[go: up one dir, main page]

JP6654981B2 - Anaerobic treatment of organic wastewater - Google Patents

Anaerobic treatment of organic wastewater Download PDF

Info

Publication number
JP6654981B2
JP6654981B2 JP2016146103A JP2016146103A JP6654981B2 JP 6654981 B2 JP6654981 B2 JP 6654981B2 JP 2016146103 A JP2016146103 A JP 2016146103A JP 2016146103 A JP2016146103 A JP 2016146103A JP 6654981 B2 JP6654981 B2 JP 6654981B2
Authority
JP
Japan
Prior art keywords
carrier
anaerobic
reaction tank
tank
organic wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016146103A
Other languages
Japanese (ja)
Other versions
JP2018015691A (en
Inventor
一将 蒲池
一将 蒲池
智弘 飯倉
智弘 飯倉
惇太 高橋
惇太 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=61078947&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6654981(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2016146103A priority Critical patent/JP6654981B2/en
Publication of JP2018015691A publication Critical patent/JP2018015691A/en
Application granted granted Critical
Publication of JP6654981B2 publication Critical patent/JP6654981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、有機性廃水の嫌気性処理方法に関し、特に、嫌気性微生物を非生物担体に付着させて、非生物担体の表面に活性の高い生物膜を形成させるまでの立ち上げ運転期間を短縮した有機性廃水の嫌気性処理方法に関する。   The present invention relates to an anaerobic treatment method for organic wastewater, and in particular, reduces the start-up operation period until an anaerobic microorganism is attached to a non-biological carrier to form a highly active biofilm on the surface of the non-biological carrier. The present invention relates to an anaerobic treatment method for organic wastewater.

微生物を利用した有機性廃水の処理方法として、好気性生物処理、嫌気性生物処理が挙げられる。嫌気性生物処理の中でもメタン発酵処理は、酸素のない嫌気性環境下で生育する嫌気性微生物の代謝反応を利用して、有機性廃水中の有機物をメタンガスや炭酸ガスなどに分解する生物処理方法であり、好気性生物処理と比べて、汚泥発生量が少なく、ブロワ−(曝気)などの電気代が不要なためランニングコストがかからないと言ったメリットがあるほか、発生したメタンガスを有効利用できるなどのメリットがあるため、近年、有機性廃水の処理方法として特に注目されている。   Methods of treating organic wastewater using microorganisms include aerobic biological treatment and anaerobic biological treatment. Among anaerobic biological treatments, methane fermentation treatment is a biological treatment method that uses the metabolic reaction of anaerobic microorganisms that grow in an oxygen-free anaerobic environment to decompose organic matter in organic wastewater into methane gas or carbon dioxide gas. Compared to aerobic biological treatment, there is an advantage that the amount of generated sludge is small, and there is no running cost because electricity costs such as a blower (aeration) are unnecessary, and the generated methane gas can be used effectively. In recent years, it has been particularly noted as a method for treating organic wastewater.

メタン発酵処理方法としては、例えばUASB(Upflow Anaerobic Sludge Blanket(上向流嫌気性汚泥床)の略)法、固定床法、流動床法等などが知られている。中でも、UASB法は、メタン菌等の嫌気性菌と酸生成菌と汚泥との接触によりグラニュール状に造粒化してなるグラニュール汚泥を利用することにより、反応槽内のメタン菌の濃度を高濃度に維持できるという特徴があり、その結果、廃水中の有機物の濃度が相当高い場合でも効率よく処理できるため、有機性廃水の処理方法として国内外で普及している。しかしながら、化学工場などから排出されるメタノールやホルムアルデヒドなどの低分子有機物を主成分とする有機性廃水では、グラニュール汚泥を形成しにくく、維持しにくいという問題がある。   As the methane fermentation treatment method, for example, a UASB (abbreviation of Upflow Anaerobic Sludge Blanket), a fixed bed method, a fluidized bed method and the like are known. Above all, the UASB method uses granule sludge formed by granulation by contact of anaerobic bacteria such as methane bacteria and acid-producing bacteria with sludge, thereby reducing the concentration of methane bacteria in the reaction tank. It has the feature that it can be maintained at a high concentration, and as a result, it can be efficiently treated even when the concentration of organic matter in the wastewater is considerably high. Therefore, it is widely used in Japan and overseas as a method for treating organic wastewater. However, there is a problem that it is difficult to form and maintain granule sludge in organic wastewater discharged from a chemical factory or the like and mainly composed of low molecular organic substances such as methanol and formaldehyde.

また、CODCr(二クロム酸カリウムによる酸素要求量)が2000mg/L以下の低濃度原水を対象とする場合、一般的なUASB処理方法における設計負荷であるCODCr容積負荷10kg/(m・d)で運転しようとすると、有機性排水の通水量が過大となり、UASB反応槽内の上昇線速度LV(Liner Velocity)が3m/hを超過するため、UASB反応槽からグラニュール汚泥が流出し、UASB反応槽内での汚泥量の維持が困難となる。 When COD Cr (oxygen demand by potassium dichromate) is 2000 mg / L or less of low concentration raw water, COD Cr volume load, which is a design load in a general UASB treatment method, is 10 kg / (m 3 · When the operation is performed in d), the flow rate of the organic wastewater becomes excessive, and the linear velocity (LV) in the UASB reactor exceeds 3 m / h, so that granular sludge flows out of the UASB reactor. In addition, it becomes difficult to maintain the amount of sludge in the UASB reaction tank.

UASB反応槽内に必要量の汚泥を維持する方策として、グラニュール汚泥をUASB反応槽内に非生物担体とメタン菌グラニュールとを100:5〜100:500の容積比で存在させた状態で有機性排水の通水を開始する立ち上げ運転方法が提案されている(特許文献1)。しかし、メタン菌グラニュールが非生物担体に付着して生物膜を形成するまでに時間がかかるため、非生物担体に生物膜が形成される前にグラニュール汚泥が解体されてメタン菌が流出してしまい、定常運転時に必要な量のメタン菌グラニュールを確保するためには、通水開始時に大量のグラニュール汚泥を全量投入することが必要となる。   As a measure to maintain the required amount of sludge in the UASB reaction tank, granule sludge is placed in the UASB reaction tank with the non-biological carrier and the methane bacteria granules present in a volume ratio of 100: 5 to 100: 500. A start-up operation method for starting the flow of organic wastewater has been proposed (Patent Document 1). However, since it takes time for the methane bacteria granules to adhere to the non-biological carrier and form a biofilm, the granule sludge is dismantled before the biofilm is formed on the non-biological carrier, and methane bacteria flow out. Therefore, in order to secure the required amount of methane bacteria granules at the time of steady operation, it is necessary to supply a large amount of granular sludge at the start of water supply.

反応槽に、担体とメタン菌グラニュールを粉砕させたメタン菌凝集物を投入し、担体1Lあたりのメタン菌凝集物を1〜900gの範囲で存在させた状態で反応槽の立ち上げ運転を行うことが示されている(特許文献2)。しかし、メタン菌グラニュールを粉砕しているため、沈降速度が低下して反応槽から流出しやすくなり、立ち上げ運転中に所望の汚泥量を維持することができず、通水開始時には、流出量を見込んだ多量のメタン菌グラニュールを投入することが必要となる。   The carrier and the methane bacteria aggregate obtained by pulverizing the methane bacteria granules are charged into the reaction tank, and the start-up operation of the reaction tank is performed in a state where the methane bacteria aggregate per 1 L of the carrier is present in the range of 1 to 900 g. (Patent Document 2). However, since the methane bacterium granules are pulverized, the sedimentation speed is reduced and the sedimentation speed is liable to flow out of the reactor, and the desired amount of sludge cannot be maintained during the start-up operation. It is necessary to input a large amount of methanogen granules in consideration of the amount.

グラニュール汚泥は、UASB(上向流嫌気性汚泥床法)やEGSB(膨脹汚泥床法)において汚泥層として形成される。正常なグラニュール汚泥は、糸状性あるいはロッド状のMethanosaeta属のメタン生成菌が絡み合った構造を有している。さらに酸生成菌から分泌される細胞外ポリマーにより高い機械的強度を保っている。また、固液分離機構を有するUASBやEGSBのような上向流型反応槽であれば、投入したグラニュール汚泥を保持できるが、完全混合型反応槽ではグラニュール汚泥は短期間で流出してしまう。   Granule sludge is formed as a sludge layer in UASB (upflow anaerobic sludge bed method) and EGSB (expanded sludge bed method). Normal granule sludge has a structure in which filamentous or rod-shaped Methanosaeta methanogens are intertwined. Furthermore, the extracellular polymer secreted from acid-producing bacteria maintains high mechanical strength. In addition, in the case of an upward-flow type reaction tank such as UASB or EGSB having a solid-liquid separation mechanism, the introduced granular sludge can be retained, but in the complete mixing type reaction tank, the granular sludge flows out in a short period of time. I will.

特許5685902号公報Japanese Patent No. 568902 特開2014−100680号公報JP 2014-100680 A

本発明は、嫌気性反応槽の立ち上げ運転期間を短縮した有機性廃水の嫌気性処理方法を提供することを目的とする。
また、本発明は、負荷変動に応じた汚泥量の維持管理の必要性を低減できる有機性廃水の嫌気性処理方法を提供することを目的とする。
An object of the present invention is to provide an anaerobic treatment method for organic wastewater in which the startup operation period of an anaerobic reaction tank is shortened.
Another object of the present invention is to provide an anaerobic treatment method for organic wastewater, which can reduce the necessity of maintaining and managing the amount of sludge according to the load fluctuation.

本発明の実施態様は以下のとおりである。
[1]嫌気性微生物を担持することができる担体を保持する嫌気性反応槽に、有機性廃水を通水して処理する有機性廃水の嫌気性処理方法であって、
有機性廃水の通水開始時には、嫌気性微生物が付着している馴致担体と、嫌気性微生物が付着していない新規担体とを混在させ、当該馴致担体を全担体中の5vol%以上100vol%未満とすることを特徴とする有機性廃水の嫌気性処理方法。
[2]前記馴致担体は、担体のかさ容量あたりのSSとして1g/L以上500g/L以下の嫌気性微生物が付着している担体である、[1]に記載の有機性廃水の嫌気性処理方法。
[3]前記馴致担体は、既設の嫌気性反応槽で馴致させた担体及び/又は仮設の嫌気性反応槽で馴致させた担体である、[1]又は[2]に記載の有機性廃水の嫌気性処理方法。
[4]嫌気性微生物を担持することができる担体を保持する嫌気性反応槽と、
当該嫌気性反応槽に投入するための嫌気性微生物が付着している馴致担体を調製する馴致担体調製用嫌気性反応槽と、
を具備することを特徴とする有機性廃水の嫌気性処理装置。
The embodiments of the present invention are as follows.
[1] An anaerobic treatment method for treating organic wastewater by passing organic wastewater through an anaerobic reaction tank holding a carrier capable of supporting anaerobic microorganisms,
At the start of the passage of the organic wastewater, a compatible carrier to which anaerobic microorganisms are attached and a new carrier to which anaerobic microorganisms are not mixed are mixed, and the compatible carrier is 5 vol% or more and less than 100 vol% of all the carriers. An anaerobic treatment method for organic wastewater, characterized in that:
[2] The anaerobic treatment of the organic wastewater according to [1], wherein the adaptable carrier is a carrier to which anaerobic microorganisms having an SS per bulk volume of the carrier of 1 g / L to 500 g / L are adhered. Method.
[3] The organic wastewater according to [1] or [2], wherein the conditioned carrier is a carrier conditioned in an existing anaerobic reactor and / or a carrier conditioned in a temporary anaerobic reactor. Anaerobic treatment method.
[4] an anaerobic reaction tank holding a carrier capable of supporting anaerobic microorganisms;
An anaerobic reaction tank for preparing a conditioned carrier to which a anaerobic microorganism for attaching to the anaerobic reaction tank is attached,
An anaerobic treatment apparatus for organic wastewater, comprising:

本発明の有機性廃水の嫌気性処理方法によれば、嫌気性微生物が付着している馴致担体を投入するため、担体表面に高いメタン生成活性度を有する生物膜が形成されやすく、立ち上げ期間の短縮を行うことができる。   According to the anaerobic treatment method of the organic wastewater of the present invention, a biofilm having high methane generation activity is easily formed on the surface of the carrier because the anaerobic microorganism is attached to the familiar carrier. Can be shortened.

また、グラニュール汚泥は短時間で流出してしまう完全混合型反応槽(機械撹拌式及びガス撹拌式を含む)であっても馴致担体は流出しにくいため、嫌気性反応槽の種類に依存せずに、立ち上げ期間の短縮を行うことができる。   Moreover, even in a complete mixing type reaction tank (including a mechanical stirring type and a gas stirring type) in which granulated sludge flows out in a short time, the familiar carrier is difficult to flow out, so it depends on the type of anaerobic reaction tank. The start-up period can be shortened without the need.

さらに、本発明の有機性廃水処理方法では、負荷変動時などにグラニュール汚泥が流出することを防止できるため、負荷変動に応じた汚泥量の維持管理の必要性を低減できる。   Furthermore, according to the organic wastewater treatment method of the present invention, it is possible to prevent the granular sludge from flowing out at the time of load change or the like, so that it is possible to reduce the necessity of maintaining and managing the amount of sludge according to the load change.

本発明の有機性廃水処理方法の一形態の概要を例示した説明図である。It is explanatory drawing which illustrated the outline | summary of one form of the organic wastewater treatment method of this invention. 嫌気性反応槽として上向流型メタン発酵槽の概略構成の一例を示す説明図である。It is explanatory drawing which shows an example of a schematic structure of an upward flow methane fermentation tank as an anaerobic reaction tank. 嫌気性反応槽として上向流型メタン発酵槽の概略構成の別の一例を示す説明図である。It is explanatory drawing which shows another example of a schematic structure of an upward flow methane fermentation tank as an anaerobic reaction tank. 嫌気性反応槽として機械式撹拌型メタン発酵槽の概略構成の別の一例を示す説明図である。It is explanatory drawing which shows another example of a schematic structure of a mechanical stirring type methane fermentation tank as an anaerobic reaction tank. 嫌気性反応槽としてガス撹拌型メタン発酵槽の概略構成の別の一例を示す説明図である。It is explanatory drawing which shows another example of a schematic structure of a gas stirring type methane fermentation tank as an anaerobic reaction tank. 正常なグラニュール汚泥の模式図である。It is a schematic diagram of normal granule sludge. 馴致担体の模式図である。It is a schematic diagram of a conforming carrier. 比較例1及び2のS−CODCr除去率の経日変化を示すグラフである。6 is a graph showing the change over time of the S-COD Cr removal rates of Comparative Examples 1 and 2. 実施例1〜5のS−CODCr除去率の経日変化を示すグラフである。It is a graph which shows the daily change of S-COD Cr removal rate of Examples 1-5.

実施形態Embodiment

図1は、本発明の有機性廃水の嫌気性処理方法の一形態の概要を例示した説明図である。図1において、原水(有機性廃水)を酸発酵処理槽にて処理した後、メタン発酵槽に導入して嫌気性処理し、得られる処理水を処理水槽に送る。処理水槽からの処理水を酸発酵槽及び/又はメタン発酵槽に戻し、槽内の上向流速の制御に用いてもよい。   FIG. 1 is an explanatory view illustrating an outline of one embodiment of the anaerobic treatment method for organic wastewater of the present invention. In FIG. 1, raw water (organic wastewater) is treated in an acid fermentation treatment tank, then introduced into a methane fermentation tank and subjected to anaerobic treatment, and the resulting treated water is sent to a treatment water tank. The treated water from the treated water tank may be returned to the acid fermentation tank and / or the methane fermentation tank and used for controlling the upward flow rate in the tank.

メタン発酵槽は、嫌気性微生物を流動性担体表面に保持する嫌気性流動床方式の上向流型反応槽(図2〜図3)、機械撹拌式完全混合槽(図4)、ガス撹拌式完全混合槽(図5)などを用いることができる。嫌気性反応槽(メタン発酵槽)では、嫌気性反応により発生するバイオガス(メタンガス)が嫌気性反応槽内を上昇して、嫌気性反応槽の上部から外部に排出されて回収される。このとき、微生物を保持している担体も一緒に上昇し、嫌気性反応槽から越流として流出する可能性がある。完全混合槽の場合には、機械撹拌又はガス撹拌により強制的にバイオガスを上昇させるため、担体の上昇も多い。本発明を実施する装置においては、担体が嫌気性反応槽(メタン発酵槽)から越流することを防止するために、処理水と担体を分離するスクリーンが越流口に設置されている(図2)。あるいは、嫌気性反応槽外部に越流水貯蔵部を取り付けて、担体を含む越流水を一旦貯蔵し、越流水貯蔵部からの流出部にスクリーンを設けて、担体と処理水とを分離し、担体のみを嫌気性反応槽に返送する構成としてもよい(図3)。嫌気性反応槽(メタン発酵槽)から回収されたバイオガスは、必要に応じて脱硫などのガス精製を行った後に、ボイラーなどで利用することができる。   The methane fermentation tank is an anaerobic fluidized bed upward flow type reaction tank that holds anaerobic microorganisms on the surface of a fluid carrier (FIGS. 2 to 3), a mechanical stirring type complete mixing tank (FIG. 4), and a gas stirring type. A complete mixing tank (FIG. 5) or the like can be used. In the anaerobic reaction tank (methane fermentation tank), biogas (methane gas) generated by the anaerobic reaction rises in the anaerobic reaction tank and is discharged from the upper part of the anaerobic reaction tank to the outside to be collected. At this time, the carrier holding the microorganisms may rise together and flow out of the anaerobic reaction tank as overflow. In the case of a complete mixing tank, the biogas is forcibly raised by mechanical stirring or gas stirring, so that the carrier often rises. In the apparatus for practicing the present invention, a screen for separating the treated water and the carrier is provided at the overflow in order to prevent the carrier from flowing out of the anaerobic reaction tank (methane fermentation tank) (FIG. 2). Alternatively, an overflow water storage unit is attached to the outside of the anaerobic reaction tank, the overflow water including the carrier is temporarily stored, a screen is provided at an outlet from the overflow water storage unit, and the carrier and the treated water are separated. It may be configured to return only the anaerobic reaction tank (FIG. 3). The biogas recovered from the anaerobic reaction tank (methane fermentation tank) can be used in a boiler or the like after performing gas purification such as desulfurization as necessary.

本発明は、嫌気性反応槽(メタン発酵槽)の立ち上げ運転を制御することを特徴とする。通常、有機性廃水の嫌気性処理において、嫌気性反応槽の設計負荷に到達するまでに嫌気性微生物の馴致運転を行うことが必要である。新規担体への微生物の安定付着及び繁殖には長時間がかかるため、立ち上げ運転時間が90日を越えることもある。本発明では、有機性廃水の通水開始時に、すでに嫌気性微生物が付着している馴致担体を全担体量の5vol%以上100vol%未満混在させ、立ち上げ運転期間を短縮する。 The present invention is characterized in that the start-up operation of an anaerobic reaction tank (methane fermentation tank) is controlled. Usually, in the anaerobic treatment of organic wastewater, it is necessary to carry out the anaerobic microorganism acclimatization operation until the design load of the anaerobic reaction tank is reached. Since it takes a long time for stable attachment and propagation of microorganisms to a new carrier, the start-up operation time may exceed 90 days. In the present invention, at the start of the passage of the organic wastewater, the familiar carrier to which the anaerobic microorganisms have already adhered is mixed in an amount of 5 vol% or more and less than 100 vol% of the total carrier amount, thereby shortening the startup operation period.

本発明の有機性廃水の嫌気性処理方法は、嫌気性微生物を担持することができる担体を保持する嫌気性反応槽に有機性廃水を通水して処理する嫌気性処理方法であって、有機性廃水の通水開始時には、嫌気性微生物が付着している馴致担体と、嫌気性微生物が付着していない新規担体とを混在させ、当該馴致担体を全担体中の5vol%以上100vol%未満とすることを特徴とする。 The method for anaerobic treatment of organic wastewater of the present invention is an anaerobic treatment method in which organic wastewater is passed through an anaerobic reaction tank holding a carrier capable of supporting anaerobic microorganisms for treatment. At the start of the flow of the anaerobic wastewater, the adaptable carrier to which the anaerobic microorganisms are attached and the new carrier to which the anaerobic microorganisms are not attached are mixed, and the adaptable carrier is set to 5 vol% or more and less than 100 vol% of all the carriers. It is characterized by doing.

本発明における嫌気性反応槽は、30℃〜40℃を至適温度とした中温メタン発酵処理槽、50℃〜60℃を至適温度とした高温メタン発酵処理槽など、すべての温度範囲の嫌気性処理槽を制限無く用いることができる。   The anaerobic reaction tank in the present invention is anaerobic in all temperature ranges, such as a medium-temperature methane fermentation treatment tank with an optimum temperature of 30 ° C to 40 ° C, and a high-temperature methane fermentation treatment tank with an optimum temperature of 50 ° C to 60 ° C. The treatment tank can be used without limitation.

[嫌気性反応槽(メタン発酵槽)の運転条件]
嫌気性反応槽(メタン発酵槽)が上向流型嫌気性反応槽の場合のLVは1m/h以上20m/h以下、特に2m/h以上10m/h以下が好ましい。嫌気性反応槽(メタン発酵槽)内を所定のLVに調整するために、嫌気性反応(メタン発酵)処理水の一部を嫌気性反応槽(メタン発酵槽)の下部に設けられている流入水入口に循環させることができる。循環させる処理水は、嫌気性反応槽(メタン発酵槽)から流出した担体を随伴する処理水をスクリーンに通過させて担体を分離した後の担体を含まない処理水でもよいし、担体を含む処理水でもよい。担体を含む処理水を循環させる場合には、担体を破壊しないようなスネークポンプやガスリフトによることが好ましい。担体を分離した場合には、担体を嫌気性反応槽(メタン発酵槽)に戻すことが好ましい(図3)。
[Operation conditions of anaerobic reaction tank (methane fermentation tank)]
When the anaerobic reaction tank (methane fermentation tank) is an upward anaerobic reaction tank, LV is preferably 1 m / h or more and 20 m / h or less, particularly preferably 2 m / h or more and 10 m / h or less. In order to adjust the inside of the anaerobic reaction tank (methane fermentation tank) to a predetermined LV, a part of the anaerobic reaction (methane fermentation) treated water is supplied to the lower part of the anaerobic reaction tank (methane fermentation tank). Can be circulated to the water inlet. The treated water to be circulated may be treated water containing no carrier after passing treated water accompanied by a carrier flowing out of an anaerobic reaction tank (methane fermentation tank) through a screen to separate the carrier, or a treatment containing a carrier. It may be water. When circulating treated water containing a carrier, it is preferable to use a snake pump or a gas lift that does not destroy the carrier. When the carrier is separated, it is preferable to return the carrier to the anaerobic reaction tank (methane fermentation tank) (FIG. 3).

嫌気性反応槽(メタン発酵槽)の設計負荷(CODCr容積負荷)は原水性状に依存するが、5〜50kg/(m・d)の範囲とすることができる。グラニュール汚泥では内部に気泡を抱えて浮上したり、過大なガス混合によりグラニュール汚泥が解体したりすることがあるため、高負荷処理は困難であるが、本発明では馴致担体を利用することで、より高負荷処理が可能となる。 Design loading anaerobic reactor (methane fermentation tank) (COD Cr volumetric loading) depends on the raw water properties, but can range from 5~50kg / (m 3 · d) . Granule sludge floats with bubbles inside, or granule sludge may be dismantled due to excessive gas mixing, so high-load treatment is difficult. Thus, higher load processing can be performed.

一般的に、グラニュール汚泥は、メタン生成菌だけではなく酸生成菌などを含み、表面付近の活性が高いが、中心部の活性は低い(図6)。一方、本発明において用いる馴致担体は、担体表面に活性の高いメタン生成菌が優占状態で付着している(図7)。一般的なグラニュール汚泥のメタン生成活性度は0.4〜0.8kgCODCr/(kg−SS・d)とされるが、本発明で用いる担体に担持させた微生物のメタン生成活性度は1.0〜4.0kgCODCr/(kg−SS・d)と高い。 Generally, granular sludge contains not only methane-producing bacteria but also acid-producing bacteria, and has high activity near the surface but low activity at the center (FIG. 6). On the other hand, in the familiar carrier used in the present invention, highly active methane-producing bacteria adhere to the carrier surface in a dominant state (FIG. 7). The methane generation activity of general granule sludge is 0.4 to 0.8 kg COD Cr / (kg-SS · d), but the methane generation activity of the microorganisms supported on the carrier used in the present invention is 1%. 0.0 to 4.0 kg COD Cr / (kg-SS · d)

メタン発酵槽の負荷条件決定にあたっては、MLVSSを基準とした汚泥量あたりのCODCr負荷(以降「汚泥負荷」と称す。)が、馴致担体の付着汚泥を基準に、1〜4kg/(kg−MLVSS・d)となるように負荷調整を行う。   In determining the load condition of the methane fermentation tank, the CODCr load per sludge amount based on MLVSS (hereinafter referred to as “sludge load”) is 1 to 4 kg / (kg-MLVSS) based on the adhered sludge of the familiar carrier.・ Adjust the load so that d).

[担体]
担体は、微生物を担持して、担体表面で微生物を繁殖させることができるものであれば特に制限無く用いることができる。
[Carrier]
The carrier can be used without any particular limitation as long as the carrier can support the microorganism and propagate the microorganism on the surface of the carrier.

担体の形状は、球状、円柱状、直方体、中空状などいずれの形状でもよいが、微生物の担持量、繁殖した微生物と有機性廃水との接触効率、嫌気性反応槽内での担体の保持量などを考慮して、特に球状が好ましい。   The shape of the carrier may be any shape such as a sphere, a column, a rectangular parallelepiped, and a hollow, but the amount of microorganisms supported, the efficiency of contact between the propagated microorganisms and organic wastewater, and the amount of carrier retained in the anaerobic reaction tank In view of the above, a spherical shape is particularly preferable.

担体の寸法は、平均値(球状粒子の場合には中位径d50、他の形状の場合には最大寸法と最小寸法との算術平均値)で0.1mm以上10mm以下が好ましく、特に2mm以上6mm以下が好ましい。   The size of the carrier is preferably 0.1 mm or more and 10 mm or less, more preferably 2 mm or more as an average value (median diameter d50 for spherical particles, arithmetic mean value of the maximum and minimum dimensions for other shapes). It is preferably 6 mm or less.

担体は、微生物が付着しやすい細孔を有する多孔質担体であることが好ましく、細孔径は1μm以上100μm以下が好ましく、特に5μm以上50μm以下であることが好ましい。   The carrier is preferably a porous carrier having pores to which microorganisms can easily adhere, and the pore diameter is preferably 1 μm or more and 100 μm or less, particularly preferably 5 μm or more and 50 μm or less.

また、嫌気性反応槽内にて流動させるためには、未使用の担体を充填した直径80mmの円筒カラムに清水を上向流で上昇線速度(LV)を1m/h以上20m/h以下で通水した場合の膨張率(投入時担体高さに対する通水時担体高さ)が、105%以上150%以下、特にLV2m/h以上15m/h以下で通水した場合の膨張率110%以上130%以下となる担体が好ましい。   Further, in order to make the fluid flow in the anaerobic reaction tank, fresh water is flowed upward into a cylindrical column having a diameter of 80 mm filled with unused carrier at an ascending linear velocity (LV) of 1 m / h to 20 m / h. Expansion rate when passing water (carrier height when passing water relative to carrier height when charged) is 105% or more and 150% or less, especially 110% or more when water is passed when LV is 2 m / h or more and 15 m / h or less. Carriers that are less than 130% are preferred.

担体の素材は、嫌気性微生物が付着すればどのような素材でも良いが、上述の諸要件を充足することから、特に活性炭、ポリビニルアルコール、エチレングリコールなどが好ましい。   The material of the carrier may be any material as long as anaerobic microorganisms adhere thereto. However, activated carbon, polyvinyl alcohol, ethylene glycol, and the like are particularly preferable because the above-mentioned requirements are satisfied.

[馴致担体]
本発明においては、嫌気性反応槽の立ち上げ運転、すなわち有機性廃水の通水開始時に馴致担体を新規担体と一緒に嫌気槽反応槽内に混在させる。混在させる馴致担体の量は、全担体量の5vol%以上100vol%未満、好ましくは20vol%以上100vol%未満である。馴致担体の混在比率が少なすぎると、立ち上げ運転期間が長くなる。
[Compatible carrier]
In the present invention, at the start-up operation of the anaerobic reaction tank, that is, at the start of the flow of the organic wastewater, the familiar carrier is mixed in the anaerobic tank reactor together with the new carrier. The amount of the familiar carrier to be mixed is 5 vol% or more and less than 100 vol%, preferably 20 vol% or more and less than 100 vol% of the total carrier amount. If the mixing ratio of the conforming carrier is too small, the startup operation period becomes long.

馴致担体は、上述の担体表面に生物膜を形成しやすい種類の嫌気性微生物やメタン生成菌が付着している担体であり、メタン生成菌が優占状態であることが好ましい。担体における嫌気性微生物の付着量は、担体のかさ容量あたりのSSとして1g/L以上500g/L以下、好ましくは5g/L以上100g/L以下である。SSは、担体表面に付着している微生物を剥離して計測した値でも、担体と合わせた窒素含有率やリン含有率を測定し、嫌気性微生物の経験的化学組成式(CNP0.060.1))を利用して算出した値でもよい。付着量が少ないと、嫌気性反応槽の立ち上げ運転時に馴致担体を投入しても嫌気性反応槽が設計負荷に到達するまでの時間を短縮できず、付着量が多いとメタン生成菌以外の菌の存在比率が増えて、新規担体への嫌気性微生物の付着効率が低下する。 The adaptable carrier is a carrier having anaerobic microorganisms or methane-producing bacteria of a type that easily forms a biofilm on the surface of the above-described carrier, and it is preferable that methane-producing bacteria be in a dominant state. The amount of anaerobic microorganisms attached to the carrier is 1 g / L or more and 500 g / L or less, preferably 5 g / L or more and 100 g / L or less as SS per bulk volume of the carrier. The SS measures the nitrogen content and the phosphorus content combined with the carrier by using the values measured by peeling the microorganisms attached to the surface of the carrier, and the empirical chemical composition formula (C 5 H 7 O) of the anaerobic microorganism. 2 NP 0.06 S 0.1 )). If the attached amount is small, the time required for the anaerobic reaction tank to reach the design load cannot be shortened even if the familiar carrier is charged during the start-up operation of the anaerobic reaction tank. The proportion of bacteria increases, and the efficiency of attachment of anaerobic microorganisms to the new carrier decreases.

馴致担体は、既設の嫌気性反応槽及び/又は仮設の嫌気性反応槽で馴致させた担体を用いることが好ましい。既設の嫌気性反応槽とは、立ち上げ運転を行おうとする嫌気性反応槽と同一又は異なる水処理施設において既に定常運転を行っている嫌気性反応槽をいう。仮設の嫌気性反応槽とは、立ち上げ運転を行おうとする嫌気性反応槽に馴致担体を提供することを目的とする小型の嫌気性反応槽をいう。立ち上げ運転を行おうとする嫌気性反応槽の処理対象と同一の有機性廃水に、種汚泥と新規担体とを浸漬させて、担体に種汚泥を付着させ、担体表面で種汚泥を繁殖させて、嫌気性微生物を担持した馴致担体を提供する。小型の嫌気性処理装置は、馴致担体を調製するため、担体及び種汚泥が流出することを防止することができればよく、気固液分離装置を備えたUASBタイプの反応槽、スクリーン等の担体分離機能を備えた完全混合タイプの反応槽、反応槽内もしくは反応槽外に分離膜を備えた嫌気性膜分離装置、回分式メタン発酵槽などいずれのタイプでもよい。仮設の小型嫌気性処理装置を用いる場合には、立ち上げ運転を行おうとする嫌気性反応槽の設置工事期間中に、別個の反応槽内で並行して馴致担体を調製することができ、立ち上げ運転期間を大幅に短縮することができる利点もある。あるいは、適切な馴致担体を供給できる嫌気性処理装置がない場合、処理対象である有機性廃水を処理する既設水処理装置の水槽に担体を浸漬してもよい。このような水槽には少なからずメタン生成菌が存在している。担体を浸漬する水槽の条件として、酸化還元電位が−200mV以下の還元状態が好ましい。このような水槽の例として、原水の貯留槽、処理水槽、余剰汚泥貯留槽があり、特に嫌気度が高く、汚泥濃度の高い余剰汚泥貯留槽が好ましい。   It is preferable to use a carrier that has been adapted in an existing anaerobic reaction tank and / or a temporary anaerobic reaction tank. The existing anaerobic reaction tank refers to an anaerobic reaction tank that is already performing a steady-state operation in a water treatment facility that is the same as or different from the anaerobic reaction tank in which the startup operation is to be performed. The temporary anaerobic reaction tank refers to a small anaerobic reaction tank whose purpose is to provide a carrier that is compatible with the anaerobic reaction tank to be started up. Seed sludge and a new carrier are immersed in the same organic wastewater as the treatment target of the anaerobic reaction tank that is going to perform the start-up operation, the seed sludge is attached to the carrier, and the seed sludge is propagated on the carrier surface. And a compatible carrier carrying an anaerobic microorganism. A small-sized anaerobic treatment device is required to prepare a carrier, so long as it can prevent the carrier and the seed sludge from flowing out. Carrier separation such as a UASB type reaction tank equipped with a gas-solid liquid separation device, a screen, etc. Any type such as a complete mixing type reaction tank having a function, an anaerobic membrane separation device having a separation membrane inside or outside the reaction tank, or a batch methane fermentation tank may be used. When a temporary small anaerobic treatment device is used, during the installation work of the anaerobic reaction tank to be started up, the familiar carrier can be prepared in a separate reaction tank in parallel, There is also an advantage that the raising operation period can be significantly reduced. Alternatively, when there is no anaerobic treatment device capable of supplying a suitable adaptation carrier, the carrier may be immersed in a water tank of an existing water treatment device for treating organic wastewater to be treated. There is not a small amount of methanogen in such a tank. As a condition of the water tank in which the carrier is immersed, a reduced state in which the oxidation-reduction potential is -200 mV or less is preferable. Examples of such a water tank include a raw water storage tank, a treated water tank, and an excess sludge storage tank, and an excess sludge storage tank having a particularly high anaerobic level and a high sludge concentration is preferable.

[有機性廃水]
本発明の嫌気性処理方法により処理できる有機性廃水のCODCrは特に限定されるものではなく、100mg/L以上50,000mg/L以下の範囲の有機物濃度が低濃度乃至高濃度の有機性廃水に適用することができる。有機物濃度が高濃度の有機性廃水の場合には、原水成分の阻害を緩和するために適宜希釈することが好ましい。
[Organic wastewater]
The COD Cr of the organic wastewater that can be treated by the anaerobic treatment method of the present invention is not particularly limited, and the organic wastewater having an organic substance concentration in a range from 100 mg / L to 50,000 mg / L of low to high concentration. Can be applied to In the case of organic wastewater having a high organic matter concentration, it is preferable to appropriately dilute the wastewater in order to alleviate the inhibition of the raw water components.

本発明の嫌気性処理方法は、グラニュール汚泥を維持できない組成の有機性廃水の処理に特に有用である。例えば、グラニュール汚泥の強度が低下してグラニュール汚泥を維持できないエタノール、メタノール、酢酸などの炭素数5以下の低分子有機物を含む有機性廃水や、グラニュール汚泥を解体させてしまう配管洗浄剤、キレート剤、殺菌剤などを含む飲料工場などからの有機性廃水などの処理に効果的である。   The anaerobic treatment method of the present invention is particularly useful for treating organic wastewater having a composition that cannot maintain granular sludge. For example, organic wastewater containing low-molecular-weight organic substances having 5 or less carbon atoms, such as ethanol, methanol, and acetic acid, which cannot maintain the granular sludge due to reduced strength of the granular sludge, and a pipe cleaning agent that dismantles the granular sludge. It is effective for treating organic wastewater from beverage factories containing chelating agents, bactericides and the like.

図1には、有機性廃水は、酸発酵槽にて酸発酵処理した後、メタン発酵槽に流入する処理フローを示すが、酸発酵処理は必須ではない。すでに酸発酵が十分進行している有機性廃水や、酸発酵処理を行わずにメタン発酵槽のみで処理可能な有機性廃水の場合には酸発酵槽を用いる必要はない。具体的には、例えば、有機性廃水CODCrに対する炭素数5以下の有機酸のCODCr換算値の合計が40%以上を占める有機性廃水や、メタノールやホルムアルデヒドなど炭素数1の低分子有機物が有機性廃水CODCrの70%以上を占める有機性廃水の場合には、酸発酵処理は不要である。酸発酵処理を行う場合には、酸発酵槽では酸生成菌に適したpHである5.5以上となるようにアルカリ剤でpH調整を行う。メタン発酵処理水を酸発酵槽に循環することで、メタン発酵処理水に含まれるアルカリ成分によってアルカリ剤添加量を削減することもできる。酸発酵槽の滞留時間は、有機性廃水中に含まれる成分によって2時間以上48時間以下の範囲で適宜決定することができるが、分解しやすい糖質成分を含む場合は2時間以上6時間以下とすることが多い。 FIG. 1 shows a process flow in which organic wastewater flows into a methane fermentation tank after an acid fermentation treatment in an acid fermentation tank, but the acid fermentation treatment is not essential. It is not necessary to use an acid fermenter in the case of organic wastewater in which acid fermentation has already progressed sufficiently, or organic wastewater that can be treated only in a methane fermenter without performing acid fermentation. Specifically, for example, and organic wastewater total COD Cr equivalent value of 5 or less organic acid carbon to organic wastewater COD Cr occupies 40% or more, a low molecular organic material having one carbon atom such as methanol or formaldehyde In the case of the organic wastewater which accounts for 70% or more of the organic wastewater COD Cr , the acid fermentation treatment is unnecessary. In the case of performing the acid fermentation treatment, the pH is adjusted with an alkali agent in the acid fermenter so that the pH becomes 5.5 or more, which is suitable for the acid-producing bacteria. By circulating the methane fermentation treated water to the acid fermentation tank, the amount of alkali agent added can be reduced by the alkali component contained in the methane fermentation treated water. The residence time of the acid fermentation tank can be appropriately determined in the range of 2 hours to 48 hours depending on the components contained in the organic wastewater. Often.

以下、実施例及び比較例を用いて本発明をさらに具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
比較例および実施例では、CODCrを約3,000mg/Lに調整した清涼飲料工場排水である有機性廃水(原水)を、滞留時間6時間、水温36℃、pH6.5となるようにアルカリ剤として水酸化ナトリウムを添加して酸発酵処理した後、容量10Lの上向流型嫌気性反応槽又はパドルによる機械式撹拌型完全混合反応槽(以下、両者をまとめて「メタン発酵槽」という。)を用いて嫌気性処理を行った。メタン発酵槽上部の処理水流出部には、幅2.0mmのスクリーンを設けて担体がメタン発酵槽から流出しないようにした。メタン発酵処理水の一部をメタン発酵槽下部の流入部に循環させ、メタン発酵槽のLVを5.0m/hに調整した。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
In Comparative Examples and Examples, organic wastewater (raw water), which is a soft drink factory wastewater whose COD Cr was adjusted to about 3,000 mg / L, was treated with an alkaline solution such that the residence time was 6 hours, the water temperature was 36 ° C, and the pH was 6.5. After adding sodium hydroxide as an agent and performing an acid fermentation treatment, a 10-liter upward flow anaerobic reaction tank or a mechanical stirring type complete mixing reaction tank using a paddle (hereinafter, both are collectively referred to as a “methane fermentation tank”) ) Was used for anaerobic treatment. A screen having a width of 2.0 mm was provided in the treated water outflow portion above the methane fermentation tank to prevent the carrier from flowing out of the methane fermentation tank. A part of the methane fermentation treatment water was circulated to the inflow portion at the lower part of the methane fermentation tank, and the LV of the methane fermentation tank was adjusted to 5.0 m / h.

担体として、平均粒径4.0mm、未使用の清水試験におけるLV10m/hの膨張率115%のポリビニルアルコールのゲル状粒子を用いた。
メタン発酵槽の設計負荷は、20kg/(m・d)とし、比較例、実施例ともにCODCr容積負荷10kg/(m・d)で14日間運転し、その後CODCr容積負荷20kg/(m・d)で運転を継続した。
Gel particles of polyvinyl alcohol having an average particle diameter of 4.0 mm, an LV of 10 m / h in an unused fresh water test and an expansion rate of 115% were used as a carrier.
The design load of the methane fermentation tank was set to 20 kg / (m 3 · d), and the comparative example and the example were operated at a COD Cr volume load of 10 kg / (m 3 · d) for 14 days, and thereafter, the COD Cr volume load was 20 kg / (m 3 · d). and continue operation at the m 3 · d).

処理性能の評価にあたっては、流出した汚泥の影響を除くため、1μmろ液の溶解性CODCr(S−CODCr)を採用した。
[比較例1]
上向流型反応槽にグラニュール汚泥4.0L及び未使用の新規担体4.0Lを一度に投入し、酸発酵処理水の通水を開始した。グラニュール汚泥は、同じ原水の酸発酵処理水を処理する定常運転中のUASBから採取した粒径0.5mm〜2.0mmの割合が92%であるグラニュール汚泥を使用した。
In the evaluation of the treatment performance, soluble COD Cr (S-COD Cr ) of a 1 μm filtrate was employed in order to remove the influence of the sludge flowing out.
[Comparative Example 1]
4.0 L of granular sludge and 4.0 L of unused fresh carrier were added to the upward flow type reaction tank at a time, and the flow of acid fermentation treatment water was started. As the granular sludge, granule sludge having a particle diameter of 0.5 mm to 2.0 mm and a ratio of 92%, which was collected from UASB in a steady operation in which the same raw water was subjected to acid fermentation treatment water, was used.

CODCr容積負荷の設定負荷を20kg/(m・d)とした15日目以降、短時間でグラニュール汚泥が流出するとともに、S−CODCr除去率が低下した。そのまま運転を継続すると、S−CODCr除去率は68日目以降に約90%で安定した。結果として、立ち上げ運転期間は68日間となった。 COD Cr volume loading of the setting load 20kg / (m 3 · d) and the 15 day after, with granular sludge flows out in a short time, S-COD Cr removal rate decreased. When the operation was continued, the S-COD Cr removal rate was stabilized at about 90% after the 68th day. As a result, the startup operation period was 68 days.

[比較例2]
機械式撹拌型完全混合反応槽に、グラニュール汚泥4.0L及び未使用の新規担体4.0Lを一度に投入し、酸発酵処理水の通水を開始した。グラニュール汚泥は、同じ原水の酸発酵処理水を処理する定常運転中のUASBから採取した粒径0.5mm〜2.0mmの割合が92%であるグラニュール汚泥を使用した。
[Comparative Example 2]
4.0 L of granular sludge and 4.0 L of unused fresh carrier were added at a time to the mechanical stirring type complete mixing reaction tank, and the flow of acid fermentation treatment water was started. As the granular sludge, granule sludge having a particle diameter of 0.5 mm to 2.0 mm and a ratio of 92%, which was collected from UASB in a steady operation in which the same raw water was subjected to acid fermentation treatment water, was used.

立ち上げ運転開始直後から、短時間でグラニュール汚泥が流出するとともに、S−CODCr除去率が低下した。そのまま運転を継続すると、S−CODCr除去率は88日目以降に約90%で安定した。結果として、立ち上げ運転期間は88日間となった。 Immediately after the start-up operation started, the granular sludge flowed out in a short time, and the S-COD Cr removal rate decreased. When the operation was continued, the S-COD Cr removal rate was stabilized at about 90% after the 88th day. As a result, the startup operation period was 88 days.

[実施例1]
上向流型反応槽に、馴致担体0.4L及び未使用の新規担体3.6Lを投入し、酸発酵処理水の通水を開始した。馴致担体として、同じ原水の酸発酵処理水を処理する嫌気性反応槽に未使用の担体を投入してから半年間定常運転を行った後の馴致担体(担体のかさ容量あたりのSSは53g/L)を使用した。
[Example 1]
0.4 L of the familiar carrier and 3.6 L of an unused new carrier were charged into the upward flow type reaction tank, and the flow of the acid fermentation treated water was started. As an adaptable carrier, an unused carrier was charged into an anaerobic reaction tank for treating the same raw water in the acid fermentation treatment water, and after a steady operation for half a year, the adapted carrier (SS per bulk volume of the carrier was 53 g / L) was used.

運転開始後はS−CODCr除去率は低い状態であったが、徐々に向上し、36日目以降に約90%で安定した。結果として、立ち上げ運転期間は36日間となった。
[実施例2]
上向流型反応槽に、馴致担体2.0L及び未使用の新規担体2.0Lを投入し、酸発酵処理水の通水を開始した。馴致担体として、同じ原水の酸発酵処理水を処理する嫌気性反応槽に未使用の担体を投入してから半年間定常運転を行った後の馴致担体(担体のかさ容量あたりのSSは53g/L)を使用した。
Although the removal rate of S-COD Cr was low after the start of operation, it gradually increased and stabilized at about 90% after the 36th day. As a result, the startup operation period was 36 days.
[Example 2]
2.0 L of the familiar carrier and 2.0 L of an unused new carrier were charged into the upward flow type reaction tank, and the flow of the acid fermentation treated water was started. As an adaptable carrier, an unused carrier was charged into an anaerobic reaction tank for treating the same raw water in the acid fermentation treatment water, and after a steady operation for half a year, the adapted carrier (SS per bulk volume of the carrier was 53 g / L) was used.

CODCr容積負荷の設定負荷を20kg/(m・d)とした15日目以降、S−CODCr除去率は低下したが、24日目以降に約90%で安定した。結果として、立ち上げ運転期間は24日間となった。 Setting load of COD Cr volumetric loading 20kg / (m 3 · d) and the 15 day onwards, have been reduced S-COD Cr removal rate was stable at about 90% after 24 days. As a result, the startup operation period was 24 days.

[実施例3]
上向流型反応槽に、馴致担体0.4L及び未使用の新規担体3.6Lを投入し、酸発酵処理水の通水を開始した。馴致担体として、清涼飲料工場の水処理施設から排出される余剰汚泥と未使用の新規担体とをポリタンクに投入して3ヶ月間の調製を行った後の馴致担体(担体のかさ容量あたりのSSは6g/L)を使用した。
[Example 3]
0.4 L of the familiar carrier and 3.6 L of an unused new carrier were charged into the upward flow type reaction tank, and the flow of the acid fermentation treated water was started. As a compatible carrier, a surplus sludge discharged from a water treatment facility of a soft drink factory and an unused new carrier are charged into a plastic tank and adjusted for 3 months. Used 6 g / L).

運転開始後はS−CODCr除去率は低い状態であったが、徐々に向上し、46日目以降に約90%で安定した。結果として、立ち上げ運転期間は46日間となった。
[実施例4]
上向流型反応槽に、馴致担体0.4L及び未使用の新規担体3.6Lを投入し、酸発酵処理水の通水を開始した。馴致担体として、同じ原水の酸発酵処理水を処理する定常運転中のUASBから採取した粒径0.5mm〜2.0mmの割合が92%であるグラニュール汚泥を、同じ原水の酸発酵処理水に投入して、1バッチ1週間の回分式メタン発酵を3ヶ月継続して調製した馴致担体(担体のかさ容量あたりのSSは46g/L)を使用した。
Although the removal rate of S-COD Cr was low after the start of the operation, it gradually increased and stabilized at about 90% after the 46th day. As a result, the startup operation period was 46 days.
[Example 4]
0.4 L of the familiar carrier and 3.6 L of an unused new carrier were charged into the upward flow type reaction tank, and the flow of the acid fermentation treated water was started. Granular sludge having a particle diameter of 0.5% to 2.0mm and a ratio of 92% collected from a UASB in a steady operation in which the same raw water is subjected to acid fermentation treatment water is used as the matching carrier. , And a batch-type batch methane fermentation for one week was used for three months to prepare a conventional carrier (SS per bulk volume of the carrier was 46 g / L).

CODCr容積負荷20kg/(m・d)とした15日目以降、S−CODCr除去率が低下したが、39日目以降に約90%で安定した。結果として、立ち上げ運転期間は39日間となった。 COD Cr volumetric loading 20kg / (m 3 · d) and the 15 days after, but S-COD Cr removal rate decreased and stabilized at approximately 90% after 39 days. As a result, the startup operation period was 39 days.

[実施例5]
機械式撹拌型完全混合反応槽に、馴致担体0.4L及び未使用の新規担体3.6Lを投入し、酸発酵処理水の通水を開始した。馴致担体として、同じ原水の酸発酵処理水を処理する嫌気性反応槽に未使用の担体を投入してから半年間定常運転を行った後の馴致担体(担体のかさ容量あたりのSSは53g/L)を使用した。
[Example 5]
0.4 L of the familiar carrier and 3.6 L of an unused new carrier were charged into a mechanical stirring type complete mixing reaction tank, and the flow of acid fermentation treated water was started. As an adaptable carrier, an unused carrier was charged into an anaerobic reaction tank for treating the same raw water in the acid fermentation treatment water, and after a steady operation for half a year, the adapted carrier (SS per bulk volume of the carrier was 53 g / L) was used.

CODCr容積負荷の設定負荷を20kg/(m・d)とした15日目以降、S−CODCr除去率は低下したが、38日目以降に約90%で安定した。結果として、立ち上げ運転期間は38日間となった。 Setting load of COD Cr volumetric loading 20kg / (m 3 · d) and the 15 day onwards, have been reduced S-COD Cr removal rate was stable at about 90% after 38 days. As a result, the startup operation period was 38 days.

比較例及び実施例についての結果を表1、図8及び9にまとめて示す。   The results for Comparative Examples and Examples are summarized in Table 1, FIGS. 8 and 9.

Claims (4)

嫌気性微生物を担持することができる担体を保持する嫌気性反応槽に、有機性廃水を通水して処理する有機性廃水の嫌気性処理方法であって、
有機性廃水の通水開始時には、嫌気性微生物が付着している馴致担体と、嫌気性微生物が付着していない新規担体とを混在させ、当該馴致担体を全担体中の5vol%以上100vol%未満し、
当該馴致担体は、担体表面に生物膜を形成しやすい種類の嫌気性微生物及びメタン生成菌が付着している担体であって、メタン生成菌が優占状態である担体であ
ことを特徴とする有機性廃水の嫌気性処理方法。
An anaerobic treatment method for passing organic wastewater through an anaerobic reaction tank holding a carrier capable of supporting anaerobic microorganisms, and treating the wastewater.
At the start of the passage of the organic wastewater, a compatible carrier to which anaerobic microorganisms are attached and a new carrier to which anaerobic microorganisms are not mixed are mixed, and the compatible carrier is 5 vol% or more and less than 100 vol% of all carriers. and,
The acclimatization carrier is a carrier which anaerobic microorganisms and methanogenic bacteria easily type forming a biofilm on the surface of the carrier is attached, and wherein the carrier der Rukoto methanogens are dominant state Anaerobic treatment method for organic wastewater.
前記馴致担体は、担体のかさ容量あたりのSSとして1g/L以上500g/L以下の嫌気性微生物が付着している担体である、請求項1に記載の有機性廃水の嫌気性処理方法。 The method for anaerobic treatment of organic wastewater according to claim 1, wherein the adaptable carrier is a carrier to which anaerobic microorganisms having an SS per bulk volume of the carrier of 1 g / L to 500 g / L are adhered. 前記馴致担体は、既設の嫌気性反応槽で馴致させた担体及び/又は仮設の嫌気性反応槽で馴致させた担体である、請求項1又は2に記載の有機性廃水の嫌気性処理方法。 The anaerobic treatment method for organic wastewater according to claim 1 or 2, wherein the adaptation carrier is a carrier adapted in an existing anaerobic reaction tank and / or a carrier adapted in a temporary anaerobic reaction tank. 嫌気性微生物を流動性担体表面に保持する嫌気性流動床方式の嫌気性反応槽と、
当該嫌気性反応槽に投入するための嫌気性微生物及びメタン生成菌が付着している馴致担体を調製する馴致担体調製用嫌気性反応槽であって、気固液分離装置を備えたUASBタイプの反応槽、担体分離機能を備えた完全混合タイプの反応槽、反応槽内もしくは反応槽外に分離膜を備えた嫌気性膜分離装置、及び回分式メタン発酵槽から選択される小型の嫌気性処理装置、又は酸化還元電位が−200mV以下の還元状態にある原水の貯留槽、処理水槽、及び余剰汚泥貯留槽から選択される既設水処理装置の水槽である馴致担体調製用嫌気性反応槽と、
を具備することを特徴とする有機性廃水の嫌気性処理装置。
An anaerobic fluidized bed anaerobic reaction tank holding anaerobic microorganisms on the surface of a fluid carrier ,
An anaerobic reaction tank for preparing a conditioned carrier to which a anaerobic microorganism and a methane-producing bacterium are attached to be introduced into the anaerobic reaction tank, and is a UASB type equipped with a gas-solid liquid separation device. Small anaerobic treatment selected from reaction tank, complete mixing type reaction tank with carrier separation function, anaerobic membrane separation device with separation membrane inside or outside the reaction tank, and batch methane fermentation tank An apparatus, or an anaerobic reaction tank for a preparation carrier preparation, which is a water tank of an existing water treatment apparatus selected from a storage tank of raw water in a reduced state having an oxidation-reduction potential of -200 mV or less, a treated water tank, and an excess sludge storage tank,
An anaerobic treatment apparatus for organic wastewater, comprising:
JP2016146103A 2016-07-26 2016-07-26 Anaerobic treatment of organic wastewater Active JP6654981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016146103A JP6654981B2 (en) 2016-07-26 2016-07-26 Anaerobic treatment of organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016146103A JP6654981B2 (en) 2016-07-26 2016-07-26 Anaerobic treatment of organic wastewater

Publications (2)

Publication Number Publication Date
JP2018015691A JP2018015691A (en) 2018-02-01
JP6654981B2 true JP6654981B2 (en) 2020-02-26

Family

ID=61078947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016146103A Active JP6654981B2 (en) 2016-07-26 2016-07-26 Anaerobic treatment of organic wastewater

Country Status (1)

Country Link
JP (1) JP6654981B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019217449A (en) * 2018-06-19 2019-12-26 株式会社クラレ Wastewater treatment method
CN108892235B (en) * 2018-08-09 2021-07-20 南京江岛环境科技研究院有限公司 Method for improving filler film forming efficiency in water treatment reactor
JP6825144B1 (en) * 2020-02-07 2021-02-03 水ing株式会社 Anaerobic treatment equipment and anaerobic treatment method
WO2024195807A1 (en) * 2023-03-20 2024-09-26 住友重機械工業株式会社 Method for renewing anaerobic treatment tank

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61157398A (en) * 1984-12-28 1986-07-17 Kurita Water Ind Ltd Fluidized bed type waste water treatment apparatus
DE19829673C2 (en) * 1998-07-03 2003-02-27 Michael Knobloch Process and plant for the treatment of wastewater from oilseed and grain processing
JP4568528B2 (en) * 2004-04-28 2010-10-27 株式会社西原環境テクノロジー Water treatment equipment
JP3894329B2 (en) * 2004-06-18 2007-03-22 株式会社日立プラントテクノロジー Method of operating anaerobic ammonia oxidation tank and anaerobic ammonia oxidation apparatus
JP2007125460A (en) * 2005-11-01 2007-05-24 Hitachi Plant Technologies Ltd Comprehensive immobilization carrier and method for producing the same
JP2012076001A (en) * 2010-09-30 2012-04-19 Kuraray Co Ltd Anaerobic wastewater treatment apparatus

Also Published As

Publication number Publication date
JP2018015691A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
CN105481093B (en) The system and method for continuous stream segmental influent short distance nitration/Anammox Treating Municipal Sewage
JP6491406B2 (en) Anaerobic biological treatment method and anaerobic biological treatment apparatus
JP6654981B2 (en) Anaerobic treatment of organic wastewater
JP6448382B2 (en) Nitrogen-containing wastewater denitrification method and denitrification apparatus
JP6241187B2 (en) Anaerobic treatment method and anaerobic treatment apparatus
CN103382073B (en) Membrane separation and biological process for resourceful treatment of garbage leachate and device thereof
JP5685902B2 (en) Organic wastewater treatment method
CN105236564B (en) A kind of BAF combined stuffing and application
CN101913706B (en) Method for treating monosodium glutamate wastewater with three-phase biological fluidized bed reactor
JP2021122821A (en) Anaerobic treatment equipment and anaerobic treatment method
CN103011515A (en) Soybean wastewater biochemical treatment process and device
CN104193005A (en) Small fluidized bed sewage treatment system and operating method thereof
JP2012210584A (en) Method for treating kraft pulp wastewater
CN104628131A (en) Production device and method for achieving stable denitrification of nitrite in continuous flow
CN118062991B (en) Light and reusable sulfur autotrophic denitrification filler and preparation method thereof
CN202038943U (en) Anaerobic ammonium oxidation, methanation and denitrification UASB (upflow anaerobic sludge blanket) device
JP2013230413A (en) Method and apparatus for treating nitrogen-containing waste water
CN212451091U (en) Wastewater treatment system based on MSBR (moving biofilm reactor) process
JP6675283B2 (en) Anaerobic treatment of organic wastewater
CN203112653U (en) Soybean product wastewater biochemical treatment device
JP2013208594A (en) Method and apparatus for anaerobic wastewater treatment of organic wastewater
JP7150899B6 (en) Anaerobic treatment apparatus and anaerobic treatment method
CN106830291B (en) Operation method of sewage treatment fluidized bed
JP6612195B2 (en) Organic wastewater treatment facility and operation method thereof
CN109019870A (en) It is a kind of using poly butylene succinate as the biomembrane sewage water advanced treatment apparatus and method of solid carbon source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200131

R150 Certificate of patent or registration of utility model

Ref document number: 6654981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250