JP6472049B2 - Electronic device storage case - Google Patents
Electronic device storage case Download PDFInfo
- Publication number
- JP6472049B2 JP6472049B2 JP2015061115A JP2015061115A JP6472049B2 JP 6472049 B2 JP6472049 B2 JP 6472049B2 JP 2015061115 A JP2015061115 A JP 2015061115A JP 2015061115 A JP2015061115 A JP 2015061115A JP 6472049 B2 JP6472049 B2 JP 6472049B2
- Authority
- JP
- Japan
- Prior art keywords
- opening
- current
- conductor plate
- electronic device
- current induction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Description
本発明は、交流磁場を発生させる電子装置を収納するケースであって、外部への磁界の漏洩を低減させた電子装置収納ケースに関する。 The present invention relates to a case for storing an electronic device that generates an alternating magnetic field, and relates to an electronic device storage case in which leakage of a magnetic field to the outside is reduced.
電子装置収納ケースには、外部から電子装置へ給電するための電源コード、信号線、電子装置がパワーデバイスの場合には、冷却パイプなどを配線、配管するための開口部が必要である。また、CD/DVDプレイヤなどではメディア媒体を挿入する取入れ口が存在する。このように電子装置収納ケースには、開口部が必然的に存在するが、電子装置で発生した交流磁場が外部に漏れるという問題があった。この問題を解決するために、下記特許文献1〜3が知られている。 The electronic device storage case needs a power cord for supplying power to the electronic device from the outside, a signal line, and an opening for wiring and piping a cooling pipe or the like when the electronic device is a power device. In addition, a CD / DVD player or the like has an inlet for inserting a media medium. As described above, the electronic device storage case necessarily has an opening, but there is a problem that an alternating magnetic field generated in the electronic device leaks to the outside. In order to solve this problem, Patent Documents 1 to 3 below are known.
また、下記特許文献1、2においては、メディアを収納した状態で、開口部の上辺と下辺を金属体で接続することで、開口部における電磁シールド効果を向上させている。また、特許文献3においては、開口部を迂回する電流をコの字形状に屈曲形成された銅線を開口部に架橋接続することで、開口部の上辺と下辺を短絡するようにしている。すなわち、金属ケースの一金属面に長方形の開口部が形成されている場合に、その金属面上に誘導される電流は開口部を避けて流れるので、電流密度は、開口部の短辺とこの短辺に平行な金属面の縁線との間の縁領域が最も高くなる。このため、電流密度の高い領域から電磁ノイズが放射される。この縁領域に電流が集中することを防止するために、開口部の一対の長辺である上辺と下辺とをケース内部に向けて屈曲された銅線で接続するようにしている。 Further, in Patent Documents 1 and 2 below, the electromagnetic shielding effect in the opening is improved by connecting the upper side and the lower side of the opening with a metal body while the medium is stored. Further, in Patent Document 3, a copper wire formed by bending a current that bypasses the opening in a U-shape is bridged to the opening to short-circuit the upper and lower sides of the opening. That is, when a rectangular opening is formed on one metal surface of the metal case, the current induced on the metal surface flows away from the opening, so the current density is the short side of the opening and this The edge region between the edge line of the metal surface parallel to the short side is the highest. For this reason, electromagnetic noise is radiated from a region having a high current density. In order to prevent current from concentrating on the edge region, the upper side and the lower side, which are a pair of long sides of the opening, are connected by a copper wire bent toward the inside of the case.
ところが、上記の何れの場合も、電子装置が大電流で高周波成分を有するDC−DCコンバータ等のスイッチング素子を有する場合には、外部への電磁ノイズの抑制が十分ではなかった。特に、導電性ケースの一つの導電面に開口部が存在すると、その導電面に誘導される渦電流により、ケース内部で発生した磁界は開口部の縁から外部に出て、対向する縁から内部に向かう流れとなる。このため、開口部から電磁ノイズが外部に放射されることになる。このような渦電流により開口部から発生する電磁ノイズを低減することは、従来例では、効果的ではなかった。
そこで、本発明の目的は、電子装置収納ケースにおいて、電磁ノイズの放射をより低減させて、ケース内部と外部との間で配線、配管を可能とした状態で電磁シールド効果を向上させることである。
However, in any of the above cases, when the electronic device has a switching element such as a DC-DC converter having a large current and a high-frequency component, suppression of electromagnetic noise to the outside is not sufficient. In particular, if there is an opening in one conductive surface of the conductive case, the magnetic field generated inside the case will be exposed to the outside from the edge of the opening due to the eddy current induced in the conductive surface, and from the opposite edge to the inside. It becomes the flow toward. For this reason, electromagnetic noise is radiated to the outside from the opening. In the conventional example, it has not been effective to reduce electromagnetic noise generated from the opening due to such eddy current.
Accordingly, an object of the present invention is to improve the electromagnetic shielding effect in a state in which wiring and piping are enabled between the inside and outside of the case by further reducing electromagnetic noise radiation in the electronic device storage case. .
上記の課題を解決するための発明の基本構成は、交流磁場を発生する電子装置を収納するための導電性のケースであって、該ケースの構成面である、交流磁場によって渦電流が誘導される電流誘導面に開口部を有した電子装置収納ケースにおいて、開口部において、電流誘導面上に誘導される渦電流の流路の幅方向に電流路幅成分を有してその流路を形成するための帯状の導体板を設け、導体板の両端を、電流誘導面に対して導電性ケースの内側又は外側に迫り出して、開口部の開口面に対して所定の間隙を設けて開口部を覆って、電流誘導面に架橋接続したことを特徴する電子装置収納ケースである。 The basic configuration of the invention for solving the above problems is a conductive case for housing an electronic device that generates an alternating magnetic field, and an eddy current is induced by the alternating magnetic field, which is a structural surface of the case. In an electronic device storage case having an opening on the current induction surface, a current path width component is formed in the width direction of the flow path of the eddy current induced on the current induction surface at the opening. A strip-shaped conductor plate is provided, and both ends of the conductor plate are pushed out to the inside or outside of the conductive case with respect to the current induction surface, and a predetermined gap is provided with respect to the opening surface of the opening. The electronic device storage case is characterized in that it is bridge-connected to the current induction surface.
ケースに収納される電子装置は任意であるが、交流大電流を扱う装置、高周波電流成分を有する装置など、ケースを構成する導体に大きな渦電流を生じさせる装置である。開口部の形状は任意である。長方形、正方形、平行四辺形、菱形、円、楕円などである。電流誘導面は、ケースを構成している導体であって渦電流が流れる導体の意味で使用しており、厚さのある概念でもある。導体板は、代表的には金属板である。その他、カーボンなど導電性があれば任意である。導体板は開口部の開口面に対して、ケースの内側に向かって凸に形成されていても、ケースの外側に向かって凸に形成されていても良い。導体板の幅に垂直な辺は、湾曲又は屈曲した線を構成しているが、この線を輪郭とする一対の開口が形成される。この開口と電流誘導面上の開口部とを介して、電源コード、信号線、冷却パイプなどが、電子装置収納ケースの内外に配線、配管される。 The electronic device housed in the case is arbitrary, but is a device that generates a large eddy current in a conductor constituting the case, such as a device that handles an alternating current and a device that has a high-frequency current component. The shape of the opening is arbitrary. A rectangle, a square, a parallelogram, a diamond, a circle, an ellipse, and the like. The current induction surface is used in the sense of a conductor constituting the case and through which an eddy current flows, and is also a thick concept. The conductor plate is typically a metal plate. In addition, carbon or any other conductive material is optional. The conductor plate may be formed convex toward the inside of the case or convex toward the outside of the case with respect to the opening surface of the opening. The side perpendicular to the width of the conductor plate forms a curved or bent line, and a pair of openings having the line as an outline is formed. Through this opening and the opening on the current induction surface, a power cord, a signal line, a cooling pipe, and the like are wired and piped inside and outside the electronic device storage case.
本発明において、電流誘導面上に誘導される渦電流の流路の幅方向に電流路幅成分を有してその流路を形成するための帯状の導体板とは、導体板の幅方向と渦電流の流路幅方向は、直交していないことを意味する。すなわち、最も望ましくは、両者が平行となる場合である。また、両者の交差角は、0°(平行)から60°の範囲、0°から45°の範囲、0°から30°の範囲が、順次、望ましい範囲である。 In the present invention, the strip-shaped conductor plate having a current path width component in the width direction of the flow path of the eddy current induced on the current induction surface and forming the flow path is the width direction of the conductor plate. It means that the flow width direction of the eddy current is not orthogonal. That is, the most desirable case is when both are parallel. The crossing angle between the two is preferably a range of 0 ° (parallel) to 60 °, a range of 0 ° to 45 °, and a range of 0 ° to 30 ° in order.
本発明において、開口部は、矩形形状であり、電流誘導面上に誘導される渦電流の流路の幅方向の成分を有した第1辺と、該第1辺に平行な第2辺を有し、導体板の両端辺の方向は第1辺及び第2辺に平行とし、電流誘導面上における第1辺及び第2辺に近接した領域に、導体板の両端を接続した構成としても良い。この構成は、渦電流の流路と矩形の開口部の辺との関係を規定している。すなわち、渦電流の流路幅方向と、第1辺及び第2辺とは、直交していないことを意味する。最も望ましくは、両者が平行となる場合である。また、両者の交差角は、0°(平行)から60°の範囲、0°から45°の範囲、0°から30°の範囲が、順次、望ましい範囲である。また、第1辺及び第2辺と、導体板の幅方向との関係は、平行である。この場合には導体板はその両端の辺が第1辺及び第2辺、又はそれらの近傍の電流誘導面に接続される。 In the present invention, the opening has a rectangular shape, and includes a first side having a component in the width direction of the flow path of the eddy current induced on the current induction surface, and a second side parallel to the first side. has, opposite ends edges of the conductor plate is parallel to the first side and a second side, the area adjacent to the first side and a second side on the current-induced surface, have a structure of connecting the two ends of the conductive plates good. This configuration defines the relationship between the eddy current flow path and the sides of the rectangular opening. That is, it means that the flow path width direction of the eddy current is not orthogonal to the first side and the second side. Most preferably, both are parallel. The crossing angle between the two is preferably a range of 0 ° (parallel) to 60 °, a range of 0 ° to 45 °, and a range of 0 ° to 30 ° in order. The relationship between the first side and the second side and the width direction of the conductor plate is parallel. In this case, the sides of the conductor plate are connected to the first side and the second side, or current induction surfaces in the vicinity thereof.
本発明において、開口部の第1辺及び第2辺は、渦電流の流路に垂直とすることが望ましい。電磁遮蔽の効果が最も高い。 In the present invention, it is desirable that the first side and the second side of the opening be perpendicular to the flow path of the eddy current. Highest electromagnetic shielding effect.
本発明において、導体板の両端辺は、第1辺及び第2辺の幅よりも長くすることが望ましい。また、導体板は、電流誘導面に平行であって開口面に対向する底面、この底面の両側に位置し電流誘導面に交差する2つの側面、それぞれの側面に連続し電流誘導面に平行であって電流誘導面に接続する2つの接続面とを有することが望ましい。ここで、接続面は導体板の両端面(厚さが現れる面)や、両端から電流誘導面に平行に折り曲げて形成された平面を意味する。電流誘導面と導体板の側面との成す角は90°でも良く、90°より小さく角度で交差しても良い。すなわち、側面の幅方向に垂直な断面図において、開口部が底面より広い台形、逆に、底面が開口部より広い台形でも良い。また、側面が湾曲していても良い。すなわち、導体板は、コの字形状、U字溝形状、上辺が底辺より短い台形溝形状、上辺が底辺より長い台形溝形状、底面が平面で側面が湾曲したΩ形状などとすることができる。さらに、それらの両端を電流誘導面に平行に折り曲げた形状とすることが望ましい。また、底面は、導体板がケースの内側に向かって突出していても、外側に向かって突出していても、電流誘導面に平行を面を意味している。 In the present invention, it is desirable that both end sides of the conductor plate are longer than the widths of the first side and the second side. The conductor plate is parallel to the current induction surface and faces the opening surface, two side surfaces located on both sides of the bottom surface and intersecting the current induction surface, continuous to each side surface and parallel to the current induction surface. It is desirable to have two connection surfaces connected to the current induction surface. Here, the connection surface means the both end surfaces (surface where the thickness appears) of the conductor plate, or a plane formed by bending from both ends in parallel to the current induction surface. The angle formed by the current induction surface and the side surface of the conductor plate may be 90 °, or may intersect at an angle smaller than 90 °. That is, in the cross-sectional view perpendicular to the width direction of the side surface, a trapezoid whose opening is wider than the bottom surface, or conversely, a trapezoid whose bottom surface is wider than the opening may be used. Further, the side surface may be curved. That is, the conductor plate can have a U shape, a U-shaped groove shape, a trapezoidal groove shape whose upper side is shorter than the bottom side, a trapezoidal groove shape whose upper side is longer than the bottom side, an Ω shape whose bottom surface is flat, and whose side surface is curved. . Furthermore, it is desirable that the both ends be bent in parallel to the current induction surface. Further, the bottom surface means a plane parallel to the current induction surface regardless of whether the conductor plate protrudes toward the inside of the case or protrudes toward the outside.
さらに、導体板は、円弧状に湾曲させて、その両端を電流誘導面に架橋接続させても良い。この円弧状は、側面が平面で底面が円弧であっても良く、底面が平面で側面が円弧状であっても良い。これらの場合には、両側面の電流誘導面に接続する部分は電流誘導面に垂直で、底面に当たる領域のみが円弧状に湾曲していても、両端部から全長に渡り半円を含む円弧状に湾曲していても良い。 Further, the conductor plate may be curved in an arc shape and both ends thereof may be bridge-connected to the current induction surface. The arc shape may be a flat side surface and a circular bottom surface, or a flat bottom surface and a circular arc side surface. In these cases, the part connected to the current induction surface on both sides is perpendicular to the current induction surface, and even if only the area hitting the bottom surface is curved in an arc shape, an arc shape including a semicircle over the entire length from both ends It may be curved.
本発明は、渦電流が誘導される電流誘導面に形成された開口部を、その開口面の開口面と所定間隙を隔てて、帯状の導体板で導電性ケースの内部又は外部に向かって突出するように覆い、導体板の幅方向が渦電流の電流路の幅方向の成分を有するように、配置したことを特徴とする。この結果、大きな渦電流を開口部を跨いで効率良くバイパスすることができ、この電流によって発生する磁界により、ケース内部で発生した磁界が開口部から外に向かうことが抑制される。この結果、開口部から電磁ノイズが放射されることが防止される。 According to the present invention, an opening formed in a current induction surface that induces eddy current is projected toward the inside or outside of a conductive case with a strip-shaped conductor plate, with a predetermined gap from the opening surface of the opening surface. The conductive plate is arranged so that the width direction of the conductor plate has a component in the width direction of the current path of the eddy current. As a result, a large eddy current can be efficiently bypassed across the opening, and the magnetic field generated by this current prevents the magnetic field generated inside the case from going out of the opening. As a result, electromagnetic noise is prevented from being radiated from the opening.
以下、本発明を具体的な実施例に基づいて説明する。
ただし、本発明の実施形態は、以下に示す個々の実施例に限定されるものではない。
Hereinafter, the present invention will be described based on specific examples.
However, the embodiments of the present invention are not limited to the following examples.
図1に示すように、電子装置収納ケース1は、金属で構成された直方体であり、6面のうちの一つの金属面に開口部20が形成されている。開口部20が形成された金属面がケース内部の電子装置により発生される交流磁界により渦電流が誘導される電流誘導面10である。開口部20は一辺が50mmの正方形である。電子装置収納ケース1の形状は直方体等任意であり、寸法も任意である。開口部20の形状、寸法に任意である。 As shown in FIG. 1, the electronic device storage case 1 is a rectangular parallelepiped made of metal, and an opening 20 is formed on one of the six surfaces. The metal surface on which the opening 20 is formed is a current induction surface 10 on which eddy current is induced by an alternating magnetic field generated by an electronic device inside the case. The opening 20 is a square having a side of 50 mm. The shape of the electronic device storage case 1 is arbitrary such as a rectangular parallelepiped, and the dimensions are also arbitrary. The shape and size of the opening 20 are arbitrary.
電流誘導面10に誘導される渦電流について説明する。磁界分布と電流誘導面10における渦電流の電流密度(dBA/m2 )の分布を電磁界解析によるシミュレーションにより求めた。図2(a)に示すように、電子装置収納ケース1は厚さ0.5mmのアルミニウム板で構成された一辺が300mmの立方体とした。立方体の中心を原点として、図示するようにo−xyz座標系をとる。図1に示すように、開口部20は一辺が50mmの正方形であり、各辺は正方形の電流誘導面10の各稜線に平行、すなわち、x軸、y軸に平行である。開口部20の中心位置は、図2に示すように、y軸方向には中央(y=0)、x軸方向には中心から75mmである。立方体の中心に巻数10、直径100mmのコイルを置いて周波数100kHz、電流400mAの交流を流した。このときの電子装置収納ケース1の内部空間及び外部の磁界(dBA/m)の分布を求めた。ケース1の中心と開口部20の中心を通るxz面上の磁界分布を図3に示す。明らかに、開口部20を中心としてその前方領域(+z軸方向)に磁界が漏洩していることが理解される。 The eddy current induced on the current induction surface 10 will be described. The distribution of the magnetic field distribution and the current density (dBA / m 2 ) of the eddy current in the current induction surface 10 was obtained by simulation by electromagnetic field analysis. As shown in FIG. 2A, the electronic device storage case 1 was a cube made of an aluminum plate having a thickness of 0.5 mm and having a side of 300 mm. With the center of the cube as the origin, an o-xyz coordinate system is taken as shown. As shown in FIG. 1, the opening 20 is a square having a side of 50 mm, and each side is parallel to each ridge line of the square current induction surface 10, that is, parallel to the x-axis and the y-axis. As shown in FIG. 2, the center position of the opening 20 is the center (y = 0) in the y-axis direction and 75 mm from the center in the x-axis direction. A coil having a winding number of 10 and a diameter of 100 mm was placed at the center of the cube, and an alternating current with a frequency of 100 kHz and a current of 400 mA was applied. The distribution of the internal space and the external magnetic field (dBA / m) of the electronic device storage case 1 at this time was obtained. The magnetic field distribution on the xz plane passing through the center of the case 1 and the center of the opening 20 is shown in FIG. Obviously, it is understood that the magnetic field leaks to the front region (+ z-axis direction) centering on the opening 20.
また、電流誘導面10の内面上の渦電流密度(dBA/m2 )の分布を求めた。開口部20が存在しない場合の渦電流密度分布を図4(a)に、開口部20が存在する場合の渦電流密度分布を図4(c)に示す。渦電流密度は、電流誘導面10の中心に対して回転対称であり、x軸方向にみると、正方形の一辺の1/2の中心であるxが75mmの位置で最大となる分布をしている。また、このx座標が75mmを中心とする幅50mmの領域では渦電流は電流誘導面10上に射影されたx軸(以下、「射影x軸)という)に垂直に流れていることが分かる。すなわち、渦電流の流路幅方向は射影x軸方向である。 Further, the distribution of eddy current density (dBA / m 2 ) on the inner surface of the current induction surface 10 was obtained. FIG. 4A shows an eddy current density distribution when the opening 20 is not present, and FIG. 4C shows an eddy current density distribution when the opening 20 is present. The eddy current density is rotationally symmetric with respect to the center of the current induction surface 10 and has a distribution in which x, which is the center of one half of a square, is maximum at a position of 75 mm when viewed in the x-axis direction. Yes. Further, it can be seen that the eddy current flows perpendicular to the x-axis projected on the current induction surface 10 (hereinafter referred to as “projected x-axis”) in the region where the x coordinate is centered at 75 mm and the width is 50 mm. That is, the flow path width direction of the eddy current is the projected x-axis direction.
電流誘導面10に誘導される渦電流は、磁界を発生させる。この誘導磁界はコイルにより生じた磁界を減磁させる向きに発生し、電流誘導面10の断面(xz面)での渦電流の向き、及び電流誘導面10の裏面付近におけるxz面上の磁界分布は図4(b)、図4(d)に示すようになる。開口部20が存在しない場合には、射影x軸正の領域では、各渦電流はxz面上反時計回転方向の磁界を生じ、射影x軸の負領域では、各渦電流はxz面上時計回転方向の磁界を生じる。この結果、磁界は電流誘導面10の裏面に沿って射影x軸の正、負の方向流れる。開口部20が存在する場合には、開口部20の射影x軸の負の側のエッジ部分では、射影x軸の正の方向に隣接した位置での渦電流が存在せず、射影x軸の正の側のエッジ部分では、射影x軸の負の方向に隣接した位置での渦電流が存在しない。そのため、開口部20の射影x軸の負の側のエッジ部分から外部に向かう磁界をキャンセルすることができず、また、射影x軸の正の側のエッジ部分では外部から内部に向かう磁界を発生させる。この結果、磁界が開口部20から外部に漏洩する。 Eddy currents induced in the current induction surface 10 generate a magnetic field. This induced magnetic field is generated in a direction to demagnetize the magnetic field generated by the coil, the direction of the eddy current in the cross section (xz plane) of the current induction plane 10, and the magnetic field distribution on the xz plane in the vicinity of the back surface of the current induction plane 10. Is as shown in FIGS. 4B and 4D. When the opening 20 is not present, each eddy current generates a magnetic field in the counterclockwise rotation direction on the xz plane in the projected x-axis positive region, and each eddy current is clocked on the xz plane in the negative region of the projected x-axis. A rotating magnetic field is generated. As a result, the magnetic field flows along the back surface of the current induction surface 10 in the positive and negative directions of the projected x axis. When the opening 20 exists, the edge portion on the negative side of the projection x-axis of the opening 20 has no eddy current at a position adjacent to the projection x-axis in the positive direction, and the projection x-axis In the edge part on the positive side, there is no eddy current at a position adjacent to the negative direction of the projected x-axis. Therefore, the magnetic field going outward from the negative edge portion of the projected x-axis of the opening 20 cannot be canceled, and the magnetic field going from the outside to the inside is generated at the positive edge portion of the projected x-axis. Let As a result, the magnetic field leaks from the opening 20 to the outside.
電子装置収納ケース1の内部と外部との空間的連通を実現したまま、図3に示した開口部20の前方への磁界の漏洩を低減するようにした構成が、本願発明である。図1に示すように、開口部20において、その開口面21を覆うように、電子装置収納ケース1の内側に向かって突出したコの字形状に屈曲形成された導体板30が設けられている。導体板30は、厚さ0.5mm、幅50mm、長さ100mmの帯状のアルミニウムから成る金属板である。導体板30は開口部20の開口面21及び電流誘導面10に平行な底面31と、この底面31に連続して底面31及び電流誘導面10と直交する側面32a、32bと、それらの側面32a、32bの両端面(厚さが現れる面)で電流誘導面10の裏面に接続する面である接続面33a、33bとを有している。 A configuration in which leakage of a magnetic field to the front of the opening 20 shown in FIG. 3 is reduced while realizing the spatial communication between the inside and the outside of the electronic device storage case 1 is the present invention. As shown in FIG. 1, a conductor plate 30 that is bent and formed in a U-shape protruding toward the inside of the electronic device storage case 1 is provided in the opening 20 so as to cover the opening surface 21. . The conductor plate 30 is a metal plate made of strip-shaped aluminum having a thickness of 0.5 mm, a width of 50 mm, and a length of 100 mm. The conductor plate 30 includes a bottom surface 31 parallel to the opening surface 21 of the opening 20 and the current induction surface 10, side surfaces 32a and 32b continuous to the bottom surface 31 and orthogonal to the bottom surface 31 and the current induction surface 10, and side surfaces 32a thereof. , 32b have connection surfaces 33a and 33b which are surfaces connected to the back surface of the current induction surface 10 at both end surfaces (surfaces where the thickness appears).
図1に示すように、開口部20は、渦電流の流路の幅方向(射影x軸方向)に平行な第1辺22a、第2辺22bを有している。導体板30の接続面33aの幅方向が第1辺22aと平行であり、接続面33bの幅方向が第2辺22bと平行となるように、接続面33a、33bは電流誘導面10の裏面に接続されている。この結果、電流誘導面10を流れる渦電流は、図5に示すように、開口部20の第1辺22aの電流誘導面10から導体板30の接続面33a、側面32a、底面31、側面32b、接続面33b、第2辺22bの電流誘導面10へと流れる。この導体板30を流れる渦電流により生ずる磁界は、図5に示すように、図4(d)に示された内部で発生した磁界の射影x軸の正方向に向かう磁界をキャンセルする。その結果、開口部20から外側に磁界が漏洩することが防止される。 As shown in FIG. 1, the opening 20 has a first side 22 a and a second side 22 b that are parallel to the width direction of the eddy current flow path (projection x-axis direction). The connection surfaces 33a and 33b are the back surfaces of the current induction surface 10 so that the width direction of the connection surface 33a of the conductor plate 30 is parallel to the first side 22a and the width direction of the connection surface 33b is parallel to the second side 22b. It is connected to the. As a result, as shown in FIG. 5, eddy currents flowing through the current induction surface 10 are connected from the current induction surface 10 on the first side 22a of the opening 20 to the connection surface 33a, the side surface 32a, the bottom surface 31, and the side surface 32b of the conductor plate 30. The current flows to the current induction surface 10 of the connection surface 33b and the second side 22b. As shown in FIG. 5, the magnetic field generated by the eddy current flowing through the conductor plate 30 cancels the magnetic field generated in the positive direction of the projected x-axis of the magnetic field generated in FIG. 4D. As a result, the magnetic field is prevented from leaking outside from the opening 20.
次に、図6に示すように、導体板30の形状、開口部20に対する配置関係を各種変更させた。図2(b)に示すように、開口部20の形成された電流誘導面10の上方、50mmの位置(z座標200mm)での磁界強度のx軸方向の分布を求めた。その結果を図7に示す。図6(a)の構造は、導体板の側面を渦電流の流路の幅方向に平行、すなわち、x軸に平行に設けたものである。図6(b)の構造は、導体板の側面を渦電流の流路の幅方向に垂直、すなわち、y軸に平行に設けたものであり、(b)の構造の導体板を90°回転させた構造である。図6(c)の構造は、導体板は底面と、側面に代えた4本のロッドにした構造である。図6(d)の構造は、図6(a)の帯状の屈曲形成された導体板を、x軸方向に複数配列されたコの字形状のロッドにした構造であるる。図6(e)の構造は、図6(a)の帯状の導体板を円弧状に湾曲させた構造である。この円弧状に湾曲させた帯状の導体板の幅方向は、渦電流の流路幅方向に平行、すなわち、x軸方向である。図6(f)の構造は、図6(a)のコの字形状に屈曲形成された導体板を、電子装置収納ケース1の外部に向かって突出させた構造である。この導体板の幅方向は、渦電流の流路幅方向に平行、すなわち、x軸方向である。 Next, as shown in FIG. 6, the shape of the conductor plate 30 and the arrangement relationship with respect to the opening 20 were variously changed. As shown in FIG. 2B, the distribution in the x-axis direction of the magnetic field strength at a position 50 mm (z coordinate 200 mm) above the current induction surface 10 where the opening 20 was formed was obtained. The result is shown in FIG. In the structure of FIG. 6A, the side surface of the conductor plate is provided parallel to the width direction of the eddy current flow path, that is, parallel to the x-axis. In the structure of FIG. 6B, the side surface of the conductor plate is provided perpendicular to the width direction of the eddy current flow path, that is, parallel to the y-axis, and the conductor plate having the structure of FIG. It is the structure made to do. The structure of FIG. 6C is a structure in which the conductor plate is formed of four rods in place of the bottom surface and the side surface. The structure shown in FIG. 6D is a structure in which a plurality of band-shaped bent conductor plates shown in FIG. 6A are formed into U-shaped rods arranged in the x-axis direction. The structure of FIG. 6E is a structure in which the strip-shaped conductor plate of FIG. 6A is curved in an arc shape. The width direction of the strip-shaped conductor plate curved in the arc shape is parallel to the flow width direction of the eddy current, that is, the x-axis direction. The structure of FIG. 6F is a structure in which a conductor plate bent into a U-shape in FIG. 6A is protruded toward the outside of the electronic device storage case 1. The width direction of the conductor plate is parallel to the eddy current channel width direction, that is, the x-axis direction.
図7に示す磁界強度のx座標に対する特性を区別する(a)〜(f)記号は、導体板の構造を示した図6の図面符号(a)〜(f)に対応している。図7の特性(g)は、導体板が存在せず開口部が存在する場合の特性を示している。図7の特性から理解されるように、開口部の中心点の上方(x座標75mm、z座標200mm)での磁界は、導体板が存在しない場合(g)には、−32dBA/mであるのに対して、導体板を帯状として、渦電流の流路幅方向を導体板の幅方向とした場合(a)、(e)、(f)には、それぞれ、−50dBA/m、−52dBA/m、−49dBA/mである。これらに対して、導体板を帯状ではなく渦電流の流路幅方向に複数配列されたロッドとした場合(d)では、−43dBA/mと磁界の漏洩は大きくなった。導体板を帯状で構成してもその幅方向を渦電流の流路幅方向に直角とした場合(b)や、導体板を底面と4隅で支持する4本のロッドとした場合(c)には、共に−38dBA/mと磁界の漏洩は大きくなっている。また、導体板を開口部の上側(ケースの外側)に凸となるように設ける場合(f)を除き、何れも開口部の中心の上方位置で磁界は最も大きく、その中心から離れるに連れて磁界は減衰しているのが分かる。 Symbols (a) to (f) for distinguishing the characteristics of the magnetic field strength with respect to the x coordinate shown in FIG. 7 correspond to the symbols (a) to (f) in FIG. 6 showing the structure of the conductor plate. The characteristic (g) of FIG. 7 shows the characteristic in the case where the conductor plate is not present and the opening is present. As understood from the characteristics of FIG. 7, the magnetic field above the center point of the opening (x coordinate 75 mm, z coordinate 200 mm) is −32 dBA / m when the conductor plate is not present (g). On the other hand, when the conductor plate is strip-shaped and the flow width direction of the eddy current is the width direction of the conductor plate, (a), (e), and (f) show −50 dBA / m and −52 dBA, respectively. / M, -49 dBA / m. On the other hand, in the case (d) in which the conductor plate is not a strip but is a rod arranged in a plurality in the eddy current flow path width direction, the leakage of the magnetic field is -43 dBA / m. Even if the conductor plate is formed in a strip shape, the width direction is perpendicular to the flow width direction of the eddy current (b), or the conductor plate is four rods that support the bottom and four corners (c). In both cases, the leakage of the magnetic field is -38 dBA / m. In addition, except for the case where the conductor plate is provided so as to protrude above the opening (outside of the case) (f), the magnetic field is greatest at the position above the center of the opening, and as the distance from the center increases. It can be seen that the magnetic field is attenuated.
以上の検討から、導体板30を帯状としてその幅方向を電流誘導面10に誘導される渦電流の流路幅方向に平行とすることが、開口部20に対する磁界の遮蔽効果が高いことが分かった。これらの場合(a)、(e)、(f)には、開口部20の中心の上方位置で、導体板を設けない場合に比べて17〜20dBA/mだけ遮蔽効果が向上している。開口部の上部以外では、さらに、それ以上の効果がある。導体板を開口部の外部(上側)に設けた場合(f)には、内部(下側)に設けた場合(a)に比べて、遮蔽効果が低下するのは、導体板を流れる渦電流による磁界が開口部の外部(ケースの外側)に生じるため、電流誘導面の内面に沿って流れる磁界をキャンセルする効果が低いためと思われる。また、導体板を円弧状に湾曲させた場合(e)が最も遮蔽効果が高いのは、屈曲又は湾曲して形成される導体板のx軸に垂直な開口側面の面積が、コの字形状の場合(a)に比べて小さいためと思われる。電子装置収納ケース1への電源線、信号線、又は冷却パイプの引き込みは、この開口側面(図1の35、36に相当)及び開口部20を介して行われる。 From the above examination, it is found that the effect of shielding the magnetic field on the opening 20 is high when the conductor plate 30 is formed in a strip shape and the width direction thereof is parallel to the flow width direction of the eddy current induced on the current induction surface 10. It was. In these cases (a), (e), and (f), the shielding effect is improved by 17 to 20 dBA / m at a position above the center of the opening 20 as compared with the case where no conductor plate is provided. Other than the upper portion of the opening, there is a further effect. When the conductor plate is provided outside (upper side) of the opening (f), the shielding effect is lower than when the conductor plate is provided inside (lower side) (a). This is probably because the magnetic field generated by is generated outside the opening (outside the case), so that the effect of canceling the magnetic field flowing along the inner surface of the current induction surface is low. Also, when the conductor plate is curved in an arc shape (e), the highest shielding effect is that the area of the opening side surface perpendicular to the x-axis of the conductor plate formed by bending or bending is U-shaped. This is probably because it is smaller than the case (a). The power line, the signal line, or the cooling pipe is drawn into the electronic device storage case 1 through the opening side surface (corresponding to 35 and 36 in FIG. 1) and the opening 20.
次に帯状の導体板の幅方向と渦電流の流路幅の方向との関係について説明する。図8は、図4(c)の電流誘導面上の渦電流分布に対応している。渦電流Aはy軸に平行に流れているとする。渦電流の流路幅方向はx軸に平行である。導体板30の接続面33aの幅方向と渦電流幅方向(x軸) との成す角をθとする。接続面33aから導体板30に流れ込む渦電流は、θ=0°の場合が最も大きく最大値Mをとり、θ=90°では、理論上は0となる。したがって、導体板の幅方向と渦電流幅方向とがθで交差している場合には、導体板に流れ込む渦電流はMcos(θ) となる。したがって、θ=60°で、導体板に流れ込む渦電流は最大値Mの1/2となることから、導体板の幅方向と渦電流幅方向の成す角θは0°以上、60°以下が望ましい。また、θ=30°の時は、導体板に流れ込む渦電流は0.87Mとなり、導体板の幅方向と渦電流幅方向とを平行にした場合とほとんど変わらない。よって、導体板の幅方向と渦電流幅方向との成す角は0°以上、30°以下がさらに望ましい。 Next, the relationship between the width direction of the strip-shaped conductor plate and the direction of the eddy current flow path width will be described. FIG. 8 corresponds to the eddy current distribution on the current induction surface of FIG. It is assumed that the eddy current A flows parallel to the y axis. The flow width direction of the eddy current is parallel to the x axis. The angle formed by the width direction of the connection surface 33a of the conductor plate 30 and the eddy current width direction (x axis) is defined as θ. The eddy current flowing from the connection surface 33a into the conductor plate 30 is the largest when θ = 0 ° and takes the maximum value M, and theoretically becomes 0 when θ = 90 °. Therefore, when the width direction of the conductor plate and the width direction of the eddy current intersect at θ, the eddy current flowing into the conductor plate is Mcos (θ). Therefore, when θ = 60 °, the eddy current flowing into the conductor plate is ½ of the maximum value M. Therefore, the angle θ formed between the width direction of the conductor plate and the eddy current width direction is 0 ° or more and 60 ° or less. desirable. When θ = 30 °, the eddy current flowing into the conductor plate is 0.87 M, which is almost the same as when the width direction of the conductor plate is parallel to the eddy current width direction. Therefore, the angle formed between the width direction of the conductor plate and the eddy current width direction is more preferably 0 ° or more and 30 ° or less.
本発明は、交流磁場を発生させる電子装置を収納するケースに用いることができる。特に、ハイブリッド車に搭載される高周波大電流を流すDC−DCコンバータを有した電力制御装置を収納するケースに用いることができる。 The present invention can be used in a case that houses an electronic device that generates an alternating magnetic field. In particular, the present invention can be used for a case that houses a power control device having a DC-DC converter that carries a high-frequency high-current that is mounted on a hybrid vehicle.
1…電子装置収納ケース
10…電流誘導面
20…開口部
30…導体板
31…底面
32a、b…側面
33a、b…接続面
DESCRIPTION OF SYMBOLS 1 ... Electronic device storage case 10 ... Current induction surface 20 ... Opening part 30 ... Conductor plate 31 ... Bottom surface 32a, b ... Side surface 33a, b ... Connection surface
Claims (5)
前記開口部において、前記電流誘導面上に誘導される前記渦電流の流路の幅方向に電流路幅成分を有してその流路を形成するための帯状の導体板を設け、
前記導体板の両端を、前記電流誘導面に対して前記導電性ケースの内側又は外側に迫り出して、前記開口部の開口面に対して所定の間隙を設けて前記開口部を覆って、前記電流誘導面に架橋接続し、
前記導体板は、前記電流誘導面に平行であって前記開口面に対向する底面、この底面の両側に位置し前記電流誘導面に交差する2つの側面、それぞれの側面に連続し前記電流誘導面に平行であって前記電流誘導面に接続する2つの接続面とを有することを特徴とする電子装置収納ケース。 An electrically conductive case for housing an electronic device that generates an alternating magnetic field, the electronic device housing having an opening in a current induction surface that induces eddy current by the alternating magnetic field, which is a constituent surface of the case In case
In the opening, a band-shaped conductor plate is provided for forming the flow path having a current path width component in the width direction of the flow path of the eddy current induced on the current induction surface;
Both ends of the conductor plate are pushed out to the inside or outside of the conductive case with respect to the current induction surface, and a predetermined gap is provided with respect to the opening surface of the opening to cover the opening, Bridged to the current induction surface ,
The conductor plate is parallel to the current induction surface and is opposed to the opening surface, two side surfaces located on both sides of the bottom surface and intersecting the current induction surface, and continuous to the side surfaces, the current induction surface. And an electronic device storage case having two connection surfaces connected to the current induction surface.
前記開口部において、前記電流誘導面上に誘導される前記渦電流の流路の幅方向に電流路幅成分を有してその流路を形成するための帯状の導体板を設け、
前記導体板の両端を、前記電流誘導面に対して前記導電性ケースの内側又は外側に迫り出して、前記開口部の開口面に対して所定の間隙を設けて前記開口部を覆って、前記電流誘導面に架橋接続し、
前記導体板は、円弧状に湾曲させて、その両端を前記電流誘導面に架橋接続させたことを特徴とする電子装置収納ケース。 An electrically conductive case for housing an electronic device that generates an alternating magnetic field, the electronic device housing having an opening in a current induction surface that induces eddy current by the alternating magnetic field, which is a constituent surface of the case In case
In the opening, a band-shaped conductor plate is provided for forming the flow path having a current path width component in the width direction of the flow path of the eddy current induced on the current induction surface;
Both ends of the conductor plate are pushed out to the inside or outside of the conductive case with respect to the current induction surface, and a predetermined gap is provided with respect to the opening surface of the opening to cover the opening, Bridged to the current induction surface,
The electronic device storage case, wherein the conductor plate is curved in an arc shape and both ends thereof are bridge-connected to the current induction surface.
前記導体板の両端辺の方向は前記第1辺及び前記第2辺に平行とし、前記電流誘導面上における前記第1辺及び前記第2辺に近接した領域に、前記導体板の両端を接続したことを特徴とする請求項1又は請求項2に記載の電子装置収納ケース。 The opening has a rectangular shape, and has a first side having a component in the width direction of the flow path of the eddy current induced on the current induction surface, and a second side parallel to the first side. And
Opposite ends sides of the conductor plate is parallel to the first side and the second side, the area adjacent to the first side and the second side on the current-induced surface, connecting both ends of the conductor plate The electronic device storage case according to claim 1 , wherein the electronic device storage case is provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015061115A JP6472049B2 (en) | 2015-03-24 | 2015-03-24 | Electronic device storage case |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015061115A JP6472049B2 (en) | 2015-03-24 | 2015-03-24 | Electronic device storage case |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016181605A JP2016181605A (en) | 2016-10-13 |
JP6472049B2 true JP6472049B2 (en) | 2019-02-20 |
Family
ID=57132812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015061115A Expired - Fee Related JP6472049B2 (en) | 2015-03-24 | 2015-03-24 | Electronic device storage case |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6472049B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11330761A (en) * | 1998-05-18 | 1999-11-30 | Matsushita Electric Ind Co Ltd | Shielding device |
JP2000059063A (en) * | 1998-08-11 | 2000-02-25 | Canon Inc | Shield case with opening |
JP4498305B2 (en) * | 2005-05-11 | 2010-07-07 | キヤノン株式会社 | Shield case |
-
2015
- 2015-03-24 JP JP2015061115A patent/JP6472049B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2016181605A (en) | 2016-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6376284B2 (en) | Ground side coil unit | |
JP6520567B2 (en) | Power supply device | |
CN107004496B (en) | Power receiving device and power transmitting device | |
JP6086189B2 (en) | Coil device | |
US10847310B2 (en) | Coil unit, and power transmitting device, power receiving device and wireless power transmission system using the coil unit | |
US10840014B2 (en) | Coil unit, and power transmitting device, power receiving device and wireless power transmission system using the coil unit | |
US10804709B2 (en) | Coil unit, and power transmitting device, power receiving device and wireless power transmission system using the coil unit | |
JP6111645B2 (en) | Coil device and wireless power transmission system using the same | |
JP6089824B2 (en) | Trance | |
JP6472049B2 (en) | Electronic device storage case | |
US10217555B2 (en) | Compact inductor | |
JP2019087649A (en) | Reactor | |
JP6237586B2 (en) | Induction equipment | |
JP6454941B2 (en) | Non-contact power supply device and non-contact power supply system | |
JP6064943B2 (en) | Electronics | |
JP5028062B2 (en) | Active shield type gradient coil for magnetic resonance imaging system | |
JPWO2018092192A1 (en) | Non-contact power supply coupling unit, non-contact power supply device, and work machine | |
US20150302977A1 (en) | Coil structure and electric power conversion device | |
JP6871731B2 (en) | Transformer | |
JP6332799B2 (en) | Coil unit and power supply system | |
CN221202791U (en) | Wire coil assembly and cooking utensil | |
JP2019186465A (en) | Magnetic field shield material | |
JP2013125926A (en) | Power supply cable | |
JP2013235749A (en) | Wire harness | |
JP6729444B2 (en) | Coil unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20180201 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181023 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190117 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6472049 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |