[go: up one dir, main page]

JP6692659B2 - Vehicle air conditioner - Google Patents

Vehicle air conditioner Download PDF

Info

Publication number
JP6692659B2
JP6692659B2 JP2016037032A JP2016037032A JP6692659B2 JP 6692659 B2 JP6692659 B2 JP 6692659B2 JP 2016037032 A JP2016037032 A JP 2016037032A JP 2016037032 A JP2016037032 A JP 2016037032A JP 6692659 B2 JP6692659 B2 JP 6692659B2
Authority
JP
Japan
Prior art keywords
failure
solenoid valve
refrigerant
valve
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016037032A
Other languages
Japanese (ja)
Other versions
JP2017154521A (en
Inventor
徹也 石関
徹也 石関
めぐみ 重田
めぐみ 重田
竜 宮腰
竜 宮腰
耕平 山下
耕平 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Automotive Climate Systems Corp
Original Assignee
Sanden Automotive Climate Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Automotive Climate Systems Corp filed Critical Sanden Automotive Climate Systems Corp
Priority to JP2016037032A priority Critical patent/JP6692659B2/en
Priority to PCT/JP2017/008034 priority patent/WO2017150592A1/en
Publication of JP2017154521A publication Critical patent/JP2017154521A/en
Application granted granted Critical
Publication of JP6692659B2 publication Critical patent/JP6692659B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置、特にハイブリッド自動車や電気自動車に適用可能な空気調和装置に関するものである。   The present invention relates to a heat pump type air conditioner that air-conditions a passenger compartment of a vehicle, and particularly to an air conditioner applicable to a hybrid vehicle or an electric vehicle.

近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する圧縮機と、車室内側に設けられて冷媒を放熱させる放熱器と、車室内側に設けられて冷媒を吸熱させる吸熱器と、車室外側に設けられて冷媒を放熱又は吸熱させる室外熱交換器と、室外熱交換器に流入する冷媒を減圧させる室外膨張弁と、冷媒の流れを切り換える複数の電磁弁を備え、これら電磁弁を制御することで、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器において放熱させ、放熱器において放熱した冷媒を吸熱器のみ、又は、この吸熱器と室外熱交換器において吸熱させる除湿暖房モードと、圧縮機から吐出された冷媒を放熱器及び室外熱交換器において放熱させ、吸熱器において吸熱させる除湿冷房モードと、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させる冷房モードとを切り換えて実行するものが開発されている(例えば、特許文献1参照)。   With the emergence of environmental problems in recent years, hybrid vehicles and electric vehicles have come into widespread use. Then, as an air conditioner that can be applied to such a vehicle, a compressor that compresses and discharges a refrigerant, a radiator that is provided inside the vehicle interior to radiate the refrigerant, and an interior side of the vehicle interior are provided. A heat absorber that absorbs the refrigerant, an outdoor heat exchanger that is provided outside the vehicle compartment to radiate or absorb the refrigerant, an outdoor expansion valve that decompresses the refrigerant flowing into the outdoor heat exchanger, and a plurality of refrigerant flow switches A solenoid valve is provided, and by controlling these solenoid valves, the refrigerant discharged from the compressor dissipates heat in the radiator, and the refrigerant dissipated in this radiator absorbs heat in the outdoor heat exchanger. The discharged refrigerant is radiated by the radiator, and the refrigerant radiated by the radiator is absorbed by only the heat absorber, or this heat absorber and the outdoor heat exchanger. A dehumidifying and cooling mode in which the generated refrigerant is radiated in the radiator and the outdoor heat exchanger and is absorbed in the heat absorber, and a cooling mode in which the refrigerant discharged from the compressor is radiated in the outdoor heat exchanger and is absorbed in the heat absorber. What is switched and executed has been developed (for example, see Patent Document 1).

この特許文献1の場合、室外膨張弁と室外熱交換器の直列回路をバイパスする除湿用の回路(特許文献1の冷媒配管13F)が設けられており、除湿暖房モードでは放熱器を経た冷媒が室外膨張弁と除湿用の回路に分流され、吸熱器と室外熱交換器で吸熱させる。そして、この除湿暖房モードでは放熱器の圧力(高圧圧力)に基づいて圧縮機を制御することで放熱器による加熱を調整し、吸熱器の温度に基づいて室外膨張弁の弁開度を制御することで吸熱器で吸熱する冷媒量を調整していた。   In the case of Patent Document 1, a circuit for dehumidification (refrigerant pipe 13F of Patent Document 1) that bypasses the series circuit of the outdoor expansion valve and the outdoor heat exchanger is provided, and in the dehumidification heating mode, the refrigerant that has passed through the radiator is The flow is divided into the outdoor expansion valve and the dehumidifying circuit, and the heat is absorbed by the heat absorber and the outdoor heat exchanger. In this dehumidification heating mode, the compressor is controlled based on the pressure (high pressure) of the radiator to adjust the heating by the radiator, and the opening degree of the outdoor expansion valve is controlled based on the temperature of the heat absorber. Therefore, the amount of refrigerant absorbed by the heat absorber was adjusted.

一方、上記の如く室外膨張弁と室外熱交換器をバイパスする除湿用の回路では無く、上記放熱器に相当する内部凝縮機と上記室外膨張弁に相当する第1膨張バルブをバイパスする配管を設けたものも開発されている(例えば、特許文献2参照)。   On the other hand, instead of the dehumidifying circuit that bypasses the outdoor expansion valve and the outdoor heat exchanger as described above, a pipe that bypasses the internal condenser that corresponds to the radiator and the first expansion valve that corresponds to the outdoor expansion valve is provided. Have also been developed (see, for example, Patent Document 2).

その場合は、冷媒を圧縮して吐出する圧縮器と、車室内側に設けられて冷媒を放熱させる内部凝縮機と、車室内側に設けられて冷媒を吸熱させる蒸発器と、車室外側に設けられて冷媒を放熱又は吸熱させる外部凝縮機と、この外部凝縮機に流入する冷媒を膨張させる第1膨張バルブと、蒸発器に流入する冷媒を膨張させる第2膨張バルブと、内部凝縮機及び第1膨張バルブをバイパスする配管と、圧縮器から吐出された冷媒を内部凝縮機に流すか、それをバイパスする配管に流すかを切り換える第1バルブが設けられ、この第1バルブにより圧縮器から吐出された冷媒を内部凝縮機において放熱させ、この放熱した冷媒を外部凝縮機において吸熱させる暖房モードと、圧縮器から吐出された冷媒を内部凝縮機において放熱させ、放熱した冷媒を蒸発器において吸熱させる除湿モードと、第1バルブを切り換えて圧縮器から吐出された冷媒を内部凝縮機では無く前記バイパスする配管から外部凝縮機に流して放熱させ、蒸発器において吸熱させる冷房モードを切り換えて実行していた。   In that case, a compressor that compresses and discharges the refrigerant, an internal condenser that is provided inside the vehicle interior to radiate the refrigerant, an evaporator that is provided inside the vehicle interior to absorb the refrigerant, and an outside of the vehicle interior. An external condenser provided for radiating or absorbing heat of the refrigerant, a first expansion valve for expanding the refrigerant flowing into the external condenser, a second expansion valve for expanding the refrigerant flowing into the evaporator, an internal condenser and A pipe that bypasses the first expansion valve and a first valve that switches between flowing the refrigerant discharged from the compressor to the internal condenser or the pipe that bypasses the refrigerant are provided. The heating mode in which the discharged refrigerant radiates heat in the internal condenser, and the radiated refrigerant absorbs heat in the external condenser, and the refrigerant discharged from the compressor radiates heat in the internal condenser and radiates heat. A dehumidification mode in which heat is absorbed in the evaporator, and a cooling mode in which the refrigerant discharged from the compressor by switching the first valve is flowed to the external condenser from the bypass pipe rather than the internal condenser to radiate heat and the heat is absorbed in the evaporator are set. I was switching and running.

特開2014−94671号公報JP, 2014-94671, A 特開2013−23210号公報JP, 2013-23210, A

上記各特許文献のような車両用空気調和装置において、電磁弁や第1バルブが故障した場合、選択された運転モードを実現できなくなり、快適な車室内の空調を行えなくなる。そこで、従来では係る電磁弁等の故障を複雑な判定方法で実現していたため、制御が煩雑化する決定があった。また、電磁弁等が複数存在する場合、運転状態の異常からはどの電磁弁が故障しているか特定できない場合もあった。   In the vehicle air conditioner as in each of the above patent documents, when the solenoid valve or the first valve fails, the selected operation mode cannot be realized, and comfortable air conditioning of the vehicle interior cannot be performed. Therefore, conventionally, a failure of the solenoid valve or the like has been realized by a complicated determination method, so that it has been decided that the control becomes complicated. In addition, when there are a plurality of solenoid valves and the like, it may not be possible to identify which solenoid valve is faulty from the abnormal operating state.

本発明は、係る従来の技術的課題を解決するために成されたものであり、比較的簡単に電磁弁の故障を判定することができる車両用空気調和装置を提供することを目的とする。   The present invention has been made to solve the conventional technical problems, and an object of the present invention is to provide a vehicle air conditioner that can determine a failure of a solenoid valve relatively easily.

本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられた室外熱交換器と、室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、放熱器及び室外膨張弁をバイパスして、圧縮機から吐出された冷媒を室外熱交換器に直接流入させるためのバイパス配管と、冷媒の流れを切り換えるための複数の電磁弁と、制御装置とを備え、この制御装置によって電磁弁を制御することにより、複数の運転モードを切り換えて実行するものであって、制御装置は、各部の温度、及び/又は、圧力の検出値、若しくは、それらから求められる算出値に基づき、運転状態が、電磁弁又は室外膨張弁の故障が原因と推定される異常状態となった場合、圧縮機の回転数を一定の値とし、当該圧縮機の回転数で予め測定された温度、及び/又は、圧力の正常検出値、若しくは、それらから算出された正常算出値と前記検出値、若しくは、算出値とを比較することにより、電磁弁又は室外膨張弁の故障と確定する故障確定モードを実行すると共に、異なる電磁弁又は室外膨張弁の故障が原因で同様の異常状態が発生する場合、当該異常状態が発生する原因となり得る電磁弁又は室外膨張弁のうちから、何れの弁が故障しているかを確定する故障弁確定モードを有し、且つ、複数の運転モードに応じた異なる故障弁確定モードを実行することを特徴とする。 The vehicle air conditioner of the present invention includes a compressor that compresses a refrigerant, an air flow passage through which air to be supplied to the vehicle compartment circulates, and heat that is supplied to the vehicle interior from the air flow passage by radiating the refrigerant. For heat dissipation, a heat absorber for absorbing the heat of the refrigerant to cool the air supplied from the air flow passage into the vehicle interior, an outdoor heat exchanger provided outside the vehicle interior, and a refrigerant flowing into the outdoor heat exchanger An outdoor expansion valve for decompressing the refrigerant, a bypass pipe for bypassing the radiator and the outdoor expansion valve, and allowing the refrigerant discharged from the compressor to directly flow into the outdoor heat exchanger, and for switching the flow of the refrigerant. A plurality of solenoid valves and a control device are provided, and by controlling the solenoid valve by the control device, a plurality of operation modes are switched and executed, and the control device controls the temperature of each part and / or Pressure detection value, if If the operating state becomes an abnormal state that is presumed to be due to a failure of the solenoid valve or the outdoor expansion valve, based on the calculated value obtained from them, set the rotation speed of the compressor to a constant value, and The temperature and / or pressure normal detection value preliminarily measured at the number of revolutions, or by comparing the normal detection value calculated from them with the detection value or the calculated value, the solenoid valve or the outdoor If a similar failure condition occurs due to the failure of a different solenoid valve or outdoor expansion valve while executing a failure confirmation mode that determines the failure of the expansion valve, the solenoid valve or outdoor expansion that may cause the failure condition. It is characterized in that it has a failure valve confirmation mode for determining which one of the valves has a failure, and executes different failure valve confirmation modes according to a plurality of operation modes .

請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、故障弁確定モードでは、複数の運転モード毎に異常状態が発生する原因となり得る電磁弁又は室外膨張弁を制御し、その場合の検出値の変化に応じて何れの弁が故障しているかを確定することを特徴とする。 In the vehicle air conditioner according to a second aspect of the present invention, in the above invention, the control device controls the solenoid valve or the outdoor expansion valve that may cause an abnormal state in each of the plurality of operation modes in the failure valve confirmation mode, It is characterized in that which valve has failed is determined according to the change in the detected value in that case .

請求項3の発明の車両用空気調和装置は、上記発明において空気流通路から車室内に供給する空気を加熱するための補助加熱装置を備え、制御装置は複数の運転モードとして、圧縮機から吐出された冷媒を放熱器に流して放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードと、圧縮機から吐出された冷媒をバイパス配管により室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させると共に、補助加熱装置を発熱させる除湿暖房モードと、圧縮機から吐出された冷媒を放熱器から室外熱交換器に流して当該放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿冷房モードと、圧縮機から吐出された冷媒を放熱器から室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる冷房モードと、圧縮機から吐出された冷媒をバイパス配管により室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる最大冷房モードと、圧縮機から吐出された冷媒を放熱器から室外熱交換器に流して当該室外熱交換器を除霜する除霜モードを有し、電磁弁を制御することにより、各運転モードを切り換えて実行することを特徴とする。 A vehicle air conditioner according to a third aspect of the present invention includes an auxiliary heating device for heating the air supplied from the air flow passage into the vehicle compartment in each of the above aspects of the invention, and the controller sets a plurality of operation modes from the compressor to the other mode. A heating mode in which the discharged refrigerant is passed through a radiator to dissipate the heat and the released heat is decompressed, and then the outdoor heat exchanger absorbs the heat, and the refrigerant discharged from the compressor is transferred to the outdoor heat exchanger through a bypass pipe. After flowing and radiating heat, decompressing the radiated refrigerant, and then absorbing heat in the heat absorber and dehumidifying and heating mode in which the auxiliary heating device generates heat, and the refrigerant discharged from the compressor is made to flow from the radiator to the outdoor heat exchanger. Dehumidifying and cooling mode in which the heat is dissipated by the heat radiator and the outdoor heat exchanger, the heat-dissipated refrigerant is decompressed, and then the heat is absorbed by the heat absorber. Flow through the outdoor heat exchanger to radiate the heat, reduce the pressure of the radiated refrigerant, and then absorb the heat in the heat absorber, and the refrigerant discharged from the compressor is circulated to the outdoor heat exchanger through the bypass pipe to radiate the heat. Then, after decompressing the refrigerant that has radiated heat, the maximum cooling mode in which the heat is absorbed by the heat absorber, and defrosting the outdoor heat exchanger by flowing the refrigerant discharged from the compressor from the radiator to the outdoor heat exchanger. It has a frost mode and is characterized in that each operation mode is switched and executed by controlling an electromagnetic valve.

請求項4の発明の車両用空気調和装置は、上記発明において暖房モードで開いて室外熱交換器から出た冷媒を圧縮機に流す暖房用の電磁弁と、除湿暖房モード、除湿冷房モード、冷房モード、及び、最大冷房モードで開いて室外熱交換器から出た冷媒を吸熱器に流す冷房用の電磁弁と、除湿暖房モード、及び、最大冷房モードで開いて圧縮機から吐出された冷媒をバイパス配管に流すバイパス用の電磁弁と、暖房モード、除湿冷房モード、冷房モード、及び、除霜モードで開いて圧縮機から吐出された冷媒を放熱器に流すリヒート用の電磁弁を備えたことを特徴とする。   A vehicle air conditioner according to a fourth aspect of the present invention is an electromagnetic valve for heating which allows the refrigerant that has been opened in the heating mode and has flowed out of the outdoor heat exchanger to flow into the compressor, the dehumidifying heating mode, the dehumidifying cooling mode, and the cooling in the above invention. Mode and the cooling solenoid valve that opens in the maximum cooling mode to let the refrigerant from the outdoor heat exchanger flow to the heat absorber, and the dehumidifying and heating mode, and the maximum cooling mode to open the refrigerant discharged from the compressor. A bypass solenoid valve for flowing into the bypass pipe, and a reheat solenoid valve for opening the refrigerant in the heating mode, dehumidifying and cooling mode, cooling mode, and defrosting mode and flowing the refrigerant discharged from the compressor to the radiator were provided. Is characterized by.

請求項5の発明の車両用空気調和装置は、上記発明において制御装置は暖房モードにおいて、圧縮機の吐出圧力が所定の保護停止値に上昇したときはリヒート用の電磁弁の閉故障、COPが低いときはバイパス用の電磁弁の開故障、室外熱交換器の温度が高いとき、又は、圧縮機の吸込冷媒温度が外気温度と同等であるときは暖房用の電磁弁の閉故障、放熱器における冷媒の過冷却度が異常に大きいとき、又は、圧縮機の起動時から放熱器の温度が変化しないときは室外膨張弁の閉故障、放熱器における冷媒の過冷却度が目標値とならないときは室外膨張弁の開故障、と推定して故障確定モードを実行することを特徴とする。   In the vehicle air conditioner according to a fifth aspect of the present invention, in the above-mentioned invention, when the control device is in the heating mode and the discharge pressure of the compressor rises to a predetermined protection stop value, the closing failure of the solenoid valve for reheating and the COP occur. When it is low, the solenoid valve for bypass has a malfunction, when the temperature of the outdoor heat exchanger is high, or when the suction refrigerant temperature of the compressor is equal to the outside air temperature, the solenoid valve for heating has a malfunction and the radiator When the degree of supercooling of the refrigerant is abnormally high, or when the temperature of the radiator does not change from the start of the compressor, the outdoor expansion valve is closed, and the degree of supercooling of the refrigerant in the radiator does not reach the target value. Is characterized by executing the failure confirmation mode by estimating that the outdoor expansion valve is open.

請求項6の発明の車両用空気調和装置は、請求項4又は請求項5の発明において制御装置は除霜モードにおいて、圧縮機の吐出圧力が所定の保護停止値に上昇したときはリヒート用の電磁弁の閉故障、室外熱交換器の温度が高いとき、又は、圧縮機の吸込冷媒温度が外気温度と同等であるときは暖房用の電磁弁の閉故障、放熱器において冷媒の過冷却度が付くときは室外膨張弁の閉故障、と推定して故障確定モードを実行することを特徴とする。   A vehicle air conditioner according to a sixth aspect of the present invention is the vehicle air conditioner according to the fourth or fifth aspect, wherein the control device is for reheating when the discharge pressure of the compressor rises to a predetermined protection stop value in the defrosting mode. Closed solenoid valve for heating, when the temperature of the outdoor heat exchanger is high, or when the suction refrigerant temperature of the compressor is equal to the outside air temperature.Closed failure of the solenoid valve for heating, supercooling degree of refrigerant in the radiator. It is characterized by executing the failure confirmation mode by presuming that the outdoor expansion valve has a closed failure.

請求項7の発明の車両用空気調和装置は、請求項4乃至請求項6の発明において制御装置は除湿暖房モードにおいて、圧縮機の吐出圧力が所定の保護停止値に上昇したときはバイパス用の電磁弁の閉故障と推定して故障確定モードを実行することを特徴とする。   A vehicle air conditioner according to a seventh aspect of the present invention is the vehicle air conditioner according to any of the fourth to sixth aspects, wherein the control device is for bypass when the discharge pressure of the compressor rises to a predetermined protection stop value in the dehumidifying and heating mode. It is characterized in that the failure confirmation mode is executed assuming that the solenoid valve is in a closed failure.

請求項8の発明の車両用空気調和装置は、請求項4乃至請求項7の発明において制御装置は除湿冷房モード又は冷房モードにおいて、圧縮機の吐出圧力が所定の保護停止値に上昇したときはリヒート用の電磁弁の閉故障、放熱器において冷媒の過冷却度が付くときは室外膨張弁の閉故障、放熱器の温度が目標値とならないときは室外膨張弁の開故障、と推定して故障確定モードを実行することを特徴とする。   According to an eighth aspect of the present invention, there is provided the vehicle air conditioner according to the fourth to seventh aspects, wherein when the control device is in a dehumidifying cooling mode or a cooling mode, when the discharge pressure of the compressor rises to a predetermined protection stop value. It is presumed that the solenoid valve for reheating has a closed failure, the outdoor expansion valve has a closed failure when the radiator is supercooled, and the outdoor expansion valve has an open failure when the radiator temperature does not reach the target value. It is characterized in that the failure confirmation mode is executed.

請求項9の発明の車両用空気調和装置は、請求項4乃至請求項8の発明において制御装置は最大冷房モードにおいて、圧縮機の吐出圧力が所定の保護停止値に上昇したときはバイパス用の電磁弁の閉故障、圧縮機の吸込冷媒温度が外気温度と同等であるときは冷房用の電磁弁の閉故障、と推定して故障確定モードを実行することを特徴とする。   A vehicle air conditioner according to a ninth aspect of the present invention is the vehicle air conditioner according to any of the fourth to eighth aspects, wherein the control device is for bypass when the discharge pressure of the compressor rises to a predetermined protection stop value in the maximum cooling mode. The failure determination mode is executed by assuming that the solenoid valve is closed and that the cooling solenoid valve is closed when the suction refrigerant temperature of the compressor is equal to the outside air temperature.

請求項10の発明の車両用空気調和装置は、請求項4乃至請求項9の発明において制御装置は、最大冷房モード、冷房モード又は除湿冷房モードにおいて、吸熱器の温度が下がらない場合、故障弁確定モードを実行すると共に、この故障弁確定モードでは、暖房用の電磁弁とバイパス用の電磁弁を閉じ、リヒート用の電磁弁を開き、室外膨張弁の弁開度を縮小し、その状態で室外熱交換器の温度が下がれば暖房用の電磁弁の開故障、下がらなければ冷房用の電磁弁の閉故障、と確定することを特徴とする。   A vehicle air conditioner according to a tenth aspect of the present invention is the vehicle control device according to any of the fourth to ninth aspects, wherein the control device is a failure valve when the temperature of the heat absorber does not decrease in the maximum cooling mode, the cooling mode or the dehumidifying and cooling mode. In addition to executing the confirmation mode, in this failure valve confirmation mode, the solenoid valve for heating and the solenoid valve for bypass are closed, the solenoid valve for reheat is opened, the valve opening of the outdoor expansion valve is reduced, and in that state. If the temperature of the outdoor heat exchanger decreases, it is determined that the solenoid valve for heating has an open failure, and if the temperature of the outdoor heat exchanger has not decreased, the solenoid valve for cooling has a close failure.

請求項11の発明の車両用空気調和装置は、請求項4乃至請求項10の発明において制御装置は、最大冷房モードにおいて、圧縮機の吐出圧力が放熱器の圧力と同等である場合、故障弁確定モードを実行すると共に、この故障弁確定モードでは、バイパス用の電磁弁を閉じ、その状態で圧縮機の吐出圧力が所定の保護停止値に上昇しないときはリヒート用の電磁弁の開故障、上昇したときは室外膨張弁の開故障、と確定することを特徴とする。   In the vehicle air conditioner of the invention of claim 11, in the invention of claims 4 to 10, the controller is a failure valve when the discharge pressure of the compressor is equal to the pressure of the radiator in the maximum cooling mode. While executing the definite mode, in this failure valve definite mode, the solenoid valve for bypass is closed, and if the discharge pressure of the compressor does not rise to a predetermined protection stop value in that state, an open failure of the solenoid valve for reheat, When the temperature rises, it is determined that the outdoor expansion valve has an open failure.

請求項12の発明の車両用空気調和装置は、請求項4乃至請求項11の発明において制御装置は、除湿暖房モードにおいて、吸熱器の温度が下がらない場合、故障弁確定モードを実行すると共に、この故障弁確定モードでは、バイパス用の電磁弁を閉じた第1の状態とし、この第1の状態で圧縮機の吐出圧力が所定の保護停止値に上昇しないときはリヒート用の電磁弁の開故障と確定し、補助加熱装置の発熱を停止した第2の状態とし、この第2の状態で圧縮機の吐出圧力が放熱器の圧力と同等となったときは室外膨張弁の開故障と確定し、暖房用の電磁弁とバイパス用の電磁弁を閉じ、リヒート用の電磁弁を開き、室外膨張弁の弁開度を縮小した第3の状態とし、この第3の状態で室外熱交換器の温度が下がれば暖房用の電磁弁の開故障と確定し、第1の状態、第2の状態及び第3の状態としてリヒート用の電磁弁、室外膨張弁及び暖房用の電磁弁が正常であった場合、冷房用の電磁弁の閉故障と確定することを特徴とする。   In the vehicle air conditioner of the invention of claim 12, in the inventions of claims 4 to 11, the control device executes the failure valve determination mode when the temperature of the heat absorber does not decrease in the dehumidification heating mode, In this failure valve confirmation mode, the bypass solenoid valve is closed in the first state, and when the compressor discharge pressure does not rise to the predetermined protection stop value in this first state, the reheat solenoid valve is opened. When it is determined that a failure has occurred and the heat generation of the auxiliary heating device is stopped, the second state is reached, and when the discharge pressure of the compressor becomes equal to the pressure of the radiator in this second state, it is determined that the outdoor expansion valve is open. Then, the solenoid valve for heating and the solenoid valve for bypass are closed, the solenoid valve for reheat is opened, and the valve opening degree of the outdoor expansion valve is reduced to the third state. In this third state, the outdoor heat exchanger is opened. If the temperature of the If the reheat solenoid valve, the outdoor expansion valve, and the heating solenoid valve are normal as the first state, the second state, and the third state, it is determined that the cooling solenoid valve is closed. It is characterized by doing.

請求項13の発明の車両用空気調和装置は、上記各発明において制御装置は、電磁弁の故障が確定した場合、所定の報知動作を実行することを特徴とする。   A vehicle air conditioner according to a thirteenth aspect of the present invention is characterized in that, in each of the above aspects, the control device executes a predetermined notification operation when the malfunction of the solenoid valve is confirmed.

本発明によれば、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための吸熱器と、車室外に設けられた室外熱交換器と、室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、放熱器及び室外膨張弁をバイパスして、圧縮機から吐出された冷媒を室外熱交換器に直接流入させるためのバイパス配管と、冷媒の流れを切り換えるための複数の電磁弁と、制御装置とを備え、この制御装置によって電磁弁を制御することにより、複数の運転モードを切り換えて実行する車両用空気調和装置において、制御装置が、各部の温度、及び/又は、圧力の検出値、若しくは、それらから求められる算出値に基づき、運転状態が、電磁弁又は室外膨張弁の故障が原因と推定される異常状態となった場合、圧縮機の回転数を一定の値とし、当該圧縮機の回転数で予め測定された温度、及び/又は、圧力の正常検出値、若しくは、それらから算出された正常算出値と前記検出値、若しくは、算出値とを比較することにより、電磁弁又は室外膨張弁の故障と確定する故障確定モードを実行するようにしたので、検出値と正常検出値、或いは、算出値と正常算出値を比較することで、比較的簡易に電磁弁や室外膨張弁の故障の判定と確定を行うことができるようになる。   According to the present invention, a compressor for compressing a refrigerant, an air flow passage through which air supplied to the vehicle compartment circulates, and a radiator for radiating the refrigerant to heat the air supplied from the air flow passage to the vehicle interior. In order to reduce the pressure of the refrigerant that flows into the outdoor heat exchanger and the heat absorber that absorbs the heat of the refrigerant and cools the air that is supplied from the air flow passage into the vehicle interior, the outdoor heat exchanger that is provided outside the vehicle interior. Outdoor expansion valve, bypass pipes for bypassing the radiator and outdoor expansion valve, and allowing the refrigerant discharged from the compressor to directly flow into the outdoor heat exchanger, and a plurality of solenoid valves for switching the refrigerant flow. In a vehicle air conditioner that switches and executes a plurality of operation modes by controlling a solenoid valve by the control device, the control device controls the temperature and / or the pressure of each part. Detection value, young If the operating state becomes an abnormal state that is presumed to be due to a failure of the solenoid valve or the outdoor expansion valve, based on the calculated value obtained from them, set the rotation speed of the compressor to a constant value, and By detecting the temperature and / or pressure normally detected at the number of revolutions of the normal value, or by comparing the normal calculated value calculated from them with the detected value or the calculated value, the solenoid valve or the outdoor Since the failure confirmation mode for confirming the failure of the expansion valve is executed, by comparing the detected value with the normal detected value or the calculated value with the normal calculated value, the solenoid valve and the outdoor expansion valve can be relatively easily operated. It becomes possible to judge and confirm the failure.

ここで、異なる電磁弁又は室外膨張弁の故障によって同様の異常状態が発生する場合には、異常状態からは、どの電磁弁が故障しているのか、又は、室外膨張弁が故障しているのかを区別できなくなるが、本発明では制御装置が、異なる電磁弁又は室外膨張弁の故障が原因で同様の異常状態が発生する場合には、当該異常状態が発生する原因となり得る電磁弁又は室外膨張弁のうちから、何れの弁が故障しているかを確定する故障弁確定モードを有しており、更に、複数の運転モードに応じた異なる故障弁確定モードを実行するので、各運転モード毎に、どの電磁弁が故障しているのか、或いは、室外膨張弁が故障しているのかを確定することができるようになる。特に、請求項2の発明の如く制御装置が、故障弁確定モードでは、複数の運転モード毎に異常状態が発生する原因となり得る電磁弁又は室外膨張弁を制御し、その場合の検出値の変化に応じて何れの弁が故障しているかを確定するようにすれば、各運転モード毎に故障している弁を的確に確定を行うことができるようになる。 Here, when a similar abnormal state occurs due to a failure of a different solenoid valve or the outdoor expansion valve, which electromagnetic valve has failed or the outdoor expansion valve has failed from the abnormal state. However, in the present invention, when a similar abnormal state occurs due to the failure of a different solenoid valve or outdoor expansion valve in the present invention, the solenoid valve or outdoor expansion that may cause the abnormal state occurs. It has a failure valve confirmation mode that determines which one of the valves is defective, and it also executes different failure valve confirmation modes according to multiple operation modes. , what the solenoid valve has failed, or it is possible to determine whether the outdoor expansion valve is faulty. In particular, the control device controls the solenoid valve or the outdoor expansion valve that may cause an abnormal state in each of the plurality of operation modes in the failure valve confirmation mode, and changes the detection value in that case. By determining which valve has failed according to the above, it becomes possible to accurately determine the failed valve for each operation mode.

これらは、請求項3の発明の如く空気流通路から車室内に供給する空気を加熱するための補助加熱装置を備え、制御装置が複数の運転モードとして、圧縮機から吐出された冷媒を放熱器に流して放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードと、圧縮機から吐出された冷媒をバイパス配管により室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させると共に、補助加熱装置を発熱させる除湿暖房モードと、圧縮機から吐出された冷媒を放熱器から室外熱交換器に流して当該放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる除湿冷房モードと、圧縮機から吐出された冷媒を放熱器から室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる冷房モードと、圧縮機から吐出された冷媒をバイパス配管により室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる最大冷房モードと、圧縮機から吐出された冷媒を放熱器から室外熱交換器に流して当該室外熱交換器を除霜する除霜モードを有し、電磁弁を制御することにより、各運転モードを切り換えて実行する車両用空気調和装置において、請求項4の発明の如く暖房モードで開いて室外熱交換器から出た冷媒を圧縮機に流す暖房用の電磁弁と、除湿暖房モード、除湿冷房モード、冷房モード、及び、最大冷房モードで開いて室外熱交換器から出た冷媒を吸熱器に流す冷房用の電磁弁と、除湿暖房モード、及び、最大冷房モードで開いて圧縮機から吐出された冷媒をバイパス配管に流すバイパス用の電磁弁と、暖房モード、除湿冷房モード、冷房モード、及び、除霜モードで開いて圧縮機から吐出された冷媒を放熱器に流すリヒート用の電磁弁が設けられるものにおいて極めて有効である。   These are equipped with an auxiliary heating device for heating the air supplied into the vehicle compartment from the air flow passage as in the invention of claim 3, and the control device sets the plurality of operation modes to the refrigerant discharged from the compressor to the radiator. The heating mode in which the refrigerant is discharged by radiating the heat to reduce the pressure of the radiated refrigerant, and then the heat is absorbed by the outdoor heat exchanger, and the refrigerant discharged from the compressor is caused to radiate by radiating the refrigerant to the outdoor heat exchanger through the bypass pipe. After decompressing the refrigerant, the heat absorber absorbs heat and the auxiliary heating device generates heat, and the refrigerant discharged from the compressor is passed from the radiator to the outdoor heat exchanger to release the heat from the radiator and the outdoor heat. A dehumidifying and cooling mode in which heat is radiated by an exchanger and the radiated refrigerant is decompressed, and then the heat is absorbed by a heat absorber, and the refrigerant discharged from the compressor is caused to flow from the radiator to the outdoor heat exchanger and the outdoor heat exchanger concerned. To After radiating heat and decompressing the radiated refrigerant, the cooling mode in which the heat is absorbed by the heat absorber, and the refrigerant discharged from the compressor is made to flow through the outdoor heat exchanger through the bypass pipe to radiate the heat, and the radiated refrigerant is decompressed. After that, there is a maximum cooling mode in which the heat is absorbed by the heat absorber, and a defrost mode in which the refrigerant discharged from the compressor is made to flow from the radiator to the outdoor heat exchanger to defrost the outdoor heat exchanger, and the solenoid valve is used. In a vehicle air conditioner that switches and executes each operation mode by controlling, an electromagnetic valve for heating which opens in the heating mode and flows the refrigerant discharged from the outdoor heat exchanger to the compressor as in the invention of claim 4. And a solenoid valve for cooling, which allows the refrigerant discharged from the outdoor heat exchanger to flow into the heat absorber when opened in the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the maximum cooling mode, the dehumidifying heating mode, and the maximum cooling mode so The refrigerant discharged from the compressor to the bypass pipe and the bypass solenoid valve, and the refrigerant discharged from the compressor that is opened in the heating mode, dehumidifying and cooling mode, cooling mode, and defrosting mode flows to the radiator. It is extremely effective for those provided with a solenoid valve for reheating.

即ち、例えば請求項5の発明の如く制御装置が暖房モードにおいて、圧縮機の吐出圧力が所定の保護停止値に上昇したときはリヒート用の電磁弁の閉故障、COPが低いときはバイパス用の電磁弁の開故障、室外熱交換器の温度が高いとき、又は、圧縮機の吸込冷媒温度が外気温度と同等であるときは暖房用の電磁弁の閉故障、放熱器における冷媒の過冷却度が異常に大きいとき、又は、圧縮機の起動時から放熱器の温度が変化しないときは室外膨張弁の閉故障、放熱器における冷媒の過冷却度が目標値とならないときは室外膨張弁の開故障、と推定して故障確定モードを実行することにより、暖房モードでの各電磁弁や室外膨張弁の故障を的確に判定して確定することができるようになる。   That is, for example, when the control device is in the heating mode and the discharge pressure of the compressor rises to a predetermined protection stop value in the heating mode, the reheat solenoid valve is closed, and when the COP is low, it is used for bypass. Opening failure of the solenoid valve, when the temperature of the outdoor heat exchanger is high, or when the suction refrigerant temperature of the compressor is equal to the outside air temperature, the solenoid valve for heating fails to close, and the degree of supercooling of the refrigerant in the radiator Is abnormally large, or the temperature of the radiator has not changed since the compressor was started, the outdoor expansion valve closed.If the refrigerant supercooling degree in the radiator does not reach the target value, the outdoor expansion valve opens. By estimating the failure and executing the failure confirmation mode, it becomes possible to accurately determine and confirm the failure of each electromagnetic valve or the outdoor expansion valve in the heating mode.

また、請求項6の発明の如く制御装置が除霜モードにおいて、圧縮機の吐出圧力が所定の保護停止値に上昇したときはリヒート用の電磁弁の閉故障、室外熱交換器の温度が高いとき、又は、圧縮機の吸込冷媒温度が外気温度と同等であるときは暖房用の電磁弁の閉故障、放熱器において冷媒の過冷却度が付くときは室外膨張弁の閉故障、と推定して故障確定モードを実行することにより、除霜モードでの各電磁弁や室外膨張弁の故障を的確に判定して確定することができるようになる。   When the discharge pressure of the compressor rises to a predetermined protection stop value in the defrosting mode of the control device as in the sixth aspect of the invention, the solenoid valve for reheating has a closed failure and the temperature of the outdoor heat exchanger is high. Or if the compressor suction refrigerant temperature is equal to the outside air temperature, it is presumed that the solenoid valve for heating has a closed failure, and if the radiator has a supercooling degree of the refrigerant, the outdoor expansion valve has a closed failure. By executing the failure confirmation mode by performing the failure confirmation mode, it becomes possible to accurately determine and confirm the failure of each solenoid valve or the outdoor expansion valve in the defrosting mode.

また、請求項7の発明の如く制御装置が除湿暖房モードにおいて、圧縮機の吐出圧力が所定の保護停止値に上昇したときはバイパス用の電磁弁の閉故障と推定して故障確定モードを実行することにより、バイパス用の電磁弁の故障を的確に判定して確定することができるようになる。   Further, in the dehumidifying and heating mode of the invention as claimed in claim 7, when the discharge pressure of the compressor rises to a predetermined protection stop value, it is estimated that the bypass solenoid valve is closed and the failure confirmation mode is executed. By doing so, it becomes possible to accurately determine and confirm the failure of the bypass solenoid valve.

また、請求項8の発明の如く制御装置が除湿冷房モード又は冷房モードにおいて、圧縮機の吐出圧力が所定の保護停止値に上昇したときはリヒート用の電磁弁の閉故障、放熱器において冷媒の過冷却度が付くときは室外膨張弁の閉故障、放熱器の温度が目標値とならないときは室外膨張弁の開故障、と推定して故障確定モードを実行することにより、除湿冷房モード及び冷房モードでの各電磁弁や室外膨張弁の故障を的確に判定して確定することができるようになる。   Further, in the dehumidifying cooling mode or the cooling mode of the control device according to the invention of claim 8, when the discharge pressure of the compressor rises to a predetermined protection stop value, the solenoid valve for reheating fails to close, and the refrigerant in the radiator dissipates. It is estimated that the outdoor expansion valve is closed when the degree of subcooling is present, and the outdoor expansion valve is opened when the radiator temperature does not reach the target value. It becomes possible to accurately determine and determine the failure of each solenoid valve or the outdoor expansion valve in the mode.

更に、請求項9の発明の如く制御装置が最大冷房モードにおいて、圧縮機の吐出圧力が所定の保護停止値に上昇したときはバイパス用の電磁弁の閉故障、圧縮機の吸込冷媒温度が外気温度と同等であるときは冷房用の電磁弁の閉故障、と推定して故障確定モードを実行することにより、最大冷房モードでの各電磁弁の故障を的確に判定して確定することができるようになる。   Further, when the control device is in the maximum cooling mode and the discharge pressure of the compressor rises to a predetermined protection stop value in the maximum cooling mode as in the invention of claim 9, the solenoid valve for bypass is closed and the suction refrigerant temperature of the compressor is outside air. When the temperature is equivalent to the temperature, it is estimated that the solenoid valve for cooling has a closed fault, and by executing the fault confirmation mode, the fault of each solenoid valve in the maximum cooling mode can be accurately determined and confirmed. Like

ここで、最大冷房モード、冷房モード又は除湿冷房モードにおいて吸熱器の温度が下がらない、という異常状態は、異なる電磁弁の故障によって発生し得る。そこで、請求項10の発明の如く制御装置が、最大冷房モード、冷房モード又は除湿冷房モードにおいて、吸熱器の温度が下がらない場合、故障弁確定モードを実行すると共に、この故障弁確定モードでは、暖房用の電磁弁とバイパス用の電磁弁を閉じ、リヒート用の電磁弁を開き、室外膨張弁の弁開度を縮小し、その状態で室外熱交換器の温度が下がれば暖房用の電磁弁の開故障、下がらなければ冷房用の電磁弁の閉故障、と確定することにより、上記各運転モードにおいて異なる電磁弁の故障が原因で発生し得る、吸熱器の温度が下がらない、という異常状態が発生した場合にも、どの電磁弁が故障しているかを確定することができるようになる。   Here, the abnormal state that the temperature of the heat absorber does not decrease in the maximum cooling mode, the cooling mode, or the dehumidifying cooling mode may occur due to the failure of different solenoid valves. Therefore, when the temperature of the heat absorber does not decrease in the maximum cooling mode, the cooling mode, or the dehumidifying and cooling mode, the control device executes the failure valve confirmation mode, and in the failure valve confirmation mode, If the heating solenoid valve and the bypass solenoid valve are closed, the reheat solenoid valve is opened, the valve opening of the outdoor expansion valve is reduced, and if the temperature of the outdoor heat exchanger falls in that state, the solenoid valve for heating. Open failure, and if it does not go down, it will be determined that the cooling solenoid valve is closed, and the abnormal condition that the temperature of the heat absorber will not drop due to the failure of the different solenoid valve in each of the above operation modes In the event of the occurrence of, it becomes possible to determine which solenoid valve has failed.

また、圧縮機の吐出圧力が放熱器の圧力と同等である、という異常状態は、電磁弁や室外膨張弁の故障によって発生し得る。そこで、請求項11の発明の如く制御装置が、最大冷房モードにおいて、圧縮機の吐出圧力が放熱器の圧力と同等である場合、故障弁確定モードを実行すると共に、この故障弁確定モードでは、バイパス用の電磁弁を閉じ、その状態で圧縮機の吐出圧力が所定の保護停止値に上昇しないときはリヒート用の電磁弁の開故障、上昇したときは室外膨張弁の開故障、と確定することにより、最大冷房モードにおいて電磁弁や室外膨張弁の故障が原因で発生し得る、圧縮機の吐出圧力が放熱器の圧力と同等である、という異常状態が発生した場合にも、どちらの弁が故障しているかを確定することができるようになる。   An abnormal state in which the discharge pressure of the compressor is equal to the pressure of the radiator can occur due to a failure of the solenoid valve or the outdoor expansion valve. Therefore, when the discharge pressure of the compressor is equal to the pressure of the radiator in the maximum cooling mode, the control device executes the failure valve determination mode, and in the failure valve determination mode, When the bypass solenoid valve is closed and the compressor discharge pressure does not rise to the specified protection stop value in that state, it is determined that the reheat solenoid valve has an open failure, and if it has risen, the outdoor expansion valve has an open failure. Therefore, in the maximum cooling mode, even if there is an abnormal state that may occur due to a failure of the solenoid valve or the outdoor expansion valve, or the discharge pressure of the compressor is equal to the pressure of the radiator, either valve You will be able to determine if your car is out of order.

更に、除湿暖房モードにおいて吸熱器の温度が下がらない、という異常情報も、電磁弁や室外膨張弁の故障によって発生し得る。そこで、請求項12の発明の如く制御装置が、除湿暖房モードにおいて、吸熱器の温度が下がらない場合、故障弁確定モードを実行すると共に、この故障弁確定モードでは、バイパス用の電磁弁を閉じた第1の状態とし、この第1の状態で圧縮機の吐出圧力が所定の保護停止値に上昇しないときはリヒート用の電磁弁の開故障と確定し、補助加熱装置の発熱を停止した第2の状態とし、この第2の状態で圧縮機の吐出圧力が放熱器の圧力と同等となったときは室外膨張弁の開故障と確定し、暖房用の電磁弁とバイパス用の電磁弁を閉じ、リヒート用の電磁弁を開き、室外膨張弁の弁開度を縮小した第3の状態とし、この第3の状態で室外熱交換器の温度が下がれば暖房用の電磁弁の開故障と確定し、第1の状態、第2の状態及び第3の状態としてリヒート用の電磁弁、室外膨張弁及び暖房用の電磁弁が正常であった場合、冷房用の電磁弁の閉故障と確定することにより、除湿暖房モードにおいて電磁弁や室外膨張弁の故障が原因で発生し得る、吸熱器の温度が下がらない、という異常状態が発生した場合にも、どちらの弁が故障しているかを確定することができるようになる。   Further, abnormal information that the temperature of the heat absorber does not drop in the dehumidifying and heating mode may occur due to a failure of the solenoid valve or the outdoor expansion valve. Therefore, when the temperature of the heat absorber does not decrease in the dehumidifying and heating mode, the control device executes the failure valve confirmation mode and closes the bypass solenoid valve in the failure valve confirmation mode. In the first state, when the discharge pressure of the compressor does not rise to a predetermined protection stop value in this first state, it is determined that the solenoid valve for reheating has an open failure, and the heat generation of the auxiliary heating device is stopped. When the discharge pressure of the compressor becomes equal to the pressure of the radiator in this second state, it is determined that the outdoor expansion valve has an open failure, and the solenoid valve for heating and the solenoid valve for bypass are set. The solenoid valve for reheating is closed, and the opening degree of the outdoor expansion valve is reduced to the third state. If the temperature of the outdoor heat exchanger drops in this third state, the solenoid valve for heating fails. Confirmed, and the first state, the second state and the third state If the reheat solenoid valve, the outdoor expansion valve, and the heating solenoid valve are normal, the failure of the solenoid valve or the outdoor expansion valve in the dehumidification heating mode is confirmed by confirming that the cooling solenoid valve is closed. Even when an abnormal state that may occur due to the cause or the temperature of the heat absorber does not decrease, it is possible to determine which valve is defective.

そして、上記の如き電磁弁や室外膨張弁の故障が確定した場合に、請求項13の発明の如く制御装置が所定の報知動作を実行するようにすれば、使用者に各弁の故障発生を警告して迅速な対処を促すことができるようになるものである。   Then, when the failure of the solenoid valve or the outdoor expansion valve as described above is confirmed, the control device executes a predetermined notification operation as in the invention of claim 13, whereby the failure of each valve is instructed to the user. It will be possible to warn and prompt prompt action.

本発明を適用した一実施形態の車両用空気調和装置の構成図である(暖房モード、除湿暖房モード、除湿冷房モード及び冷房モード)。It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied (heating mode, dehumidification heating mode, dehumidification cooling mode, and cooling mode). 図1の車両用空気調和装置のコントローラの電気回路のブロック図である。It is a block diagram of the electric circuit of the controller of the air conditioning apparatus for vehicles of FIG. 図1の車両用空気調和装置のMAX冷房モード(最大冷房モード)のときの構成図である。It is a block diagram in the MAX cooling mode (maximum cooling mode) of the vehicle air conditioner of FIG. 図1の車両用空気調和装置の電磁弁又は室外膨張弁の故障が原因と推定される異常状態を説明する図である。It is a figure explaining the abnormal state estimated to be caused by the failure of the electromagnetic valve or the outdoor expansion valve of the vehicle air conditioner of FIG.

以下、本発明の実施の形態について、図面に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1も、バッテリの電力で駆動されるものとする。即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房モードを行い、更に、除湿暖房モード、除湿冷房モード、冷房モード、最大冷房モードとしてのMAX冷房モード、及び、除霜モードの各運転モードを選択的に実行するものである。   FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 of an embodiment of the present invention. A vehicle of an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and is driven by driving an electric motor for traveling with electric power charged in a battery. Yes (none are shown), and the vehicle air conditioner 1 of the present invention is also driven by the electric power of the battery. That is, the vehicle air conditioner 1 of the embodiment performs the heating mode by the heat pump operation using the refrigerant circuit in the electric vehicle that cannot be heated by the engine waste heat, and further performs the dehumidification heating mode, the dehumidification cooling mode, the cooling mode, The MAX cooling mode as the maximum cooling mode and each operation mode of the defrosting mode are selectively executed.

尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。   The present invention is not limited to an electric vehicle as a vehicle, but is also applicable to a so-called hybrid vehicle that uses an engine and an electric motor for traveling, and is also applicable to a normal vehicle that is driven by an engine. Needless to say.

実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を車室内に放熱させる放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6と、車室外に設けられて冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させる吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。   The vehicle air conditioner 1 of the embodiment is for performing air conditioning (heating, cooling, dehumidification, and ventilation) of a vehicle interior of an electric vehicle, and an electric compressor 2 for compressing a refrigerant, and vehicle interior air. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G to dissipate this refrigerant into the vehicle interior. And an outdoor expansion valve 6 which is an electrically operated valve that decompresses and expands the refrigerant during heating, and a heat exchange between the refrigerant and the outside air that is provided outside the vehicle compartment and functions as a radiator during cooling and as an evaporator during heating. An outdoor heat exchanger 7, an indoor expansion valve 8 including a motor-operated valve for decompressing and expanding the refrigerant, and a heat absorber 9 provided in the air flow passage 3 for absorbing heat from the inside and outside of the vehicle into the refrigerant. And accumulator 12 etc. Are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.

そして、この冷媒回路Rには所定量の冷媒と潤滑用のオイルが充填されている。尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。   The refrigerant circuit R is filled with a predetermined amount of refrigerant and lubricating oil. The outdoor heat exchanger 7 is provided with an outdoor blower 15. The outdoor blower 15 exchanges heat between the outdoor air and the refrigerant by forcibly ventilating the outdoor air through the outdoor heat exchanger 7, whereby the outdoor air is discharged while the vehicle is stopped (that is, the vehicle speed is 0 km / h). The heat exchanger 7 is configured to ventilate outside air.

また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは、除湿暖房モード、除湿冷房モード、冷房モード、及び、MAX冷房モードで開放される冷房用の電磁弁17を介してレシーバドライヤ部14に接続され、過冷却部16の出口側の冷媒配管13Bは室内膨張弁8介して吸熱器9の入口側に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。   Further, the outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 sequentially on the downstream side of the refrigerant, and the refrigerant pipe 13A discharged from the outdoor heat exchanger 7 has a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, Also, the refrigerant pipe 13B on the outlet side of the subcooling unit 16 is connected to the receiver dryer unit 14 via the electromagnetic valve 17 for cooling that is opened in the MAX cooling mode, and the refrigerant pipe 13B on the outlet side of the supercooling unit 16 is on the inlet side of the heat absorber 9 via the indoor expansion valve 8. It is connected to the. The receiver dryer unit 14 and the supercooling unit 16 structurally form a part of the outdoor heat exchanger 7.

また、過冷却部16と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側の冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出た低温の冷媒により冷却(過冷却)される構成とされている。   Further, the refrigerant pipe 13B between the supercooling section 16 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C on the outlet side of the heat absorber 9, and both constitute an internal heat exchanger 19. Thus, the refrigerant flowing into the indoor expansion valve 8 via the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant exiting the heat absorber 9.

また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房モードで開放される暖房用の電磁弁21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。この冷媒配管13Cがアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6を介して室外熱交換器7の入口側に接続されている。   Further, the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and the branched refrigerant pipe 13D is connected to the internal heat exchanger via a heating solenoid valve 21 opened in the heating mode. It is connected to the refrigerant pipe 13C on the downstream side of 19. The refrigerant pipe 13C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2. Further, the refrigerant pipe 13E on the outlet side of the radiator 4 is connected to the inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.

また、圧縮機2の吐出側と放熱器4の入口側の間の冷媒配管13Gには、暖房モード、除湿冷房モード、冷房モード、及び、除霜モードで開放され、除湿暖房モードとMAX冷房モードで閉じられるリヒート用の電磁弁30が介設されている。この場合、冷媒配管13Gは電磁弁30の上流側でバイパス配管35に分岐しており、このバイパス配管35は、除湿暖房モード及びMAX冷房モードで開放され、暖房モード、除湿冷房モード、冷房モード、及び、除霜モードで閉じられるバイパス用の電磁弁40を介して室外膨張弁6の下流側の冷媒配管13Eに連通接続されている。これらバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45が構成される。   Further, the refrigerant pipe 13G between the discharge side of the compressor 2 and the inlet side of the radiator 4 is opened in the heating mode, the dehumidifying and cooling mode, the cooling mode, and the defrosting mode, and the dehumidifying and heating mode and the MAX cooling mode. An electromagnetic valve 30 for reheating that is closed by means of is interposed. In this case, the refrigerant pipe 13G is branched to the bypass pipe 35 on the upstream side of the solenoid valve 30, and the bypass pipe 35 is opened in the dehumidifying heating mode and the MAX cooling mode, and the heating mode, the dehumidifying cooling mode, the cooling mode, Further, it is communicatively connected to the refrigerant pipe 13E on the downstream side of the outdoor expansion valve 6 via a bypass solenoid valve 40 that is closed in the defrosting mode. The bypass pipe 45, the solenoid valve 30, and the solenoid valve 40 constitute a bypass device 45.

このようなバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45を構成したことで、後述する如く圧縮機2から吐出された冷媒を室外熱交換器7に直接流入させる除湿暖房モードやMAX冷房モードと、圧縮機2から吐出された冷媒を放熱器4に流入させる暖房モード、除湿冷房モード、冷房モード、除霜モードとの切り換えを円滑に行うことができるようになる。   By configuring the bypass device 45 with the bypass pipe 35, the solenoid valve 30, and the solenoid valve 40, the dehumidifying and heating mode in which the refrigerant discharged from the compressor 2 directly flows into the outdoor heat exchanger 7 and the MAX mode. The cooling mode and the heating mode for allowing the refrigerant discharged from the compressor 2 to flow into the radiator 4, the dehumidifying and cooling mode, the cooling mode, and the defrosting mode can be smoothly switched.

また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。   Further, in the air flow passage 3 on the air upstream side of the heat absorber 9, respective intake ports of an outside air intake port and an inside air intake port are formed (represented by the intake port 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is the air inside the vehicle interior and the outside air (outside air introduction mode) which is the air outside the vehicle interior. There is. Further, on the air downstream side of the suction switching damper 26, an indoor blower (blower fan) 27 for feeding the introduced inside air or outside air to the air flow passage 3 is provided.

また、図1において23は実施例の車両用空気調和装置1に設けられた補助加熱装置としての補助ヒータである。実施例の補助ヒータ23は電気ヒータであるPTCヒータにて構成されており、空気流通路3の空気の流れに対して、放熱器4の空気上流側となる空気流通路3内に設けられている。そして、補助ヒータ23に通電されて発熱すると、吸熱器9を経て放熱器4に流入する空気流通路3内の空気が加熱される。即ち、この補助ヒータ23が所謂ヒータコアとなり、車室内の暖房を行い、或いは、それを補完する。   Reference numeral 23 in FIG. 1 denotes an auxiliary heater as an auxiliary heating device provided in the vehicle air conditioner 1 of the embodiment. The auxiliary heater 23 of the embodiment is composed of a PTC heater which is an electric heater, and is provided in the air flow passage 3 on the upstream side of the radiator 4 with respect to the air flow in the air flow passage 3. There is. When the auxiliary heater 23 is energized to generate heat, the air in the air flow passage 3 flowing into the radiator 4 via the heat absorber 9 is heated. That is, the auxiliary heater 23 functions as a so-called heater core to heat the interior of the vehicle or complement it.

また、補助ヒータ23の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を補助ヒータ23及び放熱器4に通風する割合を調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。   In addition, the air (inside air or outside air) in the air flow passage 3 that has flowed into the air flow passage 3 and passed through the heat absorber 9 is assisted in the air flow passage 3 on the air upstream side of the auxiliary heater 23. An air mix damper 28 that adjusts the ratio of ventilation to the heater 23 and the radiator 4 is provided. Further, FOOT (foot), VENT (vent), and DEF (def) outlets (represented by the outlet 29 in FIG. 1 as a representative) are formed in the air passage 3 on the air downstream side of the radiator 4. The blowout port 29 is provided with a blowout port switching damper 31 for controlling the switching of the blowout of air from the blowout ports.

次に、図2において32はプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された制御装置としてのコントローラ(ECU)であり、このコントローラ32の入力には車両の外気温度(Tam)を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力を検出する吸込圧力センサ44と、圧縮機2の吸込冷媒温度(Ts)を検出する吸込温度センサ55と、放熱器4の温度(放熱器4を経た空気の温度、又は、放熱器4自体の温度:放熱器温度TH)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力:放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9を経た空気の温度、又は、吸熱器9自体の温度:吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度、又は、室外熱交換器7自体の温度:室外熱交換器温度TXO)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力:室外熱交換器圧力PXO)を検出する室外熱交換器圧力センサ56の各出力が接続されている。また、コントローラ32の入力には更に、補助ヒータ23の温度(補助ヒータ23で加熱された直後の空気の温度、又は、補助ヒータ23自体の温度:補助ヒータ温度Tptc)を検出する補助ヒータ温度センサ50の出力も接続されている。 Next, in FIG. 2, reference numeral 32 denotes a controller (ECU) as a control device that is configured by a microcomputer that is an example of a computer including a processor, and the outside temperature (Tam) of the vehicle is detected at the input of the controller 32. The outside air temperature sensor 33, the outside air humidity sensor 34 that detects the outside air humidity, the HVAC suction temperature sensor 36 that detects the temperature of the air sucked into the air flow passage 3 from the suction port 25, and the air inside the vehicle (inside air). An inside air temperature sensor 37 for detecting the temperature, an inside air humidity sensor 38 for detecting the humidity of the air in the vehicle interior, an indoor CO 2 concentration sensor 39 for detecting the carbon dioxide concentration in the vehicle interior, and a blowout port 29 into the vehicle interior. And a discharge pressure sensor for detecting the discharge refrigerant pressure (discharge pressure Pd) of the compressor 2. 42, a discharge temperature sensor 43 for detecting the discharge refrigerant temperature of the compressor 2, a suction pressure sensor 44 for detecting the suction refrigerant pressure of the compressor 2, and a suction temperature for detecting the suction refrigerant temperature (Ts) of the compressor 2. The sensor 55, the radiator temperature sensor 46 for detecting the temperature of the radiator 4 (the temperature of the air passing through the radiator 4, or the temperature of the radiator 4 itself: the radiator temperature TH), and the refrigerant pressure of the radiator 4 ( The radiator pressure sensor 47 that detects the pressure of the refrigerant inside the radiator 4 or immediately after exiting the radiator 4, ie, the radiator pressure PCI, and the temperature of the heat absorber 9 (the temperature of the air that has passed through the heat absorber 9, or , Temperature of heat absorber 9 itself: heat absorber temperature sensor 48 for detecting heat absorber temperature Te), and refrigerant pressure of the heat absorber 9 (pressure of the refrigerant inside the heat absorber 9 or immediately after leaving the heat absorber 9) Detects heat absorber pressure sensor 49 and detects the amount of solar radiation into the passenger compartment For example, a photo sensor type solar radiation sensor 51, a vehicle speed sensor 52 for detecting a moving speed (vehicle speed) of the vehicle, an air conditioning (air conditioner) operation unit 53 for setting a set temperature and switching of operation modes, An outdoor heat exchanger temperature sensor 54 for detecting the temperature of the outdoor heat exchanger 7 (the temperature of the refrigerant immediately after exiting the outdoor heat exchanger 7, or the temperature of the outdoor heat exchanger 7 itself: the outdoor heat exchanger temperature TXO). And an outdoor heat exchanger pressure sensor for detecting the refrigerant pressure of the outdoor heat exchanger 7 (the pressure of the refrigerant in the outdoor heat exchanger 7 or immediately after it has exited from the outdoor heat exchanger 7: the outdoor heat exchanger pressure PXO). Each output of 56 is connected. An auxiliary heater temperature sensor for detecting the temperature of the auxiliary heater 23 (the temperature of the air immediately after being heated by the auxiliary heater 23, or the temperature of the auxiliary heater 23 itself: the auxiliary heater temperature Tptc) is also input to the controller 32. The output of 50 is also connected.

一方、コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、補助ヒータ23、電磁弁30(リヒート用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁40(バイパス用)の各電磁弁が接続されている。そして、コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御する。   On the other hand, the output of the controller 32 is the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the outlet switching damper 31, and the outdoor expansion. Valve 6, indoor expansion valve 8 and auxiliary heater 23, solenoid valve 30 (for reheat), solenoid valve 17 (for cooling), solenoid valve 21 (for heating), solenoid valve 40 (for bypass) are connected to each solenoid valve. Has been done. Then, the controller 32 controls these based on the output of each sensor and the setting input by the air conditioning operation unit 53.

以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。コントローラ32は実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード(最大冷房モード)及び除霜モードの各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れと制御の概略について説明する。   Next, the operation of the vehicle air conditioner 1 of the embodiment having the above configuration will be described. In the embodiment, the controller 32 switches and executes each operation mode of a heating mode, a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, a MAX cooling mode (maximum cooling mode), and a defrosting mode. First, an outline of the flow of refrigerant and control in each operation mode will be described.

(1)暖房モード
コントローラ32により(オートモード)或いは空調操作部53へのマニュアル操作(マニュアルモード)により暖房モードが選択されると、コントローラ32は電磁弁21(暖房用)を開放し、電磁弁17(冷房用)を閉じる。また、電磁弁30(リヒート用)を開放し、電磁弁40(バイパス用)を閉じる。
(1) Heating Mode When the heating mode is selected by the controller 32 (auto mode) or the manual operation (manual mode) to the air conditioning operation unit 53, the controller 32 opens the solenoid valve 21 (for heating) to open the solenoid valve. Close 17 (for cooling). Further, the solenoid valve 30 (for reheat) is opened, and the solenoid valve 40 (for bypass) is closed.

そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図1に破線で示す如く、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全ての空気が補助ヒータ23及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。   Then, the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 blows out from the indoor blower 27 and passes through the heat absorber 9 in the air flow passage 3 as shown by a broken line in FIG. The air is ventilated by the auxiliary heater 23 and the radiator 4. As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 through the electromagnetic valve 30 and the refrigerant pipe 13G. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated to a high temperature refrigerant in the radiator 4 (when the auxiliary heater 23 operates, the auxiliary heater 23 and the radiator 4). ), The refrigerant in the radiator 4 is deprived of heat by the air to be cooled and condensed and liquefied.

放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。   The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 via the refrigerant pipe 13E. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 evaporates, and heat is drawn up while traveling or from the outside air ventilated by the outdoor blower 15. That is, the refrigerant circuit R serves as a heat pump. Then, the low-temperature refrigerant that has exited the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C via the refrigerant pipe 13A, the electromagnetic valve 21 and the refrigerant pipe 13D, and is separated into gas and liquid there, and then the gas refrigerant is compressed into the compressor 2. The circulation that is sucked in is repeated. The air heated by the radiator 4 (when the auxiliary heater 23 operates, the auxiliary heater 23 and the radiator 4) is blown out from the air outlet 29, so that the interior of the vehicle is heated.

コントローラ32は、後述する目標吹出温度TAOから算出される目標放熱器温度TCO(放熱器温度THの目標値)から目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御する。また、コントローラ32は、放熱器温度センサ46が検出する放熱器4の温度(放熱器温度TH)及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度SC(放熱器温度THと放熱器圧力PCIから算出される)をその目標値である所定の目標過冷却度TGSCに制御する。前記目標放熱器温度TCOは基本的にはTCO=TAOとされるが、制御上の所定の制限が設けられる。   The controller 32 calculates the target radiator pressure PCO (the target value of the radiator pressure PCI) from the target radiator temperature TCO (the target value of the radiator temperature TH) calculated from the target outlet temperature TAO described later, and this target heat radiation The rotation speed of the compressor 2 is controlled based on the unit pressure PCO and the refrigerant pressure of the radiator 4 (radiator pressure PCI; high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. Further, the controller 32 sets the valve opening degree of the outdoor expansion valve 6 based on the temperature of the radiator 4 (radiator temperature TH) detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47. Then, the supercooling degree SC of the refrigerant at the outlet of the radiator 4 (calculated from the radiator temperature TH and the radiator pressure PCI) is controlled to a predetermined target supercooling degree TGSC which is its target value. The target radiator temperature TCO is basically set to TCO = TAO, but a predetermined limit for control is set.

また、コントローラ32はこの暖房モードにおいては、車室内空調に要求される暖房能力に対して放熱器4による暖房能力が不足する場合、その不足する分を補助ヒータ23の発熱で補完するように補助ヒータ23の通電を制御する。それにより、快適な車室内暖房を実現し、且つ、室外熱交換器7の着霜も抑制する。このとき、補助ヒータ23は放熱器4の空気上流側に配置されているので、空気流通路3を流通する空気は放熱器4の前に補助ヒータ23に通風されることになる。   Further, in this heating mode, when the heating capacity of the radiator 4 is insufficient with respect to the heating capacity required for air conditioning in the vehicle interior, the controller 32 assists the supplementary heat by the heat generated by the auxiliary heater 23. The energization of the heater 23 is controlled. As a result, comfortable vehicle interior heating is realized, and frost formation on the outdoor heat exchanger 7 is also suppressed. At this time, since the auxiliary heater 23 is arranged on the air upstream side of the radiator 4, the air flowing through the air flow passage 3 is ventilated by the auxiliary heater 23 before the radiator 4.

ここで、補助ヒータ23が放熱器4の空気下流側に配置されていると、実施例の如くPTCヒータで補助ヒータ23を構成した場合には、補助ヒータ23に流入する空気の温度が放熱器4によって上昇するため、PTCヒータの抵抗値が大きくなり、電流値も低くなって発熱量が低下してしまうが、放熱器4の空気上流側に補助ヒータ23を配置することで、実施例の如くPTCヒータから構成される補助ヒータ23の能力を十分に発揮させることができるようになる。 Here, when the auxiliary heater 23 is arranged on the air downstream side of the radiator 4, when the auxiliary heater 23 is configured by the PTC heater as in the embodiment, the temperature of the air flowing into the auxiliary heater 23 is the radiator. 4, the resistance value of the PTC heater increases, the current value also decreases, and the amount of heat generation decreases. However, by arranging the auxiliary heater 23 on the upstream side of the radiator 4 in the air, As described above, the capability of the auxiliary heater 23 including the PTC heater can be fully exerted.

(2)除湿暖房モード
次に、除湿暖房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図1に破線で示す如く、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全ての空気が補助ヒータ23及び放熱器4に通風される状態とする。
(2) Dehumidification Heating Mode Next, in the dehumidification heating mode, the controller 32 opens the solenoid valve 17 and closes the solenoid valve 21. Further, the solenoid valve 30 is closed, the solenoid valve 40 is opened, and the opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 blows out from the indoor blower 27 and passes through the heat absorber 9 in the air flow passage 3 as shown by a broken line in FIG. The air is ventilated by the auxiliary heater 23 and the radiator 4.

これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。   As a result, the high-temperature high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the solenoid valve 40, and is located downstream of the outdoor expansion valve 6 in the refrigerant pipe. It reaches 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 is condensed by being cooled there by traveling or by the outside air ventilated by the outdoor blower 15. The refrigerant discharged from the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13A through the solenoid valve 17 into the receiver dryer section 14 and the supercooling section 16. Here, the refrigerant is supercooled.

室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却され、且つ、当該空気中の水分が吸熱器9に凝結して付着するので、空気流通路3内の空気は冷却され、且つ、除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。   The refrigerant discharged from the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. The refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 and evaporates. Due to the heat absorbing action at this time, the air blown out from the indoor blower 27 is cooled, and the moisture in the air is condensed and attached to the heat absorber 9, so that the air in the air flow passage 3 is cooled, and Dehumidified. The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the internal heat exchanger 19 and the refrigerant pipe 13C, and is repeatedly sucked into the compressor 2 through the circulation.

このとき、室外膨張弁6の弁開度は全閉とされているので、圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。更に、この除湿暖房モードにおいてコントローラ32は、補助ヒータ23に通電して発熱させる。これにより、吸熱器9にて冷却され、且つ、除湿された空気は補助ヒータ23を通過する過程で更に加熱され、温度が上昇するので車室内の除湿暖房が行われることになる。   At this time, since the valve opening degree of the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent the inconvenience that the refrigerant discharged from the compressor 2 flows back into the radiator 4 from the outdoor expansion valve 6. Becomes This makes it possible to suppress or eliminate the decrease in the refrigerant circulation amount and secure the air conditioning capacity. Further, in the dehumidifying and heating mode, the controller 32 energizes the auxiliary heater 23 to generate heat. As a result, the air cooled by the heat absorber 9 and dehumidified is further heated in the process of passing through the auxiliary heater 23, and the temperature rises, so that dehumidification and heating of the vehicle interior is performed.

コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数を制御すると共に、補助ヒータ温度センサ50が検出する補助ヒータ温度Tptcと前述した目標放熱器温度TCOに基づいて補助ヒータ23の通電(発熱)を制御することで、吸熱器9での空気の冷却と除湿を適切に行いながら、補助ヒータ23による加熱で吹出口29から車室内に吹き出される空気温度の低下を的確に防止する。   The controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is the target value thereof, and also the auxiliary heater temperature. By controlling the energization (heat generation) of the auxiliary heater 23 based on the auxiliary heater temperature Tptc detected by the sensor 50 and the target radiator temperature TCO described above, while appropriately cooling and dehumidifying the air in the heat absorber 9, By the heating by the auxiliary heater 23, the temperature of the air blown into the vehicle compartment from the air outlet 29 is accurately prevented.

これにより、車室内に吹き出される空気を除湿しながら、その温度を適切な暖房温度に制御することが可能となり、車室内の快適且つ効率的な除湿暖房を実現することができるようになる。また、前述した如く除湿暖房モードではエアミックスダンパ28は空気流通路3内の全ての空気を補助ヒータ23及び放熱器4に通風する状態とされるので、吸熱器9を経た空気を効率良く補助ヒータ23で加熱して省エネ性を向上させ、且つ、除湿暖房空調の制御性も向上させることができるようになる。   This makes it possible to control the temperature of the air blown into the vehicle compartment to an appropriate heating temperature while dehumidifying the air, and to realize comfortable and efficient dehumidification and heating of the vehicle compartment. Further, as described above, in the dehumidifying and heating mode, the air mix damper 28 is in a state in which all the air in the air flow passage 3 is ventilated to the auxiliary heater 23 and the radiator 4, so that the air that has passed through the heat absorber 9 is efficiently assisted. It becomes possible to improve the energy saving by heating with the heater 23 and also improve the controllability of the dehumidifying heating air conditioning.

尚、補助ヒータ23は放熱器4の空気上流側に配置されているので、補助ヒータ23で加熱された空気は放熱器4を通過することになるが、この除湿暖房モードでは放熱器4に冷媒は流されないので、補助ヒータ23にて加熱された空気から放熱器4が吸熱してしまう不都合も解消される。即ち、放熱器4によって車室内に吹き出される空気の温度が低下してしまうことが抑制され、COPも向上することになる。   Since the auxiliary heater 23 is arranged on the air upstream side of the radiator 4, the air heated by the auxiliary heater 23 passes through the radiator 4, but in this dehumidifying and heating mode, the refrigerant is fed to the radiator 4. Since the heat is not flowed, the disadvantage that the radiator 4 absorbs heat from the air heated by the auxiliary heater 23 is also eliminated. That is, the radiator 4 is prevented from lowering the temperature of the air blown into the vehicle compartment, and the COP is also improved.

(3)除湿冷房モード
次に、除湿冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を開放し、電磁弁40を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図1に破線で示す如く、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全ての空気が補助ヒータ23及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
(3) Dehumidifying and Cooling Mode Next, in the dehumidifying and cooling mode, the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the solenoid valve 30 is opened and the solenoid valve 40 is closed. Then, the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 blows out from the indoor blower 27 and passes through the heat absorber 9 in the air flow passage 3 as shown by a broken line in FIG. The air is ventilated by the auxiliary heater 23 and the radiator 4. As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 through the electromagnetic valve 30 and the refrigerant pipe 13G. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by the high temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived, cooled, and condensed into a liquid.

放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。   The refrigerant discharged from the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 which is controlled to open. The refrigerant that has flowed into the outdoor heat exchanger 7 is condensed by being cooled there by traveling or by the outside air ventilated by the outdoor blower 15. The refrigerant discharged from the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13A through the solenoid valve 17 into the receiver dryer section 14 and the supercooling section 16. Here, the refrigerant is supercooled.

室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。   The refrigerant discharged from the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. The refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 and evaporates. Due to the heat absorbing action at this time, the water in the air blown out from the indoor blower 27 is condensed and adheres to the heat absorber 9, so that the air is cooled and dehumidified.

吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。この除湿冷房モードではコントローラ32は補助ヒータ23に通電しないので、吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(リヒート。暖房時よりも放熱能力は低い)される。これにより車室内の除湿冷房が行われることになる。   The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the internal heat exchanger 19 and the refrigerant pipe 13C, and is repeatedly sucked into the compressor 2 through the circulation. In this dehumidifying and cooling mode, the controller 32 does not energize the auxiliary heater 23, so that the air cooled by the heat absorber 9 and dehumidified is reheated in the process of passing through the radiator 4 (reheat. The heat radiation capacity is lower than that during heating. ) Will be done. As a result, the dehumidifying and cooling of the vehicle interior is performed.

コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数を制御すると共に、前述した冷媒回路Rの高圧圧力に基づいて室外膨張弁6の弁開度を制御し、放熱器4の冷媒圧力(放熱器圧力PCI)を制御する。   The controller 32 controls the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48, and also the outdoor expansion valve based on the high pressure of the refrigerant circuit R described above. The valve pressure of the radiator 6 is controlled to control the refrigerant pressure of the radiator 4 (radiator pressure PCI).

(4)冷房モード
次に、冷房モードでは、コントローラ32は上記除湿冷房モードの状態において室外膨張弁6の弁開度を全開とする。尚、コントローラ32はエアミックスダンパ28を制御し、図1に実線で示す如く、室内送風機27から吹き出されて吸熱器9を通過した後の空気流通路3内の空気が、補助ヒータ23及び放熱器4に通風される割合を調整する。また、コントローラ32は補助ヒータ23に通電しない。
(4) Cooling Mode Next, in the cooling mode, the controller 32 fully opens the valve opening degree of the outdoor expansion valve 6 in the dehumidifying and cooling mode state. The controller 32 controls the air mix damper 28 so that the air in the air flow passage 3 after being blown out from the indoor blower 27 and passing through the heat absorber 9 causes the auxiliary heater 23 and the heat radiation as shown by the solid line in FIG. Adjust the rate of ventilation to the vessel 4. Further, the controller 32 does not energize the auxiliary heater 23.

これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入すると共に、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので冷媒はそれを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。   As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30, and the refrigerant that has left the radiator 4 flows to the outdoor expansion valve 6 via the refrigerant pipe 13E. Leading to. At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant passes through it and flows into the outdoor heat exchanger 7 as it is, where it is air-cooled by traveling or by the outside air ventilated by the outdoor blower 15. Liquefy. The refrigerant discharged from the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13A through the solenoid valve 17 into the receiver dryer section 14 and the supercooling section 16. Here, the refrigerant is supercooled.

室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着する。   The refrigerant discharged from the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. The refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 and evaporates. The air blown from the indoor blower 27 is cooled by the heat absorbing action at this time. Further, the water in the air is condensed and attached to the heat absorber 9.

吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気が吹出口29から車室内に吹き出されるので(一部は放熱器4を通過して熱交換する)、これにより車室内の冷房が行われることになる。また、この冷房モードにおいては、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数を制御する。   The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the internal heat exchanger 19 and the refrigerant pipe 13C, and is repeatedly sucked into the compressor 2 through the circulation. Since the air cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from the air outlet 29 (a part of the air passes through the radiator 4 to exchange heat), the interior of the vehicle is cooled. become. Further, in this cooling mode, the controller 32 determines the rotation speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is its target value. To control.

(5)MAX冷房モード(最大冷房モード)
次に、最大冷房モードとしてのMAX冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図3に示す如く補助ヒータ23及び放熱器4に空気流通路3内の空気が通風されない状態とする。但し、多少通風されても支障はない。また、コントローラ32は補助ヒータ23に通電しない。
(5) MAX cooling mode (maximum cooling mode)
Next, in the MAX cooling mode as the maximum cooling mode, the controller 32 opens the solenoid valve 17 and closes the solenoid valve 21. Further, the solenoid valve 30 is closed, the solenoid valve 40 is opened, and the opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 makes the air in the air flow passage 3 not ventilated to the auxiliary heater 23 and the radiator 4 as shown in FIG. However, there is no problem even if there is some ventilation. Further, the controller 32 does not energize the auxiliary heater 23.

これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。   As a result, the high-temperature high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the solenoid valve 40, and is located downstream of the outdoor expansion valve 6 in the refrigerant pipe. It reaches 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 is condensed by being cooled there by traveling or by the outside air ventilated by the outdoor blower 15. The refrigerant discharged from the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13A through the solenoid valve 17 into the receiver dryer section 14 and the supercooling section 16. Here, the refrigerant is supercooled.

室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着するので、空気流通路3内の空気は除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。このとき、室外膨張弁6は全閉とされているので、同様に圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。   The refrigerant discharged from the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13B, passes through the internal heat exchanger 19, and reaches the indoor expansion valve 8. The refrigerant is decompressed by the indoor expansion valve 8, then flows into the heat absorber 9 and evaporates. The air blown from the indoor blower 27 is cooled by the heat absorbing action at this time. Further, the water in the air is condensed and attached to the heat absorber 9, so that the air in the air flow passage 3 is dehumidified. The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the internal heat exchanger 19 and the refrigerant pipe 13C, and is repeatedly sucked into the compressor 2 through the circulation. At this time, since the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent the disadvantage that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4 in the same manner. .. This makes it possible to suppress or eliminate the decrease in the refrigerant circulation amount and secure the air conditioning capacity.

ここで、前述した冷房モードでは放熱器4に高温の冷媒が流れているため、放熱器4からHVACユニット10への直接の熱伝導が少なからず生じるが、このMAX冷房モードでは放熱器4に冷媒が流れないため、放熱器4からHVACユニット10に伝達される熱で吸熱器9からの空気流通路3内の空気が加熱されることも無くなる。そのため、車室内の強力な冷房が行われ、特に外気温度Tamが高いような環境下では、迅速に車室内を冷房して快適な車室内空調を実現することができるようになる。また、このMAX冷房モードにおいても、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数を制御する。   Here, in the cooling mode described above, since a high-temperature refrigerant is flowing through the radiator 4, direct heat conduction from the radiator 4 to the HVAC unit 10 is not a little generated, but in the MAX cooling mode, the refrigerant is radiated to the radiator 4. Does not flow, the heat transferred from the radiator 4 to the HVAC unit 10 does not heat the air in the air flow passage 3 from the heat absorber 9. Therefore, strong cooling of the vehicle interior is performed, and particularly in an environment where the outside air temperature Tam is high, it is possible to quickly cool the vehicle interior and realize comfortable vehicle air conditioning. Also in this MAX cooling mode, the controller 32 rotates the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is its target value. Control the number.

(6)暖房、除湿暖房、除湿冷房、冷房、MAX冷房の各運転モードの切換
空気流通路3内を流通される空気は上記各運転モードにおいて吸熱器9からの冷却や放熱器4(及び補助ヒータ23)からの加熱作用(エアミックスダンパ28で調整)を受けて吹出口29から車室内に吹き出される。コントローラ32は外気温度センサ33が検出する外気温度Tam、内気温度センサ37が検出する車室内の温度、前記ブロワ電圧、日射センサ51が検出する日射量等と、空調操作部53にて設定された車室内の目標車室内温度(設定温度)とに基づいて目標吹出温度TAOを算出し、各運転モードを切り換えて吹出口29から吹き出される空気の温度をこの目標吹出温度TAOに制御する。
(6) Switching between operation modes of heating, dehumidifying heating, dehumidifying cooling, cooling, and MAX cooling The air flowing in the air flow passage 3 is cooled from the heat absorber 9 and the radiator 4 (and auxiliary) in each of the above operation modes. It is heated by the heater 23) (adjusted by the air mix damper 28) and blown out into the vehicle compartment from the air outlet 29. The controller 32 is set in the air-conditioning operation section 53, such as the outside air temperature Tam detected by the outside air temperature sensor 33, the temperature inside the vehicle detected by the inside air temperature sensor 37, the blower voltage, the amount of solar radiation detected by the solar radiation sensor 51, and the like. The target outlet temperature TAO is calculated based on the target passenger compartment temperature (set temperature) in the passenger compartment, and the operating modes are switched to control the temperature of the air blown from the outlet 29 to this target outlet temperature TAO.

この場合、コントローラ32は、外気温度Tam、車室内の湿度、目標吹出温度TAO、放熱器温度TH、目標放熱器温度TCO、吸熱器温度Te、目標吸熱器温度TEO、車室内の除湿要求の有無、等のパラメータに基づいて各運転モードの切り換えを行うことで、環境条件や除湿の要否に応じて的確に暖房モード、除湿暖房モード、除湿冷房モード、冷房モード及びMAX冷房モードを切り換え、快適且つ効率的な車室内空調を実現する。   In this case, the controller 32 controls the outside air temperature Tam, the humidity in the vehicle compartment, the target outlet temperature TAO, the radiator temperature TH, the target radiator temperature TCO, the heat absorber temperature Te, the target heat absorber temperature TEO, and the presence or absence of the dehumidification request in the vehicle compartment. By switching each operation mode based on parameters such as, etc., the heating mode, the dehumidification heating mode, the dehumidification cooling mode, the cooling mode and the MAX cooling mode can be switched appropriately according to the environmental conditions and the necessity of dehumidification. Achieves efficient vehicle interior air conditioning.

(7)除霜モード
尚、室外熱交換器7に付着した霜を除去するための除霜モードは、運転状態から室外熱交換器7の着霜が成長したことを検知した場合にコントローラ32が実行する。その場合、コントローラ32は電磁弁21を開放し、電磁弁17を閉じる。また、電磁弁30を開放し、電磁弁40を閉じる。更に、室外膨張弁6は全開とする。
(7) Defrost Mode In the defrost mode for removing the frost adhering to the outdoor heat exchanger 7, the controller 32 detects the growth of frost on the outdoor heat exchanger 7 from the operating state. Run. In that case, the controller 32 opens the solenoid valve 21 and closes the solenoid valve 17. Further, the solenoid valve 30 is opened and the solenoid valve 40 is closed. Further, the outdoor expansion valve 6 is fully opened.

そして、圧縮機2を運転する。但し、各送風機15、27は停止する。これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入し、そこを経て室外膨張弁6に至り、そこを通過して室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで放熱し、室外熱交換器7を加熱してそれに付着した霜を融解させると共に、自らは温度低下して全て、若しくは、一部凝縮する。そして、室外熱交換器7を出た冷媒は冷媒配管13A及び電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。これにより、室外熱交換器7は除霜されることになる。コントローラ32は、室外熱交換器7の温度(室外熱交換器温度)TXOから当該室外熱交換器7の除霜終了を検知し、除霜モードを終了することになる。   Then, the compressor 2 is operated. However, the blowers 15 and 27 are stopped. As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows from the refrigerant pipe 13G into the radiator 4 via the electromagnetic valve 30, reaches the outdoor expansion valve 6 via the electromagnetic valve 30, and passes through there to reach the outdoor heat exchange. Flows into the vessel 7. The refrigerant flowing into the outdoor heat exchanger 7 radiates heat there, heats the outdoor heat exchanger 7 to melt the frost adhering to the outdoor heat exchanger 7, and lowers itself in temperature or condenses entirely or partially. Then, the refrigerant discharged from the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13A, the solenoid valve 21 and the refrigerant pipe 13D, and is separated into gas and liquid therein, and then the gas refrigerant is sucked into the compressor 2. Repeat the cycle that is repeated. As a result, the outdoor heat exchanger 7 is defrosted. The controller 32 detects the end of defrosting of the outdoor heat exchanger 7 from the temperature (outdoor heat exchanger temperature) TXO of the outdoor heat exchanger 7, and ends the defrosting mode.

(8)コントローラ32による故障確定モード
次に、図4を参照しながらコントローラ32が実行する故障確定モード及び故障弁確定モードについて説明する。図4は電磁弁17、電磁弁21、電磁弁30、電磁弁40及び室外膨張弁6の故障が原因と考えられる(推定される)冷媒回路Rの運転状態の異常(異常状態)を示している。
(8) Failure Confirmation Mode by Controller 32 Next, the failure confirmation mode and the failure valve confirmation mode executed by the controller 32 will be described with reference to FIG. FIG. 4 shows an abnormality (abnormal state) in the operating state of the refrigerant circuit R that is considered (estimated) due to a failure of the solenoid valve 17, the solenoid valve 21, the solenoid valve 30, the solenoid valve 40, and the outdoor expansion valve 6. There is.

(8−1)暖房モードでの故障確定モード
先ず、暖房モードでの故障確定モードについて説明する。
(8−1−1)電磁弁30の閉故障
前記暖房モードにおいて電磁弁30(リヒート)が開かなくなる閉故障が発生した場合、電磁弁40(バイパス)も閉じていることから、圧縮機2から吐出された冷媒の行き場が無くなるため、圧縮機2の吐出圧力Pdが上昇し、最終的に所定の保護停止値に至る。そこで、コントローラ32は暖房モードにおいて吐出圧力センサ42が検出する吐出圧力Pdが所定の保護停止値に上昇した場合、電磁弁30の閉故障が原因と推定し、故障確定モードに移行する。
(8-1) Failure Confirmation Mode in Heating Mode First, the failure confirmation mode in the heating mode will be described.
(8-1-1) Closing Fault of Solenoid Valve 30 When a closing fault occurs in which the solenoid valve 30 (reheat) does not open in the heating mode, the solenoid valve 40 (bypass) is also closed. Since there is no place for the discharged refrigerant to go, the discharge pressure Pd of the compressor 2 rises and finally reaches a predetermined protection stop value. Therefore, when the discharge pressure Pd detected by the discharge pressure sensor 42 rises to a predetermined protection stop value in the heating mode, the controller 32 estimates that the closing failure of the solenoid valve 30 is the cause and shifts to the failure confirmation mode.

この故障確定モードでは、コントローラ32は圧縮機2の回転数NCを一定の値とする。そして、正常状態における当該回転数で吐出圧力センサ42が検出する吐出圧力Pdを正常検出値として予め測定しておき、この正常検出値と現在吐出圧力センサ42が検出している吐出圧力Pd(検出値)とを比較し、それらの差が所定の値より大きくなる場合には電磁弁30の閉故障と確定する(吐出圧力Pdは保護停止値になるので当然に差は大きくなる)。そして、コントローラ32は空調操作部53で係る故障発生を表示し、使用者に報知する(報知動作)。   In this failure confirmation mode, the controller 32 sets the rotation speed NC of the compressor 2 to a constant value. Then, the discharge pressure Pd detected by the discharge pressure sensor 42 at the rotational speed in the normal state is measured in advance as a normal detection value, and the normal detection value and the discharge pressure Pd currently detected by the discharge pressure sensor 42 (detection) are detected. Value), and if the difference between them is larger than a predetermined value, it is determined that the solenoid valve 30 has a closed failure (the discharge pressure Pd is the protection stop value, so the difference naturally increases). Then, the controller 32 displays the failure occurrence in the air conditioning operation unit 53 and notifies the user (notification operation).

(8−1−2)電磁弁40の開故障
また、暖房モードにおいて電磁弁40(バイパス)が閉じなくなる開故障が発生した場合、放熱器4に流れる冷媒が減少することから、冷媒回路RのCOPが低くなる。そこで、コントローラ32は暖房モードにおいてCOPが所定値より低下した場合、電磁弁40の開故障が原因と推定し、故障確定モードに移行する。
(8-1-2) Open Failure of Solenoid Valve 40 When an open failure occurs in which the solenoid valve 40 (bypass) does not close in the heating mode, the refrigerant flowing to the radiator 4 decreases, so that the refrigerant circuit R COP is low. Therefore, when the COP drops below the predetermined value in the heating mode, the controller 32 estimates that the open failure of the solenoid valve 40 is the cause, and shifts to the failure confirmation mode.

この故障確定モードでも、コントローラ32は圧縮機2の回転数NCを一定の値とする。そして、正常状態における当該回転数で算出されるCOPを正常算出値として予め測定しておき、この正常算出値と現在算出されるCOP(算出値)とを比較し、それらの差が所定の値より大きくなる場合には電磁弁40の開故障と確定する。そして、この場合もコントローラ32は空調操作部53で係る故障発生を表示し、使用者に報知する(報知動作)。   Even in this failure confirmation mode, the controller 32 sets the rotation speed NC of the compressor 2 to a constant value. Then, the COP calculated at the rotational speed in the normal state is measured in advance as a normal calculated value, and this normal calculated value is compared with the currently calculated COP (calculated value), and the difference between them is a predetermined value. When it becomes larger, it is determined that the solenoid valve 40 has an open failure. Also in this case, the controller 32 also displays the failure occurrence in the air conditioning operation unit 53 and notifies the user (notification operation).

(8−1−3)電磁弁21の閉故障
また、暖房モードにおいて電磁弁21(暖房)が開かなくなる閉故障が発生した場合、電磁弁17(冷房)も閉じていることから、室外熱交換器7を出る冷媒の行き場が無くなるため、室外熱交換器温度TXOが下がらなくなる。また、圧縮機2の吸込冷媒温度Tsも下がらなくなり、外気温度Tamと同等となる。そこで、コントローラ32は暖房モードにおいて室外熱交換器温度センサ54が検出する室外熱交換器温度TXOが高い(未低下)とき、又は、吸込温度センサ55が検出する吸込冷媒温度Tsが外気温度センサ33が検出する外気温度Tamと同等であるときは、電磁弁21の閉故障が原因と推定し、故障確定モードに移行する。
(8-1-3) Closing Failure of Solenoid Valve 21 When a closing failure occurs in which the solenoid valve 21 (heating) does not open in the heating mode, the solenoid valve 17 (cooling) is also closed. Since there is no place for the refrigerant to go out of the vessel 7, the outdoor heat exchanger temperature TXO cannot fall. Further, the suction refrigerant temperature Ts of the compressor 2 also does not decrease and becomes equal to the outside air temperature Tam. Therefore, when the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 54 is high (not lowered) in the heating mode, or the suction refrigerant temperature Ts detected by the suction temperature sensor 55 is the outside air temperature sensor 33 in the heating mode. When it is equal to the outside air temperature Tam detected by, the cause is presumed to be due to the closing failure of the solenoid valve 21, and the failure determination mode is entered.

この故障確定モードでも、コントローラ32は圧縮機2の回転数NCを一定の値とする。そして、正常状態における当該回転数で室外熱交換器温度センサ54が検出する室外熱交換器温度TXOを正常検出値として予め測定しておき、この正常検出値と現在室外熱交換器温度センサ54が検出している室外熱交換器温度TXO(検出値)とを比較し、それらの差が所定の値より大きくなる場合には電磁弁21の閉故障と確定する。また、正常状態における当該回転数で吸込温度センサ55が検出する吸込冷媒温度Tsを正常検出値として予め測定しておき、この正常検出値と現在吸込温度センサ55が検出している吸込冷媒温度Ts(検出値)とを比較し、それらの差が所定の値より大きく、検出値が外気温度Tamと同等となる場合にも電磁弁21の閉故障と確定する。そして、コントローラ32は空調操作部53で係る故障発生を表示し、使用者に報知する(報知動作)。   Even in this failure confirmation mode, the controller 32 sets the rotation speed NC of the compressor 2 to a constant value. The outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 54 in the normal state is measured in advance as a normal detection value, and the normal detection value and the current outdoor heat exchanger temperature sensor 54 are The detected outdoor heat exchanger temperature TXO (detection value) is compared, and if the difference between them is larger than a predetermined value, it is determined that the solenoid valve 21 is closed. Further, the suction refrigerant temperature Ts detected by the suction temperature sensor 55 in the normal state is measured in advance as a normal detection value, and the normal detection value and the suction refrigerant temperature Ts currently detected by the suction temperature sensor 55 are measured. (Detected value) is compared, and when the difference between them is larger than a predetermined value and the detected value is equal to the outside air temperature Tam, it is determined that the solenoid valve 21 is closed. Then, the controller 32 displays the failure occurrence in the air conditioning operation unit 53 and notifies the user (notification operation).

(8−1−4)室外膨張弁6の閉故障
また、暖房モードにおいて室外膨張弁6が開かなくなる閉故障が発生した場合、放熱器4に冷媒が滞留することから、放熱器4における冷媒の過冷却度SCが異常に大きくなる。また、圧縮機2の起動時から放熱器4の温度(TH)が変化しなくなる。そこで、コントローラ32は暖房モードにおいて算出される放熱器4での冷媒の過冷却度SCが異常に大きいとき、又は、放熱器温度センサ46が検出する放熱器温度THが圧縮機2の起動時から変化しないときは、室外膨張弁6の閉故障が原因と推定し、故障確定モードに移行する。
(8-1-4) Closed Failure of Outdoor Expansion Valve 6 When a closed failure occurs in which the outdoor expansion valve 6 does not open in the heating mode, the refrigerant stays in the radiator 4, so that the refrigerant in the radiator 4 is blocked. The supercooling degree SC becomes abnormally large. Moreover, the temperature (TH) of the radiator 4 does not change after the compressor 2 is started. Therefore, the controller 32 operates when the degree of supercooling SC of the refrigerant in the radiator 4 calculated in the heating mode is abnormally large, or when the radiator temperature TH detected by the radiator temperature sensor 46 starts from the start of the compressor 2. If it does not change, it is estimated that the closing failure of the outdoor expansion valve 6 is the cause, and the failure determination mode is entered.

この故障確定モードでも、コントローラ32は圧縮機2の回転数NCを一定の値とする。そして、正常状態における当該回転数で算出される放熱器4での冷媒の過冷却度SCを正常算出値として予め算出しておき、この正常算出値と現在算出される過冷却度SC(算出値)とを比較し、算出値が正常算出値より大きく、それらの差が所定の値より大きくなる場合には室外膨張弁6の閉故障と確定する。また、正常状態における当該回転数で放熱器温度センサ46が検出する放熱器温度THを正常検出値として予め測定しておき、この正常検出値と現在放熱器温度センサ46が検出している放熱器温度TH(検出値)とを比較し、それらの差が所定の値より大きくなる場合にも室外膨張弁6の閉故障と確定する。そして、コントローラ32は空調操作部53で係る故障発生を表示し、使用者に報知する(報知動作)。   Even in this failure confirmation mode, the controller 32 sets the rotation speed NC of the compressor 2 to a constant value. Then, the subcooling degree SC of the refrigerant in the radiator 4 calculated at the number of rotations in the normal state is calculated in advance as a normal calculation value, and the normal calculation value and the currently calculated supercooling degree SC (calculation value) are calculated. ) And the calculated value is larger than the normal calculated value and the difference between them is larger than a predetermined value, it is determined that the outdoor expansion valve 6 is closed. Further, the radiator temperature TH detected by the radiator temperature sensor 46 in the normal state is measured in advance as a normal detection value, and the normal detection value and the radiator currently detected by the radiator temperature sensor 46 are measured. The temperature TH (detection value) is compared, and even if the difference between them is larger than a predetermined value, it is determined that the outdoor expansion valve 6 is closed. Then, the controller 32 displays the failure occurrence in the air conditioning operation unit 53 and notifies the user (notification operation).

(8−1−5)室外膨張弁6の開故障
また、暖房モードにおいて室外膨張弁6が閉じなくなる開故障が発生した場合、放熱器4を出た後の冷媒を絞れなくなることから、放熱器温度THが上がらなくなり、冷媒の過冷却度SCが目標過冷却度TGSCに達しなくなる(未達)。そこで、コントローラ32は暖房モードにおいて算出される放熱器4での冷媒の過冷却度SCが目標過冷却度TGSCに達しない場合、室外膨張弁6の開故障が原因と推定し、故障確定モードに移行する。
(8-1-5) Opening failure of the outdoor expansion valve 6 When the opening failure occurs in which the outdoor expansion valve 6 does not close in the heating mode, the refrigerant after exiting the radiator 4 cannot be throttled. The temperature TH does not rise and the supercooling degree SC of the refrigerant does not reach the target supercooling degree TGSC (not reached). Therefore, when the supercooling degree SC of the refrigerant in the radiator 4 calculated in the heating mode does not reach the target supercooling degree TGSC, the controller 32 estimates that the open failure of the outdoor expansion valve 6 is the cause, and the failure confirmation mode is set. Transition.

この故障確定モードでも、コントローラ32は圧縮機2の回転数NCを一定の値とする。そして、正常状態における当該回転数で算出される放熱器4での冷媒の過冷却度SCを正常算出値として予め算出しておき、この正常算出値と現在算出される過冷却度SC(算出値)とを比較し、算出値が正常算出値より小さく、それらの差が所定の値より大きくなる場合には室外膨張弁6の開故障と確定する。そして、コントローラ32は空調操作部53で係る故障発生を表示し、使用者に報知する(報知動作)。以上により、暖房モードでの各電磁弁30、40、21及び室外膨張弁6の故障を的確に判定して確定することができるようになると共に、使用者に各弁の故障発生を警告して迅速な対処を促すことができるようになる。   Even in this failure confirmation mode, the controller 32 sets the rotation speed NC of the compressor 2 to a constant value. Then, the subcooling degree SC of the refrigerant in the radiator 4 calculated at the number of rotations in the normal state is calculated in advance as a normal calculation value, and the normal calculation value and the currently calculated supercooling degree SC (calculation value) are calculated. ) And the calculated value is smaller than the normal calculated value and the difference between them is larger than a predetermined value, it is determined that the outdoor expansion valve 6 has an open failure. Then, the controller 32 displays the failure occurrence in the air conditioning operation unit 53 and notifies the user (notification operation). As described above, it becomes possible to accurately determine and confirm the failure of each solenoid valve 30, 40, 21 and the outdoor expansion valve 6 in the heating mode, and to warn the user of the failure occurrence of each valve. You will be able to encourage prompt action.

(8−2)除霜モードでの故障確定モード
次に、除霜モードでの故障確定モードについて説明する。
(8−2−1)電磁弁30の閉故障
前記除霜モードにおいて電磁弁30(リヒート)が閉故障が発生した場合、電磁弁40(バイパス)も閉じていることから、圧縮機2から吐出された冷媒の行き場が無くなるため、圧縮機2の吐出圧力Pdが上昇し、最終的に所定の保護停止値に至る。そこで、コントローラ32は除霜モードにおいて吐出圧力センサ42が検出する吐出圧力Pdが所定の保護停止値に上昇した場合、電磁弁30の閉故障が原因と推定し、故障確定モードに移行する。
(8-2) Failure Confirmation Mode in Defrost Mode Next, the failure confirmation mode in the defrost mode will be described.
(8-2-1) Closing Failure of Solenoid Valve 30 When the closing failure of the solenoid valve 30 (reheat) occurs in the defrosting mode, the solenoid valve 40 (bypass) is also closed, and therefore the compressor 2 discharges it. Since there is no place for the discharged refrigerant to go, the discharge pressure Pd of the compressor 2 rises and finally reaches a predetermined protection stop value. Therefore, when the discharge pressure Pd detected by the discharge pressure sensor 42 rises to a predetermined protection stop value in the defrosting mode, the controller 32 estimates that the closing failure of the solenoid valve 30 is the cause and shifts to the failure confirmation mode.

この故障確定モードでも、コントローラ32は圧縮機2の回転数NCを一定の値とする。そして、正常状態における当該回転数で吐出圧力センサ42が検出する吐出圧力Pdを正常検出値として予め測定しておき、この正常検出値と現在吐出圧力センサ42が検出している吐出圧力Pd(検出値)とを比較し、それらの差が所定の値より大きくなる場合には電磁弁30の閉故障と確定する(吐出圧力Pdは保護停止値になるので当然に差は大きくなる)。そして、コントローラ32は空調操作部53で係る故障発生を表示し、使用者に報知する(報知動作)。   Even in this failure confirmation mode, the controller 32 sets the rotation speed NC of the compressor 2 to a constant value. Then, the discharge pressure Pd detected by the discharge pressure sensor 42 at the rotational speed in the normal state is measured in advance as a normal detection value, and the normal detection value and the discharge pressure Pd currently detected by the discharge pressure sensor 42 (detection) are detected. Value), and if the difference between them is larger than a predetermined value, it is determined that the solenoid valve 30 has a closed failure (the discharge pressure Pd is the protection stop value, so the difference naturally increases). Then, the controller 32 displays the failure occurrence in the air conditioning operation unit 53 and notifies the user (notification operation).

(8−2−2)電磁弁21の閉故障
また、除霜モードにおいて電磁弁21(暖房)が閉故障が発生した場合、電磁弁17(冷房)も閉じていることから、室外熱交換器7を出る冷媒の行き場が無くなるため、室外熱交換器温度TXOが下がらなくなる。また、圧縮機2の吸込冷媒温度Tsも下がらなくなり、外気温度Tamと同等となる。そこで、コントローラ32は除霜モードにおいて室外熱交換器温度センサ54が検出する室外熱交換器温度TXOが高い(未低下)とき、又は、吸込温度センサ55が検出する吸込冷媒温度Tsが外気温度センサ33が検出する外気温度Tamと同等であるときは、電磁弁21の閉故障が原因と推定し、故障確定モードに移行する。
(8-2-2) Closing Failure of Solenoid Valve 21 When the closing failure of the solenoid valve 21 (heating) occurs in the defrosting mode, the solenoid valve 17 (cooling) is also closed, so the outdoor heat exchanger is closed. Since there is no place for the refrigerant to exit from 7, the outdoor heat exchanger temperature TXO cannot fall. Further, the suction refrigerant temperature Ts of the compressor 2 also does not decrease and becomes equal to the outside air temperature Tam. Therefore, when the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 54 is high (undecreased) in the defrosting mode, or when the suction refrigerant temperature Ts detected by the suction temperature sensor 55 is the outside air temperature sensor. When it is equal to the outside air temperature Tam detected by 33, it is presumed that the solenoid valve 21 has a closed failure, and the failure determination mode is entered.

この故障確定モードでも、コントローラ32は圧縮機2の回転数NCを一定の値とする。そして、正常状態における当該回転数で室外熱交換器温度センサ54が検出する室外熱交換器温度TXOを正常検出値として予め測定しておき、この正常検出値と現在室外熱交換器温度センサ54が検出している室外熱交換器温度TXO(検出値)とを比較し、それらの差が所定の値より大きくなる場合には電磁弁21の閉故障と確定する。また、正常状態における当該回転数で吸込温度センサ55が検出する吸込冷媒温度Tsを正常検出値として予め測定しておき、この正常検出値と現在吸込温度センサ55が検出している吸込冷媒温度Ts(検出値)とを比較し、それらの差が所定の値より大きく、検出値が外気温度Tamと同等となる場合にも電磁弁21の閉故障と確定する。そして、コントローラ32は空調操作部53で係る故障発生を表示し、使用者に報知する(報知動作)。   Even in this failure confirmation mode, the controller 32 sets the rotation speed NC of the compressor 2 to a constant value. The outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 54 in the normal state is measured in advance as a normal detection value, and the normal detection value and the current outdoor heat exchanger temperature sensor 54 are The detected outdoor heat exchanger temperature TXO (detection value) is compared, and if the difference between them is larger than a predetermined value, it is determined that the solenoid valve 21 is closed. Further, the suction refrigerant temperature Ts detected by the suction temperature sensor 55 in the normal state is measured in advance as a normal detection value, and the normal detection value and the suction refrigerant temperature Ts currently detected by the suction temperature sensor 55 are measured. (Detected value) is compared, and when the difference between them is larger than a predetermined value and the detected value is equal to the outside air temperature Tam, it is determined that the solenoid valve 21 is closed. Then, the controller 32 displays the failure occurrence in the air conditioning operation unit 53 and notifies the user (notification operation).

(8−2−3)室外膨張弁6の閉故障
また、除霜モードにおいて室外膨張弁6の閉故障が発生した場合、放熱器4に冷媒が滞留することから、放熱器4において冷媒の過冷却度SCが付くようになる(本来は付かない)。そこで、コントローラ32は除霜モードにおいて算出される放熱器4での冷媒の過冷却度SCが付く場合、室外膨張弁6の閉故障が原因と推定し、故障確定モードに移行する。
(8-2-3) Close Failure of Outdoor Expansion Valve 6 When the close failure of the outdoor expansion valve 6 occurs in the defrosting mode, the refrigerant stays in the radiator 4, so that the refrigerant in the radiator 4 is overheated. The degree of cooling SC comes to be attached (not originally attached). Therefore, when the supercooling degree SC of the refrigerant in the radiator 4 calculated in the defrosting mode is attached, the controller 32 estimates that the closing failure of the outdoor expansion valve 6 is the cause, and shifts to the failure confirmation mode.

この故障確定モードでも、コントローラ32は圧縮機2の回転数NCを一定の値とする。そして、正常状態における当該回転数で算出される放熱器4での冷媒の過冷却度SCを正常算出値として予め算出しておき(付かない)、この正常算出値と現在算出される過冷却度SC(算出値)とを比較し、算出値が正常算出値より大きくなる場合(SCが付く場合)には室外膨張弁6の閉故障と確定する。そして、コントローラ32は空調操作部53で係る故障発生を表示し、使用者に報知する(報知動作)。以上により、除霜モードでの各電磁弁30、21及び室外膨張弁6の故障を的確に判定して確定することができるようになる。   Even in this failure confirmation mode, the controller 32 sets the rotation speed NC of the compressor 2 to a constant value. Then, the supercooling degree SC of the refrigerant in the radiator 4 calculated at the number of rotations in the normal state is calculated in advance as a normal calculated value (not attached), and the normal calculated value and the currently calculated supercooling degree are calculated. SC (calculated value) is compared, and when the calculated value is larger than the normal calculated value (when SC is attached), it is determined that the outdoor expansion valve 6 is closed. Then, the controller 32 displays the failure occurrence in the air conditioning operation unit 53 and notifies the user (notification operation). As described above, it becomes possible to accurately determine and confirm the failure of each electromagnetic valve 30, 21 and the outdoor expansion valve 6 in the defrosting mode.

(8−3)除湿暖房モードでの故障確定モード
次に、除湿暖房モードでの故障確定モードについて説明する。前記除湿暖房モードにおいて電磁弁40(バイパス)が閉故障が発生した場合、電磁弁30(リヒート)も閉じていることから、圧縮機2から吐出された冷媒の行き場が無くなるため、圧縮機2の吐出圧力Pdが上昇し、最終的に所定の保護停止値に至る。そこで、コントローラ32は除湿暖房モードにおいて吐出圧力センサ42が検出する吐出圧力Pdが所定の保護停止値に上昇した場合、電磁弁40の閉故障が原因と推定し、故障確定モードに移行する。
(8-3) Failure Confirmation Mode in Dehumidification Heating Mode Next, the failure confirmation mode in the dehumidification heating mode will be described. When the electromagnetic valve 40 (bypass) has a closing failure in the dehumidifying heating mode, since the electromagnetic valve 30 (reheat) is also closed, there is no place for the refrigerant discharged from the compressor 2, so that the compressor 2 The discharge pressure Pd rises and finally reaches a predetermined protection stop value. Therefore, when the discharge pressure Pd detected by the discharge pressure sensor 42 rises to a predetermined protection stop value in the dehumidifying and heating mode, the controller 32 estimates that the closing failure of the solenoid valve 40 is the cause and shifts to the failure confirmation mode.

この故障確定モードでも、コントローラ32は圧縮機2の回転数NCを一定の値とする。そして、正常状態における当該回転数で吐出圧力センサ42が検出する吐出圧力Pdを正常検出値として予め測定しておき、この正常検出値と現在吐出圧力センサ42が検出している吐出圧力Pd(検出値)とを比較し、それらの差が所定の値より大きくなる場合には電磁弁40の閉故障と確定する(吐出圧力Pdは保護停止値になるので当然に差は大きくなる)。そして、コントローラ32は空調操作部53で係る故障発生を表示し、使用者に報知する(報知動作)。これにより、除湿暖房モードでの電磁弁40の故障を的確に判定して確定することができるようになる。   Even in this failure confirmation mode, the controller 32 sets the rotation speed NC of the compressor 2 to a constant value. Then, the discharge pressure Pd detected by the discharge pressure sensor 42 at the rotational speed in the normal state is measured in advance as a normal detection value, and the normal detection value and the discharge pressure Pd currently detected by the discharge pressure sensor 42 (detection) are detected. Value), and if the difference between them is larger than a predetermined value, it is determined that the solenoid valve 40 has a closed failure (the discharge pressure Pd is the protection stop value, so the difference naturally increases). Then, the controller 32 displays the failure occurrence in the air conditioning operation unit 53 and notifies the user (notification operation). This makes it possible to accurately determine and determine the failure of the solenoid valve 40 in the dehumidifying and heating mode.

(8−4)除湿冷房モード/冷房モードでの故障確定モード
次に、除湿冷房モード及び冷房モードでの故障確定モードについて説明する。
(8−4−1)電磁弁30の閉故障
前記除湿冷房モード及び冷房モードにおいて電磁弁30(リヒート)が閉故障が発生した場合、電磁弁40(バイパス)も閉じていることから、圧縮機2から吐出された冷媒の行き場が無くなるため、圧縮機2の吐出圧力Pdが上昇し、最終的に所定の保護停止値に至る。そこで、コントローラ32は除湿冷房モード及び冷房モードにおいて吐出圧力センサ42が検出する吐出圧力Pdが所定の保護停止値に上昇した場合、電磁弁30の閉故障が原因と推定し、故障確定モードに移行する。
(8-4) Failure Determining Mode in Dehumidifying Cooling Mode / Cooling Mode Next, the failure determining mode in the dehumidifying cooling mode and the cooling mode will be described.
(8-4-1) Close Failure of Solenoid Valve 30 When a close failure occurs in the solenoid valve 30 (reheat) in the dehumidifying cooling mode and the cooling mode, the solenoid valve 40 (bypass) is also closed, so that the compressor is closed. Since there is no place for the refrigerant discharged from No. 2, the discharge pressure Pd of the compressor 2 rises and finally reaches a predetermined protection stop value. Therefore, when the discharge pressure Pd detected by the discharge pressure sensor 42 rises to a predetermined protection stop value in the dehumidifying cooling mode and the cooling mode, the controller 32 estimates that the closing failure of the solenoid valve 30 is the cause, and shifts to the failure confirmation mode. To do.

この故障確定モードでも、コントローラ32は圧縮機2の回転数NCを一定の値とする。そして、正常状態における当該回転数で吐出圧力センサ42が検出する吐出圧力Pdを正常検出値として予め測定しておき、この正常検出値と現在吐出圧力センサ42が検出している吐出圧力Pd(検出値)とを比較し、それらの差が所定の値より大きくなる場合には電磁弁30の閉故障と確定する(吐出圧力Pdは保護停止値になるので当然に差は大きくなる)。そして、コントローラ32は空調操作部53で係る故障発生を表示し、使用者に報知する(報知動作)。   Even in this failure confirmation mode, the controller 32 sets the rotation speed NC of the compressor 2 to a constant value. Then, the discharge pressure Pd detected by the discharge pressure sensor 42 at the rotational speed in the normal state is measured in advance as a normal detection value, and the normal detection value and the discharge pressure Pd currently detected by the discharge pressure sensor 42 (detection) are detected. Value), and if the difference between them is larger than a predetermined value, it is determined that the solenoid valve 30 has a closed failure (the discharge pressure Pd is the protection stop value, so the difference naturally increases). Then, the controller 32 displays the failure occurrence in the air conditioning operation unit 53 and notifies the user (notification operation).

(8−4−2)室外膨張弁6の閉故障
また、除湿冷房モード及び冷房モードにおいて室外膨張弁6の閉故障が発生した場合、放熱器圧力PCIのみ上がって放熱器温度THは上がらないことから、放熱器4において冷媒の過冷却度SCが付くようになる。そこで、コントローラ32は除湿冷房モード及び冷房モードにおいて算出される放熱器4での冷媒の過冷却度SCが付く場合、室外膨張弁6の閉故障が原因と推定し、故障確定モードに移行する。
(8-4-2) Close Failure of Outdoor Expansion Valve 6 When a close failure of the outdoor expansion valve 6 occurs in the dehumidifying cooling mode and the cooling mode, only the radiator pressure PCI increases and the radiator temperature TH does not rise. Therefore, the supercooling degree SC of the refrigerant is added to the radiator 4. Therefore, when the degree of supercooling SC of the refrigerant in the radiator 4 calculated in the dehumidifying cooling mode and the cooling mode is attached, the controller 32 estimates that the closing failure of the outdoor expansion valve 6 is the cause, and shifts to the failure confirmation mode.

この故障確定モードでも、コントローラ32は圧縮機2の回転数NCを一定の値とする。そして、正常状態における当該回転数で算出される放熱器4での冷媒の過冷却度SCを正常算出値として予め算出しておき、この正常算出値と現在算出される過冷却度SC(算出値)とを比較し、算出値が正常算出値より大きくなる場合(SCが付く場合)には室外膨張弁6の閉故障と確定する。そして、コントローラ32は空調操作部53で係る故障発生を表示し、使用者に報知する(報知動作)。   Even in this failure confirmation mode, the controller 32 sets the rotation speed NC of the compressor 2 to a constant value. Then, the subcooling degree SC of the refrigerant in the radiator 4 calculated at the number of rotations in the normal state is calculated in advance as a normal calculation value, and the normal calculation value and the currently calculated supercooling degree SC (calculation value) are calculated. ) And the calculated value becomes larger than the normal calculated value (when SC is attached), it is determined that the outdoor expansion valve 6 is closed. Then, the controller 32 displays the failure occurrence in the air conditioning operation unit 53 and notifies the user (notification operation).

(8−4−2)室外膨張弁6の開故障
また、除湿冷房モード及び冷房モードにおいて室外膨張弁6の開故障が発生した場合、放熱器4を出た後の冷媒を絞れなくなることから、放熱器温度THが目標放熱器温度TCOに達しなくなる(未達)。そこで、コントローラ32は除湿冷房モード及び冷房モードにおいて放熱器温度センサ48が検出する放熱器温度THが目標放熱器温度TCOに達しない場合、室外膨張弁6の開故障が原因と推定し、故障確定モードに移行する。
(8-4-2) Opening Failure of Outdoor Expansion Valve 6 Also, when an opening failure of the outdoor expansion valve 6 occurs in the dehumidifying cooling mode and the cooling mode, the refrigerant after exiting the radiator 4 cannot be throttled, The radiator temperature TH does not reach the target radiator temperature TCO (not reached). Therefore, when the radiator temperature TH detected by the radiator temperature sensor 48 does not reach the target radiator temperature TCO in the dehumidifying cooling mode and the cooling mode, the controller 32 estimates that the open failure of the outdoor expansion valve 6 is the cause, and determines the failure. Switch to mode.

この故障確定モードでも、コントローラ32は圧縮機2の回転数NCを一定の値とする。そして、正常状態における当該回転数で検出される放熱器温度THを正常算出値として予め算出しておき、この正常算出値と現在検出される放熱器温度TH(検出値)とを比較し、検出値が正常検出値より低く、それらの差が所定の値より大きくなる場合には室外膨張弁6の開故障と確定する。そして、コントローラ32は空調操作部53で係る故障発生を表示し、使用者に報知する(報知動作)。以上により、除湿冷房モード及び冷房モードでの電磁弁30及び室外膨張弁6の故障を的確に判定して確定することができるようになると共に、使用者に各弁の故障発生を警告して迅速な対処を促すことができるようになる。   Even in this failure confirmation mode, the controller 32 sets the rotation speed NC of the compressor 2 to a constant value. Then, the radiator temperature TH detected at the rotation speed in the normal state is calculated in advance as a normal calculation value, and the normal calculation value is compared with the currently detected radiator temperature TH (detection value) to detect the temperature. When the value is lower than the normal detection value and the difference between them is larger than the predetermined value, it is determined that the outdoor expansion valve 6 has an open failure. Then, the controller 32 displays the failure occurrence in the air conditioning operation unit 53 and notifies the user (notification operation). As described above, the failure of the electromagnetic valve 30 and the outdoor expansion valve 6 in the dehumidifying cooling mode and the cooling mode can be accurately determined and confirmed, and the user can be alerted to the occurrence of the failure of each valve and quickly. You can be encouraged to take appropriate measures.

(8−5)MAX冷房モードでの故障確定モード
次に、MAX冷房モードでの故障確定モードについて説明する。前記MAX冷房モードにおいて電磁弁40(バイパス)が閉故障が発生した場合、電磁弁30(リヒート)も閉じていることから、圧縮機2から吐出された冷媒の行き場が無くなるため、圧縮機2の吐出圧力Pdが上昇し、最終的に所定の保護停止値に至る。そこで、コントローラ32はMAX冷房モードにおいて吐出圧力センサ42が検出する吐出圧力Pdが所定の保護停止値に上昇した場合、電磁弁40の閉故障が原因と推定し、故障確定モードに移行する。
(8-5) Failure Confirmation Mode in MAX Cooling Mode Next, the failure confirmation mode in the MAX cooling mode will be described. When a closing failure occurs in the solenoid valve 40 (bypass) in the MAX cooling mode, since the solenoid valve 30 (reheat) is also closed, there is no place for the refrigerant discharged from the compressor 2, so that the compressor 2 The discharge pressure Pd rises and finally reaches a predetermined protection stop value. Therefore, when the discharge pressure Pd detected by the discharge pressure sensor 42 rises to a predetermined protection stop value in the MAX cooling mode, the controller 32 estimates that the closing failure of the solenoid valve 40 is the cause and shifts to the failure confirmation mode.

この故障確定モードでも、コントローラ32は圧縮機2の回転数NCを一定の値とする。そして、正常状態における当該回転数で吐出圧力センサ42が検出する吐出圧力Pdを正常検出値として予め測定しておき、この正常検出値と現在吐出圧力センサ42が検出している吐出圧力Pd(検出値)とを比較し、それらの差が所定の値より大きくなる場合には電磁弁40の閉故障と確定する(吐出圧力Pdは保護停止値になるので当然に差は大きくなる)。そして、コントローラ32は空調操作部53で係る故障発生を表示し、使用者に報知する(報知動作)。これにより、MAX冷房モードでの電磁弁40の故障を的確に判定して確定することができるようになる。   Even in this failure confirmation mode, the controller 32 sets the rotation speed NC of the compressor 2 to a constant value. Then, the discharge pressure Pd detected by the discharge pressure sensor 42 at the rotational speed in the normal state is measured in advance as a normal detection value, and the normal detection value and the discharge pressure Pd currently detected by the discharge pressure sensor 42 (detection) are detected. Value), and if the difference between them is larger than a predetermined value, it is determined that the solenoid valve 40 has a closed failure (the discharge pressure Pd is the protection stop value, so the difference naturally increases). Then, the controller 32 displays the failure occurrence in the air conditioning operation unit 53 and notifies the user (notification operation). As a result, it becomes possible to accurately determine and determine the failure of the electromagnetic valve 40 in the MAX cooling mode.

(9)コントローラ32による故障弁確定モード
次に、コントローラ32が実行する故障弁確定モードについて説明する。
(9−1)MAX冷房モード、冷房モード、除湿冷房モードで吸熱器温度Teが下がらないときの故障弁確定モード
ここで、MAX冷房モード、冷房モード又は除湿冷房モードにおいて吸熱器温度Teが下がらない、という異常状態は、図4に示す如く電磁弁17(冷房)が閉故障している場合に発生すると共に、電磁弁21(暖房)が開故障している場合にも発生する。従って、吸熱器温度Teが下がらないという異常からだけでは電磁弁17と電磁弁21のどちらの弁が故障しているか分からない。
(9) Fault Valve Confirmation Mode by Controller 32 Next, the fault valve confirmation mode executed by the controller 32 will be described.
(9-1) Failure valve determination mode when the heat absorber temperature Te does not decrease in the MAX cooling mode, the cooling mode, and the dehumidifying cooling mode. Here, the heat absorber temperature Te does not decrease in the MAX cooling mode, the cooling mode, or the dehumidifying cooling mode. The abnormal state of, occurs not only when the solenoid valve 17 (cooling) has a closing failure as shown in FIG. 4, but also when the solenoid valve 21 (heating) has an opening failure. Therefore, it is not possible to know which of the solenoid valve 17 and the solenoid valve 21 is out of order only from the abnormality that the heat absorber temperature Te does not decrease.

そこで、コントローラ32はMAX冷房モード、冷房モード又は除湿冷房モードにおいて、吸熱器温度センサ48が検出する吸熱器温度Teが下がらない場合(吸熱器冷えず)、故障弁確定モードを実行する。この故障弁確定モードでは、コントローラ32は電磁弁21と電磁弁40を閉じ、電磁弁30を開き、室外膨張弁6の弁開度を縮小し、その状態で室外熱交換器温度TXOが下がるか否かを判断する。   Therefore, in the MAX cooling mode, the cooling mode or the dehumidifying cooling mode, when the heat absorber temperature Te detected by the heat absorber temperature sensor 48 does not decrease (heat absorber does not cool), the controller 32 executes the failure valve confirmation mode. In this failure valve confirmation mode, the controller 32 closes the solenoid valve 21 and the solenoid valve 40, opens the solenoid valve 30, reduces the valve opening degree of the outdoor expansion valve 6, and determines whether the outdoor heat exchanger temperature TXO falls in that state. Determine whether or not.

電磁弁21(暖房)が開故障している場合、閉じることができず、室外熱交換器7を出た冷媒はアキュムレータ12に向かうようになる。一方、室外膨張弁6は絞られるため、室外熱交換器温度TXOは下がることになる。そこで、コントローラ32はこの故障弁確定モードで室外熱交換器温度TXOが下がれば電磁弁21の開故障と確定し、下がらなければ電磁弁17の閉故障と確定する。これにより、MAX冷房モード、冷房モード又は除湿冷房モードにおいて電磁弁21と電磁弁17の何れかの故障が原因で発生し得る、吸熱器温度Teが下がらない、という異常状態が発生した場合にも、どちらの電磁弁が故障しているかを確定することができるようになる。   When the electromagnetic valve 21 (heating) has an open failure, it cannot be closed, and the refrigerant that has exited the outdoor heat exchanger 7 goes to the accumulator 12. On the other hand, since the outdoor expansion valve 6 is throttled, the outdoor heat exchanger temperature TXO is lowered. Therefore, the controller 32 determines in this failure valve confirmation mode that the outdoor heat exchanger temperature TXO decreases and that the solenoid valve 21 has an open failure, and if the outdoor heat exchanger temperature TXO does not decrease, it determines that the solenoid valve 17 has a closed failure. As a result, even in the case of an abnormal state that the heat absorber temperature Te does not decrease, which may occur due to a failure of either the solenoid valve 21 or the solenoid valve 17 in the MAX cooling mode, the cooling mode, or the dehumidifying cooling mode. , It becomes possible to determine which solenoid valve has failed.

(9−2)MAX冷房モードで吐出圧力Pdが放熱器圧力PCIと同等であるときの故障弁確定モード
また、圧縮機2の吐出圧力Pdが放熱器圧力PCIと同等である、という異常状態も、図4に示す如く電磁弁30の開故障や室外膨張弁6の開故障によって発生する。従って、吐出圧力Pdが放熱器圧力PCIと同等であるという異常からだけでは電磁弁30と室外膨張弁6のどちらの弁が故障しているか分からない。
(9-2) Fault valve determination mode when the discharge pressure Pd is equal to the radiator pressure PCI in the MAX cooling mode Also, there is an abnormal state that the discharge pressure Pd of the compressor 2 is equal to the radiator pressure PCI. As shown in FIG. 4, it is caused by an open failure of the solenoid valve 30 or an open failure of the outdoor expansion valve 6. Therefore, it is not possible to know which of the solenoid valve 30 and the outdoor expansion valve 6 has a failure only from the abnormality that the discharge pressure Pd is equal to the radiator pressure PCI.

そこで、コントローラ32はMAX冷房モードにおいて、圧縮機2の吐出圧力Pdが放熱器圧力PCIと同等である場合、故障弁確定モードを実行する。この場合の故障弁確定モードでは、コントローラ32は電磁弁40(バイパス)を閉じ、その状態で圧縮機2の吐出圧力Pdが所定の保護停止値に上昇するか否か判断する。   Therefore, when the discharge pressure Pd of the compressor 2 is equal to the radiator pressure PCI in the MAX cooling mode, the controller 32 executes the failure valve confirmation mode. In the failure valve determination mode in this case, the controller 32 closes the solenoid valve 40 (bypass) and determines in that state whether the discharge pressure Pd of the compressor 2 rises to a predetermined protection stop value.

電磁弁40を閉じると、本来は電磁弁30も閉じていることから、圧縮機2から吐出された冷媒の行き場が無くなるため、吐出圧力Pdは保護停止値に上昇するはずであるが、電磁弁30が開故障しているときには上昇しなくなる。そこで、コントローラ32はこの故障弁確定モードで吐出圧力Pdが保護停止値に上昇しないときは電磁弁30の開故障、上昇したときは室外膨張弁6の開故障と確定する。これにより、MAX冷房モードにおいて電磁弁30や室外膨張弁6の故障が原因で発生し得る、圧縮機2の吐出圧力Pdが放熱器圧力PCIと同等である、という異常状態が発生した場合にも、どちらの弁が故障しているかを確定することができるようになる。   When the solenoid valve 40 is closed, since the solenoid valve 30 is also originally closed, there is no place for the refrigerant discharged from the compressor 2, so the discharge pressure Pd should rise to the protection stop value. It does not rise when 30 has an open failure. Therefore, the controller 32 determines that the solenoid valve 30 has an open failure when the discharge pressure Pd does not increase to the protection stop value in this failure valve determination mode, and the open expansion valve 6 has an open failure when the discharge pressure Pd increases. As a result, even in the case of an abnormal state that the discharge pressure Pd of the compressor 2 is equal to the radiator pressure PCI, which may occur due to a failure of the electromagnetic valve 30 or the outdoor expansion valve 6 in the MAX cooling mode. , It will be possible to determine which valve has failed.

(9−3)除湿暖房モードで吸熱器温度Teが下がらないときの故障弁確定モード
また、除湿暖房モードにおいて吸熱器温度Teが下がらない(吸熱器冷えず)、という異常状態は、図4に示す如く電磁弁30(リヒート)が開故障、電磁弁17(冷房)が閉故障、電磁弁21(暖房)が開故障、室外膨張弁6が開故障している場合の何れの場合にも発生する。従って、除湿暖房モードで吸熱器温度Teが下がらないという異常からだけではどの電磁弁30、17、21が故障しているか、或いは、室外膨張弁6が故障しているか分からない。
(9-3) Fault valve determination mode when the heat absorber temperature Te does not decrease in the dehumidifying heating mode Further, the abnormal state that the heat absorber temperature Te does not decrease (heat absorber does not cool) in the dehumidifying heating mode is shown in FIG. As shown, the solenoid valve 30 (reheat) has an open failure, the solenoid valve 17 (cooling) has a close failure, the solenoid valve 21 (heating) has an open failure, and the outdoor expansion valve 6 has an open failure. To do. Therefore, it is not possible to know which solenoid valve 30, 17, 21 is malfunctioning or the outdoor expansion valve 6 is malfunctioning only from the abnormality that the heat absorber temperature Te does not decrease in the dehumidifying and heating mode.

そこで、コントローラ32は除湿暖房モードにおいて、吸熱器温度Teが下がらない場合、故障弁確定モードを実行する。この場合の故障弁確定モードでは、コントローラ32は先ず、電磁弁40を閉じた第1の状態とし、この第1の状態で圧縮機2の吐出圧力Pdが所定の保護停止値に上昇するか否か判断する。除湿暖房モードでは本来電磁弁30は閉じているので、電磁弁40を閉じることで圧縮機2から吐出された冷媒の行き場が無くなり、吐出圧力Pdは上昇する。そこで、コントローラ32はこの第1の状態としたときに、吐出圧力Pdが保護停止値に上昇しないときは、電磁弁30の開故障と確定する。   Therefore, in the dehumidification heating mode, the controller 32 executes the failure valve confirmation mode when the heat absorber temperature Te does not decrease. In the failure valve confirmation mode in this case, the controller 32 first sets the solenoid valve 40 to the first state in which the solenoid valve 40 is closed, and in this first state, whether or not the discharge pressure Pd of the compressor 2 rises to a predetermined protection stop value. To determine. Since the solenoid valve 30 is originally closed in the dehumidification heating mode, closing the solenoid valve 40 eliminates the place where the refrigerant discharged from the compressor 2 goes, and the discharge pressure Pd rises. Therefore, when the discharge pressure Pd does not rise to the protection stop value in this first state, the controller 32 determines that the solenoid valve 30 has an open failure.

また、この第1の状態でも電磁弁30は正常であった場合、コントローラ32は元の運転状態に戻した後、次に補助ヒータ23の発熱を停止する第2の状態とし、この第2の状態で圧縮機2の吐出圧力Pdが放熱器圧力PCIと同等となるか否か判断する。除湿暖房モードで補助ヒータ23の発熱を停止した場合、室外膨張弁6は本来全閉となっているので、放熱器圧力PCIは吐出圧力Pdにはならない。そこで、コントローラ32はこの第2の状態としたときに、吐出圧力Pdが放熱器圧力PCIと同等となるときは、室外膨張弁6の開故障と確定する。   If the solenoid valve 30 is normal even in the first state, the controller 32 returns to the original operating state and then the second state in which the heat generation of the auxiliary heater 23 is stopped is set. In this state, it is determined whether the discharge pressure Pd of the compressor 2 becomes equal to the radiator pressure PCI. When the heat generation of the auxiliary heater 23 is stopped in the dehumidifying heating mode, the outdoor expansion valve 6 is originally fully closed, so the radiator pressure PCI does not become the discharge pressure Pd. Therefore, in the second state, when the discharge pressure Pd becomes equal to the radiator pressure PCI, the controller 32 determines that the outdoor expansion valve 6 is open.

また、この第2の状態でも室外膨張弁6は正常であった場合、コントローラ32は次に電磁弁21と電磁弁40を閉じ、電磁弁30を開き、室外膨張弁6の弁開度を縮小した第3の状態とする。電磁弁21が開故障している場合、閉じることができず、室外熱交換器7を出た冷媒はアキュムレータ12に向かうようになる。一方、室外膨張弁6は絞られるため、室外熱交換器温度TXOは下がることになる。そこで、コントローラ32はこの第3の状態で室外熱交換器温度TXOが下がれば電磁弁21の開故障と確定する。   If the outdoor expansion valve 6 is normal even in this second state, the controller 32 next closes the electromagnetic valves 21 and 40, opens the electromagnetic valve 30, and reduces the valve opening degree of the outdoor expansion valve 6. The third state is set. When the solenoid valve 21 has an open failure, it cannot be closed and the refrigerant exiting the outdoor heat exchanger 7 is directed to the accumulator 12. On the other hand, since the outdoor expansion valve 6 is throttled, the outdoor heat exchanger temperature TXO is lowered. Therefore, if the outdoor heat exchanger temperature TXO falls in this third state, the controller 32 determines that the solenoid valve 21 has an open failure.

そして、室外熱交換器温度TXOが下がらなければ電磁弁17の閉故障と確定する。これにより、除湿暖房モードにおいて電磁弁30、17、21や室外膨張弁6の故障が原因で発生し得る、吸熱器温度Teが下がらない、という異常状態が発生した場合にも、どの弁が故障しているかを確定することができるようになる。   If the outdoor heat exchanger temperature TXO does not decrease, it is determined that the solenoid valve 17 is closed. As a result, in the dehumidifying and heating mode, whichever valve fails even if an abnormal state occurs that the heat absorber temperature Te does not decrease, which may occur due to a failure of the solenoid valves 30, 17, 21 or the outdoor expansion valve 6. You will be able to determine what you are doing.

そして、上記の如き故障弁確定モードで故障が確定された場合にも、コントローラ32は空調操作部53で係る故障発生を表示し、使用者に報知する(報知動作)。それにより、使用者に各弁の故障発生を警告して迅速な対処を促すことができるようになる。   Then, even when the failure is confirmed in the failure valve confirmation mode as described above, the controller 32 displays the occurrence of the failure in the air conditioning operation unit 53 and notifies the user (informing operation). As a result, the user can be alerted to the occurrence of a failure in each valve to prompt prompt action.

以上詳述した如く本発明の車両用空気調和装置1によれば、コントローラ32が、冷媒回路Rの各部の温度(放熱器温度TH、吸熱器温度Te、室外熱交換器温度TXO)、圧力(吐出圧力Pd、放熱器圧力PCI)の検出値、若しくは、それらから求められる算出値(過冷却度SCやCOP)に基づき、運転状態が、電磁弁17、21、30、40又は室外膨張弁6の故障が原因と推定される異常状態となった場合、圧縮機2の回転数NCを一定の値とし、当該圧縮機2の回転数NCで予め測定された温度、圧力の正常検出値、若しくは、それらから算出された正常算出値と検出値や算出値とを比較することにより、電磁弁17、21、30、40又は室外膨張弁6の故障と確定する故障確定モードを実行するようにしたので、検出値と正常検出値、或いは、算出値と正常算出値を比較することで、比較的簡易に電磁弁や室外膨張弁の故障の判定と確定を行うことができるようになる。   As described in detail above, according to the vehicle air conditioner 1 of the present invention, the controller 32 causes the temperature (radiator temperature TH, heat absorber temperature Te, outdoor heat exchanger temperature TXO) of each part of the refrigerant circuit R, pressure ( Based on the detected values of the discharge pressure Pd and the radiator pressure PCI) or the calculated values (supercooling degree SC and COP) obtained from them, the operating state is determined by the solenoid valves 17, 21, 30, 40 or the outdoor expansion valve 6 In the case of an abnormal state that is presumed to be caused by the failure of, the rotation speed NC of the compressor 2 is set to a constant value, and the normal detection value of the temperature and the pressure measured in advance at the rotation speed NC of the compressor 2 or By comparing the normal calculated value calculated from them with the detected value or calculated value, the failure confirmation mode for confirming the failure of the solenoid valves 17, 21, 30, 40 or the outdoor expansion valve 6 is executed. So the detected value and positive Detection value, or by comparing the calculated value and the normal calculated value, it is possible to perform the confirmation and determination of a failure of the solenoid valve and the outdoor expansion valve relatively easily.

また、コントローラ32は、異なる電磁弁17、21、30又は室外膨張弁6の故障が原因で同様の異常状態(吸熱器温度Teが下がらない、吐出圧力Pdが放熱器圧力PCIと同等になる)が発生する場合には、故障している電磁弁17、21、30又は室外膨張弁6を確定する故障弁確定モードを実行するので、どの電磁弁17、21、30が故障しているのか、或いは、室外膨張弁6が故障しているのかを確定することができるようになる。   Further, the controller 32 has a similar abnormal state due to the failure of the different solenoid valves 17, 21, 30 or the outdoor expansion valve 6 (the heat absorber temperature Te does not decrease, the discharge pressure Pd becomes equal to the radiator pressure PCI). When the failure occurs, the failure valve confirmation mode for confirming the malfunctioning solenoid valve 17, 21, 30 or the outdoor expansion valve 6 is executed, so which solenoid valve 17, 21, 30 is malfunctioning, Alternatively, it becomes possible to determine whether the outdoor expansion valve 6 is out of order.

尚、実施例で示した各運転モードの切換制御は、それに限られるものでは無く、車両用空気調和装置の能力や使用環境に応じて、外気温度Tam、車室内の湿度、目標吹出温度TAO、放熱器温度TH、目標放熱器温度TCO、吸熱器温度Te、目標吸熱器温度TEO、車室内の除湿要求の有無、等のパラメータの何れか、又は、それらの組み合わせ、それらの全てを採用して適切な条件を設定すると良い。   It should be noted that the switching control of each operation mode shown in the embodiment is not limited to that, and the outside air temperature Tam, the humidity in the vehicle compartment, the target outlet temperature TAO, depending on the capacity of the vehicle air conditioner and the usage environment. Any one of parameters such as radiator temperature TH, target radiator temperature TCO, heat absorber temperature Te, target heat absorber temperature TEO, presence / absence of dehumidification request in the passenger compartment, or a combination thereof, or all of them are adopted. It is good to set appropriate conditions.

また、補助加熱装置は実施例で示した補助ヒータ23に限られるものでは無く、ヒータで加熱された熱媒体を循環させて空気流通路内の空気を加熱する熱媒体循環回路や、エンジンで加熱されたラジエター水を循環するヒータコア等を利用してもよい。更に、実施例で説明した冷媒回路Rの構成はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能である。   Further, the auxiliary heating device is not limited to the auxiliary heater 23 shown in the embodiment, but may be a heat medium circulation circuit that circulates the heat medium heated by the heater to heat the air in the air flow passage, or an engine heating. A heater core or the like that circulates the generated radiator water may be used. Further, the configuration of the refrigerant circuit R described in the embodiment is not limited to that, and can be modified within the range not departing from the spirit of the present invention.

1 車両用空気調和装置
2 圧縮機
3 空気流通路
4 放熱器
6 室外膨張弁
7 室外熱交換器
8 室内膨張弁
9 吸熱器
17 電磁弁(冷房)
21 電磁弁(暖房)
30 電磁弁(リヒート)
40 電磁弁(バイパス)
23 補助ヒータ(補助加熱装置)
27 室内送風機(ブロワファン)
28 エアミックスダンパ
32 コントローラ(制御装置)
35 バイパス配管
R 冷媒回路
1 Vehicle Air Conditioner 2 Compressor 3 Air Flow Path 4 Radiator 6 Outdoor Expansion Valve 7 Outdoor Heat Exchanger 8 Indoor Expansion Valve 9 Heat Absorber 17 Solenoid Valve (Cooling)
21 Solenoid valve (heating)
30 Solenoid valve (reheat)
40 Solenoid valve (bypass)
23 Auxiliary heater (auxiliary heating device)
27 Indoor blower (blower fan)
28 Air mix damper 32 Controller (control device)
35 Bypass piping R Refrigerant circuit

Claims (13)

冷媒を圧縮する圧縮機と、
車室内に供給する空気が流通する空気流通路と、
冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための吸熱器と、
前記車室外に設けられた室外熱交換器と、
前記室外熱交換器に流入する冷媒を減圧するための室外膨張弁と、
前記放熱器及び前記室外膨張弁をバイパスして、前記圧縮機から吐出された冷媒を前記室外熱交換器に直接流入させるためのバイパス配管と、
冷媒の流れを切り換えるための複数の電磁弁と、
制御装置とを備え、
該制御装置によって前記電磁弁を制御することにより、複数の運転モードを切り換えて実行する車両用空気調和装置において、
前記制御装置は、各部の温度、及び/又は、圧力の検出値、若しくは、それらから求められる算出値に基づき、運転状態が、前記電磁弁又は前記室外膨張弁の故障が原因と推定される異常状態となった場合、前記圧縮機の回転数を一定の値とし、当該圧縮機の回転数で予め測定された温度、及び/又は、圧力の正常検出値、若しくは、それらから算出された正常算出値と前記検出値、若しくは、算出値とを比較することにより、前記電磁弁又は前記室外膨張弁の故障と確定する故障確定モードを実行すると共に、
異なる前記電磁弁又は前記室外膨張弁の故障が原因で同様の異常状態が発生する場合、当該異常状態が発生する原因となり得る前記電磁弁又は前記室外膨張弁のうちから、何れの弁が故障しているかを確定する故障弁確定モードを有し、且つ、前記複数の運転モードに応じた異なる前記故障弁確定モードを実行することを特徴とする車両用空気調和装置。
A compressor for compressing the refrigerant,
An air flow passage through which the air supplied to the vehicle compartment circulates,
A radiator for radiating heat of the refrigerant to heat the air supplied from the air flow passage into the vehicle interior,
A heat absorber for cooling the air supplied to the vehicle compartment from the air flow passage by absorbing the heat of the refrigerant,
An outdoor heat exchanger provided outside the vehicle,
An outdoor expansion valve for reducing the pressure of the refrigerant flowing into the outdoor heat exchanger,
Bypass piping for bypassing the radiator and the outdoor expansion valve to allow the refrigerant discharged from the compressor to directly flow into the outdoor heat exchanger,
A plurality of solenoid valves for switching the flow of refrigerant,
With a control device,
By controlling the solenoid valve by the control device, in a vehicle air conditioner for switching and executing a plurality of operation modes,
The control device, based on the detected value of the temperature and / or the pressure of each part, or the calculated value obtained from them, the operating state is abnormal due to a failure of the solenoid valve or the outdoor expansion valve. When the state is reached, the rotation speed of the compressor is set to a constant value, and the temperature and / or pressure normally detected at the rotation speed of the compressor is normally detected, or a normal calculation is calculated from them. By comparing a value with the detected value, or a calculated value, while performing a failure confirmation mode for confirming a failure of the solenoid valve or the outdoor expansion valve ,
When the same abnormal state occurs due to the failure of the different solenoid valve or the outdoor expansion valve, any one of the solenoid valve or the outdoor expansion valve that may cause the abnormal state fails An air conditioner for a vehicle , which has a failure valve confirmation mode for determining whether or not there is any, and executes different failure valve confirmation modes according to the plurality of operation modes .
前記制御装置は、前記故障弁確定モードでは、前記複数の運転モード毎に前記異常状態が発生する原因となり得る前記電磁弁又は前記室外膨張弁を制御し、その場合の前記検出値の変化に応じて何れの弁が故障しているかを確定することを特徴とする請求項1に記載の車両用空気調和装置。 The control device controls the electromagnetic valve or the outdoor expansion valve that may cause the abnormal state for each of the plurality of operation modes in the failure valve confirmation mode, and responds to a change in the detected value in that case. The air conditioner for a vehicle according to claim 1, wherein which of the valves is defective is determined . 前記空気流通路から前記車室内に供給する空気を加熱するための補助加熱装置を備え、
前記制御装置は前記複数の運転モードとして、
前記圧縮機から吐出された冷媒を前記放熱器に流して放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させる暖房モードと、
前記圧縮機から吐出された冷媒を前記バイパス配管により前記室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させると共に、前記補助加熱装置を発熱させる除湿暖房モードと、
前記圧縮機から吐出された冷媒を前記放熱器から前記室外熱交換器に流して当該放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる除湿冷房モードと、
前記圧縮機から吐出された冷媒を前記放熱器から前記室外熱交換器に流して当該室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる冷房モードと、
前記圧縮機から吐出された冷媒を前記バイパス配管により前記室外熱交換器に流して放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる最大冷房モードと、
前記圧縮機から吐出された冷媒を前記放熱器から前記室外熱交換器に流して当該室外熱交換器を除霜する除霜モードを有し、
前記電磁弁を制御することにより、各運転モードを切り換えて実行することを特徴とする請求項1又は請求項2に記載の車両用空気調和装置。
An auxiliary heating device for heating the air supplied to the vehicle compartment from the air flow passage,
The control device, as the plurality of operation modes,
A heating mode in which the refrigerant discharged from the compressor is caused to radiate by radiating the heat to the radiator, and after depressurizing the radiated refrigerant, the outdoor heat exchanger absorbs heat.
Dehumidification that causes the refrigerant discharged from the compressor to flow through the outdoor heat exchanger through the bypass pipe to radiate heat, and after decompressing the radiated refrigerant, causes the heat absorber to absorb heat and heat the auxiliary heating device. Heating mode,
Refrigerant discharged from the compressor is caused to flow from the radiator to the outdoor heat exchanger so that the radiator and the outdoor heat exchanger radiate heat, and the radiated refrigerant is decompressed and then absorbed by the heat absorber. Dehumidification cooling mode,
A cooling mode in which the refrigerant discharged from the compressor is caused to flow from the radiator to the outdoor heat exchanger to radiate heat in the outdoor heat exchanger, and after decompressing the radiated refrigerant, the heat absorber absorbs heat. ,
Refrigerant discharged from the compressor is caused to radiate by flowing into the outdoor heat exchanger through the bypass pipe, and after decompressing the radiated refrigerant, a maximum cooling mode in which heat is absorbed by the heat absorber,
Having a defrosting mode in which the refrigerant discharged from the compressor is defrosted by flowing the outdoor heat exchanger from the radiator to the outdoor heat exchanger,
The vehicle air conditioner according to claim 1 or 2, wherein each operation mode is switched and executed by controlling the electromagnetic valve.
前記暖房モードで開いて前記室外熱交換器から出た冷媒を前記圧縮機に流す暖房用の前記電磁弁と、
前記除湿暖房モード、前記除湿冷房モード、前記冷房モード、及び、前記最大冷房モードで開いて前記室外熱交換器から出た冷媒を前記吸熱器に流す冷房用の前記電磁弁と、
前記除湿暖房モード、及び、前記最大冷房モードで開いて前記圧縮機から吐出された冷媒を前記バイパス配管に流すバイパス用の前記電磁弁と、
前記暖房モード、前記除湿冷房モード、前記冷房モード、及び、前記除霜モードで開いて前記圧縮機から吐出された冷媒を前記放熱器に流すリヒート用の前記電磁弁を備えたことを特徴とする請求項3に記載の車両用空気調和装置。
A solenoid valve for heating that causes the refrigerant that has opened from the outdoor heat exchanger to open in the heating mode and flows to the compressor,
The dehumidification heating mode, the dehumidification cooling mode, the cooling mode, and the electromagnetic valve for cooling to flow the refrigerant discharged from the outdoor heat exchanger in the maximum cooling mode to the heat absorber,
The dehumidifying heating mode, and the bypass solenoid valve that opens the refrigerant in the maximum cooling mode and discharges the refrigerant discharged from the compressor to the bypass pipe,
The heating valve, the dehumidifying and cooling mode, the cooling mode, and the reheating solenoid valve that is opened in the defrosting mode and causes the refrigerant discharged from the compressor to flow to the radiator. The vehicle air conditioner according to claim 3.
前記制御装置は前記暖房モードにおいて、前記圧縮機の吐出圧力が所定の保護停止値に上昇したときは前記リヒート用の電磁弁の閉故障、COPが低いときは前記バイパス用の電磁弁の開故障、前記室外熱交換器の温度が高いとき、又は、圧縮機の吸込冷媒温度が外気温度と同等であるときは前記暖房用の電磁弁の閉故障、前記放熱器における冷媒の過冷却度が異常に大きいとき、又は、前記圧縮機の起動時から前記放熱器の温度が変化しないときは前記室外膨張弁の閉故障、前記放熱器における冷媒の過冷却度が目標値とならないときは前記室外膨張弁の開故障、と推定して前記故障確定モードを実行することを特徴とする請求項4に記載の車両用空気調和装置。   In the heating mode, the control device closes the solenoid valve for reheat when the discharge pressure of the compressor rises to a predetermined protection stop value, and opens the solenoid valve for bypass when the COP is low. When the temperature of the outdoor heat exchanger is high, or when the suction refrigerant temperature of the compressor is equal to the outside air temperature, the solenoid valve for heating has a closed failure, and the degree of supercooling of the refrigerant in the radiator is abnormal. Is large, or when the temperature of the radiator does not change from the start of the compressor, the outdoor expansion valve has a closed failure, and when the degree of refrigerant subcooling in the radiator does not reach a target value, the outdoor expansion The vehicle air conditioner according to claim 4, wherein the failure confirmation mode is executed by estimating that the valve has an open failure. 前記制御装置は前記除霜モードにおいて、前記圧縮機の吐出圧力が所定の保護停止値に上昇したときは前記リヒート用の電磁弁の閉故障、前記室外熱交換器の温度が高いとき、又は、圧縮機の吸込冷媒温度が外気温度と同等であるときは前記暖房用の電磁弁の閉故障、前記放熱器において冷媒の過冷却度が付くときは前記室外膨張弁の閉故障、と推定して前記故障確定モードを実行することを特徴とする請求項4又は請求項5に記載の車両用空気調和装置。   In the defrost mode, the control device, when the discharge pressure of the compressor rises to a predetermined protection stop value, a closing failure of the electromagnetic valve for reheating, when the temperature of the outdoor heat exchanger is high, or, When the suction refrigerant temperature of the compressor is equal to the outside air temperature, it is presumed that the solenoid valve for heating has a closing failure, and when the radiator has a supercooling degree of the refrigerant, the outdoor expansion valve has a closing failure. The vehicle air conditioner according to claim 4 or 5, wherein the failure confirmation mode is executed. 前記制御装置は前記除湿暖房モードにおいて、前記圧縮機の吐出圧力が所定の保護停止値に上昇したときは前記バイパス用の電磁弁の閉故障と推定して前記故障確定モードを実行することを特徴とする請求項4、請求項5又は請求項6のうちの何れかに記載の車両用空気調和装置。   In the dehumidifying and heating mode, the control device estimates that the bypass solenoid valve has a closed failure and executes the failure confirmation mode when the discharge pressure of the compressor rises to a predetermined protection stop value. The air conditioner for a vehicle according to any one of claims 4, 5, and 6. 前記制御装置は前記除湿冷房モード又は前記冷房モードにおいて、前記圧縮機の吐出圧力が所定の保護停止値に上昇したときは前記リヒート用の電磁弁の閉故障、前記放熱器において冷媒の過冷却度が付くときは前記室外膨張弁の閉故障、前記放熱器の温度が目標値とならないときは前記室外膨張弁の開故障、と推定して前記故障確定モードを実行することを特徴とする請求項4、請求項5、請求項6又は請求項7のうちの何れかに記載の車両用空気調和装置。   In the dehumidifying cooling mode or the cooling mode, the control device closes the solenoid valve for reheating when the discharge pressure of the compressor rises to a predetermined protection stop value, and the degree of supercooling of the refrigerant in the radiator. The failure confirmation mode is executed by estimating that the outdoor expansion valve is closed when the temperature is on, and that the outdoor expansion valve is open when the temperature of the radiator does not reach a target value. The vehicle air conditioner according to claim 4, claim 5, claim 6, or claim 7. 前記制御装置は前記最大冷房モードにおいて、前記圧縮機の吐出圧力が所定の保護停止値に上昇したときは前記バイパス用の電磁弁の閉故障、前記圧縮機の吸込冷媒温度が外気温度と同等であるときは前記冷房用の電磁弁の閉故障、と推定して前記故障確定モードを実行することを特徴とする請求項4、請求項5、請求項6、請求項7又は請求項8のうちの何れかに記載の車両用空気調和装置。   In the maximum cooling mode, the control device closes the solenoid valve for bypass when the discharge pressure of the compressor rises to a predetermined protection stop value, and the suction refrigerant temperature of the compressor is equal to the outside air temperature. When there is a certain condition, it is estimated that the electromagnetic valve for cooling has a closed failure, and the failure determination mode is executed, among the claims 4, 5, 6, 7 and 8. 5. The vehicle air conditioner according to any one of 1. 前記制御装置は、前記最大冷房モード、前記冷房モード又は前記除湿冷房モードにおいて、前記吸熱器の温度が下がらない場合、前記故障弁確定モードを実行すると共に、
該故障弁確定モードでは、前記暖房用の電磁弁と前記バイパス用の電磁弁を閉じ、前記リヒート用の電磁弁を開き、前記室外膨張弁の弁開度を縮小し、その状態で前記室外熱交換器の温度が下がれば前記暖房用の電磁弁の開故障、下がらなければ前記冷房用の電磁弁の閉故障、と確定することを特徴とする請求項4、請求項5、請求項6、請求項7、請求項8又は請求項9のうちの何れかに記載の車両用空気調和装置。
The controller, in the maximum cooling mode, the cooling mode or the dehumidifying cooling mode, if the temperature of the heat absorber does not decrease, while performing the failure valve confirmation mode,
In the failure valve confirmation mode, the heating solenoid valve and the bypass solenoid valve are closed, the reheat solenoid valve is opened, the valve opening degree of the outdoor expansion valve is reduced, and in that state, the outdoor heat valve is closed. If the temperature of the exchanger decreases, it is determined that the heating solenoid valve has an open failure, and if the temperature does not decrease, it is determined that the cooling solenoid valve has a close failure. The vehicle air conditioner according to any one of claims 7, 8 and 9.
前記制御装置は、前記最大冷房モードにおいて、前記圧縮機の吐出圧力が前記放熱器の圧力と同等である場合、前記故障弁確定モードを実行すると共に、
該故障弁確定モードでは、前記バイパス用の電磁弁を閉じ、その状態で前記圧縮機の吐出圧力が所定の保護停止値に上昇しないときは前記リヒート用の電磁弁の開故障、上昇したときは前記室外膨張弁の開故障、と確定することを特徴とする請求項4、請求項5、請求項6、請求項7、請求項8、請求項9又は請求項10のうちの何れかに記載の車両用空気調和装置。
The control device, in the maximum cooling mode, when the discharge pressure of the compressor is equal to the pressure of the radiator, while performing the failure valve confirmation mode,
In the fault valve confirmation mode, when the bypass solenoid valve is closed and the discharge pressure of the compressor does not rise to a predetermined protection stop value in that state, an open fault of the reheat solenoid valve occurs, and when it rises. The open failure of the outdoor expansion valve is confirmed, and any one of claim 4, claim 5, claim 6, claim 7, claim 8, claim 9, and claim 10 is characterized. Vehicle air conditioner.
前記制御装置は、前記除湿暖房モードにおいて、前記吸熱器の温度が下がらない場合、前記故障弁確定モードを実行すると共に、
該故障弁確定モードでは、
前記バイパス用の電磁弁を閉じた第1の状態とし、該第1の状態で前記圧縮機の吐出圧力が所定の保護停止値に上昇しないときは前記リヒート用の電磁弁の開故障と確定し、
前記補助加熱装置の発熱を停止した第2の状態とし、該第2の状態で前記圧縮機の吐出圧力が前記放熱器の圧力と同等となったときは前記室外膨張弁の開故障と確定し、
前記暖房用の電磁弁と前記バイパス用の電磁弁を閉じ、前記リヒート用の電磁弁を開き、前記室外膨張弁の弁開度を縮小した第3の状態とし、該第3の状態で前記室外熱交換器の温度が下がれば前記暖房用の電磁弁の開故障と確定し、
前記第1の状態、前記第2の状態及び前記第3の状態として前記リヒート用の電磁弁、前記室外膨張弁及び前記暖房用の電磁弁が正常であった場合、前記冷房用の電磁弁の閉故障と確定することを特徴とする請求項4、請求項5、請求項6、請求項7、請求項8、請求項9、請求項10又は請求項11のうちの何れかに記載の車両用空気調和装置。
In the dehumidification heating mode, the control device executes the failure valve confirmation mode when the temperature of the heat absorber does not decrease,
In the failure valve confirmation mode,
When the bypass solenoid valve is closed in the first state and the discharge pressure of the compressor does not rise to a predetermined protection stop value in the first state, it is determined that the reheat solenoid valve has an open failure. ,
When the discharge pressure of the compressor becomes equal to the pressure of the radiator in the second state where the heat generation of the auxiliary heating device is stopped, the open failure of the outdoor expansion valve is confirmed. ,
The heating solenoid valve and the bypass solenoid valve are closed, the reheat solenoid valve is opened, and the valve opening degree of the outdoor expansion valve is reduced to a third state. In the third state, the outdoor If the temperature of the heat exchanger drops, it is confirmed that the solenoid valve for heating has an open failure,
When the reheat solenoid valve, the outdoor expansion valve and the heating solenoid valve are normal as the first state, the second state and the third state, the cooling solenoid valve The vehicle according to any one of claims 4, 5, 6, 7, 8, 9, 10 and 11, which is determined to be a closed failure. Air conditioner.
前記制御装置は、前記電磁弁の故障が確定した場合、所定の報知動作を実行することを特徴とする請求項1乃至請求項12のうちの何れかに記載の車両用空気調和装置。
The vehicle air conditioner according to any one of claims 1 to 12, wherein the control device executes a predetermined notification operation when a failure of the solenoid valve is confirmed.
JP2016037032A 2016-02-29 2016-02-29 Vehicle air conditioner Active JP6692659B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016037032A JP6692659B2 (en) 2016-02-29 2016-02-29 Vehicle air conditioner
PCT/JP2017/008034 WO2017150592A1 (en) 2016-02-29 2017-02-21 Vehicle air-conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016037032A JP6692659B2 (en) 2016-02-29 2016-02-29 Vehicle air conditioner

Publications (2)

Publication Number Publication Date
JP2017154521A JP2017154521A (en) 2017-09-07
JP6692659B2 true JP6692659B2 (en) 2020-05-13

Family

ID=59744262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016037032A Active JP6692659B2 (en) 2016-02-29 2016-02-29 Vehicle air conditioner

Country Status (2)

Country Link
JP (1) JP6692659B2 (en)
WO (1) WO2017150592A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7036489B2 (en) * 2018-01-31 2022-03-15 サンデン・オートモーティブクライメイトシステム株式会社 Vehicle air conditioner
JP7257782B2 (en) * 2018-12-06 2023-04-14 三菱電機株式会社 air conditioning system
US12018872B2 (en) 2019-02-28 2024-06-25 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP7263116B2 (en) * 2019-05-20 2023-04-24 サンデン株式会社 TEMPERATURE ADJUSTMENT DEVICE FOR ON-BOARD DEVICE AND VEHICLE AIR CONDITIONING DEVICE INCLUDING THE SAME
KR102028369B1 (en) * 2019-05-24 2019-10-04 한국전력공사 Apparatus for charging electric vehicle using supercontuctive cable
JP2021020572A (en) * 2019-07-29 2021-02-18 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air-conditioner
CN110949096A (en) * 2019-10-30 2020-04-03 江铃汽车股份有限公司 Method and system for controlling rotating speed of automobile air conditioner compressor
CN114593515A (en) * 2022-01-20 2022-06-07 青岛海尔空调电子有限公司 Method and device for controlling multi-line system, multi-line system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101241222B1 (en) * 2011-07-21 2013-03-13 기아자동차주식회사 Heat pump system control method for vehicle
JP2004182168A (en) * 2002-12-05 2004-07-02 Mitsubishi Heavy Ind Ltd Vehicular air conditioner
JP2006090614A (en) * 2004-09-24 2006-04-06 Hitachi Home & Life Solutions Inc Air conditioner

Also Published As

Publication number Publication date
WO2017150592A1 (en) 2017-09-08
JP2017154521A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
JP6692659B2 (en) Vehicle air conditioner
CN107614301B (en) Air conditioner for vehicle
JP6710061B2 (en) Air conditioner for vehicle
CN107000544B (en) Air conditioner for vehicle
JP6680601B2 (en) Vehicle air conditioner
CN109070693B (en) Air conditioner for vehicle
US10926609B2 (en) Vehicle air conditioning device
CN116113553A (en) Air Conditioning Units for Vehicles
JP6738156B2 (en) Vehicle air conditioner
WO2017146264A1 (en) Vehicular air-conditioning device
JP6822193B2 (en) Pressure drop suppression device
JP6831209B2 (en) Vehicle air conditioner
JP6719923B2 (en) Vehicle air conditioner
WO2019017150A1 (en) Vehicular air conditioning device
WO2017150735A1 (en) Air conditioner for vehicles
JP7036489B2 (en) Vehicle air conditioner
JP6854668B2 (en) Vehicle air conditioner
JP6754214B2 (en) Vehicle air conditioner
CN117615923A (en) Air conditioner for vehicle
JP2021020572A (en) Vehicular air-conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200415

R150 Certificate of patent or registration of utility model

Ref document number: 6692659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350