[go: up one dir, main page]

JP6713187B2 - Multilayer printed wiring board and manufacturing method thereof - Google Patents

Multilayer printed wiring board and manufacturing method thereof Download PDF

Info

Publication number
JP6713187B2
JP6713187B2 JP2014060520A JP2014060520A JP6713187B2 JP 6713187 B2 JP6713187 B2 JP 6713187B2 JP 2014060520 A JP2014060520 A JP 2014060520A JP 2014060520 A JP2014060520 A JP 2014060520A JP 6713187 B2 JP6713187 B2 JP 6713187B2
Authority
JP
Japan
Prior art keywords
metal piece
wiring board
printed wiring
copper foil
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014060520A
Other languages
Japanese (ja)
Other versions
JP2015185671A (en
Inventor
淳男 川越
淳男 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2014060520A priority Critical patent/JP6713187B2/en
Publication of JP2015185671A publication Critical patent/JP2015185671A/en
Application granted granted Critical
Publication of JP6713187B2 publication Critical patent/JP6713187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Wire Bonding (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、実装した半導体素子などの電子部品からの熱を放熱させるようにした印刷配線板、この印刷配線板と実装された部品とを備えた実装構造体、および印刷配線板の製造方法に関する。 The present invention relates to a printed wiring board configured to radiate heat from an electronic component such as a mounted semiconductor element, a mounting structure including the printed wiring board and mounted components, and a method for manufacturing the printed wiring board. ..

放熱用印刷配線板で、例えば、電源回路などに厚肉の導体が要求される場合には、特許文献1および2に開示されるように、厚銅タイプのコア基板を用いる方法が知られている。また、特許文献3には、銅箔にワイヤを溶接して、必要箇所のみに厚銅と同じ効果を付与する方法が開示されている。 In the printed wiring board for heat dissipation, for example, when a thick conductor is required for a power supply circuit or the like, a method using a thick copper type core substrate is known as disclosed in Patent Documents 1 and 2. There is. Further, Patent Document 3 discloses a method in which a wire is welded to a copper foil so that the same effect as that of thick copper is given only to a necessary portion.

しかし、特許文献1および2の方法では、使用する銅箔面が非常に厚くなるため、エッチングの裾引きの影響でエッチング処理により細線化した配線パターンを形成することが難しい。また、エッチングの裾引きによって、放熱用厚肉配線パターン部の回路幅精度が悪くなる問題もある。
特許文献3には、銅箔に0.3mm〜0.4mmの厚さを持つワイヤを溶接することにより、必要箇所のみに厚銅と同様な効果をもたらす技術が提案されていた。しかし、特許文献3の方法では、銅箔とワイヤとを特別な装置を用いて、高精度に接合する必要がある。
However, according to the methods of Patent Documents 1 and 2, since the copper foil surface to be used becomes extremely thick, it is difficult to form a fine wiring pattern by the etching process due to the influence of the bottom of the etching. Further, there is a problem that the circuit width accuracy of the heat dissipation thick wiring pattern portion is deteriorated due to the bottoming of the etching.
Patent Document 3 proposes a technique in which a wire having a thickness of 0.3 mm to 0.4 mm is welded to a copper foil to bring about the same effect as thick copper only in a necessary portion. However, in the method of Patent Document 3, it is necessary to bond the copper foil and the wire with high precision by using a special device.

特許文献4には、コア基板に形成された貫通孔に銅などの金属小片(放熱ブロック)が収容された放熱用印刷配線板が開示されている。このような印刷配線板では、コア基板として厚銅を用いる必要がなく、上述のような問題は生じにくい。しかし、コア基板に絶縁樹脂層を積層後、放熱ブロックにビアホールを経由して伝熱させるため、ビアホールの断面積に伝熱量が制限される問題があった。 Patent Document 4 discloses a heat dissipation printed wiring board in which a small metal piece (heat dissipation block) of copper or the like is housed in a through hole formed in a core substrate. In such a printed wiring board, it is not necessary to use thick copper as the core substrate, and the above-mentioned problems are unlikely to occur. However, after the insulating resin layer is laminated on the core substrate, heat is transferred to the heat dissipation block via the via hole, so that there is a problem that the heat transfer amount is limited to the cross-sectional area of the via hole.

特許文献5では、ビア導体(金属小片等)を開口部に嵌合する際、開口部の突溝にビア導体の突起を結合させ嵌めこんでいる。このビア導体は、開口部の面積より片側で0.2〜0.5mm程度の小さな形状であるため隙間が生じ、この隙間を埋めるための接着性樹脂等を充填している。さらに、ビア導体が開口部から抜け落ちないようにビア導体とグランド用パターンとを一体化させる技術が開示されている。
しかし、特許文献5では、ビア導体が突起を有しているためビア導体の形成が困難で、高コストで歩留りが低いという問題がある。また、ビア導体を基板の開口部に嵌合する際、開口部の突溝にビア導体の突起を結合させ嵌め込むため、ビア導体に高精度な位置合わせが必要であり、さらに、この嵌合にはかなりの力を必要とするため特殊な装置を用いなければ嵌合は困難である。また、このビア導体は0.2mm以下の開口部には嵌合できない。さらに、ビア導体と開口部の隙間を埋めるための接着性樹脂等を充填しているにもかかわらず、ビア導体が開口部から抜け落ちることの防止に、ビア導体とグランド用パターンとの一体化が必要なため、ビア導体を嵌合からビア導体とグランド用パターンとの一体化までの間の搬送・作業中に、ビア導体が開口部から抜け落ちる危換があり、生産性がきわめて低い問題がある。
In Patent Document 5, when a via conductor (small metal piece or the like) is fitted into the opening, the projection of the via conductor is fitted and fitted in the groove of the opening. Since this via conductor has a small shape of about 0.2 to 0.5 mm on one side of the area of the opening, a gap is created, and an adhesive resin or the like for filling this gap is filled. Further, a technique is disclosed in which the via conductor and the ground pattern are integrated so that the via conductor does not fall out of the opening.
However, in Patent Document 5, since the via conductor has a protrusion, it is difficult to form the via conductor, and there is a problem that the cost is high and the yield is low. Further, when the via conductor is fitted into the opening of the substrate, since the projection of the via conductor is coupled and fitted into the groove of the opening, it is necessary to align the via conductor with high accuracy. Requires a considerable amount of force, it is difficult to mate without special equipment. Also, this via conductor cannot fit into an opening of 0.2 mm or less. In addition, the via conductor and the ground pattern are integrated to prevent the via conductor from falling out of the opening even though the adhesive resin or the like for filling the gap between the via conductor and the opening is filled. Since it is necessary, there is a risk that the via conductor will fall out of the opening during the transportation and work from the fitting of the via conductor to the integration of the via conductor and the ground pattern, resulting in extremely low productivity. ..

また、特許文献5には、ビア導体を内蔵した片側面にめっき処理を施して一体化する構造体が開示されているが、片側にしかめっき処理を施さないため、両面に回路形成が出来ない等の設計的制約がある。 Further, Patent Document 5 discloses a structure in which a via conductor is built in and one side surface is plated to be integrated, but since only one side is plated, circuits cannot be formed on both sides. There are design restrictions such as.

特開平8−293659号公報JP-A-8-293659 特開2002−076571号公報JP, 2002-076751, A 特表2008−529263号公報Japanese Patent Publication No. 2008-529263 特開2013−135168号公報JP, 2013-135168, A 特開2010−258260号公報JP, 2010-258260, A

本発明の主たる課題は、実装した部品からの熱を放熱させる放熱性能に優れ、基板表層に微細回路形成が可能な印刷配線板を提供することである。
本発明の他の課題は、優れた放熱性を有し、かつ基板表層に微細回路を形成可能な印刷配線板を効率よく製造することができる印刷配線板の製造方法を提供することである。
A main object of the present invention is to provide a printed wiring board which has excellent heat dissipation performance for dissipating heat from mounted components and which can form a fine circuit on the surface layer of the board.
Another object of the present invention is to provide a method of manufacturing a printed wiring board which has excellent heat dissipation and can efficiently manufacture a printed wiring board capable of forming a fine circuit on the surface layer of a substrate.

本発明者は、上記課題を解決するべく鋭意検討を行った結果、以下の構成からなる解決手段を見出し、本発明を完成するに至った。
(1)絶縁板の少なくとも一方の面に配線パターンが形成されたコア基板と、コア基板の表面に積層された絶縁樹脂層と、前記コア基板と絶縁樹脂層とを貫通する貫通孔である収容部と、この収容部に収容された金属小片と、を備えることを特徴とする印刷配線板。
(2)前記収容部内周面と金属小片との間隙部分に、絶縁性の金属小片固定樹脂を充填して金属小片が固定されている、(1)に記載の印刷配線板。
(3)前記金属小片が銅小片である、(1)または(2)に記載の印刷配線板。
(4)前記収容部は、印刷配線板の一方の面から他方の面にかけて寸法が小さくなる逆錐台状、または該寸法が一定である柱状の貫通孔である、(1)〜(3)のいずれかに記載の印刷配線板。
(5)前記金属小片の表面が、前記絶縁樹脂層の表面と略同一面である、(1)〜(4)のいずれかに記載の印刷配線板。
(6)前記金属小片の表面に形成された配線導体層をさらに備える(1)〜(5)のいずれかに記載の印刷配線板。
(7)(1)〜(6)のいずれかに記載の印刷配線板の少なくとも一方の面における前記金属小片が収容された位置に部品を実装したことを特徴とする実装構造体。
(8) 前記部品がフェイスダウンまたはフェイスアップで印刷配線板に実装され、部品下部を熱伝導樹脂または低融点金属で金属小片上に密着させていることを特徴とする(7)に記載の実装構造体。
(9)前記部品下部を、金属小片の表面に形成された配線導体層を介して金属小片上に密着させている請求項8に記載の実装構造体。
(10)絶縁板の少なくとも一方の面に配線パターンを形成してコア基板を得る工程と、コア基板の表面に絶縁樹脂層を積層する工程と、前記コア基板と絶縁樹脂層とを貫通する貫通孔である収容部を形成する工程と、前記収容部に金属小片を収容する工程と、を含むことを特徴とする印刷配線板の製造方法。
(11)前記収容部に金属小片を収容する工程の後に、金属小片の表面に配線導体層を形成する工程を含む、(10)に記載の印刷配線板の製造方法。
(12)前記コア基板を得る工程の前に、絶縁板にビアホールを形成する工程をさらに含む、(10)または(11)に記載の印刷配線板の製造方法。
(13)前記収容部を形成する工程がレーザ加工または金型加工によって行われる、(10)〜(12)のいずれかに記載の印刷配線板の製造方法。
(14)前記収容部に前記金属小片を収容する工程の後、前記収容部と前記金属小片との間隙に絶縁性の金属小片固定樹脂を充填して硬化させる工程をさらに含む、(10)〜(13)のいずれかに記載の印刷配線板の製造方法。
As a result of intensive studies to solve the above problems, the present inventor has found a solving means having the following configuration, and completed the present invention.
(1) A core substrate in which a wiring pattern is formed on at least one surface of an insulating plate, an insulating resin layer laminated on the surface of the core substrate, and a through hole penetrating the core substrate and the insulating resin layer. A printed wiring board, comprising: a portion; and a metal piece housed in the housing portion.
(2) The printed wiring board according to (1), wherein the metal piece is fixed by filling an insulating metal piece fixing resin in a gap portion between the inner peripheral surface of the accommodating portion and the metal piece.
(3) The printed wiring board according to (1) or (2), wherein the metal piece is a copper piece.
(4) The accommodating portion is an inverted frustum shape whose size decreases from one surface to the other surface of the printed wiring board, or a columnar through hole having a constant size, (1) to (3) The printed wiring board according to any one of 1.
(5) The printed wiring board according to any one of (1) to (4), wherein the surface of the metal piece is substantially flush with the surface of the insulating resin layer.
(6) The printed wiring board according to any one of (1) to (5), further including a wiring conductor layer formed on the surface of the metal piece.
(7) A mounting structure in which a component is mounted at a position where the metal piece is accommodated on at least one surface of the printed wiring board according to any one of (1) to (6).
(8) The component according to (7), wherein the component is mounted face down or face up on a printed wiring board, and a lower part of the component is adhered to a small metal piece with a heat conductive resin or a low melting point metal. Structure.
(9) The mounting structure according to claim 8, wherein the lower part of the component is brought into close contact with the metal piece via a wiring conductor layer formed on the surface of the metal piece.
(10) A step of forming a wiring pattern on at least one surface of an insulating plate to obtain a core substrate, a step of laminating an insulating resin layer on the surface of the core substrate, and a penetration for penetrating the core substrate and the insulating resin layer. A method of manufacturing a printed wiring board, comprising: a step of forming a housing portion that is a hole; and a step of housing a small metal piece in the housing portion.
(11) The method for manufacturing a printed wiring board according to (10), including a step of forming a wiring conductor layer on the surface of the metal piece after the step of containing the metal piece in the containing portion.
(12) The method for manufacturing a printed wiring board according to (10) or (11), further including a step of forming a via hole in the insulating plate before the step of obtaining the core substrate.
(13) The method for manufacturing a printed wiring board according to any one of (10) to (12), wherein the step of forming the accommodation portion is performed by laser processing or die processing.
(14) After the step of accommodating the metal piece in the accommodating portion, the method further includes the step of filling an insulating metal piece fixing resin in a gap between the accommodating portion and the metal piece and curing the resin. The method for manufacturing a printed wiring board according to any one of (13).

本発明の印刷配線板によれば、収容部に収容される金属小片の厚みと基板厚み(コア基板と絶縁樹脂層との総厚み)を同一に調整可能であり、また、印刷配線板の表裏に段差が無いため微細回路を形成しやすい。
また、収容部に収容された金属小片と実装した部品とがビアホールを介することなく接触するため、高い放熱性能が安定的に得られる。さらに、収容部に金属小片を圧入しないため、内蔵に特殊な装置を必要とせず、汎用の部品マウンタを使用できるという効果がある。
According to the printed wiring board of the present invention, the thickness of the metal piece housed in the housing portion and the substrate thickness (total thickness of the core substrate and the insulating resin layer) can be adjusted to be the same. It is easy to form a fine circuit because there is no step.
Further, since the small metal piece housed in the housing portion and the mounted component come into contact with each other without the via hole, high heat dissipation performance can be stably obtained. Further, since no small metal piece is press-fitted into the accommodating portion, there is an effect that a general-purpose component mounter can be used without requiring a special device for incorporation.

本発明に係る印刷配線板の製造方法によれば、優れた放熱性能を有する印刷配線板を効率よく製造することができる。 According to the printed wiring board manufacturing method of the present invention, it is possible to efficiently manufacture a printed wiring board having excellent heat dissipation performance.

(a)は本発明に係る印刷配線板の一実施態様を示す平面図であり、(b)は(a)のA−A’線側断面図である。(A) is a plan view showing one embodiment of a printed wiring board according to the present invention, and (b) is a sectional view taken along the line A-A' of (a). 本発明に係る印刷配線板の製造方法における実施形態を示す側断面図である。It is a side sectional view showing an embodiment in a manufacturing method of a printed wired board concerning the present invention. 本発明に係る印刷配線板の製造方法における実施形態を示す側断面図である。It is a side sectional view showing an embodiment in a manufacturing method of a printed wired board concerning the present invention. 本発明に係る印刷配線板の製造方法における実施形態を示す側断面図である。It is a side sectional view showing an embodiment in a manufacturing method of a printed wired board concerning the present invention. 本発明に係る印刷配線板に部品が実装された構造体の一実施形態を示す側面図である。It is a side view which shows one Embodiment of the structure body in which the components were mounted in the printed wiring board which concerns on this invention. 本発明に係る印刷配線板に部品が実装された構造体の別の実施形態を示す側面図である。It is a side view which shows another embodiment of the structure in which the components were mounted in the printed wiring board which concerns on this invention. 本発明に係る印刷配線板の別の形態を示す側断面図である。It is a sectional side view which shows another form of the printed wiring board which concerns on this invention.

本発明の印刷配線板を、図1に基づいて説明する。図1(a)は、本発明に係る印刷配線板の一実施態様を示す平面図を示し、図1(b)は図1(a)のA−A’線側断面図を示す。
本発明の印刷配線板は、図1(a)に示すように、金属小片40を収容する収容部11と配線基板部12を備えている。より詳細には、図1(b)に示すように、本発明の印刷配線板は、絶縁板1の表面に配線パターン4が形成されたコア基板2と、コア基板2の表面に積層された絶縁樹脂層21aと、コア基板2と絶縁樹脂層21aとを貫通して形成された収容部11に収容された金属小片40と、金属小片40の表面に形成された配線導体層22とを備える。さらに、コア基板2の上下面を電気的に接続するために、絶縁板1にはビアホール3が形成されている。
The printed wiring board of the present invention will be described with reference to FIG. FIG. 1(a) is a plan view showing an embodiment of a printed wiring board according to the present invention, and FIG. 1(b) is a sectional view taken along the line AA' of FIG. 1(a).
As shown in FIG. 1A, the printed wiring board of the present invention includes a housing portion 11 for housing the small metal piece 40 and a wiring board portion 12. More specifically, as shown in FIG. 1( b ), the printed wiring board of the present invention is laminated on the core substrate 2 on which the wiring pattern 4 is formed on the surface of the insulating plate 1 and on the surface of the core substrate 2. An insulating resin layer 21a, a metal piece 40 housed in the housing portion 11 formed by penetrating the core substrate 2 and the insulating resin layer 21a, and a wiring conductor layer 22 formed on the surface of the metal piece 40 are provided. .. Further, via holes 3 are formed in the insulating plate 1 to electrically connect the upper and lower surfaces of the core substrate 2.

絶縁板1は、絶縁性を有する素材で形成されていれば特に限定されない。このような絶縁性を有する素材としては、例えば、エポキシ樹脂、ビスマレイミド−トリアジン樹脂、ポリイミド樹脂、ポリフェニレンエーテル(PPE)樹脂などの有機樹脂などが挙げられる。これらの有機樹脂は2種以上を混合して用いてもよい。絶縁板1として有機樹脂を使用する場合、有機樹脂に補強材を配合して使用するのが好ましい。補強材としては、例えば、ガラス繊維、ガラス不織布、アラミド不織布、アラミド繊維、ポリエステル繊維などが挙げられる。これらの補強材は2種以上を併用してもよい。絶縁板1は、好ましくはガラス繊維やガラス不織布などのガラス材入り有機樹脂から形成される。さらに、絶縁板1には、シリカ、硫酸バリウム、タルク、クレー、ガラス、炭酸カルシウム、酸化チタンなどの無機充填材が含まれていてもよい。絶縁板1の厚みは特に限定されないが、好ましくは0.02〜10mmであるのがよい。 The insulating plate 1 is not particularly limited as long as it is made of an insulating material. Examples of such insulating materials include organic resins such as epoxy resin, bismaleimide-triazine resin, polyimide resin, and polyphenylene ether (PPE) resin. You may use these organic resins in mixture of 2 or more types. When an organic resin is used as the insulating plate 1, it is preferable to use a reinforcing material mixed with the organic resin. Examples of the reinforcing material include glass fiber, glass non-woven fabric, aramid non-woven fabric, aramid fiber, and polyester fiber. Two or more kinds of these reinforcing materials may be used in combination. The insulating plate 1 is preferably formed of a glass material-containing organic resin such as glass fiber or glass non-woven fabric. Furthermore, the insulating plate 1 may contain an inorganic filler such as silica, barium sulfate, talc, clay, glass, calcium carbonate, or titanium oxide. The thickness of the insulating plate 1 is not particularly limited, but is preferably 0.02 to 10 mm.

図1に示す印刷配線板のように、配線パターン4は絶縁板1の両表面に形成されていることが好ましい。すなわち、コア基板2の上下面に配線パターン4が存在する。この場合、コア基板2の上下面を電気的に接続するために、絶縁板1にはビアホール3が形成されている。 Like the printed wiring board shown in FIG. 1, the wiring patterns 4 are preferably formed on both surfaces of the insulating plate 1. That is, the wiring pattern 4 exists on the upper and lower surfaces of the core substrate 2. In this case, via holes 3 are formed in the insulating plate 1 in order to electrically connect the upper and lower surfaces of the core substrate 2.

コア基板2の表面には、絶縁樹脂層21aが積層されている。絶縁樹脂層21aを形成する樹脂としては、例えば、エポキシ樹脂、ビスマレイミド−トリアジン樹脂、ポリイミド樹脂、ポリフェニレンエーテル(PPE)樹脂、フェノール樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ケイ素樹脂、ポリブタジエン樹脂、ポリエステル樹脂、メラミン樹脂、ユリア樹脂、ポリフェニレンサルファイド(PPS)樹脂、ポリフェニレンオキシド(PPO)樹脂などが挙げられる。これらの樹脂は2種以上を混合してもよい。絶縁樹脂層21aを形成する樹脂には、上述の補強材や無機充填材、フェノール樹脂やメタクリル樹脂からなる有機充填材が含まれていてもよい。 An insulating resin layer 21 a is laminated on the surface of the core substrate 2. Examples of the resin forming the insulating resin layer 21a include epoxy resin, bismaleimide-triazine resin, polyimide resin, polyphenylene ether (PPE) resin, phenol resin, polytetrafluoroethylene (PTFE) resin, silicon resin, polybutadiene resin, Examples thereof include polyester resin, melamine resin, urea resin, polyphenylene sulfide (PPS) resin, and polyphenylene oxide (PPO) resin. Two or more kinds of these resins may be mixed. The resin forming the insulating resin layer 21a may include the above-mentioned reinforcing material, inorganic filler, and organic filler made of phenol resin or methacrylic resin.

金属小片40の両表面に形成されている配線導体層22は、エッチングなどによって形成される。配線導体層22の形成方法の詳細は後述する。 The wiring conductor layers 22 formed on both surfaces of the small metal piece 40 are formed by etching or the like. Details of the method for forming the wiring conductor layer 22 will be described later.

図1に示す印刷配線板では、絶縁樹脂層21aおよび配線導体層22は、印刷配線板の上下面にそれぞれ1層積層されているが、1層に限定されない。例えば、絶縁樹脂層21aおよび配線導体層22を交互に積層させて多層のビルドアップ層としてもよい。この場合、絶縁樹脂層21aにビアホール23が形成される。 In the printed wiring board shown in FIG. 1, the insulating resin layer 21a and the wiring conductor layer 22 are laminated one layer on each of the upper and lower surfaces of the printed wiring board, but not limited to one layer. For example, the insulating resin layers 21a and the wiring conductor layers 22 may be alternately laminated to form a multilayer buildup layer. In this case, the via hole 23 is formed in the insulating resin layer 21a.

本発明の印刷配線板において、金属小片40は、絶縁板1に形成された収容部11に収容されている。金属小片40を構成する金属は、例えば、銅、金、鉄、アルミニウムなどが挙げられる。これらの金属の中でも、銅が好ましい。金属小片40が銅小片の場合、例えば、下記の方法によって得られる。
(I)銅板または銅箔をエッチングによって、銅小片に加工する。
(II)銅板、銅箔または銅線材を、金型で打ち抜き、銅小片に加工する。
(III)銅板または銅箔を、ダイシングで切削することによって、銅小片に加工する。
また、金属小片40の厚みは、印刷配線板に内蔵するため、コア基板2と絶縁樹脂層21aとの総厚み±25μm程度にすることが好ましい。
In the printed wiring board of the present invention, the small metal piece 40 is housed in the housing portion 11 formed in the insulating plate 1. Examples of the metal that constitutes the metal piece 40 include copper, gold, iron, and aluminum. Among these metals, copper is preferable. When the metal piece 40 is a copper piece, for example, it is obtained by the following method.
(I) A copper plate or copper foil is processed into copper pieces by etching.
(II) A copper plate, a copper foil or a copper wire rod is punched with a die to be processed into a copper piece.
(III) A copper plate or copper foil is cut into pieces by cutting with dicing.
Since the metal piece 40 is built in the printed wiring board, the total thickness of the core substrate 2 and the insulating resin layer 21a is preferably about ±25 μm.

本実施形態における金属小片40の形状は直方体状である。そして、この金属小片40を収容する収容部11は、印刷配線板を貫通する貫通孔であり、金属小片40と同様な直方体状の形状を有する。 The shape of the metal piece 40 in the present embodiment is a rectangular parallelepiped. The housing portion 11 that houses the small metal piece 40 is a through hole that penetrates the printed wiring board and has a rectangular parallelepiped shape similar to the small metal piece 40.

金属小片40の大きさは、絶縁板1の厚みなどに応じて適宜設定される。例えば、金属小片40の下面の長辺は、0.1〜50mm程度であり、金属小片40の上面から下面までの高さ(厚み)は0.02〜10mm程度である。 The size of the metal piece 40 is appropriately set according to the thickness of the insulating plate 1. For example, the long side of the lower surface of the small metal piece 40 is about 0.1 to 50 mm, and the height (thickness) from the upper surface to the lower surface of the small metal piece 40 is about 0.02 to 10 mm.

収容部11の内周面と金属小片40との間隙部分には、絶縁性の金属小片固定樹脂13が充填されており、これにより収容部11内に金属小片40を固定している。 An insulating metal piece fixing resin 13 is filled in a gap between the inner peripheral surface of the housing portion 11 and the metal piece 40, so that the metal piece 40 is fixed in the housing portion 11.

前記金属小片固定樹脂13としては、例えば、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂、ポリフェニレンエーテル(PPE)樹脂などが挙げられる。これらの中でも、エポキシ樹脂またはエポキシ樹脂と他の樹脂との混合樹脂が好ましい。金属小片固定樹脂13には、さらにシリカ、硫酸バリウム、タルク、クレー、ガラス、炭酸カルシウム、酸化チタンなどのフィラーが含まれていてもよい。 Examples of the metal piece fixing resin 13 include epoxy resin, acrylic resin, polyimide resin, and polyphenylene ether (PPE) resin. Among these, an epoxy resin or a mixed resin of an epoxy resin and another resin is preferable. The metal piece fixing resin 13 may further contain a filler such as silica, barium sulfate, talc, clay, glass, calcium carbonate, titanium oxide and the like.

次に、本発明に係る印刷配線板の製造方法を説明する。本発明に係る印刷配線板の製造方法は、下記の工程(i)〜(vi)を含む。
(i)絶縁板の両面に配線パターンを形成してコア基板を得て、このコア基板の両面に絶縁樹脂層を積層し、さらに絶縁樹脂層の表面に薄銅箔を積層した、コア基板と絶縁樹脂層との積層体(以下、積層体)を得る工程。
(ii)前記積層体の収容部の直上および直下の薄銅箔をエッチング等により除去し、前記積層体を貫通する収容部を形成し、収容部を含む積層体の下方の面にポリエチレンテレフタレート(PET)フィルムを貼り付けて、上面より金属小片を収容する工程。
(iii)前記収容部の内周面と金属小片との間隙部分に金属小片固定樹脂を充填する工程。
(iv)前記金属小片固定樹脂を硬化させた後、PETフィルムを剥離し、印刷配線板の表面と金属小片の表面とが略同一面となるように研磨する工程。
(v)印刷配線板の、金属小片を内蔵しない箇所にビアホールを形成する工程。
(vi)印刷配線板の両面にめっき処理をし、エッチング処理等により導体の厚みを調整した後、配線導体層を形成し、ソルダーレジスト印刷して金めっき処理等を施す工程。
Next, a method for manufacturing a printed wiring board according to the present invention will be described. The method for manufacturing a printed wiring board according to the present invention includes the following steps (i) to (vi).
(I) A core board in which a wiring pattern is formed on both surfaces of an insulating plate to obtain a core board, insulating resin layers are laminated on both surfaces of the core board, and a thin copper foil is further laminated on the surface of the insulating resin layer. A step of obtaining a laminate with an insulating resin layer (hereinafter referred to as a laminate).
(Ii) The thin copper foils immediately above and below the accommodating portion of the laminated body are removed by etching or the like to form an accommodating portion penetrating the laminated body, and polyethylene terephthalate ( A step of attaching a PET film and accommodating the metal pieces from above.
(Iii) A step of filling the gap between the inner peripheral surface of the accommodating portion and the metal piece with the metal piece fixing resin.
(Iv) A step of curing the metal piece fixing resin, peeling off the PET film, and polishing so that the surface of the printed wiring board and the surface of the metal piece are substantially flush with each other.
(V) A step of forming a via hole in a portion of the printed wiring board that does not contain a small metal piece.
(Vi) A step of plating both surfaces of the printed wiring board, adjusting the thickness of the conductor by etching or the like, forming a wiring conductor layer, printing a solder resist, and performing gold plating or the like.

本発明に係る印刷配線板の製造方法を、図2〜4に基づいて説明する。まず、図2(a)に示すように、絶縁板1の両表面に薄銅箔2aが形成された両面銅張基板2bを準備する。薄銅箔2aは、好ましくは1〜12μm程度の厚みを有する。絶縁板1は上述の通りであり、説明は省略する。 A method for manufacturing a printed wiring board according to the present invention will be described with reference to FIGS. First, as shown in FIG. 2A, a double-sided copper-clad substrate 2b having thin copper foils 2a formed on both surfaces of an insulating plate 1 is prepared. The thin copper foil 2a preferably has a thickness of about 1 to 12 μm. The insulating plate 1 is as described above, and a description thereof will be omitted.

図2(b)に示すように、両面銅張基板2bの所定の位置にビアホール下穴3aを形成する。ビアホール下穴3aは、絶縁板1の上下面を電気的に接続するビアホール3を形成するための穴である。ビアホール下穴3aは、例えばレーザ加工などによって形成される。レーザ光としては、CO2レーザ、UV−YAGレーザなどが挙げられる。ビアホール下穴3aの形成と同時に、ビアホール下穴3a直上の薄銅箔2aを開口させてもよい。 As shown in FIG. 2B, a via hole prepared hole 3a is formed at a predetermined position of the double-sided copper clad board 2b. The via hole lower hole 3a is a hole for forming the via hole 3 that electrically connects the upper and lower surfaces of the insulating plate 1. The via hole pilot hole 3a is formed by, for example, laser processing. Examples of the laser light include CO 2 laser and UV-YAG laser. The thin copper foil 2a immediately above the via hole pilot hole 3a may be opened at the same time when the via hole pilot hole 3a is formed.

レーザ加工によってビアホール下穴3aを形成すると、ビアホール下穴3aの底部に薄い樹脂膜が残存する場合がある。この場合、デスミア処理が行われる。デスミア処理は、強アルカリによって樹脂を膨潤させ、次いで酸化剤(例えば、クロム酸、過マンガン酸塩水溶液など)を用いて樹脂を分解除去する。あるいは、研磨材によるウェットブラスト処理やプラズマ処理によって、樹脂膜を除去してもよい。さらに、ビアホール下穴3aの内壁面を粗面化してもよい。粗面化処理としては、例えば、酸化剤(例えば、クロム酸、過マンガン酸塩水溶液など)によるウェットプロセス、プラズマ処理やアッシング処理などのドライプロセスなどが挙げられる。 When the via hole prepared hole 3a is formed by laser processing, a thin resin film may remain on the bottom of the via hole prepared hole 3a. In this case, desmear processing is performed. In the desmear treatment, the resin is swollen with a strong alkali, and then the resin is decomposed and removed using an oxidizing agent (eg, chromic acid, permanganate aqueous solution, etc.). Alternatively, the resin film may be removed by wet blast treatment with an abrasive or plasma treatment. Further, the inner wall surface of the via hole pilot hole 3a may be roughened. Examples of the surface roughening treatment include a wet process using an oxidizing agent (eg, chromic acid, an aqueous solution of permanganate, etc.), a dry process such as plasma treatment or ashing treatment, and the like.

次いで、図2(c)に示すように、ビアホール下穴3aの内壁面および絶縁板1の表面に銅めっきが施され、導体2cおよびビアホール3が形成される。銅めっきは無電解銅めっきでもよく、電解銅めっきでもよい。めっきの厚付けを行うには電解銅めっきが好ましく、例えば1〜30μm程度の厚みを有する銅めっきが形成される。また、ビアホール下穴3aの内壁面だけでなく、フィルドめっきによってビアホール下穴3aに銅を充填してビアホール3を形成してもよい。 Next, as shown in FIG. 2C, the inner wall surface of the via hole pilot hole 3a and the surface of the insulating plate 1 are plated with copper to form the conductor 2c and the via hole 3. The copper plating may be electroless copper plating or electrolytic copper plating. Electrolytic copper plating is preferable for thickening the plating, and for example, copper plating having a thickness of about 1 to 30 μm is formed. Further, not only the inner wall surface of the via hole pilot hole 3a, but also the via hole pilot hole 3a may be filled with copper by filled plating to form the via hole 3.

次いで、図2(d)に示すように、絶縁板1の表面に配線パターン4を形成する。感光性レジスト(例えば、ドライフィルムのエッチングレジスト)をロールラミネートで貼り付け、露光および現像して回路パターン以外の部分を露出させる。露出部分の銅をエッチングにより除去する。エッチング液としては、例えば塩化第二鉄水溶液などが挙げられる。ドライフィルムのエッチングレジストを剥離して、配線パターン4が形成される。このようにして、絶縁板1の表面に配線パターン4が形成されたコア基板2が得られる。 Next, as shown in FIG. 2D, the wiring pattern 4 is formed on the surface of the insulating plate 1. A photosensitive resist (for example, a dry film etching resist) is attached by roll lamination, and exposed and developed to expose a portion other than the circuit pattern. The exposed copper is removed by etching. Examples of the etching solution include ferric chloride aqueous solution. The etching resist of the dry film is peeled off to form the wiring pattern 4. In this way, the core substrate 2 having the wiring pattern 4 formed on the surface of the insulating plate 1 is obtained.

次いで、図2(e)および(f)に示すように、コア基板2の表面にプリプレグ21および薄銅箔22aを積層し、積層プレスで熱圧着してプリプレグ21を硬化させて絶縁樹脂層21a(硬化樹脂層)を形成する。なお、プリプレグ21としては、上述の絶縁樹脂層21aで説明した樹脂(必要に応じて補強材および充填材)が用いられる。
このようにして得たコア基板2と絶縁樹脂層21aとの積層体20(以下、積層体20)は、多層ビルドアップ基板に限定されるものではなく、両面基板、多層基板を用いてもよい。
Next, as shown in FIGS. 2E and 2F, the prepreg 21 and the thin copper foil 22a are laminated on the surface of the core substrate 2, and thermocompression bonding is performed by a lamination press to cure the prepreg 21 and the insulating resin layer 21a. (Cured resin layer) is formed. In addition, as the prepreg 21, the resin (the reinforcing material and the filling material as necessary) described in the above-mentioned insulating resin layer 21a is used.
The laminated body 20 (hereinafter, laminated body 20) of the core substrate 2 and the insulating resin layer 21a thus obtained is not limited to the multilayer buildup substrate, and a double-sided substrate or a multilayer substrate may be used. ..

次いで、図3(g)、(h)に示すように、前記積層体20に、金属小片40を収容するための収容部11を形成する。
まず、図3(g)に示すように、銅張基板20の金属小片を内蔵させたい箇所に、ドライフィルム等の感光性レジストを使用し、公知のエッチング工法により、前記積層体20の銅箔22aを除去して銅箔開口部26を作成する。この銅箔開口部26は、金属小片40の大きさより若干大きく、好ましくは片側25μm程大きめに作成する。
Next, as shown in FIGS. 3G and 3H, the accommodating portion 11 for accommodating the small metal piece 40 is formed in the laminated body 20.
First, as shown in FIG. 3(g), a photosensitive resist such as a dry film is used in a portion of the copper clad substrate 20 where a metal piece is to be incorporated, and the copper foil of the laminate 20 is formed by a known etching method. The copper foil opening 26 is created by removing 22a. The copper foil opening 26 is made slightly larger than the size of the small metal piece 40, preferably about 25 μm on one side.

次いで、図3(h)に示すように、前記銅箔開口部26により絶縁樹脂層21aが剥き出しとなった箇所に、例えばCO2レーザ、UV−YAGレーザなどのレーザ加工または金型を使用した打ち抜き加工等により、積層体20を貫通する収容部11を形成する。 Next, as shown in FIG. 3(h), a laser process such as a CO 2 laser or a UV-YAG laser or a metal mold is used at a portion where the insulating resin layer 21a is exposed by the copper foil opening 26. The accommodating portion 11 that penetrates the stacked body 20 is formed by punching or the like.

次いで、図3(i)および(j)に示すように、収容部11を形成した積層体20の下面(すなわち、金属小片40を実装するのと反対側)に、粘着剤層を有したPETフィルム50を貼り付けた後、マウンタ等の実装機を使用して金属小片40を収容部11に収容する。この金属小片40の高さは、積層体20の表層と同じか、あるいは突出していてもよい。
この時、PETフィルム50を積層体20の下面に貼り付けることによって、収容部11内から金属小片40を落下させないようにすることができる。前記PETフィルム50の代わりに、繰り返し使用できるMagiCarrier((株)京写製)、PROLEADER(富士フィルム(株)製)などを使用してもよい。
Next, as shown in FIGS. 3( i) and 3 (j ), PET having an adhesive layer is provided on the lower surface of the laminate 20 in which the accommodating portion 11 is formed (that is, the side opposite to where the metal piece 40 is mounted). After sticking the film 50, the small metal piece 40 is housed in the housing portion 11 using a mounting machine such as a mounter. The height of the metal piece 40 may be the same as the surface layer of the laminate 20 or may be protruding.
At this time, by sticking the PET film 50 to the lower surface of the laminated body 20, it is possible to prevent the small metal piece 40 from dropping from the inside of the housing portion 11. Instead of the PET film 50, a repeatedly usable MagiCarrier (manufactured by Kyosha Co., Ltd.) or PROLEADER (manufactured by Fuji Film Co., Ltd.) may be used.

次いで、図3(k)に示すように、収容部11に収容した金属小片40の周辺部と収容部11の内周面との間隙部分に、絶縁性の金属小片固定樹脂13を充填し、金属小片固定樹脂13を硬化させる。 Next, as shown in FIG. 3(k), the insulating metal piece fixing resin 13 is filled in the gap between the peripheral portion of the metal piece 40 housed in the housing portion 11 and the inner peripheral surface of the housing portion 11, The metal piece fixing resin 13 is cured.

金属小片固定樹脂13を充填する方法としては、例えば、スクリーン印刷、スプレー、ディスペンサなどの方法で実施される。充填後、熱硬化樹脂であれば高温槽で熱硬化させ、紫外線硬化型樹脂であれば紫外線照射によって硬化させる。 As a method of filling the small metal piece fixing resin 13, for example, a method such as screen printing, spraying, or dispenser is used. After filling, if it is a thermosetting resin, it is cured in a high temperature tank, and if it is an ultraviolet curing resin, it is cured by irradiation with ultraviolet rays.

前記金属小片固定樹脂13が硬化した後、図3(l)に示すように、PETフィルム50を、金属小片40を収容部11に収容した積層体20(印刷配線板)から剥離させる。 After the metal piece fixing resin 13 is cured, the PET film 50 is peeled from the laminate 20 (printed wiring board) in which the metal piece 40 is housed in the housing 11, as shown in FIG.

次いで、図4(m)に示すように、余計な箇所に付着し硬化した金属小片固定樹脂13と印刷配線板から突出していた金属小片40とを、バフ等の物理研磨やエッチング等の化学研磨を行い、表層と同一面の高さにする。 Next, as shown in FIG. 4(m), the metal piece fixing resin 13 adhered to an extra portion and hardened and the metal piece 40 protruding from the printed wiring board are subjected to physical polishing such as buffing or chemical polishing such as etching. And make it flush with the surface.

次いで、図4(n)に示すように、金属小片40が内蔵されていない積層体20の箇所にて、絶縁樹脂層21aに内層回路の層間接続のためのビアホール下穴23aを形成する。ビアホール下穴23aはレーザ加工などによって形成され、必要に応じてデスミア処理や粗面化処理が行われる。 Next, as shown in FIG. 4(n), a via hole pilot hole 23a for interlayer connection of the inner layer circuit is formed in the insulating resin layer 21a at a position of the laminated body 20 in which the metal piece 40 is not incorporated. The via-hole pilot hole 23a is formed by laser processing or the like, and desmearing or roughening is performed if necessary.

次いで、図4(o)に示すように、印刷配線板の表層に銅めっき60を形成してビアホール下穴23aを銅めっき60で埋めると共に、金属小片40および金属小片固定樹脂13上にも銅めっき60を形成して、ビアホール23を得る(図4(p))。 Next, as shown in FIG. 4( o ), copper plating 60 is formed on the surface layer of the printed wiring board to fill the via-hole pilot holes 23 a with copper plating 60, and copper is also applied on the metal pieces 40 and the metal piece fixing resin 13. The plating 60 is formed to obtain the via hole 23 (FIG. 4(p)).

銅めっき処理の後、硫酸と過酸化水素混合溶液によるソフトエッチング処理等の化学的粗化処理あるいはバフ等の機械的粗化処理を行い、任意の導体厚みまで処理を行う。
次いで、公知の工法を使用し、感光性レジスト、例えばドライフィルムのエッチングレジストをロールラミネートで貼り付け、露光および現像し、回路パターン以外の部分を露出させ、露出した部分の銅めっき60をエッチングで除去する。このエッチング液としては、塩化第二鉄水溶液等が使用できる。
次いで、ドライフィルムのエッチングレジストを剥離すると、図4(p)に示すように絶縁樹脂層21aおよび金属小片40の表面に配線導体層22を形成することができる。配線導体層22は、上述の配線パターン4と同様の方法で形成することができる。
After the copper plating treatment, a chemical roughening treatment such as a soft etching treatment with a mixed solution of sulfuric acid and hydrogen peroxide or a mechanical roughening treatment such as buffing is performed to perform treatment up to an arbitrary conductor thickness.
Then, using a known method, a photosensitive resist, for example, a dry film etching resist is attached by roll lamination, exposed and developed to expose a portion other than the circuit pattern, and the exposed portion of the copper plating 60 is etched. Remove. An aqueous ferric chloride solution or the like can be used as this etching solution.
Then, by removing the etching resist of the dry film, the wiring conductor layer 22 can be formed on the surfaces of the insulating resin layer 21a and the metal piece 40 as shown in FIG. 4(p). The wiring conductor layer 22 can be formed by the same method as that of the wiring pattern 4 described above.

金属小片40の表面に形成される配線導体層22の大きさは、図3(g)で形成した薄銅箔開口部26よりも、片側15〜25μmずつ大きく形成されている。これは前記薄銅箔開口部26より前記配線導体層22が小さいと、金属小片固定樹脂13にエッチング液が染み込み、金属小片40がエッチングされてしまうことを防ぐためである。 The size of the wiring conductor layer 22 formed on the surface of the small metal piece 40 is larger by 15 to 25 μm on each side than the thin copper foil opening 26 formed in FIG. This is because when the wiring conductor layer 22 is smaller than the thin copper foil opening 26, the etching solution penetrates into the metal piece fixing resin 13 and the metal piece 40 is prevented from being etched.

最後に、図4(q)に示すように、絶縁樹脂層21a表面の所定の位置にソルダーレジスト30を形成する。ソルダーレジスト30の形成方法は、まず、スプレーコート、ロールコート、カーテンコート、スクリーン法などを用い、感光性液状ソルダーレジストを20μm程度の厚みで塗布して乾燥する、あるいは感光性ドライフィルム・ソルダーレジストをロールラミネートで貼り付ける。その後、露光および現像してパッド部分を開口させて加熱硬化させる。 Finally, as shown in FIG. 4(q), the solder resist 30 is formed at a predetermined position on the surface of the insulating resin layer 21a. As a method for forming the solder resist 30, first, a spray coating, a roll coating, a curtain coating, a screen method or the like is used, and a photosensitive liquid solder resist is applied to a thickness of about 20 μm and dried, or a photosensitive dry film solder resist is used. Stick with a roll laminate. After that, exposure and development are performed to open the pad portion and heat curing.

ソルダーレジスト30を形成する前に、形成面をCZ処理などの銅の粗面化処理に供してもよい。ソルダーレジスト30の開口部に、無電解ニッケルめっきを3μm以上の厚みで形成し、その上に無電解金めっきを0.03μm以上(好ましくは0.06μm以上、ワイヤーボンディング用途の場合は0.3μm以上)の厚みで形成してもよい。このようなめっき層31は図4(q)に示すように、配線導体層22と、ビアホール23に形成され、さらに、その上にはんだプリコートを施す場合もある。無電解めっきではなく、電解めっきで形成してもよい。めっきではなく、水溶性防錆有機被膜(例えば、四国化成工業(株)製タフエースなど)を形成してもよい。外形加工を施し、本発明の印刷配線板が得られる。 Before forming the solder resist 30, the formation surface may be subjected to a copper roughening treatment such as a CZ treatment. Electroless nickel plating with a thickness of 3 μm or more is formed in the opening of the solder resist 30, and electroless gold plating is 0.03 μm or more (preferably 0.06 μm or more, 0.3 μm for wire bonding applications). The above thickness) may be formed. Such a plating layer 31 is formed on the wiring conductor layer 22 and the via hole 23 as shown in FIG. 4(q), and a solder precoat may be further applied on the wiring layer. It may be formed by electrolytic plating instead of electroless plating. Instead of plating, a water-soluble anticorrosive organic coating (for example, Tough Ace manufactured by Shikoku Chemicals Co., Ltd.) may be formed. The printed wiring board of the present invention is obtained by performing the outer shape processing.

図2(a)〜図4(q)に示す印刷配線板の製造方法では、絶縁樹脂層21aおよび配線導体層22が、印刷配線板の上下面にそれぞれ1層ずつ積層されているが、本発明の印刷配線板の製造方法は1層に限定されない。例えば、絶縁樹脂層21aおよび配線導体層22を交互に積層させて多層のビルドアップ層とした場合においても、図2(f)〜図4(p)の工程と同様に、貫通孔である収容部11を形成して金属小片40を設置することができる。 In the method for manufacturing a printed wiring board shown in FIGS. 2(a) to 4(q), the insulating resin layer 21a and the wiring conductor layer 22 are laminated one layer each on the upper and lower surfaces of the printed wiring board. The method for manufacturing the printed wiring board of the invention is not limited to one layer. For example, even when the insulating resin layers 21a and the wiring conductor layers 22 are alternately laminated to form a multi-layer build-up layer, as in the steps of FIG. 2F to FIG. The part 11 can be formed and the metal piece 40 can be installed.

本発明の印刷配線板には、例えば半導体素子などの部品が実装され、実装構造体に加工される。例えば、図5には、本発明に係る印刷配線板に部品70がワイヤーボンディング(フェイスアップ)実装された実装構造体が示され、図6には本発明に係る印刷配線板に部品71がフリップチップ(フェイスダウン)実装された実装構造体が示されている。
部品70、71と金属小片40の上面の配線導体層22は、熱伝導樹脂80などの伝熱材を介して接続され、また図6では部品71のはんだボール81がビアホール23と接続される。
なお、伝熱材は熱伝導樹脂に限定するものではなく、はんだ等の低融点金属でも良い。例えば、Sn3.0Ag0.5Cuなどの組成の金属である。
金属小片40と表面実装の部品70、71とが、従来のようにビアホールを介さずに接するため、実装された部品からの熱の放熱性が向上する。なお、上記の実施形態では、金属小片40と表面実装の部品70、71とは配線導体層22を介して密着しているが、配線導体層22を介することなく、表面に露出した金属小片40に部品70、71を直接密着させてもよい。
Components such as semiconductor elements are mounted on the printed wiring board of the present invention and processed into a mounting structure. For example, FIG. 5 shows a mounting structure in which a component 70 is wire-bonded (face-up) mounted to a printed wiring board according to the present invention, and FIG. 6 shows a printed wiring board according to the present invention in which a component 71 is flipped. A chip (face down) mounted mounting structure is shown.
The components 70 and 71 and the wiring conductor layer 22 on the upper surface of the small metal piece 40 are connected via a heat transfer material such as a heat conductive resin 80, and in FIG. 6, the solder balls 81 of the component 71 are connected to the via holes 23.
The heat transfer material is not limited to the heat conductive resin, but may be a low melting point metal such as solder. For example, it is a metal having a composition such as Sn3.0Ag0.5Cu.
Since the small metal piece 40 and the surface-mounted components 70, 71 are in contact with each other without a via hole as in the conventional case, the heat dissipation from the mounted component is improved. In the above embodiment, the metal piece 40 and the surface-mounted components 70, 71 are in close contact with each other via the wiring conductor layer 22, but the metal piece 40 exposed on the surface without the wiring conductor layer 22. The components 70 and 71 may be directly adhered to each other.

なお、以上の実施形態では、金属小片および収容部が共に直方体状である場合について説明したが、収容部は、例えば逆円錐台状、逆楕円錐台状、逆多角錐台状などの逆錐台状であってもよい。逆多角錐台状としては、逆四角錐台状以外にも、例えば逆三角錐台状、逆五角錐台状、逆六角錐台状、逆七角錐台状、逆八角錐台状などが挙げられる。 In the above embodiments, the case where the metal piece and the accommodating portion are both in the shape of a rectangular parallelepiped is described. However, the accommodating portion may be, for example, an inverted truncated cone, an inverted elliptical truncated cone, or an inverted polygonal truncated cone. It may be trapezoidal. Examples of the inverted polygonal truncated pyramid include an inverted quadrangular truncated pyramid, an inverted triangular truncated pyramid, an inverted pentagonal truncated pyramid, an inverted hexagonal truncated pyramid, an inverted octagonal truncated pyramid, and the like. To be

また、金属小片は、例えば錐台状(円錐台状、楕円錐台状、多角錐台状など)、柱状(円柱状、楕円柱状、多角柱状など)などであってもよい。多角錐台状としては、四角錐台状以外にも、例えば三角錐台状、五角錐台状、六角錐台状、七角錐台状、八角錐台状などが挙げられる。また、多角柱状としては、四角柱状以外にも、三角柱状、五角柱状、六角柱状、七角柱状、八角柱状などが挙げられる。
金属小片と収容部とは、四角錐台状と逆四角錐台状とのように角数(形状)が同じであることが好ましい。
Further, the small metal piece may have, for example, a frustum shape (frustroconical shape, elliptical frustum shape, polygonal frustum shape, or the like), a columnar shape (cylindrical shape, elliptic shape, polygonal shape, or the like). Examples of the polygonal truncated pyramid include a triangular truncated pyramid, a pentagonal truncated pyramid, a hexagonal truncated pyramid, a heptagonal truncated pyramid, and an octagonal truncated pyramid. In addition to the quadrangular prism, examples of the polygonal prism include a triangular prism, a pentagonal prism, a hexagonal prism, a heptagonal prism, and an octagonal prism.
It is preferable that the metal piece and the accommodating portion have the same number of angles (shape) such as a truncated pyramid shape and an inverted truncated pyramid shape.

図7は、収容部11’を逆錐台状にした一例を示している。この収容部11’に収容される金属小片40’は直方体で構成されており、下端部が収容部11’の下部縁部で保持されている。その他は、図1〜図6に示した配線基板と同じであるので、同一符号を付して説明を省略する。
このように収容部11’を逆錐台状にすると、収容部11’の上部が広いため、金属小片40’を収容するのが容易になり、また収容部11’の下部縁部で金属小片40’を安定に保持できるようになる。
FIG. 7 shows an example in which the accommodating portion 11′ has an inverted truncated cone shape. The metal piece 40' housed in the housing portion 11' is formed of a rectangular parallelepiped, and the lower end portion is held by the lower edge portion of the housing portion 11'. Others are the same as those of the wiring board shown in FIGS. 1 to 6, and therefore, the same reference numerals are given and the description thereof will be omitted.
When the accommodating part 11' is formed into an inverted frustum shape in this manner, since the upper part of the accommodating part 11' is wide, it is easy to accommodate the small metal piece 40', and the metal small piece is formed at the lower edge of the accommodating part 11'. 40' can be held stably.

1 絶縁板
2 コア基板
2a 薄銅箔
2b 両面銅張基板
2c 導体
3 ビアホール
3a ビアホール下穴
4 配線パターン
11、11’ 収容部
12 配線基板部
13 金属小片固定樹脂
20 積層体
21 プリプレグ
21a 絶縁樹脂層
22 配線導体層
22a 薄銅箔
23 ビアホール
23a ビアホール下穴
26 薄銅箔開口部
30 ソルダーレジスト
31 めっき層
40、40’ 金属小片
50 PETフィルム
60 銅めっき
70,71 部品
80 熱伝導樹脂
81 はんだボール
DESCRIPTION OF SYMBOLS 1 Insulation plate 2 Core board 2a Thin copper foil 2b Double-sided copper clad board 2c Conductor 3 Via hole 3a Via hole pilot hole 4 Wiring pattern 11, 11' Storage part 12 Wiring board part 13 Small metal piece fixing resin 20 Laminated body 21 Prepreg 21a Insulating resin layer 22 wiring conductor layer 22a thin copper foil 23 via hole 23a via hole prepared hole 26 thin copper foil opening 30 solder resist 31 plating layer 40, 40' metal small piece 50 PET film 60 copper plating 70,71 parts 80 thermal conductive resin 81 solder ball

Claims (11)

絶縁板の少なくとも一方の面に配線パターンが形成されたコア基板と、
コア基板の表面に積層され、絶縁樹脂層および配線導体層を交互に積層した多層のビルドアップ層と、
前記コア基板とビルドアップ層とを貫通する貫通孔である収容部と、
この収容部に収容された金属小片と、
を備え、
前記絶縁樹脂層が、銅箔開口部を有する薄銅箔を含み、前記銅箔開口部の径が前記収容部の径よりも大きく、
前記収容部内周面と金属小片との間隙部分から前記絶縁樹脂層の表面に至る部分に、絶縁性の金属小片固定樹脂を充填して金属小片が固定され、前記金属小片の表面および前記金属小片固定樹脂の表面に形成された銅めっき並びに、前記絶縁樹脂層の表面の薄銅箔上に形成された銅めっきからなる配線導体層をさらに備えていることを特徴とする多層印刷配線板。
A core substrate having a wiring pattern formed on at least one surface of the insulating plate;
A multilayer build-up layer that is laminated on the surface of the core substrate and in which insulating resin layers and wiring conductor layers are alternately laminated,
An accommodating portion that is a through hole that penetrates the core substrate and the buildup layer,
A small piece of metal housed in this housing,
Equipped with
The insulating resin layer includes a thin copper foil having a copper foil opening, the diameter of the copper foil opening is larger than the diameter of the accommodation portion,
A metal piece is fixed by filling an insulating metal piece fixing resin in a portion from the gap between the inner peripheral surface of the accommodating portion and the metal piece to the surface of the insulating resin layer, and the metal piece is fixed to the surface of the metal piece and the metal piece. A multilayer printed wiring board, further comprising a wiring conductor layer made of copper plating formed on the surface of the fixing resin and copper plating formed on the thin copper foil on the surface of the insulating resin layer.
前記金属小片が錐台状であり、前記収容部は、多層印刷配線板の一方の面から他方の面にかけて寸法が小さくなる逆錐台状の貫通孔であり、逆錐台状の収容部内に錐台状の金属小片が収容される請求項1に記載の多層印刷配線板。 The metal piece is frustum-shaped, and the accommodating portion is an inverted frustum-shaped through hole whose size decreases from one surface to the other surface of the multilayer printed wiring board. The multilayer printed wiring board according to claim 1, wherein a frustum-shaped metal piece is housed. 前記金属小片が多角錐台状、円錐台状または楕円錐台状で、前記収容部が逆多角錐台状、逆円錐台状または逆楕円錐台状の貫通孔である、請求項1または2に記載の多層印刷配線板。 The metal piece has a polygonal truncated cone shape, a truncated cone shape, or an elliptical truncated cone shape, and the accommodation portion is an inverted polygonal truncated cone shape, an inverted truncated cone shape, or an inverted elliptical truncated cone shape through hole. The multilayer printed wiring board according to. 前記金属小片が銅小片である、請求項1〜3のいずれかに記載の多層印刷配線板。 The multilayer printed wiring board according to claim 1, wherein the metal piece is a copper piece. 前記金属小片の表面が、前記ビルドアップ層の表面と略同一面である、請求項1〜4のいずれかに記載の多層印刷配線板。 The multilayer printed wiring board according to claim 1, wherein the surface of the metal piece is substantially flush with the surface of the buildup layer. 請求項1〜5のいずれかに記載の多層印刷配線板の少なくとも一方の面における前記金属小片が収容された位置に部品を直接実装したことを特徴とする実装構造体。 A mounting structure, in which a component is directly mounted at a position where the metal piece is accommodated on at least one surface of the multilayer printed wiring board according to claim 1. 前記部品がフェイスダウンまたはフェイスアップで印刷配線板に実装され、部品下部を熱伝導樹脂または低融点金属で金属小片上に密着させていることを特徴とする請求項6に記載の実装構造体。 7. The mounting structure according to claim 6, wherein the component is mounted face down or face up on a printed wiring board, and a lower portion of the component is adhered to a metal piece with a heat conductive resin or a low melting point metal. 前記部品下部を、金属小片の表面に形成された配線導体層を介して金属小片上に密着させている請求項7に記載の実装構造体。 The mounting structure according to claim 7, wherein the lower part of the component is brought into close contact with the metal piece through a wiring conductor layer formed on the surface of the metal piece. 絶縁板の少なくとも一方の面に配線パターンを形成してコア基板を得る工程と、
コア基板の表面に、薄銅箔を含む絶縁樹脂層および配線導体層を交互に積層し、該薄銅箔を部分的に除去して得られる銅箔開口部を含む多層のビルドアップ層を形成する工程と、
該銅箔開口部内に、前記コア基板とビルドアップ層とを貫通し、前記銅箔開口部の径より径が小さい貫通孔収容部として形成する工程と、
前記収容部に高さが収容部の厚みより大きい金属小片を収容する工程と、
前記収容部と前記金属小片との間隙から前記絶縁樹脂層の表面に至る部分にかけて、絶縁性の金属小片固定樹脂を充填して硬化させる工程と、
前記金属小片固定樹脂を硬化させた後、印刷配線板の表面から突出していた金属小片の表面ならびに硬化した前記金属小片固定樹脂の表面が略同一面となるように研磨する工程と、
前記金属小片の表面および前記金属小片固定樹脂の表面に形成された銅めっき並びに、前記絶縁樹脂層の表面の薄銅箔上に形成された銅めっきからなる配線導体層を形成する工程と、
を含むことを特徴とする多層印刷配線板の製造方法。
Forming a wiring pattern on at least one surface of the insulating plate to obtain a core substrate;
An insulating resin layer containing a thin copper foil and a wiring conductor layer are alternately laminated on the surface of the core substrate, and a multilayer build-up layer including a copper foil opening obtained by partially removing the thin copper foil is formed. The process of
The copper foil opening, a step of the core through the board and the buildup layer, forming the copper foil opening diameter size than smaller through hole of the housing portion,
A step of accommodating a metal piece whose height is larger than the thickness of the accommodating part in the accommodating part;
A step of filling and curing an insulating metal piece fixing resin from the gap between the accommodating portion and the metal piece to the surface of the insulating resin layer ,
After curing the metal piece fixing resin, a step of polishing so that the surface of the metal piece protruding from the surface of the printed wiring board and the surface of the cured metal piece fixing resin are substantially flush with each other,
Copper plating formed on the surface of the metal piece and the surface of the metal piece fixing resin, and a step of forming a wiring conductor layer made of copper plating formed on a thin copper foil on the surface of the insulating resin layer,
A method for producing a multilayer printed wiring board, comprising:
前記コア基板を得る工程の前に、前記コア基板の上下面を電気的に接続するために、絶縁板にビアホールを形成する工程を含む、請求項9に記載の多層印刷配線板の製造方法。 The method for manufacturing a multilayer printed wiring board according to claim 9, further comprising the step of forming via holes in an insulating plate to electrically connect the upper and lower surfaces of the core substrate before the step of obtaining the core substrate. 前記収容部を形成する工程がレーザ加工または金型加工によって行われる、請求項9または10に記載の多層印刷配線板の製造方法。
The method for manufacturing a multilayer printed wiring board according to claim 9, wherein the step of forming the housing portion is performed by laser processing or die processing.
JP2014060520A 2014-03-24 2014-03-24 Multilayer printed wiring board and manufacturing method thereof Active JP6713187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014060520A JP6713187B2 (en) 2014-03-24 2014-03-24 Multilayer printed wiring board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014060520A JP6713187B2 (en) 2014-03-24 2014-03-24 Multilayer printed wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015185671A JP2015185671A (en) 2015-10-22
JP6713187B2 true JP6713187B2 (en) 2020-06-24

Family

ID=54351888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014060520A Active JP6713187B2 (en) 2014-03-24 2014-03-24 Multilayer printed wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6713187B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6788268B2 (en) 2016-02-22 2020-11-25 株式会社ダイワ工業 Manufacturing method of wiring board or wiring board material
WO2018123480A1 (en) * 2016-12-28 2018-07-05 タツタ電線株式会社 Heat dissipation board, heat dissipation circuit structure, and method for manufacturing same
JP6969891B2 (en) * 2017-04-28 2021-11-24 日本シイエムケイ株式会社 Manufacturing method of printed wiring board
CN110856346B (en) * 2018-08-21 2022-05-03 健鼎(无锡)电子有限公司 Printed circuit board and method for manufacturing the same
KR102167943B1 (en) * 2018-10-10 2020-10-20 엠에스웨이 주식회사 Method for forming via hole
CN111385959A (en) * 2018-12-27 2020-07-07 欣兴电子股份有限公司 A circuit board with heat dissipation block and its manufacturing method
JP7236930B2 (en) * 2019-05-23 2023-03-10 三菱電機株式会社 Heat dissipation device
WO2021084749A1 (en) * 2019-11-01 2021-05-06 株式会社メイコー Heat dissipation substrate and production method therefor
JP7406973B2 (en) * 2019-12-11 2023-12-28 ローム株式会社 semiconductor equipment

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07235737A (en) * 1994-02-23 1995-09-05 Ibiden Co Ltd Electronic device with heat sink and method of manufacturing it
JP2003197835A (en) * 2001-12-26 2003-07-11 Tdk Corp Power amplification module and element aggregate therefor
JP4159861B2 (en) * 2002-11-26 2008-10-01 新日本無線株式会社 Method for manufacturing heat dissipation structure of printed circuit board
JP2005026368A (en) * 2003-06-30 2005-01-27 Tdk Corp Multilayer substrate with via hole for heat dissipation and power amplifier module using the same
JP3922642B2 (en) * 2003-07-30 2007-05-30 日本無線株式会社 Printed circuit board with heat conducting member and method for manufacturing the same
JP2006332449A (en) * 2005-05-27 2006-12-07 Cmk Corp Multilayer printed wiring board and manufacturing method thereof
JP2012119607A (en) * 2010-12-03 2012-06-21 Mitsubishi Electric Corp High heat dissipation substrate
JP2013098185A (en) * 2011-10-27 2013-05-20 Ain:Kk Wiring board with heat sink and method for manufacturing the same
JP5987314B2 (en) * 2011-12-27 2016-09-07 イビデン株式会社 Printed wiring board
TWI505755B (en) * 2012-04-13 2015-10-21 Subtron Technology Co Ltd Package carrier board and manufacturing method thereof
WO2014199456A1 (en) * 2013-06-12 2014-12-18 株式会社メイコー Manufacturing method for heat-dissipating substrate

Also Published As

Publication number Publication date
JP2015185671A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
JP6713187B2 (en) Multilayer printed wiring board and manufacturing method thereof
KR101475109B1 (en) Multilayer Wiring Substrate and Method of Manufacturing the Same
CN101207109B (en) Wiring structure of printed wiring board and method for forming the same
JP4331769B2 (en) Wiring structure, method for forming the same, and printed wiring board
JP2009295949A (en) Printed circuit board with electronic component embedded therein and manufacturing method therefor
US11812556B2 (en) Printed circuit board and manufacturing method thereof
JP2010135720A (en) Printed circuit board comprising metal bump and method of manufacturing the same
US20150156883A1 (en) Printed circuit board and manufacturing method thereof
JP5892157B2 (en) Printed circuit board, method for manufacturing printed circuit board, and semiconductor device
US20140116759A1 (en) Printed wiring board and method for manufacturing printed wiring board
JP2013161939A (en) Sheet material, manufacturing method of sheet material, inductor component, wiring board, and magnetic material
KR100619348B1 (en) Manufacturing Method of Package Substrate Using Electroless Nickel Plating
JP2008124247A (en) Substrate with built-in component and its manufacturing method
JP6420561B2 (en) Printed wiring board and manufacturing method thereof
US9137896B2 (en) Wiring substrate
JP6321979B2 (en) Printed wiring board and manufacturing method thereof
JP2008270633A (en) Semiconductor device embedded substrate
US20150156882A1 (en) Printed circuit board, manufacturing method thereof, and semiconductor package
JP6502106B2 (en) Method of manufacturing printed wiring board
JP6460439B2 (en) Printed wiring board and manufacturing method thereof
JP6215731B2 (en) Printed wiring board and manufacturing method thereof
JP2010040625A (en) Wiring substrate and method of manufacturing the same
JP2015191996A (en) Printed wiring board and manufacturing method thereof
JP2018056314A (en) Method of manufacturing printed-circuit board and printed-circuit board
JP2008282953A (en) Manufacturing method of wiring board

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141104

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160509

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181122

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190107

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200528

R150 Certificate of patent or registration of utility model

Ref document number: 6713187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150