[go: up one dir, main page]

JP2013208594A - Method and apparatus for anaerobic wastewater treatment of organic wastewater - Google Patents

Method and apparatus for anaerobic wastewater treatment of organic wastewater Download PDF

Info

Publication number
JP2013208594A
JP2013208594A JP2012081859A JP2012081859A JP2013208594A JP 2013208594 A JP2013208594 A JP 2013208594A JP 2012081859 A JP2012081859 A JP 2012081859A JP 2012081859 A JP2012081859 A JP 2012081859A JP 2013208594 A JP2013208594 A JP 2013208594A
Authority
JP
Japan
Prior art keywords
water
effluent
fermentation tank
methane fermentation
adjusting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012081859A
Other languages
Japanese (ja)
Other versions
JP5930805B2 (en
Inventor
Takanobu Yamamoto
高信 山本
Kazuyuki Nishiwaki
和之 西脇
Toshihiro Kiyokawa
智弘 清川
Yasushi Aida
靖 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Suntory Holdings Ltd
Original Assignee
Kurita Water Industries Ltd
Suntory Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Suntory Holdings Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2012081859A priority Critical patent/JP5930805B2/en
Publication of JP2013208594A publication Critical patent/JP2013208594A/en
Application granted granted Critical
Publication of JP5930805B2 publication Critical patent/JP5930805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

【課題】酸性有機物及びアルカリ性領域で発生するスケール成分を含む有機性廃水の嫌気性処理において、スケールの発生を抑制し、安定に処理できる方法及び装置を提供。
【解決手段】酸性有機性成分及びアルカリ性領域で析出するスケール成分を含む廃水をpH調整手段を経由してメタン発酵槽に導入し、嫌気性廃水処理を行う方法において、pH調整手段での目標pHとしてpHa1とpHa2の少なくとも2点を設定し、メタン発酵槽からの流出水の設定pHとしてpHt1とpHt2を設定し、メタン発酵槽からの流出水のpHがpHt1以下のとき、pH調整手段での目標pHがpHa2となるように、メタン発酵槽からの流出水のpHがpHt2を超えたとき、pH調整手段での目標pHがpH a1となるように、pH調整手段に酸及び/又はアルカリを添加してメタン発酵槽への流入水のpHを調整することを特徴とする嫌気性廃水処理方法及び装置。
【選択図】なし
In an anaerobic treatment of an organic wastewater containing a scale component generated in an acidic organic substance and an alkaline region, a method and an apparatus capable of stably controlling the generation of scale are provided.
SOLUTION: In a method for treating anaerobic wastewater by introducing waste water containing an acidic organic component and a scale component precipitated in an alkaline region into a methane fermentation tank via a pH adjusting means, a target pH in the pH adjusting means is set. Set at least two points, pH a1 and pH a2 , as pH t1 and pH t2 as the set pH of the effluent from the methane fermenter, and when the pH of the effluent from the methane fermenter is below pH t1 , The pH adjusting means so that the target pH at the pH adjusting means becomes pH a1 when the pH of the effluent from the methane fermentation tank exceeds pH t2 so that the target pH at the pH adjusting means becomes pH a2. An anaerobic wastewater treatment method and apparatus characterized by adding acid and / or alkali to the methane fermentation tank to adjust the pH of the inflow water.
[Selection figure] None

Description

本発明は、pH調整槽を経て、嫌気汚泥が保持されたメタン発酵槽に、酸性有機物及びアルカリ性領域で析出するスケール成分を含む有機性廃水を、該メタン発酵槽に通水して嫌気的に該廃水を処理する嫌気性廃水処理方法及び装置において、該スケール成分の析出を抑制し、安定かつ効率的に該処理を行う嫌気性廃水処理方法及び装置に関する。   The present invention is anaerobically by passing organic wastewater containing acid components and scale components precipitated in an alkaline region to a methane fermentation tank in which anaerobic sludge is retained via a pH adjustment tank. The present invention relates to an anaerobic wastewater treatment method and apparatus for treating the wastewater, and an anaerobic wastewater treatment method and apparatus for suppressing the precipitation of scale components and performing the treatment stably and efficiently.

嫌気性廃水処理方法は、汚泥発生量が少なく、消費電力も少ない省エネルギー・省コストの廃水処理方法である。
嫌気性廃水処理方法は、酸生成菌による酸生成相、及びメタン生成菌によるメタン生成相からなる嫌気処理により有機物を分解する方法である。特に、UASB(Upflow Anaerobic Sludge Blanket)法、EGSB法(Expanded Granular Sludge Bed)法、流動床法などは、メタン発酵槽内にメタン生成菌を中心とした微生物群を高濃度で保持することができるため、廃水処理効率が高い方法である。
The anaerobic wastewater treatment method is an energy-saving and cost-saving wastewater treatment method that generates less sludge and consumes less power.
The anaerobic wastewater treatment method is a method for decomposing organic substances by anaerobic treatment comprising an acid-producing phase by acid-producing bacteria and a methane-producing phase by methanogenic bacteria. In particular, the UASB (Upflow Anaerobic Sludge Blanket) method, the EGSB method (Expanded Granular Sludge Bed) method, the fluidized bed method, etc. can maintain a high concentration of microbial groups centering on methanogens in the methane fermentation tank. Therefore, it is a method with high wastewater treatment efficiency.

これらの嫌気性廃水処理方法においては、糖質、タンパク質、脂質などの有機物は、まず酸生成菌の働きにより酸性有機物に分解される。そしてメタン生成菌により、酸性有機物からメタン生成が行われる。メタン発酵槽内では、このメタン生成が行われることによってpHが上昇し、通常、メタン発酵槽からの流出水のpHは6.5〜8.5となる。   In these anaerobic wastewater treatment methods, organic substances such as carbohydrates, proteins, and lipids are first decomposed into acidic organic substances by the action of acid-producing bacteria. And methane production | generation is performed from an acidic organic substance by methanogen. In the methane fermenter, the methane production is performed to increase the pH, and the pH of the effluent water from the methane fermenter is usually 6.5 to 8.5.

そのため、酸性有機物とアルカリ性領域で析出するスケール成分を被処理水として嫌気性処理をすると、スケールが析出する場合がある。
例えば、ウイスキー蒸溜工程から排出される蒸溜残液を含む廃水は、有機物濃度が30,000〜100,000mg/Lと高く、さらに全リンが500〜1,000mg/L、有機性窒素が1,000〜3,000mg/L、そしてマグネシウムが100〜300mg/Lで含まれている場合がある。
Therefore, when anaerobic treatment is performed using the scale component precipitated in the acidic organic substance and the alkaline region as the water to be treated, the scale may be precipitated.
For example, the wastewater containing the distillation residue discharged from the whiskey distillation process has a high organic substance concentration of 30,000 to 100,000 mg / L, total phosphorus of 500 to 1,000 mg / L, and organic nitrogen of 1,000 to 3,000 mg / L. , And may contain 100-300 mg / L of magnesium.

マグネシウム、アンモニア性窒素、及び正リン酸が共存する場合、pHが中性条件より高くなると、MgNH4PO4・6H2O(リン酸マグネシウムアンモニウム(以下、MAPと略す))結晶が生成する(析出)ことは、よく知られている。通常、この析出は、アルカリ側でNH4-N>100mg/Lの条件で進行すると言われている。 When magnesium, ammonia nitrogen and orthophosphoric acid coexist, MgNH 4 PO 4 .6H 2 O (magnesium ammonium phosphate (hereinafter abbreviated as MAP)) crystals are formed when the pH is higher than the neutral condition ( This is well known. Usually, this precipitation is said to proceed under conditions of NH 4 —N> 100 mg / L on the alkali side.

ウイスキー蒸溜残液の嫌気処理では、廃水に含有される有機性窒素化合物が、酸発酵の段階で低分子化して、アンモニア性窒素に分解され、メタン発酵槽では、被処理水中の酸性有機物からメタンが生成されるに伴って、pHが上昇し、槽内のpHが6.5〜8.5となり、溶解度が低くなるため、MAPが生成されやすい。
MAPの結晶は汚泥中や反応槽内のみならず、流速の大きい配管内やポンプ内にもスケールとなって析出し、配管閉塞、ポンプの作動不良などの問題を引き起こす要因となる。
In anaerobic treatment of whiskey distillate, organic nitrogen compounds contained in wastewater are reduced in molecular weight and decomposed into ammonia nitrogen at the stage of acid fermentation. In the methane fermenter, methane is converted from acidic organic matter in the treated water. As the pH increases, the pH rises, the pH in the tank becomes 6.5 to 8.5, and the solubility decreases, so that MAP is likely to be generated.
The MAP crystals are deposited not only in the sludge and in the reaction tank, but also in pipes and pumps with a high flow velocity, and cause problems such as pipe clogging and pump malfunction.

そのため、以下の特許文献1には、メタン発酵槽への流入水のpHを5.8〜6.5に調整してMAPスケールの析出量を制御する方法が提案されている。   Therefore, the following Patent Document 1 proposes a method of controlling the amount of MAP scale precipitation by adjusting the pH of the inflow water to the methane fermentation tank to 5.8 to 6.5.

特許第3358348号公報Japanese Patent No. 3358348

前記したように、特許文献1には、メタン発酵槽への流入水のpHを5.8〜6.5に調整してMAPスケールの析出量を制御する方法が提案されている。
しかしながら、この方法は、Mg塩を添加すると共に、メタン発酵槽への流入配管内でのMAP析出を抑制し、メタン発酵槽に保持されている汚泥上でMAPを析出させて汚泥の沈降性を向上させることを目的としている。したがって、酸性有機物、及びアルカリ性領域で析出するスケール成分を多く含む廃水の嫌気性廃水処理においては、流出水のpH上昇によって反応槽内や流出水の配管内でMAPスケールが生成するおそれがある。
As described above, Patent Document 1 proposes a method of controlling the amount of MAP scale precipitation by adjusting the pH of the inflow water to the methane fermenter to 5.8 to 6.5.
However, this method adds Mg salt, suppresses MAP precipitation in the inflow pipe to the methane fermentation tank, and precipitates MAP on the sludge retained in the methane fermentation tank to improve the sedimentation property of the sludge. The purpose is to improve. Therefore, in the anaerobic wastewater treatment of wastewater containing a large amount of scale components precipitated in the acidic organic matter and alkaline region, there is a risk that a MAP scale may be generated in the reaction tank or in the piping of the effluent due to the pH increase of the effluent.

そこで、流出水のpHがアルカリ領域とならないように、流入水のpHをさらに低く設定する方法も考えられる。しかしながら、pHがメタン菌に適する範囲より低下すると、活性低下の原因となる。また、予め槽内におけるpH上昇を見込んで、導入水のpHを低く設定すると、メタン発酵槽への被処理水の流入が停止して循環運転を継続した場合や被処理水に含まれる酸性有機物の濃度が極端に低下した場合には、嫌気性処理によるpH上昇が全く起こらないか又はpHがほとんど上昇しなくなるため、反応槽内pHは流入水pHとほぼ同じ値まで低下することとなる。その結果、メタン菌の活性は低下し、被処理水の流入を再開しても、処理水水質は悪化してしまう。   Therefore, a method of setting the pH of the influent water to be lower so that the pH of the outflow water does not become an alkaline region is also conceivable. However, if the pH falls below the range suitable for methane bacteria, it causes a decrease in activity. In addition, if the pH of the water to be introduced is set low in anticipation of an increase in pH in the tank, the acidic organic matter contained in the water to be treated when the flow of water to be treated into the methane fermentation tank is stopped and the circulation operation is continued When the concentration of is extremely reduced, the pH increase due to anaerobic treatment does not occur at all or the pH hardly increases, so that the pH in the reaction tank decreases to substantially the same value as the influent water pH. As a result, the activity of methane bacteria decreases, and even if the inflow of treated water is restarted, the quality of treated water will deteriorate.

したがって、本発明が解決しようとする課題は、上記の問題点を解決し、酸性有機物、及びアルカリ性領域で発生するスケール成分を含む有機性廃水の嫌気性処理において、スケールの発生を抑制し、安定に処理できる方法及び装置を提供することである。   Therefore, the problem to be solved by the present invention is to solve the above-mentioned problems, suppress the generation of scale in the anaerobic treatment of organic wastewater containing acidic organic substances and scale components generated in the alkaline region, and stabilize It is an object of the present invention to provide a method and an apparatus that can be processed.

本発明者らは、かかる課題を解決すべく鋭意検討し実験を重ねた結果、以下のpH調整手段を用いることで上記課題が解決しうることを予想外に見出し、本発明を完成するに至ったものである。
すなわち、本発明は以下の通りのものである。
As a result of intensive studies and experiments conducted to solve such problems, the present inventors have unexpectedly found that the above problems can be solved by using the following pH adjusting means, and have completed the present invention. It is a thing.
That is, the present invention is as follows.

[1]酸性有機性成分、及びアルカリ性領域で析出するスケール成分を含む廃水を、被処理水として、pH調整手段を経由してメタン発酵槽に導入し、嫌気性廃水処理を行う方法において、
該pH調整手段での目標pHとしてpHa1とpHa2(但し、pHa1<pHa2である。)の少なくとも2点を設定し、さらに該メタン発酵槽からの流出水の設定pHとして、pHt1とpHt2(但し、pHt1≦pHt2である。)を設定し、該メタン発酵槽からの流出水のpHがpHt1以下のとき、該pH調整手段での目標pHがpHa2となるように、一方、該メタン発酵槽からの流出水のpHがpHt2を超えたときには、該pH調整手段での目標pHがpH a1となるように、該pH調整手段に酸及び/又はアルカリを添加して該メタン発酵槽への流入水のpHを調整することを特徴とする、前記嫌気性廃水処理方法。
[1] In a method for treating anaerobic wastewater by introducing wastewater containing an acidic organic component and a scale component that precipitates in an alkaline region into a methane fermentation tank as a treated water via a pH adjusting means,
At least two points of pH a1 and pH a2 (where pH a1 <pH a2 ) are set as target pHs in the pH adjusting means, and pH t1 is set as the set pH of the effluent from the methane fermenter. And pH t2 (however, pH t1 ≤ pH t2 ), and when the pH of the effluent from the methane fermentation tank is below pH t1 , the target pH in the pH adjusting means is set to pH a2. On the other hand, when the pH of the effluent from the methane fermenter exceeds pH t2 , acid and / or alkali is added to the pH adjusting means so that the target pH in the pH adjusting means becomes pH a1. And adjusting the pH of the inflow water to the methane fermentation tank.

[2]前記pHa1、pHa2、pHt1、及びpHt2は、pH5.8以上、該メタン発酵槽内に保持される汚泥中の菌体比率(VSS/SS比)が60%以上となる該メタン発酵槽からの流出水のpHの上限値の範囲内に規定する、前記[1]に記載の嫌気性廃水処理方法。 [2] The pH a1 , pH a2 , pH t1 , and pH t2 are pH 5.8 or higher, and the bacterial cell ratio (VSS / SS ratio) in the sludge retained in the methane fermentation tank is 60% or higher. The anaerobic wastewater treatment method according to [1], which is defined within the range of the upper limit value of the pH of the effluent from the methane fermentation tank.

[3]前記被処理水が、生物分解によってアンモニアを生じる有機物成分を含む、前記[1]又は[2]に記載の嫌気性廃水処理方法。   [3] The anaerobic wastewater treatment method according to [1] or [2], wherein the water to be treated includes an organic component that generates ammonia by biodegradation.

[4]前記被処理水が、ウイスキー蒸溜工程から排出された蒸溜残液を含む有機性廃水である、前記[3]に記載の嫌気性廃水処理方法。   [4] The anaerobic wastewater treatment method according to [3], wherein the water to be treated is an organic wastewater containing a distillation residual liquid discharged from a whiskey distillation process.

[5]前記有機性廃水は、マグネシウム濃度が150mg/L以上であり、かつ、全リン(T−P)が500mg/L以上であるウイスキー蒸留残液と、全化学的酸素要求量(T−CODCr)(mg/L)が200,000以上である廃アルコールと、一般廃水とが混合され、該一般廃水で2〜4倍に希釈されたものである、前記[4]に記載の嫌気性廃水処理方法。 [5] The organic wastewater includes a whiskey distillation residue having a magnesium concentration of 150 mg / L or more and a total phosphorus (TP) of 500 mg / L or more, and a total chemical oxygen demand (T- COD Cr ) (mg / L) Anaerobic as described in [4] above, wherein waste alcohol having a mass of 200,000 or more and general wastewater are mixed and diluted 2- to 4-fold with the general wastewater. Wastewater treatment method.

[6]前記スケール成分がリン酸マグネシウムアンモニウム(MAP)である、前記[1]〜[5]のいずれかに記載の嫌気性廃水処理方法。   [6] The anaerobic wastewater treatment method according to any one of [1] to [5], wherein the scale component is magnesium ammonium phosphate (MAP).

[7]前記pHa1とpHa2は、pH5.8〜6.8の範囲内に設定し、かつ、該メタン発酵槽からの流出水のpHが6.0〜7.0となるように、該メタン発酵槽の流入水のpHを調整する、前記[2]〜[6]のいずれかに記載の嫌気性廃水処理方法。 [7] The pH a1 and pH a2 are set in the range of pH 5.8 to 6.8, and the pH of the effluent water from the methane fermenter is 6.0 to 7.0. The anaerobic wastewater treatment method according to any one of [2] to [6], wherein the pH of the influent water of the methane fermentation tank is adjusted.

[8]前記メタン発酵槽で生成するスケール成分の析出限界pH値が7.0以下となるように、前記被処理水を希釈水で希釈する、前記[7]に記載の嫌気性廃水処理方法。   [8] The anaerobic wastewater treatment method according to [7], wherein the water to be treated is diluted with dilution water so that a precipitation limit pH value of a scale component produced in the methane fermentation tank is 7.0 or less. .

[9]前記希釈水として、前記メタン発酵槽からの流出水をpH7.0以上に調整してスケールを析出させ、分離除去した処理水の一部を使用する、前記[8]に記載の嫌気性廃水処理方法。   [9] Anaerobic as described in [8] above, wherein a part of the treated water separated and removed is used as the dilution water by adjusting the effluent water from the methane fermentation tank to pH 7.0 or more to precipitate the scale. Wastewater treatment method.

[10]酸性有機性成分、及びアルカリ性領域で析出するスケール成分を含む廃水を、被処理水として、pH調整手段を経由してメタン発酵槽に導入し、嫌気性廃水処理を行う方法に使用するための、pH調整手段、及びメタン発酵槽を含む嫌気性廃水処理装置であって、該pH調整手段において、該pH調整手段での目標pHとしてpHa1とpHa2(但し、pHa1<pHa2である。)の少なくとも2点を設定し、さらに該メタン発酵槽からの流出水の設定pHとして、pHt1とpHt2(但し、pHt1≦pHt2である。)を設定し、該メタン発酵槽からの流出水のpHがpHt1以下のとき、該pH調整手段での目標pHがpHa2となるように、一方、該メタン発酵槽からの流出水のpHがpHt2を超えたときには、該pH調整手段での目標pHがpH a1となるように、該pH調整手段に酸及び/又はアルカリを添加して該メタン発酵槽への流入水のpHを調整するように制御するpH設定制御装置を含む、ことを特徴とする前記嫌気性廃水処理装置。 [10] Wastewater containing an acidic organic component and a scale component that precipitates in an alkaline region is introduced into a methane fermentation tank via pH adjusting means as treated water and used in a method for anaerobic wastewater treatment. An anaerobic wastewater treatment apparatus including a pH adjusting means and a methane fermentation tank, wherein pH a1 and pH a2 (where pH a1 <pH a2) are set as target pH values in the pH adjusting means. At least two points, and pH t1 and pH t2 (where pH t1 ≤ pH t2 ) are set as the set pH of the effluent from the methane fermenter, and the methane fermentation When the pH of the effluent from the tank is below pH t1 , the target pH in the pH adjusting means is pH a2 , while when the pH of the effluent from the methane fermentation tank exceeds pH t2 , The pH is adjusted so that the target pH in the pH adjusting means is pH a1. The anaerobic wastewater treatment apparatus comprising a pH setting control device for controlling the pH of the inflow water to the methane fermentation tank by adding acid and / or alkali to the adjusting means.

本発明の嫌気性処理方法及び装置を使用すれば、酸性有機物、及びアルカリ性領域で析出するスケール成分を含む有機性廃水の嫌気性処理おいて、該スケールの発生を抑制し、安定かつ効率的な処理が可能となる。   If the anaerobic treatment method and apparatus of the present invention are used, in the anaerobic treatment of organic wastewater containing acidic organic substances and scale components that precipitate in the alkaline region, the generation of the scale is suppressed, and it is stable and efficient. Processing is possible.

実施例1における処理フローである。3 is a processing flow in the first embodiment. 実施例1における、pH調整槽のpH(測定値)、メタン発酵槽からの流出水のpH(測定値)、及び被処理水の流量の推移を示すグラフである。It is a graph which shows transition of pH (measured value) of the pH adjustment tank in Example 1, pH (measured value) of the outflow water from a methane fermentation tank, and the flow volume of to-be-processed water. 実施例1における、嫌気性処理におけるCODCrの除去率の推移を示すグラフである。4 is a graph showing the transition of the removal rate of COD Cr in anaerobic treatment in Example 1. 実施例1における、嫌気性処理水のMg濃度の推移を示すグラフである。It is a graph which shows transition of Mg density | concentration in anaerobic treated water in Example 1. FIG. 比較例1の嫌気性処理装置を示すフローである。It is a flow which shows the anaerobic processing apparatus of the comparative example 1. 比較例1における、pH調整槽のpH(測定値)、メタン発酵槽からの流出水のpH(測定値)、及び被処理水の流量の推移を示すグラフである。It is a graph which shows transition of pH (measured value) of the pH adjustment tank in the comparative example 1, pH (measured value) of the outflow water from a methane fermentation tank, and the flow volume of to-be-processed water. 比較例1における、嫌気性処理におけるCODCrの除去率の推移を示すグラフである。6 is a graph showing the transition of the removal rate of COD Cr in anaerobic treatment in Comparative Example 1. 比較例1における、嫌気性処理水のMg濃度の推移を示すグラフである。It is a graph which shows transition of Mg concentration in anaerobic treated water in comparative example 1. 実施例2における処理フローである。It is a processing flow in Example 2. FIG. 実施例2における、pH調整槽のpH(測定値)、メタン発酵槽からの流出水のpH(測定値)、並びにメタン発酵槽内に保持されている汚泥のVSS/SS比の推移を示すグラフである。The graph which shows transition of pH (measured value) of the pH adjustment tank in Example 2, pH (measured value) of the outflow water from a methane fermentation tank, and VSS / SS ratio of the sludge currently hold | maintained in a methane fermentation tank It is.

本発明は、酸性有機物及びアルカリ性領域で析出するスケール成分を含む廃水を被処理水とする嫌気性処理において、pH調整手段での目標pHを、pH5.8〜後述するスケール析出限界pHの範囲内に、2点以上設定し、メタン発酵槽からの流出水のpHが5.8〜該スケール析出限界pHの範囲内となるようにpHを調整することを特徴とする嫌気性廃水処理方法及び装置である。   In the anaerobic treatment in which wastewater containing scale components precipitated in an acidic organic substance and an alkaline region is treated water, the present invention sets the target pH in the pH adjusting means within the range of pH 5.8 to a scale deposition limit pH described later. And anaerobic wastewater treatment method and apparatus, wherein two or more points are set, and the pH is adjusted so that the pH of the effluent from the methane fermentation tank is within the range of 5.8 to the scale precipitation limit pH It is.

本発明において、嫌気性処理の対象となる廃水は、酸性有機物、及びアルカリ性領域で析出するスケール成分を含み、嫌気性処理が可能なものであれば制限はない。このような廃水の例としては、ウイスキー蒸溜残液、焼酎蒸留残液、製糖廃水、でんぷん廃水などが挙げられる。
本発明に係る嫌気性廃水処理方法によって処理される被処理水は、生物分解によってアンモニアを生じる有機物成分を含む。該被処理水は、ウイスキー蒸溜工程から排出された蒸溜残液を含む有機性廃水であることができる。また、該有機性廃水は、マグネシウム濃度が150mg/L以上であり、かつ、全リン(T−P)が500mg/L以上であるウイスキー蒸留残液と、全化学的酸素要求量(T−CODCr)(mg/L)が200,000以上である廃アルコールと、一般廃水とが混合され、該一般廃水で2〜4倍に希釈されたものであることができる。
In the present invention, the wastewater to be subjected to anaerobic treatment includes an acidic organic substance and a scale component that precipitates in an alkaline region, and is not limited as long as it can be anaerobically treated. Examples of such wastewater include whiskey distillation residue, shochu distillation residue, sugar making wastewater, starch wastewater and the like.
The treated water treated by the anaerobic wastewater treatment method according to the present invention contains an organic component that generates ammonia by biodegradation. The treated water can be an organic waste water containing a distillation residue discharged from the whiskey distillation process. In addition, the organic waste water has a whiskey distillation residue having a magnesium concentration of 150 mg / L or more and a total phosphorus (TP) of 500 mg / L or more, and a total chemical oxygen demand (T-COD). The waste alcohol having a Cr ) (mg / L) of 200,000 or more and the general waste water are mixed and diluted with the general waste water 2 to 4 times.

嫌気性処理の方式としては、酸生成相とメタン生成相を分離して行う二相方式であってもこれらの二相を一槽で行う一相方式のいずれであってもよい。また、嫌気性処理の方法としては、UASB法、EGSB法、流動床法、その他任意の方法を採用することができる。   The anaerobic treatment method may be either a two-phase method in which the acid generation phase and the methane generation phase are separated or a one-phase method in which these two phases are performed in one tank. As an anaerobic treatment method, a UASB method, an EGSB method, a fluidized bed method, or any other method can be employed.

嫌気性処理の対象となる廃水に含まれる酸性有機物は、メタン発酵槽への流入時に含まれていればよく、被処理水に成分として元々含まれていても、被処理水に含まれる糖質、タンパク質、脂質などの有機物が酸生成槽で分解されて生成したものでもよい。これらの酸性有機物として、例えば、酢酸、乳酸、ギ酸、酪酸、プロピオン酸などが挙げられる。   The acidic organic matter contained in the wastewater subject to anaerobic treatment only needs to be contained at the time of flowing into the methane fermentation tank, and even if it is originally contained as a component in the treated water, the carbohydrates contained in the treated water In addition, organic substances such as proteins and lipids may be generated by being decomposed in an acid generation tank. Examples of these acidic organic substances include acetic acid, lactic acid, formic acid, butyric acid, and propionic acid.

また、嫌気性処理の対象となる廃水に含まれるスケール成分はアルカリ性領域で析出するスケールの成分であれば制限はない。アルカリ性領域で析出するスケールの例としては、炭酸カルシウム、リン酸カルシウム、リン酸マグネシウムアンモニウム(MAP)など挙げられ、これらの構成成分がスケール成分の一例となる。   Moreover, if the scale component contained in the wastewater used as the object of anaerobic treatment is a scale component which precipitates in an alkaline region, there is no limitation. Examples of scales that deposit in the alkaline region include calcium carbonate, calcium phosphate, and magnesium ammonium phosphate (MAP), and these constituent components are examples of scale components.

前記したように、本発明は、酸性有機物及びアルカリ性領域で析出するスケール成分を含む廃水を被処理水とする嫌気性処理において、pH調整手段での目標pHを、pH5.8〜後述するスケール析出限界pHの範囲内に2点以上設定し、メタン発酵槽からの流出水のpHが5.8〜該スケール検出限界pHの範囲内となるようにpHを調整することを特徴とする。
pH5.8を下回るとメタン発酵菌の活性度が低下するので、メタン発酵槽内のpHを5.8以上、すなわち、pH調整手段及びメタン発酵槽からの流出水のpHを5.8以上とする必要がある。
他方で、メタン発酵槽においては、酸性有機物の分解に伴いpHは上昇し、ある一定の値を超えるとメタン発酵槽内においてスケールが生成し始め、この一定値を超えてpHが高くなる程、スケール生成量は多くなる。本発明においては、メタン発酵槽内に保持される汚泥中の菌体の比率(VSS/SS比)が60%以上となるよう、メタン発酵槽からの流出水のpHを維持する必要があり、このpHの上限値を「スケール析出限界pH」と定義する。ここで、VSSとは、SS(懸濁物質濃度)の強熱減量をいい、固形分(懸濁物質)の中で強熱(600℃)で揮発する物質量であり、固形分中の有機物量(菌体量)の指標とされる。すなわち、VSS/SS比が小さくなると、メタン発酵槽内に保持される汚泥中の無機物(スケール)の比率が高くなり、これは、菌体保持量が小さくなることを意味する。そのため、VSS/SS比が60%を下回ると、有機物除去性能の低下、処理水質の悪化という問題が生じることになる。
As described above, in the anaerobic treatment in which the wastewater containing the scale component precipitated in the acidic organic substance and the alkaline region is treated water, the present invention sets the target pH in the pH adjusting means to pH 5.8 to scale deposition described later. Two or more points are set within the limit pH range, and the pH is adjusted so that the pH of the effluent from the methane fermenter falls within the range of 5.8 to the scale detection limit pH.
If the pH falls below 5.8, the activity of the methane fermentation bacteria decreases, so the pH in the methane fermentation tank is 5.8 or more, that is, the pH of the effluent from the pH adjusting means and the methane fermentation tank is 5.8 or more. There is a need to.
On the other hand, in the methane fermenter, the pH increases with the decomposition of the acidic organic matter, and when it exceeds a certain value, a scale starts to be generated in the methane fermenter, and the pH increases beyond this certain value. The amount of scale generation increases. In the present invention, it is necessary to maintain the pH of the effluent from the methane fermentation tank so that the ratio of the bacterial cells in the sludge retained in the methane fermentation tank (VSS / SS ratio) is 60% or more, The upper limit of this pH is defined as “scale deposition limit pH”. Here, VSS is an ignition loss of SS (suspension substance concentration), and is an amount of a substance that volatilizes in a solid part (suspension substance) by ignition (600 ° C.). It is an indicator of the amount (bacterial cell amount). That is, when VSS / SS ratio becomes small, the ratio of the inorganic substance (scale) in the sludge hold | maintained in a methane fermenter will become high, and this means that a microbial cell retention amount becomes small. Therefore, if the VSS / SS ratio is less than 60%, problems such as a decrease in organic substance removal performance and a deterioration in treated water quality occur.

スケール析出限界pHは、スケールの種類やスケール成分の濃度によって異なる値となるが、メタン発酵槽内のpHが8.5を超えてしまうと、メタン発酵菌の活性は低下してしまう。したがって、メタン発酵槽からの流出水のpHは8.5以下とする必要がある。本発明は、スケール析出限界pHが8.5を下回る(スケール濃度)の場合に適用されることが多い。スケール析出限界pHは、実際に本発明に係る装置を運転し、pHを変動させて、そのpH毎にVSS/SSを実際に測定することにより求めることができる。本発明においては、pHa1、pHa2、pHt1、及びpHt2は、5.8〜スケール析出限界pHの範囲内に設定される。ここで、pHa1とpHa2は、好ましくは5.8〜6.8の間に設定され、メタン発酵槽からの流出水のpHは、好ましくは6.0〜7.0の範囲となるように調整される。かかる範囲にpHを調整することとによって、原水中の酸性有機物やスケール成分の濃度変動の影響を小さくし、安定した制御を行うことが可能となる。 The scale deposition limit pH varies depending on the type of scale and the concentration of the scale component, but if the pH in the methane fermentation tank exceeds 8.5, the activity of the methane fermentation bacteria decreases. Therefore, the pH of the effluent from the methane fermenter needs to be 8.5 or less. The present invention is often applied when the scale precipitation limit pH is lower than 8.5 (scale concentration). The scale deposition limit pH can be obtained by actually operating the apparatus according to the present invention, changing the pH, and actually measuring VSS / SS for each pH. In the present invention, pH a1 , pH a2 , pH t1 , and pH t2 are set within the range of 5.8 to the scale precipitation limit pH. Here, pH a1 and pH a2 are preferably set between 5.8 and 6.8, and the pH of the effluent from the methane fermenter is preferably in the range of 6.0 to 7.0. Adjusted to By adjusting the pH to such a range, the influence of concentration fluctuations of acidic organic substances and scale components in the raw water can be reduced, and stable control can be performed.

pHa1、pHa2、pHt1、及びpHt2は、具体的には、以下のように試験することで求められる。
例えば、図1に示す試験装置(実際の装置よりも小型のラボスケールの装置)を用いて、処理対象である廃水又は想定される廃水と同様の有機物濃度、無機(スケール成分)濃度の模擬廃水の連続通水試験を行う。まず、原水(被処理廃水、模擬廃水)が流入する条件下でpH調整槽のpHを変化させることにより、pH調整槽のpHとメタン発酵槽からの流出水のpHとの関係を明らかにするとともに、それぞれの、流出水のpHにおけるVSS/SS比を測定することにより、メタン発酵槽からの流出水のスケール析出限界pHとその時のpH調整槽のpHを求めることができる。流出水のpHの範囲は、メタン発酵菌の活性が低下しない範囲、すなわち、pH5.8〜8.5の範囲であって、かつ、スケール析出限界pH値以下であるようなpH値、例えば、およそpH6.0〜7.0の範囲に設定する。次いで、原水を通水した際に流出水のpHが、およそpH6.0〜7.0の範囲内となるように運転し、この時のpH調整槽のpHをpHa1に設定する。次いで、メタン発酵槽への原水の流入を停止し、循環運転のみを継続して実施した際のメタン発酵槽からの流出水のpHが凡そ6.0〜7.0となるように運転し、この時のpH調製槽のpHをpHa2に設定する。ここで、原水の流入を停止し、循環運転を継続すると、メタン発酵槽に供給される原水中の酸性有機物が低下し、メタン発酵槽におけるpHの上昇がなくなるため、メタン発酵槽からの流出水のpHは、pH調整槽のpHに次第に近づくことになる。
Specifically, pH a1 , pH a2 , pH t1 , and pH t2 are determined by testing as follows.
For example, using the test apparatus shown in FIG. 1 (lab scale apparatus smaller than the actual apparatus), simulated wastewater having the same organic substance concentration and inorganic (scale component) concentration as the wastewater to be treated or the assumed wastewater. Conduct a continuous water flow test. First, by changing the pH of the pH adjustment tank under conditions where raw water (treated wastewater and simulated wastewater) flows, the relationship between the pH of the pH adjustment tank and the pH of the effluent from the methane fermentation tank is clarified. At the same time, by measuring the VSS / SS ratio at the pH of the effluent, the scale precipitation limit pH of the effluent from the methane fermentation tank and the pH of the pH adjustment tank at that time can be obtained. The pH range of the effluent water is a range in which the activity of the methane fermentation bacteria does not decrease, that is, a pH value ranging from pH 5.8 to 8.5 and not more than the scale deposition limit pH value, for example, Set in the range of about pH 6.0-7.0. Next, the raw water is operated so that the pH of the effluent water is within the range of about pH 6.0 to 7.0 when the raw water is passed, and the pH of the pH adjusting tank at this time is set to pH a1 . Next, stop the inflow of raw water into the methane fermenter and operate so that the pH of the effluent water from the methane fermenter is approximately 6.0 to 7.0 when only circulating operation is carried out, The pH of the pH adjusting tank at this time is set to pH a2 . Here, if the inflow of the raw water is stopped and the circulation operation is continued, the acidic organic matter in the raw water supplied to the methane fermentation tank decreases and the pH in the methane fermentation tank does not increase, so the effluent from the methane fermentation tank Will gradually approach the pH of the pH adjusting tank.

安全かつ安定に運転するためには、pHt2はスケール析出限界pHを上限とし、それよりも2.5低い範囲で設定することが望ましく、例えば、スケール析出限界pHが7.5である場合、pHt2は5〜7.5の範囲に設定する。また、pHt1とpHt2は、0.2以上離れていることが望ましい。
上述の方法においては、pH調整槽における目標pHを2点、メタン発酵槽からの流出水の設定pHを2点としたが、このように設定したpHa1とpHa2の間にpHa3やpHa4(pHa1<pHa3<pHa4<pHa2)などを設定し、また、pHt1とpHt2の間にpHt3やpHt4(pHt1<pHt3<pHt4<pHt2)などを設定し、目標pHをpHa3にして運転している時、流出水のpHがpHt3以下になったら目標pHをpHa4にし、更に、流出水のpHがpHt1以下になったら目標pHをpHa2にしてもよい。他方で、原水中の酸性有機物濃度が減少し、メタン発酵槽でのpH上昇が抑制され、設定pHをpHa4において運転している時、流出水のpHがpHt4を超えるようになったら目標pHをpHa3にし、更に、メタン発酵槽でのpH上昇が抑制されて、流出水のpHがpHt2を超えるようになったら目標pHをpHa1にしてもよい。このように、pH調整槽での目標pHを3点以上、メタン発酵槽からの流出水のpHの設定pHを3点以上設定して運転することもできる。
In order to operate safely and stably, pH t2 is desirably set within a range lower than the scale precipitation limit pH by 2.5, for example, when the scale precipitation limit pH is 7.5, pH t2 is set in the range of 5-7.5. Further, it is desirable that pH t1 and pH t2 are separated by 0.2 or more.
In the above method, the target pH in the pH adjustment tank is 2 points and the set pH of the effluent water from the methane fermentation tank is 2 points, but between pH a1 and pH a2 set in this way, pH a3 and pH Set a4 (pH a1 <pH a3 <pH a4 <pH a2 ) etc., and set pH t3 or pH t4 (pH t1 <pH t3 <pH t4 <pH t2 ) etc. between pH t1 and pH t2 When operating with the target pH set to pH a3 , the target pH is set to pH a4 when the pH of the effluent falls below pH t3, and the target pH is set to pH a4 when the pH of the effluent falls below pH t1. It may be a2 . On the other hand, if the concentration of acidic organic substances in the raw water decreases, the pH increase in the methane fermenter is suppressed, and the pH of the effluent exceeds pH t4 when operating at the set pH of pHa 4 , the target If the pH is adjusted to pH a3 and further the increase in pH in the methane fermenter is suppressed and the pH of the effluent water exceeds pH t2 , the target pH may be set to pH a1 . Thus, it is possible to operate by setting the target pH in the pH adjustment tank to 3 points or more and the set pH of the effluent water from the methane fermentation tank to 3 points or more.

被処理水に含まれる酸性有機物の濃度が高く、メタン発酵槽内でのpH上昇幅が大きいために、又はアルカリ性領域で析出するスケール成分の濃度が高いために、流入水のpHを5.8を目標に制御しても、流出水のpHがスケール析出限界pH値を上回ってしまう場合には、被処理水を希釈水と混合させた後に、メタン発酵槽へ流入させる。pH調整手段での目標pH値を5.8にして、流出水pHがスケール析出限界pH値以下となるような希釈率以上の量で、希釈水を添加・混合すればよい。希釈水としては、市水、工水、井水、河川水、その他の処理系統の処理水等の、被処理水よりも有機物濃度、及びスケール成分濃度の低い水を使用する。また、嫌気性処理後にスケール成分を分離除去した処理水の一部を利用してもよい。   Since the concentration of acidic organic substances contained in the water to be treated is high and the pH increase in the methane fermentation tank is large, or because the concentration of the scale component precipitated in the alkaline region is high, the pH of the influent water is 5.8. If the pH of the effluent water exceeds the scale precipitation limit pH value even if the target is controlled, the water to be treated is mixed with the dilution water and then flowed into the methane fermentation tank. The target pH value in the pH adjusting means is set to 5.8, and the dilution water may be added and mixed in an amount equal to or higher than the dilution rate so that the effluent water pH is not more than the scale precipitation limit pH value. As dilution water, water having lower organic matter concentration and scale component concentration than treated water such as city water, industrial water, well water, river water, treated water of other treatment systems, and the like is used. Moreover, you may utilize some treated water which isolate | separated and removed the scale component after the anaerobic process.

希釈水による希釈により、被処理水に含まれる酸性有機物、及びスケール成分の濃度が低減し、それぞれ、メタン発酵槽でのpH上昇幅の縮小、スケールの析出限界pH値を低下させる効果が奏される。   Dilution with dilution water reduces the concentration of acidic organic substances and scale components contained in the water to be treated, and the effects of reducing the pH increase range in the methane fermentation tank and reducing the precipitation limit pH value of the scale, respectively. The

以下、本発明を、実施例及び比較例により具体的に説明する。
<実施例1>
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
<Example 1>

図1に、実施例1における処理フローを示す。
以下の表1に示す水質の廃水を被処理水として処理を実施した。pH調整手段(pH調整槽)での目標pHをpH5.8とpH6.3の2点に設定し、メタン発酵槽からの流出水のpHが6.3以下となれば、pH調整槽の目標pHを6.3に、流出水のpHが6.5を超えたら、pH調整槽の目標pHを5.8に切り替える条件で運転した。
FIG. 1 shows a processing flow in the first embodiment.
The water quality wastewater shown in Table 1 below was treated as treated water. If the target pH in the pH adjusting means (pH adjusting tank) is set to two points, pH 5.8 and pH 6.3, and the pH of the effluent from the methane fermentation tank is 6.3 or less, the target of the pH adjusting tank When the pH reached 6.3 and the pH of the effluent water exceeded 6.5, the system was operated under the condition that the target pH of the pH adjustment tank was switched to 5.8.

Figure 2013208594
Figure 2013208594

図2に、pH調整槽のpH(測定値)、メタン発酵槽からの流出水のpH(測定値)、及び被処理水の流量の推移を示す。
図3は、嫌気性処理におけるCODCrの除去率の推移を示すグラフである。
図4は、嫌気性処理水のMg濃度の推移を示すグラフである。
In FIG. 2, transition of pH (measured value) of a pH adjustment tank, pH (measured value) of the outflow water from a methane fermentation tank, and the flow volume of to-be-processed water is shown.
FIG. 3 is a graph showing the transition of COD Cr removal rate in anaerobic treatment.
FIG. 4 is a graph showing transition of Mg concentration in anaerobic treated water.

運転開始時、pH調整槽の目標pH5.8に対して、メタン発酵槽からの流出水のpHは6.7前後であった。しかしながら、図1に示すように、メタン発酵槽からの流出水の一部は循環されており、被処理水(原水)の流入が停止すると、循環のみが継続されるため、原水流入時のpH調整槽の目標pH5.8のままでは、メタン発酵槽からの流出水のpHは次第に低下し、pH調整槽の目標pH5.8に近づく傾向となった。メタン発酵槽からの流出水のpHが6.3以下となった時点で、pH調整槽の目標pHを5.8から6.3に切り替えた結果、メタン発酵槽からの流出水のpHは、pH調整槽の目標pHと同じ6.3で安定した。
その後、被処理水の流入が再開され、嫌気反応が進み始めると、再びメタン発酵槽からの流出水のpHが上昇を始めた。そして、メタン発酵槽からの流出水のpHが6.5を超えたところで、pH調整槽での目標pHを6.3から5.8に切り替え、運転を継続した。その結果、メタン発酵槽からの流出水のpHは再び6.7前後で安定した。なお、CODCrの除去率は、被処理水の流入停止の前後でほとんど変わらず、安定して90%以上で維持されていた。
上記運転期間中、流出水中のMg濃度は被処理水の濃度とほぼ同じで、MAPなどのスケールはほとんど析出していなかった。
At the start of operation, the pH of the effluent from the methane fermentation tank was around 6.7 relative to the target pH 5.8 of the pH adjustment tank. However, as shown in FIG. 1, since a part of the effluent from the methane fermentation tank is circulated and the inflow of the treated water (raw water) is stopped, only the circulation is continued. If the target pH of the adjustment tank was maintained at 5.8, the pH of the effluent water from the methane fermentation tank gradually decreased and approached the target pH of the pH adjustment tank of 5.8. When the pH of the effluent from the methane fermenter became 6.3 or lower, the pH of the effluent from the methane fermenter was changed as a result of switching the target pH of the pH adjustment tank from 5.8 to 6.3. It was stable at 6.3, the same as the target pH of the pH adjustment tank.
Then, when inflow of to-be-processed water was restarted and the anaerobic reaction began to progress, the pH of the effluent from the methane fermentation tank began to rise again. And when pH of the outflow water from a methane fermentation tank exceeded 6.5, the target pH in a pH adjustment tank was switched from 6.3 to 5.8, and the driving | operation was continued. As a result, the pH of the effluent from the methane fermenter again stabilized at around 6.7. The removal rate of COD Cr remained almost unchanged before and after the stoppage of the inflow of treated water, and was stably maintained at 90% or more.
During the operation period, the Mg concentration in the effluent water was almost the same as the concentration of the water to be treated, and scales such as MAP were hardly precipitated.

<比較例1>
図5に、比較例1の嫌気性処理装置のフローを示す。
実施例1と同様、表1に示す水質の廃水を被処理水として処理を実施した。pH調整槽での目標pHを5.8に設定して運転した。
図6は、pH調整槽のpH(測定値)、メタン発酵槽からの流出水のpH(測定値)、及び被処理水の流量の推移を示すグラフである。
図7は、嫌気性処理におけるCODCrの除去率の推移を示すグラフである。
図8は、嫌気性処理水のMg濃度の推移を示すグラフである。
<Comparative Example 1>
In FIG. 5, the flow of the anaerobic processing apparatus of the comparative example 1 is shown.
In the same manner as in Example 1, the water quality waste water shown in Table 1 was used as the water to be treated. Operation was performed with the target pH in the pH adjustment tank set at 5.8.
FIG. 6 is a graph showing changes in pH (measured value) of the pH adjusting tank, pH of the effluent water from the methane fermentation tank (measured value), and the flow rate of the water to be treated.
FIG. 7 is a graph showing the transition of COD Cr removal rate in anaerobic treatment.
FIG. 8 is a graph showing transition of Mg concentration in anaerobic treated water.

運転開始から、被処理水の流入時は、pH調整槽の目標pH5.8に対して、メタン発酵槽からの流出水のpHは6.7前後であった。しかしながら、被処理水の流入停止により、約1日で、メタン発酵槽からの流出水のpHはpH調整槽の目標pHと同じ5.8まで低下した。
被処理水の供給を6日間の停止した後、被処理水の流入を再開したところ、停止前はCODCr除去率が約90%であったのに対し、停止後は、停止前90%の被処理水流量でCODCr除去率が約75%となり処理能力が低下していた。
一方、MAP等のスケールは、上記の運転期間中、流出水中のMg濃度が被処理水の濃度とほぼ同じで推移しており、ほとんど析出していなかった。
From the start of operation, the pH of the effluent from the methane fermentation tank was around 6.7 relative to the target pH 5.8 of the pH adjustment tank when the water to be treated was introduced. However, due to the stoppage of the water to be treated, the pH of the effluent from the methane fermentation tank dropped to 5.8, the same as the target pH of the pH adjustment tank, in about one day.
After the supply of water to be treated was stopped for 6 days, the inflow of water to be treated was resumed. The COD Cr removal rate was about 90% before the stop, but after the stop, it was 90% before the stop. The COD Cr removal rate was about 75% at the treated water flow rate, and the treatment capacity was reduced.
On the other hand, the scales of MAP and the like were hardly precipitated during the above operation period, in which the Mg concentration in the effluent water was almost the same as the concentration of the water to be treated.

<実施例2>
図9に、実施例2における処理フローを示す。
以下の表2に示す水質の被処理水を2倍希釈して処理を実施した。
<Example 2>
FIG. 9 shows a processing flow in the second embodiment.
The water quality treated water shown in Table 2 below was diluted 2 times and treated.

Figure 2013208594
Figure 2013208594

pH調整槽での目標pHをpH5.8とpH6.3の2点に設定し、メタン発酵槽からの流出水のpHが6.3以下となれば、pH調整槽の目標pHを6.3に、メタン発酵槽からの流出水のpHが6.5を超えればpH調整槽の目標pHを5.8に切り替える条件で運転した。
図10は、pH調整槽のpH(測定値)、メタン発酵槽からの流出水のpH(測定値)、及びメタン発酵槽内に保持されている汚泥のVSS/SS比の推移を示すグラフである。
被処理水の流入時は、pH調整槽の目標pH5.8に対して、メタン発酵槽からの流出水のpHは6.5前後であった。また、被処理水が流入停止したとき、メタン発酵槽からの流出水のpHが低下したが、pH調整槽での目標pHが6.3に切り替わり、メタン発酵槽からの流出水のpH低下を防止することができた。
この運転期間中、メタン発酵槽内に保持されているグラニュール汚泥のVSS/SS比は、スケールの析出もなく80〜90%で安定しており、スケールの析出もなく安定して処理できていた。
If the target pH in the pH adjustment tank is set to two points, pH 5.8 and pH 6.3, and the pH of the effluent from the methane fermentation tank is 6.3 or less, the target pH of the pH adjustment tank is set to 6.3. In addition, if the pH of the effluent water from the methane fermentation tank exceeded 6.5, it was operated under the condition of switching the target pH of the pH adjustment tank to 5.8.
FIG. 10 is a graph showing the transition of the pH (measured value) of the pH adjusting tank, the pH of the effluent water from the methane fermenter (measured value), and the VSS / SS ratio of the sludge retained in the methane fermenter. is there.
At the time of inflow of the water to be treated, the pH of the effluent from the methane fermentation tank was around 6.5 with respect to the target pH 5.8 of the pH adjustment tank. Moreover, when the inflow of treated water was stopped, the pH of the effluent from the methane fermentation tank was lowered, but the target pH in the pH adjustment tank was switched to 6.3, and the pH of the effluent from the methane fermentation tank was lowered. Could be prevented.
During this operation period, the VSS / SS ratio of the granular sludge retained in the methane fermentation tank is stable at 80 to 90% without precipitation of scale, and can be stably treated without precipitation of scale. It was.

本発明の嫌気性処理方法及び装置を使用すれば、酸性有機物、及びアルカリ性領域で析出するスケール成分を含む有機性廃水の嫌気性処理おいて、該スケールの発生を抑制し、安定かつ効率的な処理が可能となるので、本発明はかかる廃水の処理に好適に利用可能である。   If the anaerobic treatment method and apparatus of the present invention are used, in the anaerobic treatment of organic wastewater containing acidic organic substances and scale components that precipitate in the alkaline region, the generation of the scale is suppressed, and it is stable and efficient. Since the treatment becomes possible, the present invention can be suitably used for the treatment of such waste water.

Claims (10)

酸性有機性成分、及びアルカリ性領域で析出するスケール成分を含む廃水を、被処理水として、pH調整手段を経由してメタン発酵槽に導入し、嫌気性廃水処理を行う方法において、
該pH調整手段での目標pHとしてpHa1とpHa2(但し、pHa1<pHa2である。)の少なくとも2点を設定し、さらに該メタン発酵槽からの流出水の設定pHとして、pHt1とpHt2(但し、pHt1≦pHt2である。)を設定し、該メタン発酵槽からの流出水のpHがpHt1以下のとき、該pH調整手段での目標pHがpHa2となるように、一方、該メタン発酵槽からの流出水のpHがpHt2を超えたときには、該pH調整手段での目標pHがpH a1となるように、該pH調整手段に酸及び/又はアルカリを添加して該メタン発酵槽への流入水のpHを調整する、
ことを特徴とする前記嫌気性廃水処理方法。
In the method of performing anaerobic wastewater treatment by introducing wastewater containing acidic organic components and scale components precipitated in the alkaline region into the methane fermentation tank via the pH adjusting means as treated water,
At least two points of pH a1 and pH a2 (where pH a1 <pH a2 ) are set as target pHs in the pH adjusting means, and pH t1 is set as the set pH of the effluent from the methane fermenter. And pH t2 (however, pH t1 ≤ pH t2 ), and when the pH of the effluent from the methane fermentation tank is below pH t1 , the target pH in the pH adjusting means is set to pH a2. On the other hand, when the pH of the effluent from the methane fermenter exceeds pH t2 , acid and / or alkali is added to the pH adjusting means so that the target pH in the pH adjusting means becomes pH a1. And adjusting the pH of the inflow water to the methane fermenter,
The anaerobic wastewater treatment method characterized by the above.
前記pHa1、pHa2、pHt1、及びpHt2は、pH5.8以上、該メタン発酵槽内に保持される汚泥中の菌体比率(VSS/SS比)が60%以上となる該メタン発酵槽からの流出水のpHの上限値の範囲内に規定する、請求項1に記載の嫌気性廃水処理方法。 The pH a1 , pH a2 , pH t1 , and pH t2 are pH 5.8 or higher, and the cell ratio (VSS / SS ratio) in the sludge retained in the methane fermentation tank is 60% or higher. The anaerobic wastewater treatment method according to claim 1, which is defined within a range of an upper limit value of pH of effluent water from the tank. 前記被処理水が、生物分解によってアンモニアを生じる有機物成分を含む、請求項1又は2に記載の嫌気性廃水処理方法。   The anaerobic wastewater treatment method according to claim 1 or 2, wherein the treated water contains an organic component that generates ammonia by biodegradation. 前記被処理水が、ウイスキー蒸溜工程から排出された蒸溜残液を含む有機性廃水である、請求項3に記載の嫌気性廃水処理方法。   The anaerobic wastewater treatment method according to claim 3, wherein the water to be treated is an organic wastewater containing a distillation residual liquid discharged from a whiskey distillation process. 前記有機性廃水は、マグネシウム濃度が150mg/L以上であり、かつ、全リン(T−P)が500mg/L以上であるウイスキー蒸留残液と、全化学的酸素要求量(T−CODCr)(mg/L)が200,000以上である廃アルコールと、一般廃水とが混合され、該一般廃水で2〜4倍に希釈されたものである、請求項4に記載の嫌気性廃水処理方法。 The organic waste water includes a whiskey distillation residue having a magnesium concentration of 150 mg / L or more and a total phosphorus (TP) of 500 mg / L or more, and a total chemical oxygen demand (T-COD Cr ). The anaerobic wastewater treatment method according to claim 4, wherein waste alcohol having a (mg / L) of 200,000 or more and general wastewater are mixed and diluted 2 to 4 times with the general wastewater. . 前記スケール成分がリン酸マグネシウムアンモニウム(MAP)である、請求項1〜5のいずれか1項に記載の嫌気性廃水処理方法。   The anaerobic wastewater treatment method according to any one of claims 1 to 5, wherein the scale component is magnesium ammonium phosphate (MAP). 前記pHa1とpHa2は、pH5.8〜6.8の範囲内に設定し、かつ、該メタン発酵槽からの流出水のpHが6.0〜7.0となるように、該メタン発酵槽の流入水のpHを調整する、請求項2〜6のいずれか1項に記載の嫌気性廃水処理方法。 The pH a1 and pH a2 are set within the range of pH 5.8 to 6.8, and the pH of the effluent from the methane fermentation tank is 6.0 to 7.0. The anaerobic wastewater treatment method according to any one of claims 2 to 6, wherein the pH of the inflow water in the tank is adjusted. 前記メタン発酵槽で生成するスケール成分の析出限界pH値が7.0以下となるように、前記被処理水を希釈水で希釈する、請求項7に記載の嫌気性廃水処理方法。   The anaerobic wastewater treatment method according to claim 7, wherein the treated water is diluted with dilution water so that a precipitation limit pH value of a scale component generated in the methane fermentation tank is 7.0 or less. 前記希釈水として、前記メタン発酵槽からの流出水をpH7.0以上に調整してスケールを析出させ、分離除去した処理水の一部を使用する、請求項8に記載の嫌気性廃水処理方法。   The anaerobic wastewater treatment method according to claim 8, wherein a part of the treated water separated and removed is used as the dilution water by adjusting the effluent from the methane fermentation tank to pH 7.0 or more to precipitate a scale. . 酸性有機性成分、及びアルカリ性領域で析出するスケール成分を含む廃水を、被処理水として、pH調整手段を経由してメタン発酵槽に導入し、嫌気性廃水処理を行う方法に使用するための、pH調整手段、及びメタン発酵槽を含む嫌気性廃水処理装置であって、該pH調整手段において、該pH調整手段での目標pHとしてpHa1とpHa2(但し、pHa1<pHa2である。)の少なくとも2点を設定し、さらに該メタン発酵槽からの流出水の設定pHとして、pHt1とpHt2(但し、pHt1≦pHt2である。)を設定し、該メタン発酵槽からの流出水のpHがpHt1以下のとき、該pH調整手段での目標pHがpHa2となるように、一方、該メタン発酵槽からの流出水のpHがpHt2を超えたときには、該pH調整手段での目標pHがpH a1となるように、該pH調整手段に酸及び/又はアルカリを添加して該メタン発酵槽への流入水のpHを調整するように制御するpH設定制御装置を含むことを特徴とする前記嫌気性廃水処理装置。 In order to use wastewater containing acidic organic components and scale components precipitated in the alkaline region as treated water, into a methane fermentation tank via pH adjusting means, and to use in a method of anaerobic wastewater treatment, An anaerobic wastewater treatment apparatus including a pH adjusting means and a methane fermentation tank, wherein in the pH adjusting means, pH a1 and pH a2 (where pH a1 <pH a2 ) are set as target pH values in the pH adjusting means. ) And at least two pH t1 and pH t2 (however, pH t1 ≦ pH t2 ) are set as the pH of the effluent from the methane fermenter. When the pH of the effluent water is below pH t1 , the target pH in the pH adjusting means is pH a2 , while when the pH of the effluent water from the methane fermenter exceeds pH t2 , the pH adjustment The pH adjusting means so that the target pH at the means is pH a1. An anaerobic wastewater treatment apparatus comprising a pH setting control device for controlling the pH of water flowing into the methane fermentation tank by adding acid and / or alkali to the methane fermentation tank.
JP2012081859A 2012-03-30 2012-03-30 Anaerobic wastewater treatment method and apparatus for organic wastewater Active JP5930805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012081859A JP5930805B2 (en) 2012-03-30 2012-03-30 Anaerobic wastewater treatment method and apparatus for organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012081859A JP5930805B2 (en) 2012-03-30 2012-03-30 Anaerobic wastewater treatment method and apparatus for organic wastewater

Publications (2)

Publication Number Publication Date
JP2013208594A true JP2013208594A (en) 2013-10-10
JP5930805B2 JP5930805B2 (en) 2016-06-08

Family

ID=49526998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012081859A Active JP5930805B2 (en) 2012-03-30 2012-03-30 Anaerobic wastewater treatment method and apparatus for organic wastewater

Country Status (1)

Country Link
JP (1) JP5930805B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021169A1 (en) * 2016-07-26 2018-02-01 水ing株式会社 Method and device for organic wastewater treatment
CN108585194A (en) * 2018-07-05 2018-09-28 江苏安德信超导加速器科技有限公司 A kind of potato starch wastewater system for anaerobic treatment
JP2018164890A (en) * 2017-03-28 2018-10-25 住友重機械エンバイロメント株式会社 Water treatment apparatus
CN113087333A (en) * 2021-03-27 2021-07-09 同济大学 Resource process for synchronously strengthening anaerobic acidogenesis and phosphorus recovery of sludge

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480495A (en) * 1987-09-22 1989-03-27 Aqua Renaissance Gijutsu Methane fermentation process
JPH08141592A (en) * 1994-11-25 1996-06-04 Kurita Water Ind Ltd Anaerobic treatment method
JP2006150212A (en) * 2004-11-29 2006-06-15 Jfe Engineering Kk Method and apparatus for digesting organic waste
JP2006167522A (en) * 2004-12-14 2006-06-29 Japan Sewage Works Agency Method for controlling anaerobic digestion of organic waste
WO2009041009A1 (en) * 2007-09-25 2009-04-02 Kubota Corporation Method and apparatus for treatment of organic waste

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480495A (en) * 1987-09-22 1989-03-27 Aqua Renaissance Gijutsu Methane fermentation process
JPH08141592A (en) * 1994-11-25 1996-06-04 Kurita Water Ind Ltd Anaerobic treatment method
JP2006150212A (en) * 2004-11-29 2006-06-15 Jfe Engineering Kk Method and apparatus for digesting organic waste
JP2006167522A (en) * 2004-12-14 2006-06-29 Japan Sewage Works Agency Method for controlling anaerobic digestion of organic waste
WO2009041009A1 (en) * 2007-09-25 2009-04-02 Kubota Corporation Method and apparatus for treatment of organic waste

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021169A1 (en) * 2016-07-26 2018-02-01 水ing株式会社 Method and device for organic wastewater treatment
JPWO2018021169A1 (en) * 2016-07-26 2019-05-09 水ing株式会社 Method and apparatus for treating organic wastewater
JP2018164890A (en) * 2017-03-28 2018-10-25 住友重機械エンバイロメント株式会社 Water treatment apparatus
JP7215821B2 (en) 2017-03-28 2023-01-31 住友重機械エンバイロメント株式会社 water treatment equipment
CN108585194A (en) * 2018-07-05 2018-09-28 江苏安德信超导加速器科技有限公司 A kind of potato starch wastewater system for anaerobic treatment
CN113087333A (en) * 2021-03-27 2021-07-09 同济大学 Resource process for synchronously strengthening anaerobic acidogenesis and phosphorus recovery of sludge

Also Published As

Publication number Publication date
JP5930805B2 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
Hu et al. Psychrophilic anaerobic dynamic membrane bioreactor for domestic wastewater treatment: Effects of organic loading and sludge recycling
Chan et al. An integrated anaerobic–aerobic bioreactor (IAAB) for the treatment of palm oil mill effluent (POME): Start-up and steady state performance
Santos et al. Sugarcane vinasse treatment by two-stage anaerobic membrane bioreactor: Effect of hydraulic retention time on changes in efficiency, biogas production and membrane fouling
CN102858696B (en) Hybrid aerobic and anaerobic wastewater and sludge treatment systems and methods
Frison et al. Biological nutrients removal via nitrite from the supernatant of anaerobic co-digestion using a pilot-scale sequencing batch reactor operating under transient conditions
US20130134089A1 (en) Method and system for treating wastewater
CN101823806B (en) Pig farm manure sewage treatment method based on thick and thin separation
Bowden et al. Technologies for Sidestream nitrogen removal
JP5148550B2 (en) Anaerobic treatment method and apparatus provided with evaporative concentration means for methane fermentation treated water
WO2014204913A1 (en) Wastewater treatment process that utilizes granular sludge to reduce cod concentration in wastewater
JP6241187B2 (en) Anaerobic treatment method and anaerobic treatment apparatus
CN103708682B (en) Method for coupling denitrifying dephosphatation and partial nitrification
Zeeman et al. Potential of anaerobic digestion of complex waste (water)
JP5930805B2 (en) Anaerobic wastewater treatment method and apparatus for organic wastewater
CN101973669A (en) Electric power storage (EPS) waste water treatment technique
CN102659278B (en) Industrial wastewater treatment method during diosgenin production process
CN103601347B (en) A treatment method for domestic sewage and a quick start-up method for UAFB-EGSB coupling system
JP2007196095A (en) Organic waste treatment method and apparatus
JP2012000557A (en) Anaerobic treatment method and anaerobic treatment apparatus
JP5742254B2 (en) Organic wastewater treatment method
JP5250444B2 (en) Anaerobic biological treatment method and anaerobic biological treatment apparatus
CN104230109B (en) UASB/A/MBBR is in conjunction with the method for chemical Treatment height organism high ammonia-nitrogen wastewater
Comett-Ambriz et al. Comparison of the performance of MBBR and SBR systems for the treatment of anaerobic reactor biowaste effluent
JP2005103375A (en) Methane fermentation treatment method and apparatus
JP4503418B2 (en) Method and apparatus for treating organic wastewater containing salts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160426

R150 Certificate of patent or registration of utility model

Ref document number: 5930805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250