな
る。そのため、酸化物半導体膜101a、酸化物半導体膜101b及び酸化物半導体膜1
01cの積層体は、それぞれの界面近傍において、エネルギーが連続的に変化する(連続
接合ともいう。)バンド構造となる。
25、酸化物半導体膜101a、酸化物半導体膜101b、酸化物半導体膜101c及び
ゲート絶縁膜104の伝導帯下端のエネルギー(Ec)を示す。
1b、酸化物半導体膜101cにおいて、伝導帯下端のエネルギーが連続的に変化する。
これは、酸化物半導体膜101a、酸化物半導体膜101b、酸化物半導体膜101cを
構成する元素が共通することにより、酸素が相互に拡散しやすい点からも理解される。し
たがって、酸化物半導体膜101a、酸化物半導体膜101b、酸化物半導体膜101c
は組成が異なる層の積層体ではあるが、物性的に連続であるということもできる。
接合(ここでは特に伝導帯下端のエネルギーが各層の間で連続的に変化するU字型の井戸
構造)が形成されるように作製する。すなわち、各層の界面にトラップ中心や再結合中心
のような欠陥準位を形成するような不純物が存在しないように積層構造を形成する。仮に
、積層された多層膜の層間に不純物が混在していると、エネルギーバンドの連続性が失わ
れ、界面でキャリアがトラップあるいは再結合により消滅してしまう。
様である場合について示したが、それぞれが異なっていてもよい。例えば、酸化物半導体
膜101aよりも酸化物半導体膜101cのEcが高いエネルギーを有する場合、バンド
構造の一部は、図5(B)のように示される。
のトランジスタ100において、チャネルが酸化物半導体膜101bに形成されることが
わかる。なお、酸化物半導体膜101a、酸化物半導体膜101b、酸化物半導体膜10
1cは伝導帯下端のエネルギーが連続的に変化しているため、U字型井戸(U Shap
e Well)とも呼ぶことができる。また、このような構成で形成されたチャネルを埋
め込みチャネルということもできる。
絶縁膜との界面近傍には、不純物や欠陥に起因したトラップ準位が形成され得る。酸化物
半導体膜101a及び酸化物半導体膜101cがあることにより、酸化物半導体膜101
bと当該トラップ準位とを遠ざけることができる。ただし、酸化物半導体膜101aまた
は酸化物半導体膜101cのEcと、酸化物半導体膜101bのEcとのエネルギー差が
小さい場合、酸化物半導体膜101bの電子が該エネルギー差を越えてトラップ準位に達
することがある。トラップ準位に捕獲されることで、絶縁膜界面にマイナスの固定電荷が
生じ、トランジスタのしきい値電圧はプラス方向にシフトしてしまう。
1a及び酸化物半導体膜101cのEcと、酸化物半導体膜101bとの間にエネルギー
差を設けることが必要となる。それぞれの当該エネルギー差は、0.1eV以上が好まし
く、0.15eV以上がより好ましい。
は、結晶部が含まれることが好ましい。特にc軸に配向した結晶を用いることでトランジ
スタに安定した電気特性を付与することができる。
、酸化物半導体膜101bとゲート絶縁膜104の間にIn−Ga酸化物(たとえば、原
子数比でIn:Ga=7:93)を設けてもよい。
も電子親和力の小さい酸化物を用いる。例えば、酸化物半導体膜101bとして、酸化物
半導体膜101a及び酸化物半導体膜101cよりも電子親和力の0.07eV以上1.
3eV以下、好ましくは0.1eV以上0.7eV以下、さらに好ましくは0.15eV
以上0.4eV以下大きい酸化物を用いる。なお、電子親和力は、真空準位と伝導帯下端
のエネルギーとの差である。
厚く形成することが好ましい。酸化物半導体膜101bが厚いほど、トランジスタのオン
電流を高めることができる。また、酸化物半導体膜101aは、酸化物半導体膜101b
の界面準位の生成を抑制する効果が失われない程度の厚さであればよい。例えば、酸化物
半導体膜101bの厚さは、酸化物半導体膜101aの厚さに対して、1倍よりも大きく
、好ましくは2倍以上、より好ましくは4倍以上、より好ましくは6倍以上とすればよい
。なお、トランジスタのオン電流を高める必要のない場合にはその限りではなく、酸化物
半導体膜101aの厚さを酸化物半導体膜101bの厚さ以上としてもよい。
01bの界面準位の生成を抑制する効果が失われない程度の厚さであればよい。例えば、
酸化物半導体膜101aと同等またはそれ以下の厚さとすればよい。酸化物半導体膜10
1cが厚いと、ゲート電極による電界が酸化物半導体膜101bに届きにくくなる恐れが
あるため、酸化物半導体膜101cは薄く形成することが好ましい。例えば、酸化物半導
体膜101bの厚さよりも薄くすればよい。なお、これに限られず、酸化物半導体膜10
1cの厚さはゲート絶縁膜104の耐圧を考慮して、トランジスタを駆動させる電圧に応
じて適宜設定すればよい。
リコン膜を含む絶縁膜など)と接する場合、これらの界面に界面準位が形成され、該界面
準位はチャネルを形成することがある。このような場合、しきい値電圧の異なる第2のト
ランジスタが出現し、トランジスタの見かけ上のしきい値電圧が変動することがある。し
かしながら、本構成のトランジスタにおいては、酸化物半導体膜101bを構成する金属
元素を一種以上含んで酸化物半導体膜101aを有しているため、酸化物半導体膜101
aと酸化物半導体膜101bとの界面に界面準位を形成しにくくなる。よって酸化物半導
体膜101aを設けることにより、トランジスタのしきい値電圧などの電気特性のばらつ
きや変動を低減することができる。
場合、該界面で界面散乱がおこり、トランジスタの電界効果移動度が低下する場合がある
。しかしながら、本構成のトランジスタにおいては、酸化物半導体膜101bを構成する
金属元素を一種以上含んで酸化物半導体膜101cを有しているため、酸化物半導体膜1
01bと酸化物半導体膜101cとの界面ではキャリアの散乱が起こりにくく、トランジ
スタの電界効果移動度を高くすることができる。
極として機能する。
ットリウム、ジルコニウム、モリブデン、銀、タンタル、またはタングステンなどの金属
、またはこれを主成分とする合金を単層構造または積層構造として用いる。例えば、シリ
コンを含むアルミニウム膜の単層構造、チタン膜上にアルミニウム膜を積層する二層構造
、タングステン膜上にアルミニウム膜を積層する二層構造、銅−マグネシウム−アルミニ
ウム合金膜上に銅膜を積層する二層構造、チタン膜上に銅膜を積層する二層構造、タング
ステン膜上に銅膜を積層する二層構造、チタン膜または窒化チタン膜と、そのチタン膜ま
たは窒化チタン膜上に重ねてアルミニウム膜または銅膜を積層し、さらにその上にチタン
膜または窒化チタン膜を形成する三層構造、モリブデン膜または窒化モリブデン膜と、そ
のモリブデン膜または窒化モリブデン膜上に重ねてアルミニウム膜または銅膜を積層し、
さらにその上にモリブデン膜または窒化モリブデン膜を形成する三層構造等がある。なお
、酸化インジウム、酸化錫または酸化亜鉛を含む透明導電材料を用いてもよい。
、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジル
コン酸鉛(PZT)、チタン酸ストロンチウム(SrTiO3)または(Ba,Sr)T
iO3(BST)などのいわゆるhigh−k材料を含む絶縁膜を単層または積層で用い
ることができる。またはこれらの絶縁膜に例えば酸化アルミニウム、酸化ビスマス、酸化
ゲルマニウム、酸化ニオブ、酸化シリコン、酸化チタン、酸化タングステン、酸化イット
リウム、酸化ジルコニウムを添加してもよい。またはこれらの絶縁膜を窒化処理しても良
い。上記の絶縁膜に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用い
てもよい。
素よりも多くの酸素を含む酸化物絶縁膜を用いることが好ましい。
せしめて、しきい値電圧を増大させることもできる。例えば、酸化シリコンと酸化ハフニ
ウムの積層膜のように、ゲート絶縁膜の一部に酸化ハフニウム、酸化アルミニウム、酸化
タンタルのような電子捕獲準位の多い材料を用い、より高い温度(半導体装置の使用温度
あるいは保管温度よりも高い温度、あるいは、125℃以上450℃以下、代表的には1
50℃以上300℃以下)の下で、ゲート電極の電位をソース電極やドレイン電極の電位
より高い状態を、1秒以上、代表的には1分以上維持することで、半導体膜からゲート電
極に向かって、電子が移動し、そのうちのいくらかは電子捕獲準位に捕獲される。
がプラス側にシフトする。ゲート電極の電圧の制御によって電子の捕獲する量を制御する
ことができ、それに伴ってしきい値電圧を制御することができる。また、電子を捕獲せし
める処理は、トランジスタの作製過程におこなえばよい。
るいは、前工程(ウェハー処理)の終了後、あるいは、ウェハーダイシング工程後、パッ
ケージ後等、工場出荷前のいずれかの段階で行うとよい。いずれの場合にも、その後に1
25℃以上の温度に1時間以上さらされないことが好ましい。
ン、タングステンから選ばれた金属、または上述した金属を成分とする合金か、上述した
金属を組み合わせた合金等を用いて形成することができる。また、マンガン、ジルコニウ
ムのいずれか一または複数から選択された金属を用いてもよい。また、リン等の不純物元
素をドーピングした多結晶シリコンに代表される半導体、ニッケルシリサイド等のシリサ
イドを用いてもよい。例えば、アルミニウム膜上にチタン膜を積層する二層構造、窒化チ
タン膜上にチタン膜を積層する二層構造、窒化チタン膜上にタングステン膜を積層する二
層構造、窒化タンタル膜または窒化タングステン膜上にタングステン膜を積層する二層構
造、チタン膜と、そのチタン膜上にアルミニウム膜を積層し、さらにその上にチタン膜を
形成する三層構造等がある。また、アルミニウムに、チタン、タンタル、タングステン、
モリブデン、クロム、ネオジム、スカンジウムから選ばれた一または複数の金属を組み合
わせた合金膜、もしくは窒化膜を用いてもよい。
酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸
化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化シリコンを添
加したインジウム錫酸化物等の透光性を有する導電性材料を適用することもできる。また
、上記透光性を有する導電性材料と、上記金属の積層構造とすることもできる。
絶縁膜108に埋め込まれるように設けられる。また、ゲート電極105と電気的に接続
するプラグ168が絶縁膜127、絶縁膜107、絶縁膜108に埋め込まれるように設
けられる。また、プラグ166と電気的に接続するプラグ169が絶縁膜127、絶縁膜
107、絶縁膜108に埋め込まれるように設けられる。
導体膜、In−Sn系酸窒化物半導体膜、In−Ga系酸窒化物半導体膜、In−Zn系
酸窒化物半導体膜、Sn系酸窒化物半導体膜、In系酸窒化物半導体膜、金属窒化膜(I
nN、ZnN等)等を設けてもよい。これらの膜は5eV以上、好ましくは5.5eV以
上の仕事関数を有し、酸化物半導体の電子親和力よりも大きい値であるため、酸化物半導
体を用いたトランジスタのしきい値電圧をプラスにシフトすることができ、所謂ノーマリ
ーオフ特性のスイッチング素子を実現できる。例えば、In−Ga−Zn系酸窒化物半導
体膜を用いる場合、少なくとも酸化物半導体膜101bより高い窒素濃度、具体的には7
原子%以上のIn−Ga−Zn系酸窒化物半導体膜を用いる。
好ましい。また、特に、絶縁膜107として酸素を透過しにくい材料を用いることが好ま
しい。
酸化物半導体膜101bから絶縁膜107よりも上方に酸素が放出されることを抑制する
ことができる。さらに、絶縁膜126から脱離した酸素を絶縁膜107よりも下側に閉じ
込めることができるため、酸化物半導体膜101bに供給しうる酸素の量を増大させるこ
とができる。
不純物である水や水素が混入することを抑制でき、第2のトランジスタ100の電気特性
の変動が抑制され、信頼性の高いトランジスタを実現できる。
絶縁膜を設け、ゲート絶縁膜104を介して酸化物半導体膜101bの上側からも酸素を
供給する構成としてもよい。
図6(A)は以下で例示するトランジスタの上面概略図であり、図6(B)、図6(C)
はそれぞれ、図6(A)中の切断線A1−A2、B1−B2で切断したときの断面概略図
である。なお、図6(B)はトランジスタのチャネル長方向の断面に相当し、図6(C)
はトランジスタのチャネル幅方向の断面に相当する。
が酸化物半導体膜101bの上面及び側面に面して設けられることで、酸化物半導体膜1
01bの上面近傍だけでなく側面近傍にまでチャネルが形成され、実効的なチャネル幅が
増大し、オン状態における電流(オン電流)を高めることができる。特に、酸化物半導体
膜101bの幅が極めて小さい(例えば50nm以下、好ましくは30nm以下、より好
ましくは20nm以下)場合には、酸化物半導体膜101bの内部にまでチャネルが形成
される領域が広がるため、微細化するほどオン電流に対する寄与が高まる。
くしてもよい。その場合、例えば、電極103a及び電極103bや、ゲート電極105
などをマスクとして、酸化物半導体膜101bなどに、アルゴン、水素、リン、ボロンな
どの不純物を導入することができる。その結果、酸化物半導体膜101bなどにおいて、
低抵抗領域109a、低抵抗領域109bを設けることができる。なお、低抵抗領域10
9a、低抵抗領域109bは、必ずしも、設けなくてもよい。なお、図6だけでなく、他
の図面においても、ゲート電極105の幅を狭くすることができる。
て、酸化物半導体膜101cが電極103a及び電極103bの下面に接して設けられて
いる点で主に相違している。
酸化物半導体膜101cを構成するそれぞれの膜の成膜時において、大気に触れさせるこ
となく連続的に成膜することができるため、各々の界面欠陥を低減することができる。
半導体膜101cを設ける構成を説明したが、酸化物半導体膜101aまたは酸化物半導
体膜101cの一方、またはその両方を設けない構成としてもよい。
。その場合の例を、図9(A)、図9(B)に示す。なお、図6、図8だけでなく、他の
図面においても、ゲート電極105の幅を狭くすることができる。
ンジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが重なる領
域、またはチャネルが形成される領域における、ソース(ソース領域またはソース電極)
とドレイン(ドレイン領域またはドレイン電極)との間の距離をいう。なお、一つのトラ
ンジスタにおいて、チャネル長が全ての領域で同じ値をとるとは限らない。即ち、一つの
トランジスタのチャネル長は、一つの値に定まらない場合がある。そのため、本明細書で
は、チャネル長は、チャネルの形成される領域における、いずれか一の値、最大値、最小
値または平均値とする。
で電流の流れる部分)とゲート電極とが重なる領域、またはチャネルが形成される領域に
おける、ソースまたはドレインの幅をいう。なお、一つのトランジスタにおいて、チャネ
ル幅がすべての領域で同じ値をとるとは限らない。即ち、一つのトランジスタのチャネル
幅は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル幅は、チャ
ネルの形成される領域における、いずれか一の値、最大値、最小値または平均値とする。
ネル幅(以下、実効的なチャネル幅と呼ぶ。)と、トランジスタの上面図において示され
るチャネル幅(以下、見かけ上のチャネル幅と呼ぶ。)と、が異なる場合がある。例えば
、立体的な構造を有するトランジスタでは、実効的なチャネル幅が、トランジスタの上面
図において示される見かけ上のチャネル幅よりも大きくなり、その影響が無視できなくな
る場合がある。例えば、微細かつ立体的な構造を有するトランジスタでは、半導体の上面
に形成されるチャネル領域の割合に対して、半導体の側面に形成されるチャネル領域の割
合が大きくなる場合がある。その場合は、上面図において示される見かけ上のチャネル幅
よりも、実際にチャネルの形成される実効的なチャネル幅の方が大きくなる。
測による見積もりが困難となる場合がある。例えば、設計値から実効的なチャネル幅を見
積もるためには、半導体の形状が既知という仮定が必要である。したがって、半導体の形
状が正確にわからない場合には、実効的なチャネル幅を正確に測定することは困難である
。
る領域における、ソースまたはドレインの幅である見かけ上のチャネル幅を、「囲い込み
チャネル幅(SCW:Surrounded Channel Width)」と呼ぶ場
合がある。また、本明細書では、単にチャネル幅と記載した場合には、囲い込みチャネル
幅または見かけ上のチャネル幅を指す場合がある。または、本明細書では、単にチャネル
幅と記載した場合には、実効的なチャネル幅を指す場合がある。なお、チャネル長、チャ
ネル幅、実効的なチャネル幅、見かけ上のチャネル幅、囲い込みチャネル幅などは、断面
TEM像などを取得して、その画像を解析することなどによって、値を決定することがで
きる。
める場合、囲い込みチャネル幅を用いて計算する場合がある。その場合には、実効的なチ
ャネル幅を用いて計算する場合とは異なる値をとる場合がある。
化膜として機能する。また、絶縁膜108は、絶縁膜127を成膜する際の保護膜として
の機能を有していてもよい。絶縁膜108は不要であれば設けなくてもよい。
気的に接続している。また、プラグ171は絶縁膜128に埋め込まれるように設けられ
、プラグ168と電気的に接続している。また、プラグ172は絶縁膜128に埋め込ま
れるように設けられ、プラグ169と電気的に接続している。
171及び配線WLと電気的に接続し、電極175はプラグ172及び配線SLと電気的
に接続している。
上方に位置する第2のトランジスタ100とを有するため、これらを積層して設けること
により素子の占有面積を縮小することができる。さらに容量素子130は、第2のトラン
ジスタ100の下方位置するため、これらを積層して設けることにより素子の占有面積を
縮小することができる。また、配線CLは第2のトランジスタ100のゲート電極105
と互いに重なる領域を有するため、さらに素子の占有面積を縮小することができる。さら
に、第1のトランジスタ110と第2のトランジスタ100との間に設けられたバリア膜
120により、これよりも下層に存在する水や水素等の不純物が第2のトランジスタ10
0側に拡散することを抑制できる。
以下では、上記構成例で示した半導体装置の作製方法の一例について、図10乃至図1
2を用いて説明する。
コン基板(p型の半導体基板、またはn型の半導体基板を含む)、炭化シリコンや窒化ガ
リウムからなる化合物半導体基板などを用いることができる。また、半導体基板111と
して、SOI基板を用いてもよい。以下では、半導体基板111として単結晶シリコンを
用いた場合について説明する。
OS(Local Oxidation of Silicon)法またはSTI(Sh
allow Trench Isolation)法等を用いて形成すればよい。
11の一部にnウェルまたはpウェルを形成してもよい。例えば、n型の半導体基板11
1にp型の導電性を付与するホウ素などの不純物元素を添加してpウェルを形成し、同一
基板上にn型のトランジスタとp型のトランジスタを形成してもよい。
表面窒化処理後に酸化処理を行い、シリコンと窒化シリコン界面を酸化して酸化窒化シリ
コン膜を形成してもよい。例えばNH3雰囲気中で700℃にて熱窒化シリコン膜を表面
に形成後に酸素ラジカル酸化を行うことで酸化窒化シリコン膜が得られる。
sition)法(熱CVD法、MOCVD(Metal Organic CVD)法
、PECVD(Plasma Enhanced CVD)法等を含む)、MBE(Mo
lecular Beam Epitaxy)法、ALD(Atomic Layer
Deposition)法、またはPLD(Pulsed Laser Deposit
ion)法等で成膜することにより形成してもよい。
グステン、チタン、モリブデン、クロム、ニオブ等から選択された金属、またはこれらの
金属を主成分とする合金材料若しくは化合物材料を用いることが好ましい。また、リン等
の不純物を添加した多結晶シリコンを用いることができる。また、金属窒化物膜と上記の
金属膜の積層構造を用いてもよい。金属窒化物としては、窒化タングステン、窒化モリブ
デン、窒化チタンを用いることができる。金属窒化物膜を設けることにより、金属膜の密
着性を向上させることができ、剥離を防止することができる。また、ゲート電極115の
仕事関数を制御する金属膜を設けてもよい。
VD法等を含む)などにより成膜することができる。また、プラズマによるダメージを減
らすには、熱CVD法、MOCVD法あるいはALD法が好ましい。
膜の不要な部分を除去する。その後、レジストマスクを除去することにより、ゲート電極
115を形成することができる。
様々な微細加工技術を用いることができる。例えば、リソグラフィ法等で形成したレジス
トマスクに対してスリミング処理を施す方法を用いてもよい。また、リソグラフィ法等で
ダミーパターンを形成し、当該ダミーパターンにサイドウォールを形成した後にダミーパ
ターンを除去し、残存したサイドウォールをレジストマスクとして用いて、被加工膜をエ
ッチングしてもよい。また、被加工膜のエッチングとして、高いアスペクト比を実現する
ために、異方性のドライエッチングを用いることが好ましい。また、無機膜または金属膜
からなるハードマスクを用いてもよい。
6nm)、h線(波長405nm)、またはこれらを混合させた光を用いることができる
。そのほか、紫外線やKrFレーザ光、またはArFレーザ光等を用いることもできる。
また、液浸露光技術により露光を行ってもよい。また、露光に用いる光として、極端紫外
光(EUV:Extreme Ultra−violet)やX線を用いてもよい。また
、露光に用いる光に換えて、電子ビームを用いることもできる。極端紫外光、X線または
電子ビームを用いると、極めて微細な加工が可能となるため好ましい。なお、電子ビーム
などのビームを走査することにより露光を行う場合には、フォトマスクは不要である。
着性を改善する機能を有する有機樹脂膜を形成してもよい。当該有機樹脂膜は、例えばス
ピンコート法などにより、その下層の段差を被覆して表面を平坦化するように形成するこ
とができ、当該有機樹脂膜の上層に設けられるレジストマスクの厚さのばらつきを低減で
きる。また、特に微細な加工を行う場合には、当該有機樹脂膜として、露光に用いる光に
対する反射防止膜として機能する材料を用いることが好ましい。このような機能を有する
有機樹脂膜としては、例えばBARC(Bottom Anti−Reflection
Coating)膜などがある。当該有機樹脂膜は、レジストマスクの除去と同時に除
去するか、レジストマスクを除去した後に除去すればよい。
もよい。サイドウォールは、ゲート電極115の厚さよりも厚い絶縁膜を成膜した後に、
異方性エッチングを施し、ゲート電極115の側面部分のみ当該絶縁膜を残存させること
により形成できる。
ことにより、ゲート電極115及びサイドウォールの下部にゲート絶縁膜114が形成さ
れる。または、ゲート電極115を形成した後にゲート電極115またはゲート電極11
5を加工するためのレジストマスクをエッチングマスクとして当該絶縁膜をエッチングす
ることによりゲート絶縁膜114を形成してもよい。または、当該絶縁膜に対してエッチ
ングによる加工を行わずに、そのままゲート絶縁膜114として用いることもできる。
ない領域にリンなどのn型の導電性を付与する元素、またはホウ素などのp型の導電性を
付与する元素を添加する。この段階における断面概略図が図10(A)に相当する。
第1の加熱処理を行う。
リコン、酸化アルミニウム、酸化窒化アルミニウム、窒化酸化アルミニウム、窒化アルミ
ニウムなどを用いればよく、積層または単層で設ける。絶縁膜121はスパッタリング法
、CVD法(熱CVD法、MOCVD法、PECVD法等を含む)、MBE法、ALD法
またはPLD法などを用いて形成することができる。特に、当該絶縁膜をCVD法、好ま
しくはプラズマCVD法によって成膜すると、被覆性を向上させることができるため好ま
しい。またプラズマによるダメージを減らすには、熱CVD法、MOCVD法あるいはA
LD法が好ましい。
にて、例えば、400℃以上でかつ基板の歪み点未満で行うことができる。
化シリコン(SiNOH)を用いると、加熱によって脱離する水素の量を多くすることが
できるため好ましい。また、絶縁膜123は、絶縁膜121に用いることのできる材料の
ほか、TEOS(Tetra−Ethyl−Ortho−Silicate)若しくはシ
ラン等と、酸素若しくは亜酸化窒素等とを反応させて形成した段差被覆性の良い酸化シリ
コンを用いることが好ましい。
、MOCVD法、PECVD法等を含む)、MBE法、ALD法またはPLD法などを用
いて形成することができる。特に、当該絶縁膜をCVD法、好ましくはプラズマCVD法
によって成膜すると、被覆性を向上させることができるため好ましい。また、プラズマに
よるダメージを減らすには、熱CVD法、MOCVD法あるいはALD法が好ましい。
って終端するための第2の加熱処理を行う。
3a、低抵抗層113b及びゲート電極115等に達する開口を形成する。その後、開口
を埋めるように導電膜を形成し、絶縁膜124の上面が露出するように該導電膜に平坦化
処理を施すことにより、プラグ161、プラグ162、プラグ163等を形成する。導電
膜の形成は、例えばスパッタリング法、CVD法(熱CVD法、MOCVD法、PECV
D法等を含む)、MBE法、ALD法またはPLD法などを用いて形成することができる
。この段階における断面概略図が図10(B)に相当する。
マスクを形成し、導電膜の不要な部分をエッチングにより除去する。その後レジストマス
クを除去することにより、容量素子の一方の電極となる電極136を形成する。
138を形成する。なお、電極138は後に形成される第2のトランジスタ100のゲー
ト電極105と互いに重なるようにすることが好ましい。
第2のトランジスタ100のゲート電極105と互いに重なる領域を有するようにするこ
とで素子の占有面積を縮小することができる。
処理を施すことにより、絶縁膜125を形成する。絶縁膜125となる絶縁膜は、絶縁膜
121等と同様の材料及び方法により形成することができる。
より、各層に含まれる水や水素を脱離させることにより、水や水素の含有量を低減するこ
とができる。後述するバリア膜120を形成する直前に第3の加熱処理を施し、バリア膜
120よりも下層に含まれる水素や水を徹底的に除去した後に、バリア膜120を形成す
ることで、後の工程でバリア膜120よりも下層側に水や水素が再度拡散・放出してしま
うことを抑制することができる。
PECVD法等を含む)、MBE法、ALD法またはPLD法などを用いて形成すること
ができる。特に、当該絶縁膜をCVD法、好ましくはプラズマCVD法によって成膜する
と、被覆性を向上させることができるため好ましい。また、プラズマによるダメージを減
らすには、熱CVD法、MOCVD法あるいはALD法が好ましい。
離ガスを抑制するための加熱処理を行ってもよい。
マスクを形成し、導電膜の不要な部分をエッチングにより除去する。その後レジストマス
クを除去することにより、配線132を形成することができる。
スパッタリング法、CVD法(熱CVD法、MOCVD法、PECVD法等を含む)、M
BE法、ALD法またはPLD法などを用いて形成することができる。特に、当該絶縁膜
をCVD法、好ましくはプラズマCVD法によって成膜すると、被覆性を向上させること
ができるため好ましい。また、プラズマによるダメージを減らすには、熱CVD法、MO
CVD法あるいはALD法が好ましい。
て絶縁膜125の成膜を行えばよい。または、成膜後の絶縁膜126となる絶縁膜に酸素
を導入して酸素を過剰に含有する領域を形成してもよく、双方の手段を組み合わせてもよ
い。
子、酸素イオンのいずれかを含む)を導入して酸素を過剰に含有する領域を形成する。酸
素の導入方法としては、イオン注入法、イオンドーピング法、プラズマイマージョンイオ
ン注入法、プラズマ処理などを用いることができる。
酸素、一酸化二窒素、二酸化窒素、二酸化炭素、一酸化炭素などを用いることができる。
また、酸素導入処理において、酸素を含むガスに希ガスを含ませてもよく、例えば、二酸
化炭素と水素とアルゴンの混合ガスを用いることができる。
P法等を用いた平坦化処理を行って絶縁膜126を形成する(図11(A)参照)。
マスクを形成し、絶縁膜126となる絶縁膜の不要な部分をエッチングにより除去し、絶
縁膜126を形成した後、導電膜を成膜し、該導電膜上にレジストマスクを形成し、該導
電膜の不要な部分をエッチングにより除去し、配線132を形成してもよい。
と、酸化物半導体膜101bとなる酸化物半導体膜を順に成膜する。当該酸化物半導体膜
は、大気に触れさせることなく連続して成膜することが好ましい。
好ましい。加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以
下の温度で、不活性ガス雰囲気、酸化性ガスを10ppm以上含む雰囲気、または減圧状
態で行えばよい。また、加熱処理の雰囲気は、不活性ガス雰囲気で加熱処理した後に、脱
離した酸素を補うために酸化性ガスを10ppm以上含む雰囲気で行ってもよい。加熱処
理は、酸化物半導体膜101bとなる酸化物半導体膜を成膜した直後に行ってもよいし、
酸化物半導体膜101bとなる酸化物半導体膜を加工して島状の酸化物半導体膜101b
を形成した後に行ってもよい。加熱処理により、絶縁膜126や絶縁膜106aとなる絶
縁膜から酸化物半導体膜に酸素が供給され、半導体膜中の酸素欠損を低減することができ
る。
及び上記と同様の方法によりレジストマスクを形成し、導電膜の不要な部分をエッチング
により除去する。その後、導電膜をマスクとして絶縁膜106aとなる絶縁膜及び酸化物
半導体膜の不要な部分をエッチングにより除去する。その後レジストマスクを除去するこ
とにより、島状の導電膜103、絶縁膜106a、島状の酸化物半導体膜101aと島状
の酸化物半導体膜101bの積層構造を形成することができる(図11(B)参照)。
酸化物半導体膜131bの積層構造を形成することができる。
ECVD法等を含む)、MBE法、ALD法またはPLD法などを用いて形成することが
できる。特に、当該絶縁膜をCVD法、好ましくはプラズマCVD法によって成膜すると
、被覆性を向上させることができるため好ましい。また、プラズマによるダメージを減ら
すには、熱CVD法、MOCVD法あるいはALD法が好ましい。
03の不要な部分をエッチングにより除去する。その後レジストマスクを除去することに
より、電極103a及び電極103bを形成することができる。
ジストマスクを形成し、該マスクを用いて、酸化物半導体膜101b、酸化物半導体膜1
01a、絶縁膜106a、絶縁膜126、バリア膜120及び絶縁膜125に、プラグ1
61及び電極136に達する開口を形成する。また、同時に電極103cに上記と同様の
方法によりレジストマスクを形成し、該マスクを用いて、酸化物半導体膜131b、酸化
物半導体膜131a、絶縁膜106b、絶縁膜126、バリア膜120及び絶縁膜125
に、プラグ163に達する開口を形成する。
5及びプラグ166を形成する(図11(C)参照)。
る(図12(A)参照)。
法(熱CVD法、MOCVD法、PECVD法等を含む)、MBE法、ALD法またはP
LD法などを用いて形成することができる。特に、当該絶縁膜をCVD法、好ましくはプ
ラズマCVD法によって成膜すると、被覆性を向上させることができるため好ましい。ま
た、プラズマによるダメージを減らすには、熱CVD法、MOCVD法あるいはALD法
が好ましい。
膜126等から酸化物半導体膜101bに対して酸素を供給し、酸化物半導体膜101b
中の酸素欠損を低減することができる。また、このとき、絶縁膜126から脱離した酸素
は、バリア膜120及び絶縁膜107によってブロックされ、バリア膜120よりも下層
及び絶縁膜107よりも上層には拡散しないため、当該酸素を効果的に閉じ込めることが
できる。そのため酸化物半導体膜101bに供給しうる酸素の量を増大させることができ
、酸化物半導体膜101b中の酸素欠損を効果的に低減することができる。
108及び絶縁膜127は、例えばスパッタリング法、CVD法(熱CVD法、MOCV
D法、PECVD法、APCVD(Atmospheric Pressure CVD
)法等を含む)、MBE法、ALD法またはPLD法などを用いて形成することができる
。特に、絶縁膜108をDCスパッタ法によって成膜すると、バリア性の高い膜を生産性
良く厚く成膜できるため好ましい。また、ALD法によって成膜すると、イオンダメージ
を減らし、被覆性を良好なものとすることができるため好ましい。また絶縁膜127とし
て有機樹脂などの有機絶縁材料を用いる場合には、スピンコート法などの塗布法を用いて
形成してもよい。また、絶縁膜127を形成した後にその上面に対して平坦化処理を行う
ことが好ましい。また、熱処理を行い流動化させて平坦化しても良い。また、平坦性をよ
り良好なものとするために、絶縁膜127を形成した後にCVD法を用いて絶縁膜を積層
した後にその上面に対して平坦化処理を行うことが好ましい。
を設け、プラグ164に達するプラグ167、ゲート電極105に達するプラグ168、
プラグ166に達するプラグ169を形成する。
ができる。
プラグ170、プラグ168に達するプラグ171、プラグ169に達するプラグ172
を形成する。
する電極174と、プラグ172と電気的に接続する電極175を形成する。
接続され、電極175は配線SLと電気的に接続される(図1(B)参照)。なお、配線
BL、配線WL、配線SLの材料は配線CLを援用することができる。
また、本実施の形態の変形例として、図13(A)に示すように容量素子の位置を第2
のトランジスタ100より上方に設けてもよい。具体的には、配線BL、配線WL、配線
SL、絶縁膜128上に絶縁膜151を形成する。その後、絶縁膜151、絶縁膜128
、絶縁膜127、絶縁膜108及び絶縁膜107に開口を設けてプラグ165と電気的に
接続するプラグ153を形成する。その後、プラグ153と電気的に接続する電極154
、電極154上の絶縁膜155、絶縁膜155上の電極156を形成し、容量素子150
を形成する。その後に、容量素子150を覆う絶縁膜152を形成する。なお、電極15
6は、配線CL1と電気的に接続し、ゲート電極105と互いに重なる領域を有している
。
に容量素子130及び容量素子150を設ける構成としてもよい。
また、本実施の形態の変形例として、図14に示すような構成にしてもよい。図1との
違いは、容量素子130の形状である。具体的には、以下で説明する。
する。その後、電極136aを覆う絶縁膜119を形成し、絶縁膜119上にレジストマ
スクを形成し、該マスクを用いて絶縁膜119に開口を設け、該開口に電極136aと電
気的に接続する電極136bを形成する。その後、絶縁膜125となる絶縁膜を成膜し、
平坦化処理を行ったのち、レジストマスクを用いて電極136b及び絶縁膜119が露出
するように開口を設ける絶縁膜125を形成する。絶縁膜125となる絶縁膜は、絶縁膜
128等を援用することができる。
縁膜125の開口を埋めるように電極138を形成する。その後、絶縁膜118、絶縁膜
117及び絶縁膜116を形成する。なお、電極138は、配線CLと電気的に接続し、
ゲート電極105と互いに重なる領域を有している。
び絶縁膜119に開口を設け、プラグ157、プラグ158及びプラグ159を設ける。
なお、プラグ157は、プラグ161及びプラグ164と電気的に接続し、プラグ158
は、電極136及びプラグ165と電気的に接続し、プラグ159は、プラグ163及び
プラグ166と電気的に接続する。
また、本実施の形態の変形例として、図15に示すように、図14の構成に加えて第2
のトランジスタ100のゲート電極105の上方に図13で示した容量素子150を設け
てもよい。
量素子や図14に示す容量素子を適宜組み合わせることができる。
み合わせて実施することができる。
本実施の形態では、実施の形態1とは異なる半導体装置について説明する。
図16(A)は、本発明の一態様の半導体装置の回路図の一例である。図16(A)に
示す半導体装置は、第1のトランジスタ110と、第2のトランジスタ100と、容量素
子130と、容量素子150と、配線SLと、配線BLと、配線WLと、配線CL2と、
配線CL3とを有する。
し、他方が配線SLと電気的に接続し、ゲートが第2のトランジスタ100のソースまた
はドレインの一方、容量素子130の一方の電極、及び容量素子150の一方の電極と電
気的に接続する。第2のトランジスタ100は、ソースまたはドレインの他方が配線BL
と電気的に接続し、ゲートが配線WLと電気的に接続する。容量素子130は、他方の電
極が配線CL2と電気的に接続する。容量素子150は、他方の電極が配線CL3と電気
的に接続する。なお、第1のトランジスタ110のゲートと、第2のトランジスタ100
のソースまたはドレインの一方と、容量素子130の一方の電極と、容量素子150の一
方の電極との間のノードをノードFNと呼ぶ。
を示す。また、図17(A)に図16(B)の半導体装置を並べた上面図を示す。なお、
各半導体装置は、共通配線としての機能を有する配線CL2、配線CL3を共有している
。
0、容量素子130及び容量素子150が設けられている。
スタ100、容量素子130及び容量素子150を有する。第2のトランジスタ100は
第1のトランジスタ110の上方に設けられ、第1のトランジスタ110と第2のトラン
ジスタ100の間にはバリア膜120が設けられている。
実施の形態1の説明を援用することができる。
め込まれる開口を有している。
造10における第2の配線層32に相当する。
て設けられ、第2のトランジスタ100の第2のゲート電極としての機能を有する。
126を含む領域が積層構造10における第2の絶縁膜22に相当する。
。
ジスタ100を含む構成が、積層構造10における第2の層12に相当する。
106aの上面に接する酸化物半導体膜101aと、酸化物半導体膜101aの上面に接
する酸化物半導体膜101bと、酸化物半導体膜101bの上面に接し、酸化物半導体膜
101bと重なる領域で離間する電極103a及び電極103bと、酸化物半導体膜10
1bの上面、電極103aの上面、及び電極103bの上面に接する酸化物半導体膜10
1cと、酸化物半導体膜101c上のゲート絶縁膜104と、ゲート絶縁膜104及び酸
化物半導体膜101cを介して酸化物半導体膜101bと重なるゲート電極105とを有
する。また、第2のトランジスタ100を覆って、絶縁膜107、絶縁膜108、絶縁膜
127、及び絶縁膜129が設けられている。
、バリア膜120、絶縁膜126、絶縁膜106a、酸化物半導体膜101a、酸化物半
導体膜101b、及び電極103aに埋め込まれるように設けられる。また、電極136
及び電極103bと電気的に接続する容量素子150の電極181が絶縁膜125、バリ
ア膜120、絶縁膜126、絶縁膜106a、酸化物半導体膜101a、酸化物半導体膜
101b、電極103b、絶縁膜107、絶縁膜108、絶縁膜127、及び絶縁膜12
9に埋め込まれるように設けられる。
酸化物半導体膜131b及び電極103cが形成され、プラグ163及び電極103cと
電気的に接続するプラグ166が絶縁膜125、バリア膜120、絶縁膜126、絶縁膜
106b、酸化物半導体膜131a、酸化物半導体膜131b、及び電極103cに埋め
込まれるように設けられる。
、容量素子150の電極181、及び第2のトランジスタ100の電極103bを含むノ
ードが、図16(A)に示すノードFNに相当する。
を被覆する平坦化膜として機能する。また、絶縁膜108は、絶縁膜127を成膜する際
の保護膜としての機能を有していてもよい。絶縁膜108及び絶縁膜129は不要であれ
ば設けなくてもよい。
気的に接続している。また、プラグ171は絶縁膜128に埋め込まれるように設けられ
、プラグ168と電気的に接続している。また、プラグ172は絶縁膜128に埋め込ま
れるように設けられ、プラグ169と電気的に接続している。また、プラグ176は絶縁
膜128に埋め込まれるように設けられ、容量素子150の電極183と電気的に接続し
ている。
171及び配線WLと電気的に接続し、電極175はプラグ172及び配線SLと電気的
に接続し、電極177はプラグ176及び配線CL3と電気的に接続している。
上方に位置する第2のトランジスタ100とを有するため、これらを積層して設けること
により素子の占有面積を縮小することができる。さらに容量素子130は、第2のトラン
ジスタ100の下方に位置するため、これらを積層して設けることにより素子の占有面積
を縮小することができる。さらに容量素子150は、第1のトランジスタ110の上方に
位置するため、これらを積層して設けることにより素子の占有面積を縮小することができ
る。また、配線CL2は第2のトランジスタ100のゲート電極105と互いに重なる領
域を有するため、さらに素子の占有面積を縮小することができる。また、配線CL3は第
1のトランジスタ110のゲート電極115と互いに重なる領域を有するため、さらに素
子の占有面積を縮小することができる。さらに、第1のトランジスタ110と第2のトラ
ンジスタ100との間に設けられたバリア膜120により、これよりも下層に存在する水
や水素等の不純物が第2のトランジスタ100側に拡散することを抑制できる。
以下では、上記構成例で示した半導体装置の作製方法の一例について、図10乃至図1
2、図18乃至図19を用いて説明する。
タ100のゲート絶縁膜104及びゲート電極105を形成する(図18(A)参照)。
しい。加熱処理により、絶縁膜126等から酸化物半導体膜101bに対して酸素を供給
し、酸化物半導体膜101b中の酸素欠損を低減することができる。また、このとき、絶
縁膜126から脱離した酸素は、バリア膜120及び絶縁膜107によってブロックされ
、バリア膜120よりも下層及び絶縁膜107よりも上層には拡散しないため、当該酸素
を効果的に閉じ込めることができる。そのため酸化物半導体膜101bに供給しうる酸素
の量を増大させることができ、酸化物半導体膜101b中の酸素欠損を効果的に低減する
ことができる。
参照)。絶縁膜108、絶縁膜127及び絶縁膜129は、例えばスパッタリング法、C
VD法(熱CVD法、MOCVD法、PECVD法、APCVD(Atmospheri
c Pressure CVD)法等を含む)、MBE法、ALD法またはPLD法など
を用いて形成することができる。特に、絶縁膜108をDCスパッタ法によって成膜する
と、バリア性の高い膜を生産性良く厚く成膜できるため好ましい。また、ALD法によっ
て成膜すると、イオンダメージを減らし、被覆性を良好なものとすることができるため好
ましい。また、絶縁膜127として有機樹脂などの有機絶縁材料を用いる場合には、スピ
ンコート法などの塗布法を用いて形成してもよい。また、絶縁膜127を形成した後にそ
の上面に対して平坦化処理を行うことが好ましい。また、熱処理を行い流動化させて平坦
化しても良い。また、平坦性をより良好なものとするために、絶縁膜127を形成した後
にCVD法を用いて絶縁膜を積層した後にその上面に対して平坦化処理を行うことが好ま
しい。
膜107に開口を設け、プラグ164に達するプラグ167、ゲート電極105に達する
プラグ168、プラグ166に達するプラグ169、プラグ165に達するプラグ176
を形成する。
け、プラグ176及びプラグ165をエッチングして開口179を形成する(図19(A
)参照)。
82を形成し、絶縁膜182上に電極183を形成する(図19(B)参照)。なお、容
量素子150の材料は、容量素子130の説明を援用することができる。
ができる。
プラグ170、プラグ168に達するプラグ171、プラグ169に達するプラグ172
、電極183に達するプラグ176を形成する。
する電極174と、プラグ172と電気的に接続する電極175、プラグ176と電気的
に接続する電極177を形成する。
接続され、電極175は配線SLと電気的に接続され、電極177は配線CL3と電気的
に接続される(図16(B)参照)。なお、配線BL、配線WL、配線SL、配線CL3
の材料は実施の形態1の配線CLの説明を援用することができる。
また、本実施の形態の変形例として、図20(A)に示すように容量素子130の位置
を第2のトランジスタ100より上方に設けてもよい。具体的には、配線BL、配線WL
、配線SL、絶縁膜128上に絶縁膜151を形成する。その後、絶縁膜151に開口を
設けてプラグ176と電気的に接続するプラグ178を形成する。その後、プラグ178
と電気的に接続する容量素子130を形成する。その後に、容量素子130を覆う絶縁膜
152を形成する。なお、容量素子130は、配線CL2と電気的に接続し、ゲート電極
105と互いに重なる領域を有している。
に容量素子130及び容量素子190を設ける構成としてもよい。なお、図20(B)に
示すように容量素子150を形成するための開口を図20(A)より深くしてよいし、図
21に示すように容量素子150を形成するための開口を図20(A)より浅くしてもよ
い。
たが、これに限られない。
み合わせて実施することができる。
本実施の形態では、本発明の一態様の半導体装置の半導体膜に好適に用いることのでき
る酸化物半導体について説明する。
な条件で加工し、そのキャリア密度を十分に低減して得られた酸化物半導体膜が適用され
たトランジスタにおいては、オフ状態でのソースとドレイン間のリーク電流(オフ電流)
を、従来のシリコンを用いたトランジスタと比較して極めて低いものとすることができる
。
)を含むことが好ましい。特にInとZnを含むことが好ましい。また、該酸化物半導体
を用いたトランジスタの電気特性のばらつきを減らすためのスタビライザとして、それら
に加えてガリウム(Ga)、スズ(Sn)、ハフニウム(Hf)、ジルコニウム(Zr)
、チタン(Ti)、スカンジウム(Sc)、イットリウム(Y)、ランタノイド(例えば
、セリウム(Ce)、ネオジム(Nd)、ガドリニウム(Gd))から選ばれた一種、ま
たは複数種が含まれていることが好ましい。
化物、Sn−Zn系酸化物、Al−Zn系酸化物、Zn−Mg系酸化物、Sn−Mg系酸
化物、In−Mg系酸化物、In−Ga系酸化物、In−Ga−Zn系酸化物(IGZO
とも表記する)、In−Al−Zn系酸化物、In−Sn−Zn系酸化物、Sn−Ga−
Zn系酸化物、Al−Ga−Zn系酸化物、Sn−Al−Zn系酸化物、In−Hf−Z
n系酸化物、In−Zr−Zn系酸化物、In−Ti−Zn系酸化物、In−Sc−Zn
系酸化物、In−Y−Zn系酸化物、In−La−Zn系酸化物、In−Ce−Zn系酸
化物、In−Pr−Zn系酸化物、In−Nd−Zn系酸化物、In−Sm−Zn系酸化
物、In−Eu−Zn系酸化物、In−Gd−Zn系酸化物、In−Tb−Zn系酸化物
、In−Dy−Zn系酸化物、In−Ho−Zn系酸化物、In−Er−Zn系酸化物、
In−Tm−Zn系酸化物、In−Yb−Zn系酸化物、In−Lu−Zn系酸化物、I
n−Sn−Ga−Zn系酸化物、In−Hf−Ga−Zn系酸化物、In−Al−Ga−
Zn系酸化物、In−Sn−Al−Zn系酸化物、In−Sn−Hf−Zn系酸化物、I
n−Hf−Al−Zn系酸化物を用いることができる。
物という意味であり、InとGaとZnの比率は問わない。また、InとGaとZn以外
の金属元素が入っていてもよい。
)で表記される材料を用いてもよい。なお、Mは、Ga、Fe、Mn及びCoから選ばれ
た一の金属元素または複数の金属元素、若しくは上記のスタビライザとしての元素を示す
。また、酸化物半導体として、In2SnO5(ZnO)n(n>0、且つ、nは整数)
で表記される材料を用いてもよい。
:Zn=1:3:4、In:Ga:Zn=1:3:6、In:Ga:Zn=3:1:2あ
るいはIn:Ga:Zn=2:1:3の原子数比のIn−Ga−Zn系酸化物やその組成
の近傍の酸化物を用いるとよい。
素の一部がドナーとなり、キャリアである電子を生じてしまう。これにより、トランジス
タのしきい値電圧がマイナス方向にシフトしてしまう。そのため、酸化物半導体膜の形成
後において、脱水化処理(脱水素化処理)を行い酸化物半導体膜から、水素、または水分
を除去して不純物が極力含まれないように高純度化することが好ましい。
酸素も同時に減少してしまうことがある。よって、酸化物半導体膜への脱水化処理(脱水
素化処理)によって増加した酸素欠陥を補填するため酸素を酸化物半導体膜に加える処理
を行うことが好ましい。本明細書等において、酸化物半導体膜に酸素を供給する場合を、
加酸素化処理と記す場合がある、または酸化物半導体膜に含まれる酸素を化学量論的組成
よりも多くする場合を過酸素化処理と記す場合がある。
が除去され、加酸素化処理により酸素欠損を補填することによって、i型(真性)化また
はi型に限りなく近く実質的にi型(真性)である酸化物半導体膜とすることができる。
なお、実質的に真性とは、酸化物半導体膜中にドナーに由来するキャリアが極めて少なく
(ゼロに近く)、キャリア密度が1×1017/cm3以下、1×1016/cm3以下
、1×1015/cm3以下、1×1014/cm3以下、1×1013/cm3以下で
あることをいう。
タは、極めて優れたオフ電流特性を実現できる。例えば、酸化物半導体膜を用いたトラン
ジスタがオフ状態のときのドレイン電流を、室温(25℃程度)にて1×10−18A以
下、好ましくは1×10−21A以下、さらに好ましくは1×10−24A以下、または
85℃にて1×10−15A以下、好ましくは1×10−18A以下、さらに好ましくは
1×10−21A以下とすることができる。なお、トランジスタがオフ状態とは、nチャ
ネル型のトランジスタの場合、ゲート電圧がしきい値電圧よりも十分小さい状態をいう。
具体的には、ゲート電圧がしきい値電圧よりも1V以上、2V以上または3V以上小さけ
れば、トランジスタはオフ状態となる。
以下では、酸化物半導体の構造について説明する。
れる。非単結晶酸化物半導体としては、CAAC−OS(C Axis Aligned
Crystalline Oxide Semiconductor)、多結晶酸化物
半導体、nc−OS(nanocrystalline Oxide Semicond
uctor)、擬似非晶質酸化物半導体(a−like OS:amorphous l
ike Oxide Semiconductor)、非晶質酸化物半導体などがある。
半導体とに分けられる。結晶性酸化物半導体としては、単結晶酸化物半導体、CAAC−
OS、多結晶酸化物半導体、nc−OSなどがある。
って不均質構造を持たないことなどが知られている。また、結合角度が柔軟であり、短距
離秩序性は有するが、長距離秩序性を有さない構造と言い換えることもできる。
tely amorphous)酸化物半導体と呼ぶことはできない。また、等方的でな
い(例えば、微小な領域において周期構造を有する)酸化物半導体を、完全な非晶質酸化
物半導体と呼ぶことはできない。ただし、a−like OSは、微小な領域において周
期構造を有するものの、鬆(ボイドともいう。)を有し、不安定な構造である。そのため
、物性的には非晶質酸化物半導体に近いといえる。
まずは、CAAC−OSについて説明する。
半導体の一つである。
oscope)によって、CAAC−OSの明視野像と回折パターンとの複合解析像(高
分解能TEM像ともいう。)を観察すると、複数のペレットを確認することができる。一
方、高分解能TEM像ではペレット同士の境界、即ち結晶粒界(グレインバウンダリーと
もいう。)を明確に確認することができない。そのため、CAAC−OSは、結晶粒界に
起因する電子移動度の低下が起こりにくいといえる。
、試料面と略平行な方向から観察したCAAC−OSの断面の高分解能TEM像を示す。
高分解能TEM像の観察には、球面収差補正(Spherical Aberratio
n Corrector)機能を用いた。球面収差補正機能を用いた高分解能TEM像を
、特にCs補正高分解能TEM像と呼ぶ。Cs補正高分解能TEM像の取得は、例えば、
日本電子株式会社製原子分解能分析電子顕微鏡JEM−ARM200Fなどによって行う
ことができる。
。図22(B)より、ペレットにおいて、金属原子が層状に配列していることを確認でき
る。金属原子の各層の配列は、CAAC−OSの膜を形成する面(被形成面ともいう。)
または上面の凹凸を反映しており、CAAC−OSの被形成面または上面と平行となる。
)は、特徴的な原子配列を、補助線で示したものである。図22(B)および図22(C
)より、ペレット一つの大きさは1nm以上のものや3nm以上のものがあり、ペレット
とペレットとの傾きにより生じる隙間の大きさは0.8nm程度であることがわかる。し
たがって、ペレットを、ナノ結晶(nc:nanocrystal)と呼ぶこともできる
。また、CAAC−OSを、CANC(C−Axis Aligned nanocry
stals)を有する酸化物半導体と呼ぶこともできる。
ット5100の配置を模式的に示すと、レンガまたはブロックが積み重なったような構造
となる(図22(D)参照。)。図22(C)で観察されたペレットとペレットとの間で
傾きが生じている箇所は、図22(D)に示す領域5161に相当する。
s補正高分解能TEM像を示す。図23(A)の領域(1)、領域(2)および領域(3
)を拡大したCs補正高分解能TEM像を、それぞれ図23(B)、図23(C)および
図23(D)に示す。図23(B)、図23(C)および図23(D)より、ペレットは
、金属原子が三角形状、四角形状または六角形状に配列していることを確認できる。しか
しながら、異なるペレット間で、金属原子の配列に規則性は見られない。
AAC−OSについて説明する。例えば、InGaZnO4の結晶を有するCAAC−O
Sに対し、out−of−plane法による構造解析を行うと、図24(A)に示すよ
うに回折角(2θ)が31°近傍にピークが現れる場合がある。このピークは、InGa
ZnO4の結晶の(009)面に帰属されることから、CAAC−OSの結晶がc軸配向
性を有し、c軸が被形成面または上面に略垂直な方向を向いていることが確認できる。
°近傍のピークの他に、2θが36°近傍にもピークが現れる場合がある。2θが36°
近傍のピークは、CAAC−OS中の一部に、c軸配向性を有さない結晶が含まれること
を示している。より好ましいCAAC−OSは、out−of−plane法による構造
解析では、2θが31°近傍にピークを示し、2θが36°近傍にピークを示さない。
ne法による構造解析を行うと、2θが56°近傍にピークが現れる。このピークは、I
nGaZnO4の結晶の(110)面に帰属される。CAAC−OSの場合は、2θを5
6°近傍に固定し、試料面の法線ベクトルを軸(φ軸)として試料を回転させながら分析
(φスキャン)を行っても、図24(B)に示すように明瞭なピークは現れない。これに
対し、InGaZnO4の単結晶酸化物半導体であれば、2θを56°近傍に固定してφ
スキャンした場合、図24(C)に示すように(110)面と等価な結晶面に帰属される
ピークが6本観察される。したがって、XRDを用いた構造解析から、CAAC−OSは
、a軸およびb軸の配向が不規則であることが確認できる。
ZnO4の結晶を有するCAAC−OSに対し、試料面に平行にプローブ径が300nm
の電子線を入射させると、図25(A)に示すような回折パターン(制限視野透過電子回
折パターンともいう。)が現れる場合がある。この回折パターンには、InGaZnO4
の結晶の(009)面に起因するスポットが含まれる。したがって、電子回折によっても
、CAAC−OSに含まれるペレットがc軸配向性を有し、c軸が被形成面または上面に
略垂直な方向を向いていることがわかる。一方、同じ試料に対し、試料面に垂直にプロー
ブ径が300nmの電子線を入射させたときの回折パターンを図25(B)に示す。図2
5(B)より、リング状の回折パターンが確認される。したがって、電子回折によっても
、CAAC−OSに含まれるペレットのa軸およびb軸は配向性を有さないことがわかる
。なお、図25(B)における第1リングは、InGaZnO4の結晶の(010)面お
よび(100)面などに起因すると考えられる。また、図25(B)における第2リング
は(110)面などに起因すると考えられる。
結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、逆の見方をす
るとCAAC−OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。
属元素などがある。例えば、シリコンなどの、酸化物半導体を構成する金属元素よりも酸
素との結合力の強い元素は、酸化物半導体から酸素を奪うことで酸化物半導体の原子配列
を乱し、結晶性を低下させる要因となる。また、鉄やニッケルなどの重金属、アルゴン、
二酸化炭素などは、原子半径(または分子半径)が大きいため、酸化物半導体の原子配列
を乱し、結晶性を低下させる要因となる。
ある。例えば、酸化物半導体に含まれる不純物は、キャリアトラップとなる場合や、キャ
リア発生源となる場合がある。また、酸化物半導体中の酸素欠損は、キャリアトラップと
なる場合や、水素を捕獲することによってキャリア発生源となる場合がある。
ある。そのような酸化物半導体を、高純度真性または実質的に高純度真性な酸化物半導体
と呼ぶ。CAAC−OSは、不純物濃度が低く、欠陥準位密度が低い。即ち、安定な特性
を有する酸化物半導体であるといえる。
次に、nc−OSについて説明する。
確な結晶部を確認することのできない領域と、を有する。nc−OSに含まれる結晶部は
、1nm以上10nm以下、または1nm以上3nm以下の大きさであることが多い。な
お、結晶部の大きさが10nmより大きく100nm以下である酸化物半導体を微結晶酸
化物半導体と呼ぶことがある。nc−OSは、例えば、高分解能TEM像では、結晶粒界
を明確に確認できない場合がある。なお、ナノ結晶は、CAAC−OSにおけるペレット
と起源を同じくする可能性がある。そのため、以下ではnc−OSの結晶部をペレットと
呼ぶ場合がある。
3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるペ
レット間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。し
たがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導
体と区別が付かない場合がある。例えば、nc−OSに対し、ペレットよりも大きい径の
X線を用いた場合、out−of−plane法による解析では、結晶面を示すピークは
検出されない。また、nc−OSに対し、ペレットよりも大きいプローブ径(例えば50
nm以上)の電子線を用いる電子回折を行うと、ハローパターンのような回折パターンが
観測される。一方、nc−OSに対し、ペレットの大きさと近いかペレットより小さいプ
ローブ径の電子線を用いるナノビーム電子回折を行うと、スポットが観測される。また、
nc−OSに対しナノビーム電子回折を行うと、円を描くように(リング状に)輝度の高
い領域が観測される場合がある。さらに、リング状の領域内に複数のスポットが観測され
る場合がある。
−OSを、RANC(Random Aligned nanocrystals)を有
する酸化物半導体、またはNANC(Non−Aligned nanocrystal
s)を有する酸化物半導体と呼ぶこともできる。
、nc−OSは、a−like OSや非晶質酸化物半導体よりも欠陥準位密度が低くな
る。ただし、nc−OSは、異なるペレット間で結晶方位に規則性が見られない。そのた
め、nc−OSは、CAAC−OSと比べて欠陥準位密度が高くなる。
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物
半導体である。
高分解能TEM像において、明確に結晶部を確認することのできる領域と、結晶部を確認
することのできない領域と、を有する。
e OSが、CAAC−OSおよびnc−OSと比べて不安定な構造であることを示すた
め、電子照射による構造の変化を示す。
(試料Bと表記する。)およびCAAC−OS(試料Cと表記する。)を準備する。いず
れの試料もIn−Ga−Zn酸化物である。
料は、いずれも結晶部を有することがわかる。
、InGaZnO4の結晶の単位格子は、In−O層を3層有し、またGa−Zn−O層
を6層有する、計9層がc軸方向に層状に重なった構造を有することが知られている。こ
れらの近接する層同士の間隔は、(009)面の格子面間隔(d値ともいう。)と同程度
であり、結晶構造解析からその値は0.29nmと求められている。したがって、格子縞
の間隔が0.28nm以上0.30nm以下である箇所を、InGaZnO4の結晶部と
見なすことができる。なお、格子縞は、InGaZnO4の結晶のa−b面に対応する。
る。ただし、上述した格子縞の長さを結晶部の大きさとしている。図26より、a−li
ke OSは、電子の累積照射量に応じて結晶部が大きくなっていくことがわかる。具体
的には、図26中に(1)で示すように、TEMによる観察初期においては1.2nm程
度の大きさだった結晶部(初期核ともいう。)が、累積照射量が4.2×108e−/n
m2においては2.6nm程度の大きさまで成長していることがわかる。一方、nc−O
SおよびCAAC−OSは、電子照射開始時から電子の累積照射量が4.2×108e−
/nm2までの範囲で、結晶部の大きさに変化が見られないことがわかる。具体的には、
図26中の(2)および(3)で示すように、電子の累積照射量によらず、nc−OSお
よびCAAC−OSの結晶部の大きさは、それぞれ1.4nm程度および2.1nm程度
であることがわかる。
ある。一方、nc−OSおよびCAAC−OSは、電子照射による結晶部の成長がほとん
ど見られないことがわかる。即ち、a−like OSは、nc−OSおよびCAAC−
OSと比べて、不安定な構造であることがわかる。
べて密度の低い構造である。具体的には、a−like OSの密度は、同じ組成の単結
晶の密度の78.6%以上92.3%未満となる。また、nc−OSの密度およびCAA
C−OSの密度は、同じ組成の単結晶の密度の92.3%以上100%未満となる。単結
晶の密度の78%未満となる酸化物半導体は、成膜すること自体が困難である。
菱面体晶構造を有する単結晶InGaZnO4の密度は6.357g/cm3となる。よ
って、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体におい
て、a−like OSの密度は5.0g/cm3以上5.9g/cm3未満となる。ま
た、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において
、nc−OSの密度およびCAAC−OSの密度は5.9g/cm3以上6.3g/cm
3未満となる。
る単結晶を組み合わせることにより、所望の組成における単結晶に相当する密度を見積も
ることができる。所望の組成の単結晶に相当する密度は、組成の異なる単結晶を組み合わ
せる割合に対して、加重平均を用いて見積もればよい。ただし、密度は、可能な限り少な
い種類の単結晶を組み合わせて見積もることが好ましい。
なお、酸化物半導体は、例えば、非晶質酸化物半導体、a−like OS、nc−OS
、CAAC−OSのうち、二種以上を有する積層膜であってもよい。
み合わせて実施することができる。
本実施の形態では、本発明の一態様のトランジスタを利用した回路の一例について図面
を参照して説明する。
実施の形態1に示した構成において、トランジスタや配線、電極の接続構成を異ならせ
ることにより、様々な回路を構成することができる。以下では、本発明の一態様の半導体
装置を用いることにより実現できる回路構成の例を説明する。
図27(A)に示す回路図は、pチャネル型のトランジスタ2200とnチャネル型の
トランジスタ2100を直列に接続し、且つそれぞれのゲートを接続した、いわゆるCM
OS回路の構成を示している。なお、図中、第2の半導体材料が適用されたトランジスタ
には「OS」の記号を付して示している。
また、図27(B)に示す回路図は、トランジスタ2100とトランジスタ2200の
それぞれのソースとドレインを接続した構成を示している。このような構成とすることで
、いわゆるアナログスイッチとして機能させることができる。
本発明の一態様であるトランジスタを使用し、電力が供給されない状況でも記憶内容の
保持が可能で、且つ、書き込み回数にも制限が無い半導体装置(記憶装置)の一例を図2
7(C)に示す。
第2の半導体材料を用いたトランジスタ3300、及び容量素子3400を有している。
なお、トランジスタ3300としては、上記実施の形態で例示したトランジスタを用いる
ことができる。
ンジスタである。トランジスタ3300は、オフ電流が小さいため、これを用いることに
より長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作を必
要としない、或いは、リフレッシュ動作の頻度が極めて少ない半導体記憶装置とすること
が可能となるため、消費電力を十分に低減することができる。
気的に接続され、第2の配線3002はトランジスタ3200のドレイン電極と電気的に
接続されている。また、第3の配線3003はトランジスタ3300のソース電極または
ドレイン電極の一方と電気的に接続され、第4の配線3004はトランジスタ3300の
ゲート電極と電気的に接続されている。そして、トランジスタ3200のゲート電極、及
びトランジスタ3300のソース電極またはドレイン電極の他方は、容量素子3400の
電極の一方と電気的に接続され、第5の配線3005は容量素子3400の電極の他方と
電気的に接続されている。
可能という特徴を活かすことで、次のように、情報の書き込み、保持、読み出しが可能で
ある。
ンジスタ3300がオン状態となる電位にして、トランジスタ3300をオン状態とする
。これにより、第3の配線3003の電位が、トランジスタ3200のゲート電極、及び
容量素子3400に与えられる。すなわち、トランジスタ3200のゲート電極には、所
定の電荷が与えられる(書き込み)。ここでは、異なる二つの電位レベルを与える電荷(
以下Lowレベル電荷、Highレベル電荷という)のいずれかが与えられるものとする
。その後、第4の配線3004の電位を、トランジスタ3300がオフ状態となる電位に
して、トランジスタ3300をオフ状態とすることにより、トランジスタ3200のゲー
ト電極に与えられた電荷が保持される(保持)。
電極の電荷は長時間にわたって保持される。
与えた状態で、第5の配線3005に適切な電位(読み出し電位)を与えると、トランジ
スタ3200のゲート電極に保持された電荷量に応じて、第2の配線3002は異なる電
位をとる。一般に、トランジスタ3200をnチャネル型とすると、トランジスタ320
0のゲート電極にHighレベル電荷が与えられている場合の見かけのしきい値Vth_
Hは、トランジスタ3200のゲート電極にLowレベル電荷が与えられている場合の見
かけのしきい値Vth_Lより低くなるためである。ここで、見かけのしきい値電圧とは
、トランジスタ3200を「オン状態」とするために必要な第5の配線3005の電位を
いうものとする。したがって、第5の配線3005の電位をVth_HとVth_Lの間
の電位V0とすることにより、トランジスタ3200のゲート電極に与えられた電荷を判
別できる。例えば、書き込みにおいて、Highレベル電荷が与えられていた場合には、
第5の配線3005の電位がV0(>Vth_H)となれば、トランジスタ3200は「
オン状態」となる。Lowレベル電荷が与えられていた場合には、第5の配線3005の
電位がV0(<Vth_L)となっても、トランジスタ3200は「オフ状態」のままで
ある。このため、第2の配線3002の電位を判別することで、保持されている情報を読
み出すことができる。
み出せることが必要になる。このように情報を読み出さない場合には、ゲート電極の状態
にかかわらずトランジスタ3200が「オフ状態」となるような電位、つまり、Vth_
Hより小さい電位を第5の配線3005に与えればよい。または、ゲート電極の状態にか
かわらずトランジスタ3200が「オン状態」となるような電位、つまり、Vth_Lよ
り大きい電位を第5の配線3005に与えればよい。
と配線3003が共通化されている構成(図1(A)の回路図)の断面模式図を図28に
示す。なお、点線より左側に図27(A)の断面模式図を、点線より右側に図1(A)の
回路図の断面模式図を示す。
3300とを有するため、これらを積層して設けることにより素子の占有面積を縮小する
ことができる。さらに容量素子3400は、トランジスタ3300の下方位置するため、
これらを積層して設けることにより素子の占有面積を縮小することができる。また、配線
3005トランジスタ3300のゲート電極と互いに重なる領域を有するため、さらに素
子の占有面積を縮小することができる。
る構成にしてもよい。
7(C)と相違している。この場合も上記と同様の動作により情報の書き込み及び保持動
作が可能である。
浮遊状態である第3の配線3003と容量素子3400とが導通し、第3の配線3003
と容量素子3400の間で電荷が再分配される。その結果、第3の配線3003の電位が
変化する。第3の配線3003の電位の変化量は、容量素子3400の第1の端子の電位
(あるいは容量素子3400に蓄積された電荷)によって、異なる値をとる。
3の配線3003が有する容量成分をCB、電荷が再分配される前の第3の配線3003
の電位をVB0とすると、電荷が再分配された後の第3の配線3003の電位は、(CB
×VB0+C×V)/(CB+C)となる。したがって、メモリセルの状態として、容量
素子3400の第1の端子の電位がV1とV0(V1>V0)の2状態をとるとすると、
電位V1を保持している場合の第3の配線3003の電位(=(CB×VB0+C×V1
)/(CB+C))は、電位V0を保持している場合の第3の配線3003の電位(=(
CB×VB0+C×V0)/(CB+C))よりも高くなることがわかる。
とができる。
たトランジスタを用い、トランジスタ3300として第2の半導体材料が適用されたトラ
ンジスタを駆動回路上に積層して設ける構成とすればよい。
流の極めて小さいトランジスタを適用することで、極めて長期にわたり記憶内容を保持す
ることが可能である。つまり、リフレッシュ動作が不要となるか、または、リフレッシュ
動作の頻度を極めて低くすることが可能となるため、消費電力を十分に低減することがで
きる。また、電力の供給がない場合(ただし、電位は固定されていることが望ましい)で
あっても、長期にわたって記憶内容を保持することが可能である。
素子の劣化の問題もない。例えば、従来の不揮発性メモリのように、フローティングゲー
トへの電子の注入や、フローティングゲートからの電子の引き抜きを行う必要がないため
、ゲート絶縁層の劣化といった問題が全く生じない。すなわち、開示する発明に係る半導
体装置では、従来の不揮発性メモリで問題となっている書き換え可能回数に制限はなく、
信頼性が飛躍的に向上する。さらに、トランジスタのオン状態、オフ状態によって、情報
の書き込みが行われるため、高速な動作も容易に実現しうる。
み合わせて実施することができる。
本実施の形態では、上記実施の形態で例示したトランジスタ、または記憶装置を含むR
Fタグについて、図30を用いて説明する。
憶し、非接触手段、例えば無線通信を用いて外部と情報の授受を行うものである。このよ
うな特徴から、RFタグは、物品などの個体情報を読み取ることにより物品の識別を行う
個体認証システムなどに用いることが可能である。なお、これらの用途に用いるためには
極めて高い信頼性が要求される。
ブロック図である。
もいう)に接続されたアンテナ802から送信される無線信号803を受信するアンテナ
804を有する。また、RFタグ800は、整流回路805、定電圧回路806、復調回
路807、変調回路808、論理回路809、記憶回路810、ROM811を有してい
る。なお、復調回路807に含まれる整流作用を示すトランジスタに逆方向電流を十分に
抑制することが可能な材料、例えば、酸化物半導体が用いられた構成としてもよい。これ
により、逆方向電流に起因する整流作用の低下を抑制し、復調回路の出力が飽和すること
を防止できる。つまり、復調回路の入力に対する復調回路の出力を線形に近づけることが
できる。なお、データの伝送形式は、一対のコイルを対向配置して相互誘導によって交信
を行う電磁結合方式、誘導電磁界によって交信する電磁誘導方式、電波を利用して交信す
る電波方式の3つに大別される。本実施の形態に示すRFタグ800は、そのいずれの方
式に用いることも可能である。
ンテナ802との間で無線信号803の送受信を行うためのものである。また、整流回路
805は、アンテナ804で無線信号を受信することにより生成される入力交流信号を整
流、例えば、半波2倍圧整流し、後段に設けられた容量素子により、整流された信号を平
滑化することで入力電位を生成するための回路である。なお、整流回路805の入力側ま
たは出力側には、リミッタ回路を設けてもよい。リミッタ回路とは、入力交流信号の振幅
が大きく、内部生成電圧が大きい場合に、ある電力以上の電力を後段の回路に入力しない
ように制御するための回路である。
の回路である。なお、定電圧回路806は、内部にリセット信号生成回路を有していても
よい。リセット信号生成回路は、安定した電源電圧の立ち上がりを利用して、論理回路8
09のリセット信号を生成するための回路である。
するための回路である。また、変調回路808は、アンテナ804より出力するデータに
応じて変調をおこなうための回路である。
、入力された情報を保持する回路であり、ロウデコーダ、カラムデコーダ、記憶領域など
を有する。また、ROM811は、固有番号(ID)などを格納し、処理に応じて出力を
行うための回路である。
。本発明の一態様の記憶回路は、電源が遮断された状態であっても情報を保持できるため
、RFタグに好適に用いることができる。さらに本発明の一態様の記憶回路は、データの
書き込みに必要な電力(電圧)が従来の不揮発性メモリに比べて著しく小さいため、デー
タの読み出し時と書込み時の最大通信距離の差を生じさせないことも可能である。さらに
、データの書き込み時に電力が不足し、誤動作または誤書込みが生じることを抑制するこ
とができる。
ため、ROM811に適用することもできる。その場合には、生産者がROM811にデ
ータを書き込むためのコマンドを別途用意し、ユーザーが自由に書き換えできないように
しておくことが好ましい。生産者が出荷前に固有番号を書込んだのちに製品を出荷するこ
とで、作製したRFタグすべてについて固有番号を付与するのではなく、出荷する良品に
のみ固有番号を割り当てることが可能となり、出荷後の製品の固有番号が不連続になるこ
とがなく出荷後の製品に対応した顧客管理が容易となる。
み合わせて実施することができる。
本実施の形態では、少なくとも実施の形態で説明したトランジスタを用いることができ
、先の実施の形態で説明した記憶装置を含むCPUについて説明する。
一例の構成を示すブロック図である。
tic logic unit、演算回路)、ALUコントローラ1192、インストラ
クションデコーダ1193、インタラプトコントローラ1194、タイミングコントロー
ラ1195、レジスタ1196、レジスタコントローラ1197、バスインターフェース
1198(Bus I/F)、書き換え可能なROM1199、及びROMインターフェ
ース1189(ROM I/F)を有している。基板1190は、半導体基板、SOI基
板、ガラス基板などを用いる。ROM1199及びROMインターフェース1189は、
別チップに設けてもよい。もちろん、図31に示すCPUは、その構成を簡略化して示し
た一例にすぎず、実際のCPUはその用途によって多種多様な構成を有している。例えば
、図31に示すCPUまたは演算回路を含む構成を一つのコアとし、当該コアを複数含み
、それぞれのコアが並列で動作するような構成としてもよい。また、CPUが内部演算回
路やデータバスで扱えるビット数は、例えば8ビット、16ビット、32ビット、64ビ
ットなどとすることができる。
ンデコーダ1193に入力され、デコードされた後、ALUコントローラ1192、イン
タラプトコントローラ1194、レジスタコントローラ1197、タイミングコントロー
ラ1195に入力される。
ーラ1197、タイミングコントローラ1195は、デコードされた命令に基づき、各種
制御を行なう。具体的にALUコントローラ1192は、ALU1191の動作を制御す
るための信号を生成する。また、インタラプトコントローラ1194は、CPUのプログ
ラム実行中に、外部の入出力装置や、周辺回路からの割り込み要求を、その優先度やマス
ク状態から判断し、処理する。レジスタコントローラ1197は、レジスタ1196のア
ドレスを生成し、CPUの状態に応じてレジスタ1196の読み出しや書き込みを行なう
。
92、インストラクションデコーダ1193、インタラプトコントローラ1194、及び
レジスタコントローラ1197の動作のタイミングを制御する信号を生成する。例えばタ
イミングコントローラ1195は、基準クロック信号を元に、内部クロック信号を生成す
る内部クロック生成部を備えており、内部クロック信号を上記各種回路に供給する。
タ1196のメモリセルとして、先の実施の形態に示したトランジスタを用いることがで
きる。
の指示に従い、レジスタ1196における保持動作の選択を行う。すなわち、レジスタ1
196が有するメモリセルにおいて、フリップフロップによるデータの保持を行うか、容
量素子によるデータの保持を行うかを、選択する。フリップフロップによるデータの保持
が選択されている場合、レジスタ1196内のメモリセルへの、電源電圧の供給が行われ
る。容量素子におけるデータの保持が選択されている場合、容量素子へのデータの書き換
えが行われ、レジスタ1196内のメモリセルへの電源電圧の供給を停止することができ
る。
。記憶素子1200は、電源遮断で記憶データが揮発する回路1201と、電源遮断で記
憶データが揮発しない回路1202と、スイッチ1203と、スイッチ1204と、論理
素子1206と、容量素子1207と、選択機能を有する回路1220と、を有する。回
路1202は、容量素子1208と、トランジスタ1209と、トランジスタ1210と
、を有する。なお、記憶素子1200は、必要に応じて、ダイオード、抵抗素子、インダ
クタなどのその他の素子をさらに有していても良い。
。記憶素子1200への電源電圧の供給が停止した際、回路1202のトランジスタ12
09のゲートには接地電位(0V)、またはトランジスタ1209がオフする電位が入力
され続ける構成とする。例えば、トランジスタ1209のゲートが抵抗等の負荷を介して
接地される構成とする。
いて構成され、スイッチ1204は、一導電型とは逆の導電型(例えば、pチャネル型)
のトランジスタ1214を用いて構成した例を示す。ここで、スイッチ1203の第1の
端子はトランジスタ1213のソースとドレインの一方に対応し、スイッチ1203の第
2の端子はトランジスタ1213のソースとドレインの他方に対応し、スイッチ1203
はトランジスタ1213のゲートに入力される制御信号RDによって、第1の端子と第2
の端子の間の導通または非導通(つまり、トランジスタ1213のオン状態またはオフ状
態)が選択される。スイッチ1204の第1の端子はトランジスタ1214のソースとド
レインの一方に対応し、スイッチ1204の第2の端子はトランジスタ1214のソース
とドレインの他方に対応し、スイッチ1204はトランジスタ1214のゲートに入力さ
れる制御信号RDによって、第1の端子と第2の端子の間の導通または非導通(つまり、
トランジスタ1214のオン状態またはオフ状態)が選択される。
うちの一方、及びトランジスタ1210のゲートと電気的に接続される。ここで、接続部
分をノードM2とする。トランジスタ1210のソースとドレインの一方は、低電源電位
を供給することのできる配線(例えばGND線)に電気的に接続され、他方は、スイッチ
1203の第1の端子(トランジスタ1213のソースとドレインの一方)と電気的に接
続される。スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの
他方)はスイッチ1204の第1の端子(トランジスタ1214のソースとドレインの一
方)と電気的に接続される。スイッチ1204の第2の端子(トランジスタ1214のソ
ースとドレインの他方)は電源電位VDDを供給することのできる配線と電気的に接続さ
れる。スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方
)と、スイッチ1204の第1の端子(トランジスタ1214のソースとドレインの一方
)と、論理素子1206の入力端子と、容量素子1207の一対の電極のうちの一方と、
は電気的に接続される。ここで、接続部分をノードM1とする。容量素子1207の一対
の電極のうちの他方は、一定の電位が入力される構成とすることができる。例えば、低電
源電位(GND等)または高電源電位(VDD等)が入力される構成とすることができる
。容量素子1207の一対の電極のうちの他方は、低電源電位を供給することのできる配
線(例えばGND線)と電気的に接続される。容量素子1208の一対の電極のうちの他
方は、一定の電位が入力される構成とすることができる。例えば、低電源電位(GND等
)または高電源電位(VDD等)が入力される構成とすることができる。容量素子120
8の一対の電極のうちの他方は、低電源電位を供給することのできる配線(例えばGND
線)と電気的に接続される。
積極的に利用することによって省略することも可能である。
れる。スイッチ1203及びスイッチ1204は、制御信号WEとは異なる制御信号RD
によって第1の端子と第2の端子の間の導通状態または非導通状態を選択され、一方のス
イッチの第1の端子と第2の端子の間が導通状態のとき他方のスイッチの第1の端子と第
2の端子の間は非導通状態となる。
タに対応する信号が入力される。図32では、回路1201から出力された信号が、トラ
ンジスタ1209のソースとドレインの他方に入力される例を示した。スイッチ1203
の第2の端子(トランジスタ1213のソースとドレインの他方)から出力される信号は
、論理素子1206によってその論理値が反転された反転信号となり、回路1220を介
して回路1201に入力される。
ドレインの他方)から出力される信号は、論理素子1206及び回路1220を介して回
路1201に入力する例を示したがこれに限定されない。スイッチ1203の第2の端子
(トランジスタ1213のソースとドレインの他方)から出力される信号が、論理値を反
転させられることなく、回路1201に入力されてもよい。例えば、回路1201内に、
入力端子から入力された信号の論理値が反転した信号が保持されるノードが存在する場合
に、スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方)
から出力される信号を当該ノードに入力することができる。
スタ1209以外のトランジスタは、酸化物半導体以外の半導体でなる層または基板11
90にチャネルが形成されるトランジスタとすることができる。例えば、シリコン層また
はシリコン基板にチャネルが形成されるトランジスタとすることができる。また、記憶素
子1200に用いられるトランジスタ全てを、チャネルが酸化物半導体膜で形成されるト
ランジスタとすることもできる。または、記憶素子1200は、トランジスタ1209以
外にも、チャネルが酸化物半導体膜で形成されるトランジスタを含んでいてもよく、残り
のトランジスタは酸化物半導体以外の半導体でなる層または基板1190にチャネルが形
成されるトランジスタとすることもできる。
。また、論理素子1206としては、例えばインバータやクロックドインバータ等を用い
ることができる。
は、回路1201に記憶されていたデータを、回路1202に設けられた容量素子120
8によって保持することができる。
。例えば、酸化物半導体膜にチャネルが形成されるトランジスタのオフ電流は、結晶性を
有するシリコンにチャネルが形成されるトランジスタのオフ電流に比べて著しく低い。そ
のため、当該トランジスタをトランジスタ1209として用いることによって、記憶素子
1200に電源電圧が供給されない間も容量素子1208に保持された信号は長期間にわ
たり保たれる。こうして、記憶素子1200は電源電圧の供給が停止した間も記憶内容(
データ)を保持することが可能である。
作を行うことを特徴とする記憶素子であるため、電源電圧供給再開後に、回路1201が
元のデータを保持しなおすまでの時間を短くすることができる。
タ1210のゲートに入力される。そのため、記憶素子1200への電源電圧の供給が再
開された後、容量素子1208によって保持された信号を、トランジスタ1210の状態
(オン状態、またはオフ状態)に変換して、回路1202から読み出すことができる。そ
れ故、容量素子1208に保持された信号に対応する電位が多少変動していても、元の信
号を正確に読み出すことが可能である。
の記憶装置に用いることで、電源電圧の供給停止による記憶装置内のデータの消失を防ぐ
ことができる。また、電源電圧の供給を再開した後、短時間で電源供給停止前の状態に復
帰することができる。よって、プロセッサ全体、もしくはプロセッサを構成する一つ、ま
たは複数の論理回路において、短い時間でも電源停止を行うことができるため、消費電力
を抑えることができる。
1200は、DSP(Digital Signal Processor)、カスタム
LSI、PLD(Programmable Logic Device)等のLSI、
RF(Radio Frequency)デバイスにも応用可能である。
み合わせて実施することができる。
本実施の形態では、本発明の一態様の表示パネルの構成例について説明する。
図33(A)は、本発明の一態様の表示パネルの上面図であり、図33(B)は、本発
明の一態様の表示パネルの画素に液晶素子を適用する場合に用いることができる画素回路
を説明するための回路図である。また、図33(C)は、本発明の一態様の表示パネルの
画素に有機EL素子を適用する場合に用いることができる画素回路を説明するための回路
図である。
た、当該トランジスタはnチャネル型とすることが容易なので、駆動回路のうち、nチャ
ネル型トランジスタで構成することができる駆動回路の一部を画素部のトランジスタと同
一基板上に形成する。このように、画素部や駆動回路に上記実施の形態に示すトランジス
タを用いることにより、信頼性の高い表示装置を提供することができる。
の基板700上には、画素部701、第1の走査線駆動回路702、第2の走査線駆動回
路703、信号線駆動回路704を有する。画素部701には、複数の信号線が信号線駆
動回路704から延伸して配置され、複数の走査線が第1の走査線駆動回路702、及び
第2の走査線駆動回路703から延伸して配置されている。なお走査線と信号線との交差
領域には、各々、表示素子を有する画素がマトリクス状に設けられている。また、表示装
置の基板700はFPC(Flexible Printed Circuit)等の接
続部を介して、タイミング制御回路(コントローラ、制御ICともいう)に接続されてい
る。
線駆動回路704は、画素部701と同じ基板700上に形成される。そのため、外部に
設ける駆動回路等の部品の数が減るので、コストの低減を図ることができる。また、基板
700外部に駆動回路を設けた場合、配線を延伸させる必要が生じ、配線間の接続数が増
える。同じ基板700上に駆動回路を設けた場合、その配線間の接続数を減らすことがで
き、信頼性の向上、または歩留まりの向上を図ることができる。
また、画素の回路構成の一例を図33(B)に示す。ここでは、VA型液晶表示パネル
の画素に適用することができる画素回路を示す。
画素電極は異なるトランジスタに接続され、各トランジスタは異なるゲート信号で駆動で
きるように構成されている。これにより、マルチドメイン設計された画素の個々の画素電
極に印加する信号を、独立して制御できる。
は、異なるゲート信号を与えることができるように分離されている。一方、データ線とし
て機能するソース電極またはドレイン電極714は、トランジスタ716とトランジスタ
717で共通に用いられている。トランジスタ716とトランジスタ717は上記実施の
形態で説明するトランジスタを適宜用いることができる。これにより、信頼性の高い液晶
表示パネルを提供することができる。
17には、第2の画素電極が電気的に接続される。第1の画素電極と第2の画素電極とは
、それぞれ分離されている。なお、第1の画素電極及び第2の画素電極の形状としては、
特に限定は無く、例えばV字状とすればよい。
のゲート電極はゲート配線713と接続されている。ゲート配線712とゲート配線71
3に異なるゲート信号を与えてトランジスタ716とトランジスタ717の動作タイミン
グを異ならせ、液晶の配向を制御できる。
は第2の画素電極と電気的に接続する容量電極とで保持容量を形成してもよい。
る。第1の液晶素子718は第1の画素電極と対向電極とその間の液晶層とで構成され、
第2の液晶素子719は第2の画素電極と対向電極とその間の液晶層とで構成される。
示す画素に新たにスイッチ、抵抗素子、容量素子、トランジスタ、センサ、または論理回
路などを追加してもよい。
画素の回路構成の他の一例を図33(C)に示す。ここでは、有機EL素子を用いた表
示パネルの画素構造を示す。
、他方から正孔がそれぞれ発光性の有機化合物を含む層に注入され、電流が流れる。そし
て、電子及び正孔が再結合することにより、発光性の有機化合物が励起状態を形成し、そ
の励起状態が基底状態に戻る際に発光する。このようなメカニズムから、このような発光
素子は、電流励起型の発光素子と呼ばれる。
トランジスタを1つの画素に2つ用いる例を示す。なお、本発明の一態様の金属酸化物膜
は、nチャネル型のトランジスタのチャネル形成領域に用いることができる。また、当該
画素回路は、デジタル時間階調駆動を適用することができる。
いて説明する。
素子724及び容量素子723を有している。スイッチング用トランジスタ721は、ゲ
ート電極が走査線726に接続され、第1電極(ソース電極及びドレイン電極の一方)が
信号線725に接続され、第2電極(ソース電極及びドレイン電極の他方)が駆動用トラ
ンジスタ722のゲート電極に接続されている。駆動用トランジスタ722は、ゲート電
極が容量素子723を介して電源線727に接続され、第1電極が電源線727に接続さ
れ、第2電極が発光素子724の第1電極(画素電極)に接続されている。発光素子72
4の第2電極は共通電極728に相当する。共通電極728は、同一基板上に形成される
共通電位線と電気的に接続される。
説明するトランジスタを適宜用いることができる。これにより、信頼性の高い有機EL表
示パネルを提供することができる。
低電源電位とは、電源線727に供給される高電源電位より低い電位であり、例えばGN
D、0Vなどを低電源電位として設定することができる。発光素子724の順方向のしき
い値電圧以上となるように高電源電位と低電源電位を設定し、その電位差を発光素子72
4に印加することにより、発光素子724に電流を流して発光させる。なお、発光素子7
24の順方向電圧とは、所望の輝度とする場合の電圧を指しており、少なくとも順方向し
きい値電圧を含む。
省略できる。駆動用トランジスタ722のゲート容量については、チャネル形成領域とゲ
ート電極との間で容量が形成されていてもよい。
方式の場合、駆動用トランジスタ722が十分にオンするか、オフするかの二つの状態と
なるようなビデオ信号を、駆動用トランジスタ722に入力する。なお、駆動用トランジ
スタ722を線形領域で動作させるために、電源線727の電圧よりも高い電圧を駆動用
トランジスタ722のゲート電極にかける。また、信号線725には、電源線電圧に駆動
用トランジスタ722の閾値電圧Vthを加えた値以上の電圧をかける。
4の順方向電圧に駆動用トランジスタ722の閾値電圧Vthを加えた値以上の電圧をか
ける。なお、駆動用トランジスタ722が飽和領域で動作するようにビデオ信号を入力し
、発光素子724に電流を流す。また、駆動用トランジスタ722を飽和領域で動作させ
るために、電源線727の電位を、駆動用トランジスタ722のゲート電位より高くする
。ビデオ信号をアナログとすることで、発光素子724にビデオ信号に応じた電流を流し
、アナログ階調駆動を行うことができる。
3(C)に示す画素回路にスイッチ、抵抗素子、容量素子、センサ、トランジスタまたは
論理回路などを追加してもよい。
位側にソース電極(第1の電極)、高電位側にドレイン電極(第2の電極)がそれぞれ電
気的に接続される構成とする。さらに、制御回路等により第1のゲート電極の電位を制御
し、第2のゲート電極には図示しない配線によりソース電極に与える電位よりも低い電位
など、上記で例示した電位を入力可能な構成とすればよい。
み合わせて実施することができる。
本発明の一態様に係る半導体装置は、表示機器、パーソナルコンピュータ、記録媒体を
備えた画像再生装置(代表的にはDVD:Digital Versatile Dis
c等の記録媒体を再生し、その画像を表示しうるディスプレイを有する装置)に用いるこ
とができる。その他に、本発明の一態様に係る半導体装置を用いることができる電子機器
として、携帯電話、携帯型を含むゲーム機、携帯データ端末、電子書籍端末、ビデオカメ
ラ、デジタルスチルカメラ等のカメラ、ゴーグル型ディスプレイ(ヘッドマウントディス
プレイ)、ナビゲーションシステム、音響再生装置(カーオーディオ、デジタルオーディ
オプレイヤー等)、複写機、ファクシミリ、プリンタ、プリンタ複合機、現金自動預け入
れ払い機(ATM)、自動販売機などが挙げられる。これら電子機器の具体例を図34に
示す。
部904、マイクロフォン905、スピーカー906、操作キー907、スタイラス90
8等を有する。なお、図31(A)に示した携帯型ゲーム機は、2つの表示部903と表
示部904とを有しているが、携帯型ゲーム機が有する表示部の数は、これに限定されな
い。
913、第2表示部914、接続部915、操作キー916等を有する。第1表示部91
3は第1筐体911に設けられており、第2表示部914は第2筐体912に設けられて
いる。そして、第1筐体911と第2筐体912とは、接続部915により接続されてお
り、第1筐体911と第2筐体912の間の角度は、接続部915により変更が可能であ
る。第1表示部913における映像を、接続部915における第1筐体911と第2筐体
912との間の角度に従って、切り替える構成としても良い。また、第1表示部913及
び第2表示部914の少なくとも一方に、位置入力装置としての機能が付加された表示装
置を用いるようにしても良い。なお、位置入力装置としての機能は、表示装置にタッチパ
ネルを設けることで付加することができる。或いは、位置入力装置としての機能は、フォ
トセンサとも呼ばれる光電変換素子を表示装置の画素部に設けることでも、付加すること
ができる。
キーボード923、ポインティングデバイス924等を有する。
33等を有する。
、操作キー944、レンズ945、接続部946等を有する。操作キー944及びレンズ
945は第1筐体941に設けられており、表示部943は第2筐体942に設けられて
いる。そして、第1筐体941と第2筐体942とは、接続部946により接続されてお
り、第1筐体941と第2筐体942の間の角度は、接続部946により変更が可能であ
る。表示部943における映像を、接続部946における第1筐体941と第2筐体94
2との間の角度に従って切り替える構成としても良い。
ライト954等を有する。
み合わせて実施することができる。
本実施の形態では、本発明の一態様に係るRFデバイスの使用例について図35を用い
ながら説明する。RFデバイスの用途は広範にわたるが、例えば、紙幣、硬貨、有価証券
類、無記名債券類、証書類(運転免許証や住民票等、図35(A)参照)、記録媒体(D
VDやビデオテープ等、図35(B)参照)、包装用容器類(包装紙やボトル等、図35
(C)参照)、乗り物類(自転車等、図35(D)参照)、身の回り品(鞄や眼鏡等)、
食品類、植物類、動物類、人体、衣類、生活用品類、薬品や薬剤を含む医療品、または電
子機器(液晶表示装置、EL表示装置、テレビジョン装置、または携帯電話)等の物品、
若しくは各物品に取り付ける荷札(図35(E)、図35(F)参照)等に設けて使用す
ることができる。
り、物品に固定される。例えば、本であれば紙に埋め込み、有機樹脂からなるパッケージ
であれば当該有機樹脂の内部に埋め込み、各物品に固定される。本発明の一態様に係るR
Fデバイス4000は、小型、薄型、軽量を実現するため、物品に固定した後もその物品
自体のデザイン性を損なうことがない。また、紙幣、硬貨、有価証券類、無記名債券類、
または証書類等に本発明の一態様に係るRFデバイス4000を設けることにより、認証
機能を設けることができ、この認証機能を活用すれば、偽造を防止することができる。ま
た、包装用容器類、記録媒体、身の回り品、食品類、衣類、生活用品類、または電子機器
等に本発明の一態様に係るRFデバイスを取り付けることにより、検品システム等のシス
テムの効率化を図ることができる。また、乗り物類であっても、本発明の一態様に係るR
Fデバイスを取り付けることにより、盗難などに対するセキュリティ性を高めることがで
きる。
用いることにより、情報の書込みや読み出しを含む動作電力を低減できるため、最大通信
距離を長くとることが可能となる。また、電力が遮断された状態であっても情報を極めて
長い期間保持可能であるため、書き込みや読み出しの頻度が低い用途にも好適に用いるこ
とができる。
み合わせて実施することができる。
11 第1の層
12 第2の層
21 第1の絶縁膜
22 第2の絶縁膜
31 第1の配線層
32 第2の配線層
41 バリア膜
100 第2のトランジスタ
101a 酸化物半導体膜
101b 酸化物半導体膜
101c 酸化物半導体膜
103 導電膜
103a 電極
103b 電極
103c 電極
104 ゲート絶縁膜
105 ゲート電極
106a 絶縁膜
106b 絶縁膜
107 絶縁膜
108 絶縁膜
109a 低抵抗領域
109b 低抵抗領域
110 第1のトランジスタ
111 半導体基板
112 半導体膜
113a 低抵抗層
113b 低抵抗層
114 ゲート絶縁膜
115 ゲート電極
115a ゲート電極
115b ゲート電極
116 絶縁膜
117 絶縁膜
118 絶縁膜
119 絶縁膜
120 バリア膜
121 絶縁膜
122 絶縁膜
123 絶縁膜
124 絶縁膜
125 絶縁膜
126 絶縁膜
127 絶縁膜
128 絶縁膜
129 絶縁膜
130 容量素子
131a 酸化物半導体膜
131b 酸化物半導体膜
132 配線
136 電極
136a 電極
136b 電極
137 絶縁膜
138 電極
150 容量素子
151 絶縁膜
152 絶縁膜
153 プラグ
154 電極
155 絶縁膜
156 電極
157 プラグ
158 プラグ
159 プラグ
160 トランジスタ
161 プラグ
162 プラグ
163 プラグ
164 プラグ
165 プラグ
166 プラグ
167 プラグ
168 プラグ
169 プラグ
170 プラグ
171 プラグ
172 プラグ
173 電極
174 電極
175 電極
176 プラグ
177 電極
178 プラグ
181 電極
182 絶縁膜
183 電極
190 容量素子
700 基板
701 画素部
702 走査線駆動回路
703 走査線駆動回路
704 信号線駆動回路
710 容量配線
712 ゲート配線
713 ゲート配線
714 ドレイン電極
716 トランジスタ
717 トランジスタ
718 液晶素子
719 液晶素子
720 画素
721 スイッチング用トランジスタ
722 駆動用トランジスタ
723 容量素子
724 発光素子
725 信号線
726 走査線
727 電源線
728 共通電極
800 RFタグ
801 通信器
802 アンテナ
803 無線信号
804 アンテナ
805 整流回路
806 定電圧回路
807 復調回路
808 変調回路
809 論理回路
810 記憶回路
811 ROM
901 筐体
902 筐体
903 表示部
904 表示部
905 マイクロフォン
906 スピーカー
907 操作キー
908 スタイラス
911 筐体
912 筐体
913 表示部
914 表示部
915 接続部
916 操作キー
921 筐体
922 表示部
923 キーボード
924 ポインティングデバイス
931 筐体
932 冷蔵室用扉
933 冷凍室用扉
941 筐体
942 筐体
943 表示部
944 操作キー
945 レンズ
946 接続部
951 車体
952 車輪
953 ダッシュボード
954 ライト
1189 ROMインターフェース
1190 基板
1191 ALU
1192 ALUコントローラ
1193 インストラクションデコーダ
1194 インタラプトコントローラ
1195 タイミングコントローラ
1196 レジスタ
1197 レジスタコントローラ
1198 バスインターフェース
1199 ROM
1200 記憶素子
1201 回路
1202 回路
1203 スイッチ
1204 スイッチ
1206 論理素子
1207 容量素子
1208 容量素子
1209 トランジスタ
1210 トランジスタ
1213 トランジスタ
1214 トランジスタ
1220 回路
2100 トランジスタ
2200 トランジスタ
3001 配線
3002 配線
3003 配線
3004 配線
3005 配線
3200 トランジスタ
3300 トランジスタ
3400 容量素子
4000 RFデバイス
5120 基板
Claims (1)
- 第1のトランジスタと、
前記第1のトランジスタ上に位置し、複数の第1の絶縁膜を介して前記第1のトランジスタと重なる領域を有する第2のトランジスタと、
前記第2のトランジスタ上の複数の第2の絶縁膜と、
複数の前記第2の絶縁膜上に位置する第1の電極及び第2の電極と、
前記第1のトランジスタ上に位置し、且つ前記第2のトランジスタ下に位置する容量素子と、を有し、
前記第1のトランジスタは、前記第2のトランジスタと電気的に接続され、
前記第1のトランジスタのソース又はドレインの一方は、複数の前記第1の絶縁膜に設けられた第1のプラグと、複数の前記第2の絶縁膜に設けられた第2のプラグを介して、前記第1の電極と電気的に接続され、
前記第1のトランジスタのソース又はドレインの他方は、複数の前記第1の絶縁膜に設けられた第3のプラグと、複数の前記第2の絶縁膜に設けられた第4のプラグを介して、前記第2の電極と電気的に接続され、
前記第2のプラグは、前記第1のプラグと重なり、
前記第4のプラグは、前記第3のプラグと重なり、
前記第1のトランジスタのチャネルは、単結晶半導体を有し、
前記第2のトランジスタは前記容量素子と電気的に接続される半導体装置。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014044473 | 2014-03-07 | ||
JP2014044473 | 2014-03-07 | ||
JP2014048727 | 2014-03-12 | ||
JP2014048727 | 2014-03-12 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015041939A Division JP6545976B2 (ja) | 2014-03-07 | 2015-03-04 | 半導体装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020113923A Division JP7144483B2 (ja) | 2014-03-07 | 2020-07-01 | 半導体装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019169737A JP2019169737A (ja) | 2019-10-03 |
JP6728452B2 true JP6728452B2 (ja) | 2020-07-22 |
Family
ID=54018160
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015041939A Active JP6545976B2 (ja) | 2014-03-07 | 2015-03-04 | 半導体装置 |
JP2019114529A Expired - Fee Related JP6728452B2 (ja) | 2014-03-07 | 2019-06-20 | 半導体装置 |
JP2020113923A Active JP7144483B2 (ja) | 2014-03-07 | 2020-07-01 | 半導体装置 |
JP2022147109A Withdrawn JP2023002514A (ja) | 2014-03-07 | 2022-09-15 | 半導体装置 |
JP2023199973A Active JP7650945B2 (ja) | 2014-03-07 | 2023-11-27 | 半導体装置 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015041939A Active JP6545976B2 (ja) | 2014-03-07 | 2015-03-04 | 半導体装置 |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020113923A Active JP7144483B2 (ja) | 2014-03-07 | 2020-07-01 | 半導体装置 |
JP2022147109A Withdrawn JP2023002514A (ja) | 2014-03-07 | 2022-09-15 | 半導体装置 |
JP2023199973A Active JP7650945B2 (ja) | 2014-03-07 | 2023-11-27 | 半導体装置 |
Country Status (2)
Country | Link |
---|---|
US (2) | US9443872B2 (ja) |
JP (5) | JP6545976B2 (ja) |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6545976B2 (ja) * | 2014-03-07 | 2019-07-17 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US9716100B2 (en) * | 2014-03-14 | 2017-07-25 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, method for driving semiconductor device, and electronic device |
US10104764B2 (en) * | 2014-03-18 | 2018-10-16 | Texas Instruments Incorporated | Electronic device package with vertically integrated capacitors |
WO2015182000A1 (en) * | 2014-05-30 | 2015-12-03 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, manufacturing method thereof, and electronic device |
TWI553379B (zh) * | 2014-06-25 | 2016-10-11 | 群創光電股份有限公司 | 顯示面板和應用其之顯示裝置 |
JP6417125B2 (ja) * | 2014-06-25 | 2018-10-31 | 株式会社ジャパンディスプレイ | 半導体装置 |
KR102346675B1 (ko) * | 2014-10-31 | 2022-01-04 | 삼성디스플레이 주식회사 | 디스플레이 장치 및 그 제조 방법 |
US9564217B1 (en) | 2015-10-19 | 2017-02-07 | United Microelectronics Corp. | Semiconductor memory device having integrated DOSRAM and NOSRAM |
TWI844482B (zh) * | 2015-10-30 | 2024-06-01 | 日商半導體能源研究所股份有限公司 | 電容器、半導體裝置、模組以及電子裝置的製造方法 |
JP6917700B2 (ja) | 2015-12-02 | 2021-08-11 | 株式会社半導体エネルギー研究所 | 半導体装置 |
KR102462912B1 (ko) * | 2015-12-04 | 2022-11-04 | 에스케이하이닉스 주식회사 | 수직 전송 게이트를 갖는 이미지 센서 |
JP6853663B2 (ja) * | 2015-12-28 | 2021-03-31 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US10867834B2 (en) | 2015-12-31 | 2020-12-15 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor structure and manufacturing method thereof |
US10096720B2 (en) * | 2016-03-25 | 2018-10-09 | Semiconductor Energy Laboratory Co., Ltd. | Transistor, semiconductor device, and electronic device |
US10008502B2 (en) | 2016-05-04 | 2018-06-26 | Semiconductor Energy Laboratory Co., Ltd. | Memory device |
KR102208520B1 (ko) | 2016-07-19 | 2021-01-26 | 어플라이드 머티어리얼스, 인코포레이티드 | 디스플레이 디바이스들에서 활용되는 지르코늄 산화물을 포함하는 하이-k 유전체 재료들 |
TW201804613A (zh) * | 2016-07-26 | 2018-02-01 | 聯華電子股份有限公司 | 氧化物半導體裝置 |
KR102613288B1 (ko) * | 2016-07-26 | 2023-12-12 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
KR102626961B1 (ko) * | 2016-07-27 | 2024-01-17 | 엘지디스플레이 주식회사 | 하이브리드 타입의 박막 트랜지스터 및 이를 이용한 유기발광 표시장치 |
US10147722B2 (en) * | 2016-08-12 | 2018-12-04 | Renesas Electronics America Inc. | Isolated circuit formed during back end of line process |
JP6698486B2 (ja) * | 2016-09-26 | 2020-05-27 | 株式会社ジャパンディスプレイ | 表示装置 |
KR102390447B1 (ko) * | 2017-07-28 | 2022-04-26 | 삼성디스플레이 주식회사 | 표시장치용 기판, 유기발광표시장치 및 유기발광표시장치의 제조방법 |
EP3679605B1 (en) * | 2017-09-06 | 2021-04-14 | Micron Technology, Inc. | Memory arrays comprising vertically-alternating tiers of insulative material and memory cells and methods of forming a memory array |
US10147614B1 (en) * | 2018-01-08 | 2018-12-04 | United Microelectronics Corp. | Oxide semiconductor transistor and method of manufacturing the same |
KR102630641B1 (ko) * | 2018-01-25 | 2024-01-30 | 삼성디스플레이 주식회사 | 표시장치 및 그의 제조방법 |
US20210242207A1 (en) * | 2018-05-18 | 2021-08-05 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the semiconductor device |
JP7161529B2 (ja) | 2018-06-08 | 2022-10-26 | 株式会社半導体エネルギー研究所 | 半導体装置 |
KR20210027367A (ko) | 2018-06-29 | 2021-03-10 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 반도체 장치의 제작 방법 |
KR102689232B1 (ko) * | 2018-09-20 | 2024-07-29 | 삼성디스플레이 주식회사 | 트랜지스터 기판, 이의 제조 방법, 및 이를 포함하는 표시 장치 |
KR102581399B1 (ko) * | 2018-11-02 | 2023-09-22 | 삼성전자주식회사 | 반도체 메모리 소자 |
WO2020213102A1 (ja) * | 2019-04-17 | 2020-10-22 | シャープ株式会社 | 表示装置 |
US12119405B2 (en) | 2019-04-26 | 2024-10-15 | Sharp Kabushiki Kaisha | Display device having a first transistor including a crystalline silicon semiconductor layer and a second transistor including an oxide semiconductor layer |
WO2020217479A1 (ja) * | 2019-04-26 | 2020-10-29 | シャープ株式会社 | 表示装置 |
JP7634925B2 (ja) * | 2019-07-04 | 2025-02-25 | 株式会社半導体エネルギー研究所 | 撮像装置および電子機器 |
KR102715249B1 (ko) | 2019-12-31 | 2024-10-10 | 엘지디스플레이 주식회사 | 디스플레이 장치 |
CN114038845A (zh) * | 2021-11-30 | 2022-02-11 | 广东晶科电子股份有限公司 | COB Mini LED显示模组及制作方法及显示屏 |
KR20240146020A (ko) * | 2022-02-04 | 2024-10-07 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 기억 장치 |
WO2023152595A1 (ja) * | 2022-02-10 | 2023-08-17 | 株式会社半導体エネルギー研究所 | 記憶装置 |
JPWO2023156877A1 (ja) * | 2022-02-18 | 2023-08-24 | ||
WO2024180432A1 (ja) * | 2023-03-01 | 2024-09-06 | 株式会社半導体エネルギー研究所 | 半導体装置、及び、半導体装置の作製方法 |
WO2024194726A1 (ja) * | 2023-03-17 | 2024-09-26 | 株式会社半導体エネルギー研究所 | 半導体装置、及び、半導体装置の作製方法 |
US20250081730A1 (en) * | 2023-09-05 | 2025-03-06 | Apple Inc. | Display with Vertically Stacked Components |
WO2025057024A1 (ja) * | 2023-09-12 | 2025-03-20 | 株式会社半導体エネルギー研究所 | 半導体装置および電子機器 |
Family Cites Families (146)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60198861A (ja) | 1984-03-23 | 1985-10-08 | Fujitsu Ltd | 薄膜トランジスタ |
JPH0244256B2 (ja) | 1987-01-28 | 1990-10-03 | Kagaku Gijutsucho Mukizaishitsu Kenkyushocho | Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho |
JPH0244258B2 (ja) | 1987-02-24 | 1990-10-03 | Kagaku Gijutsucho Mukizaishitsu Kenkyushocho | Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho |
JPH0244260B2 (ja) | 1987-02-24 | 1990-10-03 | Kagaku Gijutsucho Mukizaishitsu Kenkyushocho | Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho |
JPS63210023A (ja) | 1987-02-24 | 1988-08-31 | Natl Inst For Res In Inorg Mater | InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法 |
JPH0244262B2 (ja) | 1987-02-27 | 1990-10-03 | Kagaku Gijutsucho Mukizaishitsu Kenkyushocho | Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho |
JPH0244263B2 (ja) | 1987-04-22 | 1990-10-03 | Kagaku Gijutsucho Mukizaishitsu Kenkyushocho | Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho |
JP2569115B2 (ja) * | 1988-04-15 | 1997-01-08 | 株式会社日立製作所 | 半導体装置 |
JPH0824169B2 (ja) * | 1989-05-10 | 1996-03-06 | 富士通株式会社 | 半導体記憶装置の製造方法 |
JPH0478164A (ja) * | 1990-07-20 | 1992-03-12 | Sony Corp | 半導体装置 |
JPH05251705A (ja) | 1992-03-04 | 1993-09-28 | Fuji Xerox Co Ltd | 薄膜トランジスタ |
US5757456A (en) | 1995-03-10 | 1998-05-26 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method of fabricating involving peeling circuits from one substrate and mounting on other |
JP3479375B2 (ja) | 1995-03-27 | 2003-12-15 | 科学技術振興事業団 | 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法 |
EP0820644B1 (en) | 1995-08-03 | 2005-08-24 | Koninklijke Philips Electronics N.V. | Semiconductor device provided with transparent switching element |
JP3625598B2 (ja) | 1995-12-30 | 2005-03-02 | 三星電子株式会社 | 液晶表示装置の製造方法 |
EP0802564A3 (en) | 1996-04-19 | 1999-02-24 | Nec Corporation | Semiconductor device having high resistive element including high melting point metal |
JP4063944B2 (ja) | 1998-03-13 | 2008-03-19 | 独立行政法人科学技術振興機構 | 3次元半導体集積回路装置の製造方法 |
JP4170454B2 (ja) | 1998-07-24 | 2008-10-22 | Hoya株式会社 | 透明導電性酸化物薄膜を有する物品及びその製造方法 |
JP2000150861A (ja) | 1998-11-16 | 2000-05-30 | Tdk Corp | 酸化物薄膜 |
JP3276930B2 (ja) | 1998-11-17 | 2002-04-22 | 科学技術振興事業団 | トランジスタ及び半導体装置 |
TW460731B (en) | 1999-09-03 | 2001-10-21 | Ind Tech Res Inst | Electrode structure and production method of wide viewing angle LCD |
JP4089858B2 (ja) | 2000-09-01 | 2008-05-28 | 国立大学法人東北大学 | 半導体デバイス |
KR20020038482A (ko) | 2000-11-15 | 2002-05-23 | 모리시타 요이찌 | 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널 |
JP3997731B2 (ja) | 2001-03-19 | 2007-10-24 | 富士ゼロックス株式会社 | 基材上に結晶性半導体薄膜を形成する方法 |
JP2002289859A (ja) | 2001-03-23 | 2002-10-04 | Minolta Co Ltd | 薄膜トランジスタ |
JP4090716B2 (ja) | 2001-09-10 | 2008-05-28 | 雅司 川崎 | 薄膜トランジスタおよびマトリクス表示装置 |
JP3925839B2 (ja) | 2001-09-10 | 2007-06-06 | シャープ株式会社 | 半導体記憶装置およびその試験方法 |
EP1443130B1 (en) | 2001-11-05 | 2011-09-28 | Japan Science and Technology Agency | Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film |
JP4164562B2 (ja) | 2002-09-11 | 2008-10-15 | 独立行政法人科学技術振興機構 | ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ |
JP4083486B2 (ja) | 2002-02-21 | 2008-04-30 | 独立行政法人科学技術振興機構 | LnCuO(S,Se,Te)単結晶薄膜の製造方法 |
US7049190B2 (en) | 2002-03-15 | 2006-05-23 | Sanyo Electric Co., Ltd. | Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device |
JP3933591B2 (ja) | 2002-03-26 | 2007-06-20 | 淳二 城戸 | 有機エレクトロルミネッセント素子 |
JP2003336016A (ja) | 2002-05-20 | 2003-11-28 | Nippon Telegr & Teleph Corp <Ntt> | 異方導電性両面テープとそれを用いた電子部品の実装方法 |
US7339187B2 (en) | 2002-05-21 | 2008-03-04 | State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University | Transistor structures |
JP2004022625A (ja) | 2002-06-13 | 2004-01-22 | Murata Mfg Co Ltd | 半導体デバイス及び該半導体デバイスの製造方法 |
US7105868B2 (en) | 2002-06-24 | 2006-09-12 | Cermet, Inc. | High-electron mobility transistor with zinc oxide |
US7067843B2 (en) | 2002-10-11 | 2006-06-27 | E. I. Du Pont De Nemours And Company | Transparent oxide semiconductor thin film transistors |
EP1434264A3 (en) | 2002-12-27 | 2017-01-18 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method using the transfer technique |
JP4166105B2 (ja) | 2003-03-06 | 2008-10-15 | シャープ株式会社 | 半導体装置およびその製造方法 |
JP2004273732A (ja) | 2003-03-07 | 2004-09-30 | Sharp Corp | アクティブマトリクス基板およびその製造方法 |
JP4108633B2 (ja) | 2003-06-20 | 2008-06-25 | シャープ株式会社 | 薄膜トランジスタおよびその製造方法ならびに電子デバイス |
US7262463B2 (en) | 2003-07-25 | 2007-08-28 | Hewlett-Packard Development Company, L.P. | Transistor including a deposited channel region having a doped portion |
JP2005064427A (ja) | 2003-08-20 | 2005-03-10 | Elpida Memory Inc | 不揮発性ランダムアクセスメモリおよびその製造方法 |
JP3990347B2 (ja) | 2003-12-04 | 2007-10-10 | ローム株式会社 | 半導体チップおよびその製造方法、ならびに半導体装置 |
US7282782B2 (en) | 2004-03-12 | 2007-10-16 | Hewlett-Packard Development Company, L.P. | Combined binary oxide semiconductor device |
EP2226847B1 (en) | 2004-03-12 | 2017-02-08 | Japan Science And Technology Agency | Amorphous oxide and thin film transistor |
US7145174B2 (en) | 2004-03-12 | 2006-12-05 | Hewlett-Packard Development Company, Lp. | Semiconductor device |
US7297977B2 (en) | 2004-03-12 | 2007-11-20 | Hewlett-Packard Development Company, L.P. | Semiconductor device |
US7211825B2 (en) | 2004-06-14 | 2007-05-01 | Yi-Chi Shih | Indium oxide-based thin film transistors and circuits |
JP2006100760A (ja) | 2004-09-02 | 2006-04-13 | Casio Comput Co Ltd | 薄膜トランジスタおよびその製造方法 |
US7285501B2 (en) | 2004-09-17 | 2007-10-23 | Hewlett-Packard Development Company, L.P. | Method of forming a solution processed device |
US7422935B2 (en) | 2004-09-24 | 2008-09-09 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device, and semiconductor device and electronic device |
WO2006038305A1 (ja) | 2004-10-01 | 2006-04-13 | Tadahiro Ohmi | 半導体装置およびその製造方法 |
US7298084B2 (en) | 2004-11-02 | 2007-11-20 | 3M Innovative Properties Company | Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes |
US7453065B2 (en) | 2004-11-10 | 2008-11-18 | Canon Kabushiki Kaisha | Sensor and image pickup device |
US7829444B2 (en) | 2004-11-10 | 2010-11-09 | Canon Kabushiki Kaisha | Field effect transistor manufacturing method |
KR100998527B1 (ko) | 2004-11-10 | 2010-12-07 | 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 | 비정질 산화물 및 전계 효과 트랜지스터 |
US7791072B2 (en) | 2004-11-10 | 2010-09-07 | Canon Kabushiki Kaisha | Display |
CN101057333B (zh) | 2004-11-10 | 2011-11-16 | 佳能株式会社 | 发光器件 |
KR100889796B1 (ko) | 2004-11-10 | 2009-03-20 | 캐논 가부시끼가이샤 | 비정질 산화물을 사용한 전계 효과 트랜지스터 |
US7863611B2 (en) | 2004-11-10 | 2011-01-04 | Canon Kabushiki Kaisha | Integrated circuits utilizing amorphous oxides |
US7579224B2 (en) | 2005-01-21 | 2009-08-25 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing a thin film semiconductor device |
TWI445178B (zh) | 2005-01-28 | 2014-07-11 | Semiconductor Energy Lab | 半導體裝置,電子裝置,和半導體裝置的製造方法 |
TWI562380B (en) | 2005-01-28 | 2016-12-11 | Semiconductor Energy Lab Co Ltd | Semiconductor device, electronic device, and method of manufacturing semiconductor device |
US7858451B2 (en) | 2005-02-03 | 2010-12-28 | Semiconductor Energy Laboratory Co., Ltd. | Electronic device, semiconductor device and manufacturing method thereof |
US7948171B2 (en) | 2005-02-18 | 2011-05-24 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
US20060197092A1 (en) | 2005-03-03 | 2006-09-07 | Randy Hoffman | System and method for forming conductive material on a substrate |
US8681077B2 (en) | 2005-03-18 | 2014-03-25 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, and display device, driving method and electronic apparatus thereof |
KR100665848B1 (ko) * | 2005-03-21 | 2007-01-09 | 삼성전자주식회사 | 적층 타입 디커플링 커패시터를 갖는 반도체 장치 |
WO2006105077A2 (en) | 2005-03-28 | 2006-10-05 | Massachusetts Institute Of Technology | Low voltage thin film transistor with high-k dielectric material |
US7645478B2 (en) | 2005-03-31 | 2010-01-12 | 3M Innovative Properties Company | Methods of making displays |
US8300031B2 (en) | 2005-04-20 | 2012-10-30 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element |
JP2006344849A (ja) | 2005-06-10 | 2006-12-21 | Casio Comput Co Ltd | 薄膜トランジスタ |
US7691666B2 (en) | 2005-06-16 | 2010-04-06 | Eastman Kodak Company | Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby |
US7402506B2 (en) | 2005-06-16 | 2008-07-22 | Eastman Kodak Company | Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby |
US7507618B2 (en) | 2005-06-27 | 2009-03-24 | 3M Innovative Properties Company | Method for making electronic devices using metal oxide nanoparticles |
KR101281991B1 (ko) | 2005-07-27 | 2013-07-04 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
KR100711890B1 (ko) | 2005-07-28 | 2007-04-25 | 삼성에스디아이 주식회사 | 유기 발광표시장치 및 그의 제조방법 |
JP2007059128A (ja) | 2005-08-23 | 2007-03-08 | Canon Inc | 有機el表示装置およびその製造方法 |
JP4280736B2 (ja) | 2005-09-06 | 2009-06-17 | キヤノン株式会社 | 半導体素子 |
JP2007073705A (ja) | 2005-09-06 | 2007-03-22 | Canon Inc | 酸化物半導体チャネル薄膜トランジスタおよびその製造方法 |
JP5116225B2 (ja) | 2005-09-06 | 2013-01-09 | キヤノン株式会社 | 酸化物半導体デバイスの製造方法 |
JP4850457B2 (ja) | 2005-09-06 | 2012-01-11 | キヤノン株式会社 | 薄膜トランジスタ及び薄膜ダイオード |
EP1995787A3 (en) | 2005-09-29 | 2012-01-18 | Semiconductor Energy Laboratory Co, Ltd. | Semiconductor device having oxide semiconductor layer and manufacturing method therof |
JP5064747B2 (ja) | 2005-09-29 | 2012-10-31 | 株式会社半導体エネルギー研究所 | 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法 |
JP5078246B2 (ja) | 2005-09-29 | 2012-11-21 | 株式会社半導体エネルギー研究所 | 半導体装置、及び半導体装置の作製方法 |
JP5037808B2 (ja) | 2005-10-20 | 2012-10-03 | キヤノン株式会社 | アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置 |
CN101283444B (zh) | 2005-11-15 | 2011-01-26 | 株式会社半导体能源研究所 | 半导体器件及其制造方法 |
US20070145367A1 (en) * | 2005-12-27 | 2007-06-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Three-dimensional integrated circuit structure |
TWI292281B (en) | 2005-12-29 | 2008-01-01 | Ind Tech Res Inst | Pixel structure of active organic light emitting diode and method of fabricating the same |
US7867636B2 (en) | 2006-01-11 | 2011-01-11 | Murata Manufacturing Co., Ltd. | Transparent conductive film and method for manufacturing the same |
JP4977478B2 (ja) | 2006-01-21 | 2012-07-18 | 三星電子株式会社 | ZnOフィルム及びこれを用いたTFTの製造方法 |
US7576394B2 (en) | 2006-02-02 | 2009-08-18 | Kochi Industrial Promotion Center | Thin film transistor including low resistance conductive thin films and manufacturing method thereof |
US7977169B2 (en) | 2006-02-15 | 2011-07-12 | Kochi Industrial Promotion Center | Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof |
WO2007105606A1 (en) | 2006-03-15 | 2007-09-20 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
KR20070101595A (ko) | 2006-04-11 | 2007-10-17 | 삼성전자주식회사 | ZnO TFT |
US20070252928A1 (en) | 2006-04-28 | 2007-11-01 | Toppan Printing Co., Ltd. | Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof |
US7785938B2 (en) | 2006-04-28 | 2010-08-31 | Semiconductor Energy Laboratory Co., Ltd | Semiconductor integrated circuit, manufacturing method thereof, and semiconductor device using semiconductor integrated circuit |
JP2007317969A (ja) | 2006-05-26 | 2007-12-06 | Rohm Co Ltd | 半導体装置及び半導体装置の製造方法 |
JP5028033B2 (ja) | 2006-06-13 | 2012-09-19 | キヤノン株式会社 | 酸化物半導体膜のドライエッチング方法 |
JP4609797B2 (ja) | 2006-08-09 | 2011-01-12 | Nec液晶テクノロジー株式会社 | 薄膜デバイス及びその製造方法 |
JP4999400B2 (ja) | 2006-08-09 | 2012-08-15 | キヤノン株式会社 | 酸化物半導体膜のドライエッチング方法 |
JP4332545B2 (ja) | 2006-09-15 | 2009-09-16 | キヤノン株式会社 | 電界効果型トランジスタ及びその製造方法 |
JP5164357B2 (ja) | 2006-09-27 | 2013-03-21 | キヤノン株式会社 | 半導体装置及び半導体装置の製造方法 |
JP4274219B2 (ja) | 2006-09-27 | 2009-06-03 | セイコーエプソン株式会社 | 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置 |
US7622371B2 (en) | 2006-10-10 | 2009-11-24 | Hewlett-Packard Development Company, L.P. | Fused nanocrystal thin film semiconductor and method |
US7772021B2 (en) | 2006-11-29 | 2010-08-10 | Samsung Electronics Co., Ltd. | Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays |
JP2008140684A (ja) | 2006-12-04 | 2008-06-19 | Toppan Printing Co Ltd | カラーelディスプレイおよびその製造方法 |
KR101303578B1 (ko) | 2007-01-05 | 2013-09-09 | 삼성전자주식회사 | 박막 식각 방법 |
US8207063B2 (en) | 2007-01-26 | 2012-06-26 | Eastman Kodak Company | Process for atomic layer deposition |
US7683838B2 (en) | 2007-02-09 | 2010-03-23 | Semiconductor Energy Laboratory Co., Ltd | Semiconductor device |
KR100851215B1 (ko) | 2007-03-14 | 2008-08-07 | 삼성에스디아이 주식회사 | 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치 |
US7759629B2 (en) | 2007-03-20 | 2010-07-20 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing a semiconductor device |
US7795613B2 (en) | 2007-04-17 | 2010-09-14 | Toppan Printing Co., Ltd. | Structure with transistor |
KR101325053B1 (ko) | 2007-04-18 | 2013-11-05 | 삼성디스플레이 주식회사 | 박막 트랜지스터 기판 및 이의 제조 방법 |
KR20080094300A (ko) | 2007-04-19 | 2008-10-23 | 삼성전자주식회사 | 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이 |
KR101334181B1 (ko) | 2007-04-20 | 2013-11-28 | 삼성전자주식회사 | 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법 |
CN101663762B (zh) | 2007-04-25 | 2011-09-21 | 佳能株式会社 | 氧氮化物半导体 |
US8513678B2 (en) | 2007-05-18 | 2013-08-20 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device |
KR101345376B1 (ko) | 2007-05-29 | 2013-12-24 | 삼성전자주식회사 | ZnO 계 박막 트랜지스터 및 그 제조방법 |
US8232598B2 (en) * | 2007-09-20 | 2012-07-31 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method for manufacturing the same |
JP2009105388A (ja) * | 2007-10-05 | 2009-05-14 | Toshiba Corp | 半導体装置及びその製造方法 |
US8202365B2 (en) | 2007-12-17 | 2012-06-19 | Fujifilm Corporation | Process for producing oriented inorganic crystalline film, and semiconductor device using the oriented inorganic crystalline film |
CN101868858A (zh) | 2008-01-15 | 2010-10-20 | 夏普株式会社 | 半导体装置、其制造方法和显示装置 |
JPWO2009107742A1 (ja) | 2008-02-28 | 2011-07-07 | 日本電気株式会社 | 半導体装置 |
JP4623179B2 (ja) | 2008-09-18 | 2011-02-02 | ソニー株式会社 | 薄膜トランジスタおよびその製造方法 |
JP5451280B2 (ja) | 2008-10-09 | 2014-03-26 | キヤノン株式会社 | ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置 |
US8198666B2 (en) | 2009-02-20 | 2012-06-12 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device including a nonvolatile memory element having first, second and third insulating films |
JP5581106B2 (ja) | 2009-04-27 | 2014-08-27 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
WO2011065183A1 (en) | 2009-11-24 | 2011-06-03 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device including memory cell |
KR101770976B1 (ko) * | 2009-12-11 | 2017-08-24 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 |
JP5677016B2 (ja) | 2010-10-15 | 2015-02-25 | キヤノン株式会社 | 電気機械変換装置及びその作製方法 |
WO2012121265A1 (en) * | 2011-03-10 | 2012-09-13 | Semiconductor Energy Laboratory Co., Ltd. | Memory device and method for manufacturing the same |
JP5839474B2 (ja) | 2011-03-24 | 2016-01-06 | 株式会社半導体エネルギー研究所 | 信号処理回路 |
JP2012216812A (ja) | 2011-03-31 | 2012-11-08 | Elpida Memory Inc | 半導体装置及びその製造方法 |
US8481353B2 (en) | 2011-04-14 | 2013-07-09 | Opto Tech Corporation | Method of separating nitride films from the growth substrates by selective photo-enhanced wet oxidation |
JP2013065638A (ja) | 2011-09-15 | 2013-04-11 | Elpida Memory Inc | 半導体装置 |
US8841675B2 (en) * | 2011-09-23 | 2014-09-23 | Semiconductor Energy Laboratory Co., Ltd. | Minute transistor |
US8916424B2 (en) * | 2012-02-07 | 2014-12-23 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
JP5981157B2 (ja) * | 2012-02-09 | 2016-08-31 | 株式会社半導体エネルギー研究所 | 半導体装置 |
US8999773B2 (en) * | 2012-04-05 | 2015-04-07 | Semiconductor Energy Laboratory Co., Ltd. | Processing method of stacked-layer film and manufacturing method of semiconductor device |
US9006024B2 (en) | 2012-04-25 | 2015-04-14 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
US8860022B2 (en) * | 2012-04-27 | 2014-10-14 | Semiconductor Energy Laboratory Co., Ltd. | Oxide semiconductor film and semiconductor device |
KR102099445B1 (ko) | 2012-06-29 | 2020-04-09 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 반도체 장치 및 반도체 장치의 제작 방법 |
JP6224931B2 (ja) | 2012-07-27 | 2017-11-01 | 株式会社半導体エネルギー研究所 | 半導体装置 |
JP6545976B2 (ja) * | 2014-03-07 | 2019-07-17 | 株式会社半導体エネルギー研究所 | 半導体装置 |
-
2015
- 2015-03-04 JP JP2015041939A patent/JP6545976B2/ja active Active
- 2015-03-04 US US14/638,504 patent/US9443872B2/en active Active
-
2016
- 2016-09-09 US US15/260,375 patent/US9799685B2/en not_active Expired - Fee Related
-
2019
- 2019-06-20 JP JP2019114529A patent/JP6728452B2/ja not_active Expired - Fee Related
-
2020
- 2020-07-01 JP JP2020113923A patent/JP7144483B2/ja active Active
-
2022
- 2022-09-15 JP JP2022147109A patent/JP2023002514A/ja not_active Withdrawn
-
2023
- 2023-11-27 JP JP2023199973A patent/JP7650945B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2020191452A (ja) | 2020-11-26 |
JP2024015062A (ja) | 2024-02-01 |
US20160380007A1 (en) | 2016-12-29 |
JP2019169737A (ja) | 2019-10-03 |
JP7650945B2 (ja) | 2025-03-25 |
JP2023002514A (ja) | 2023-01-10 |
JP6545976B2 (ja) | 2019-07-17 |
US20150255490A1 (en) | 2015-09-10 |
US9799685B2 (en) | 2017-10-24 |
JP2015188070A (ja) | 2015-10-29 |
US9443872B2 (en) | 2016-09-13 |
JP7144483B2 (ja) | 2022-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6728452B2 (ja) | 半導体装置 | |
JP7181979B2 (ja) | 半導体装置 | |
JP7054410B2 (ja) | 半導体装置 | |
JP7337233B2 (ja) | 半導体装置 | |
JP7305004B2 (ja) | 半導体装置 | |
JP6710306B2 (ja) | 半導体装置 | |
US10811540B2 (en) | Semiconductor device and electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190718 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200310 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200312 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200508 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200602 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200701 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6728452 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |