[go: up one dir, main page]

JP6457243B2 - 電流センサ、及びスマートメータ - Google Patents

電流センサ、及びスマートメータ Download PDF

Info

Publication number
JP6457243B2
JP6457243B2 JP2014226293A JP2014226293A JP6457243B2 JP 6457243 B2 JP6457243 B2 JP 6457243B2 JP 2014226293 A JP2014226293 A JP 2014226293A JP 2014226293 A JP2014226293 A JP 2014226293A JP 6457243 B2 JP6457243 B2 JP 6457243B2
Authority
JP
Japan
Prior art keywords
layer
magnetic
magnetoresistive element
magnetic field
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014226293A
Other languages
English (en)
Other versions
JP2016090440A (ja
JP2016090440A5 (ja
Inventor
祥弘 東
祥弘 東
福澤 英明
英明 福澤
哲郎 和村
哲郎 和村
昌和 柳沼
昌和 柳沼
元通 芝野
元通 芝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014226293A priority Critical patent/JP6457243B2/ja
Priority to US14/933,642 priority patent/US10295578B2/en
Publication of JP2016090440A publication Critical patent/JP2016090440A/ja
Publication of JP2016090440A5 publication Critical patent/JP2016090440A5/ja
Application granted granted Critical
Publication of JP6457243B2 publication Critical patent/JP6457243B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/08Arrangements for measuring electric power or power factor by using galvanomagnetic-effect devices, e.g. Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

本実施の形態は、電流センサ及びこれを搭載したスマートメータに関する。
近年、電力需給の安定化や効率化などを目的として、電力をディジタルで計測し、メーター内に通信機能を持たせた次世代電力量計であるスマートメータの導入が進められようとしている。スマートメータで必要となる広ダイナミックレンジ・高分解能を低消費電力で実現する電流センサが求められている。高分解能の電流センサを実現するためには、磁場に対する感度の高い磁気抵抗素子(MR素子)を用いることが有効である。しかし、一般にMR素子では、入射する磁場方向によって、素子の抵抗値および磁場感度が変化してしまう。
MRセンサの磁化固着層の磁化モーメントに平行に入射された直流磁場は、直流電圧バイアスとして作用する。MRセンサの磁化固着層の磁化モーメントに垂直に入射される直流磁場成分は、MRセンサの磁場感度を変化させてしまう。このようなバイアスの印加及び感度の変化のため、スマートメータが誤った電流値を表示してしまうことが起こり得る。また、MRセンサに磁石などで上記の方向より磁場を印加することにより、スマートメータ等の表示を低くすることが可能となり、これによりセンサが誤った表示を行う可能性がある。
上記のような誤動作を防止するために、従来技術では電流センサとは別に、外部磁場検知用の磁場センサを別に設け外乱磁場をモニタしている。しかし、このような電流センサとは別の外部磁場検知用の磁場センサを設けることは、装置のコストアップにつながる。
特開2012−122897号公報 特開2007−101252号公報
本実施の形態に係る電流センサおよびスマートメータは、別途設けた外部磁場検知用磁場センサを使用することなく、出力信号をモニタすることにより誤動作を引き起こす外部磁場が素子に印加されているか否かを検知することができる電流センサおよびスマートメータを提供するものである。
以下に記載の実施の形態に係る電流センサは、フルブリッジ回路を備える。フルブリッジ回路は、磁場の増加に従い抵抗値が増加する第1極性を有する第1の磁気抵抗素子と、前記磁場の増加に従い抵抗値が減少する第2極性を有する第2の磁気抵抗素子と、前記第2極性を有する第3の磁気抵抗素子と、前記第1極性を有する第4の磁気抵抗素子とを備える。第1の磁気抵抗素子と第2の磁気抵抗素子とが第1の端子と第2の端子との間に直列接続され、第3の磁気抵抗素子と第4の磁気抵抗素子とが第1の端子と第2の端子との間に直列に接続される。差動処理回路は、第1の磁気抵抗素子と第2の磁気抵抗素子とを接続する第1の接続ノードの電位と、第3の磁気抵抗素子と第4の磁気抵抗素子とを接続する第2の接続ノードの電位との間の電位とを差動処理する。比較回路は、第1の接続ノードの電位と第1電位との間の差を示す第1値、及び第2の接続ノードの電位と第1電位との間の差を示す第2値を比較し、比較結果に基づき外部磁場を検出する。第1の磁気抵抗素子の磁化自由層の初期磁化ベクトルは、第2の磁気抵抗素子の磁化自由層の初期磁化ベクトルとは逆向きであり、第3の磁気抵抗素子の磁化自由層の初期磁化ベクトルは、第4の磁気抵抗素子の磁化自由層の初期磁化ベクトルとは逆向きである。
第1の実施の形態に係る電流センサの構成例を示す概略図である。 第1の実施の形態の電流センサの回路構成を具体的に説明する。 第1〜第4の磁気抵抗素子100〜400の各々の動作原理について説明している。 第1〜第4の磁気抵抗素子100〜400の各々の動作原理について説明している。 第1〜第4の磁気抵抗素子100〜400の各々の動作原理について説明している。 第1〜第4の磁気抵抗素子100〜400の各々の動作原理について説明している。 第1〜第4の磁気抵抗素子100〜400の各々の動作原理について説明している。 第1〜第4の磁気抵抗素子100〜400の各々の動作原理について説明している。 第1の実施の形態の電流センサの動作を説明する。 第1の実施の形態の電流センサの動作を説明する。 第1の実施の形態の電流センサ中の正常/異常判定回路700の具体的構成例を示す回路図である。 第1の実施の形態の電流センサ中の正常/異常判定回路700の具体的構成例を示す回路図である。 第1の実施の形態の電流センサ中の正常/異常判定回路700の具体的構成例を示す回路図である。 第1の実施の形態の電流センサ中の正常/異常判定回路700の具体的構成例を示す回路図である。 同実施の形態に係る磁気抵抗素子の概略構成を例示する模式的斜視図である。 同実施の形態に係る磁気抵抗素子の機能について説明するための模式図である。 同実施の形態に係る磁気抵抗素子を例示する模式的斜視図である。 同実施の形態の他の構成に係る第1の磁気抵抗素子100Eを例示する模式的斜視図である。 同実施の形態に係る第1の磁気抵抗素子100と、第1の線形応答磁性体160Aの模式図である。 同実施の形態に係る電流センサの構成例を示す模式図である。 同実施の形態に係る電流センサの他の構成例を示す模式図である。 同実施の形態に係る電流センサの他の構成例を示す模式図である。 同実施の形態に係る電流センサの他の構成例を示す模式図である。 同実施の形態に係る電流センサの他の構成例を示す模式図である。 同実施の形態に係る電流センサの構成例を示す模式図である。 同実施の形態に係る電流センサの構成例を示す模式図である。 本実施の形態に係る電流センサの製造方法を例示する模式的な斜視図である。 第1の実施の形態の電流センサを搭載したスマートメータの構成例である。 第2の実施の形態に係る電流センサの構成例を示す概略図である。 第2の実施の形態に係る電流センサの構成例を示す概略図である。 第2の実施の形態に係る電流センサの構成例を示す概略図である。 第2の実施の形態に係る電流センサの製造方法について述べる。 第3の実施の形態に係るスマートメータ700を示す模式図である。 同スマートメータ700の一部の概略構成を示す模式図である。 同スマートメータ700の概略構成を示す機能ブロック図である。 第4の実施の形態に係るスマートメータを示す模式図である。 第5の実施の形態に係る家庭用電化製品の様子を示す模式図である。
次に、実施の形態に係る電流センサ及びスマートメータを、図面を参照して詳細に説明する。なお、以下の実施の形態に係る電流センサ中で用いられる磁気抵抗素子は、いわゆる「面内磁化方式」を用いている。面内磁化方式では、例えば図1に示すように、磁化自由層、磁化固定層及び他の磁化ベクトルを有する磁性層は素子の積層方向に対して垂直方向(図1ではXY平面内)に磁化ベクトルを有する。
[1.第1の実施の形態]
[1−1.全体構成]
図1は、第1の実施の形態に係る電流センサの構成例を示す概略図である。第1の実施の形態に係る電流センサは、配線Wの近傍に配置され、この配線Wに流れる被測定電流に基づく電流磁場(誘導磁場)の印加により抵抗値が変化する第1の磁気抵抗素子100、第2の磁気抵抗素子200、第3の磁気抵抗素子300及び第4の磁気抵抗素子400を有する。図1中の右側の概略図に示されるように、第1〜第4の磁気抵抗素子100〜400はフルブリッジ回路を構成するよう接続されている。第1の磁気抵抗素子100と第2の磁気抵抗素子200とがフルブリッジ回路中で直列に接続され、また、第3の磁気抵抗素子300と第4の磁気抵抗素子400とがフルブリッジ回路中で直列に接続される。
第1の磁気抵抗素子100及び第4の磁気抵抗素子400は誘導磁場の増加によりその抵抗値が増加する特性(以下、「順極性」又は「第1極性」)を有している。一方、第2の磁気抵抗素子200及び第3の磁気抵抗素子300は、これとは逆に誘導磁場の増加によりその抵抗値が減少する特性(「逆極性」、又は「第2極性」)を有している。なお、第1〜第4の磁気抵抗素子100〜400は、略同一の感度を有するように構成されているのが好適である。
第1の磁気抵抗素子100、第2の磁気抵抗素子200、第3の磁気抵抗素子300及び第4の磁気抵抗素子400は、それぞれ、磁化自由層として動作する第1磁性層101,201,301、401及び磁化固定層として動作する第2磁性層102,202、302、402を有する。
以下、所定の誘導磁場の増加量に応じた抵抗値の増加量又は減少量を磁場感度と呼ぶ。磁場感度は、磁気抵抗素子の抵抗値の変化量をdR、磁気抵抗素子の通常の抵抗値をR、磁気抵抗素子の飽和磁場をHsとすると、(dR/R)/2Hsで表すことが可能である。尚、飽和磁場は、電流磁場の変化に対し、抵抗値が変化しなくなった時の磁場の大きさである。
次に、図2を参照して、第1の実施の形態の電流センサの回路構成を具体的に説明する。この電流センサは、フルブリッジ回路FBと、プリアンプ回路500と、アナログ・ディジタル変換器600と、正常/異常判定回路700(検出回路)と、出力部800とを備える。
前述したように、第1の実施の形態の電流センサにおいて、第1〜第4の磁気抵抗素子100〜400はフルブリッジ回路FBを構成するように接続されている。電源電圧端子Npと接地端子Nsとの間には直流電源から電源電圧Vが供給され、これによりフルブリッジ回路FBが動作する。
第1の磁気抵抗素子100と第2の磁気抵抗素子200との間の接続ノードN1は、出力電圧Vout1を出力する。一方、第3の磁気抵抗素子300と第4の磁気抵抗素子400との間の接続ノードN2は、出力電圧Vout2を出力する。出力電圧Vout1及びVout2は、被測定電流に基づく電流磁場(誘導磁場)が無い状態では、4個の磁気抵抗素子の抵抗値のバラつきがなければ、いずれも電源電圧Vの半分のV/2付近の値を有している。一方、誘導磁場が生じ、これにより各磁気抵抗素子100〜400の抵抗値が変化すると、出力電圧Vout1及びVout2の値も変化する。
プリアンプ回路500は、この出力電圧Vout1及びVout2を差動増幅して出力信号Vpを出力する。この出力信号Vp(アナログ信号)は、アナログ・ディジタル変換器600に入力される。この出力信号Vpがアナログ・ディジタル変換器600によりディジタル信号に変換され、そのディジタル値に基づき誘導磁場の大きさが判定され、その結果として配線Wの被測定電流の電流値が算出される。
正常/異常判定回路700は、プリアンプ回路500と同様に、出力電圧Vout1及びVout2を入力信号として、その値に基づき、配線Wの被測定電流に基づく電流磁場以外の外部磁場が存在するか否かを判定する。その動作については後に詳しく説明する。出力部800は、正常/異常判定回路700の判定結果を表示したり、又は他の装置を制御するための制御信号として出力したりする機能を有する。
図2に示すように、第1〜第4の磁気抵抗素子100〜400は、それぞれ磁化自由層としての第1磁性層101、201、301、401、及び磁化固定層としての第2磁性層102、202、302、402をを備えている。磁化固定層(第2磁性層102、202、302、402)の電流磁場に平行又は反平行の磁化方向成分により、第1〜第4の磁気抵抗素子100〜400が順極性を有するか、逆極性を有するかが決まる。また、磁化自由層(第1磁性層101、201、301、401)の無磁場時の初期磁化方向は、第1〜第4の磁気抵抗素子100〜400に付随する磁性体HB1、HB2により決定される。磁性体HB1が正極、磁性体HB2が負極として作用する場合、磁性体HB1からHB2に向かう方向に磁場が与えられ、この方向に磁化自由層の磁化方向が決定される。図2の例では、第1の磁気抵抗素子100と第4の磁気抵抗素子400が順極性を有し、第2の磁気抵抗素子200と第3の磁気抵抗素子300が逆極性を有するように磁化方向が決定されている。
また、第1の磁気抵抗素子100及び第4の磁気抵抗素子400の第1磁性層101、401(磁化自由層)の初期磁化ベクトルと、第2の磁気抵抗素子200及び第3の磁気抵抗素子300の第1磁性層201,301(磁化自由層)の初期磁化ベクトルは例えば180°異なる。すなわち、フルブリッジ回路FB中で、対角線状に(斜め方向に)並ぶ2つの磁気抵抗素子の磁化自由層の磁化方向は同一である一方、フルブリッジ回路FB中で横方向又は縦方向に並ぶ2つの磁気抵抗素子の磁化自由層の磁化方向は例えば180°異なっている。以上の構成のフルブリッジ回路FBを有し、出力電圧Vout1、Vout2を1,2の測定し比較することにより、被測定電流に基づく電流磁場以外の外部磁場の存在をフルブリッジ回路FBそれ自体の出力に基づいて検知することができる。ただし、第1の磁気抵抗素子100及び第4の磁気抵抗素子400の第1磁性層101、401(磁化自由層)の初期磁化ベクトルと、第2の磁気抵抗素子200及び第3の磁気抵抗素子300の第1磁性層201,301(磁化自由層)の初期磁化ベクトルは、その方向が180°異なっている場合に最大の効果が期待できるが、必ずしも正確に180°異なっている必要はない。磁化固定層の磁化方向に関し、それらの方向が逆向きであれば一定の効果が期待できる。ここでは、初期磁化ベクトルの両者の方向が、正確に180°異なっていなくとも逆向きと呼ぶ。より具体的に言うなら、第1の磁気抵抗素子100の磁化自由層の初期磁化ベクトルの、第1の磁気抵抗素子100の磁化固定層の磁化ベクトルとは垂直な方向の成分が、第2の磁気抵抗素子200の磁化自由層の初期磁化ベクトルの、第2の磁気抵抗素子200の磁化固定層の磁化ベクトルとは垂直な方向の成分とは逆向きにされていればよい。そして、第3の磁気抵抗素子300の磁化自由層の初期磁化ベクトルの、第3の磁気抵抗素子300の磁化固定層の磁化ベクトルとは垂直な方向の成分が、第4の磁気抵抗素子400の磁化自由層の初期磁化ベクトルの、第4の磁気抵抗素子400の磁化固定層の磁化ベクトルとは垂直な方向の成分とは逆向きにされていればよい。換言すれば、以下の説明において、単に「逆向き」という場合、それは180°逆向きであるという意味に解釈されるべきではなく、磁化固定層の磁化ベクトルの方向に関し逆向きの成分が含まれていれば足りる。
ここで、第1〜第4の磁気抵抗素子100〜400の各々の動作原理について、図3〜図7を参照して説明する。
図3は、磁気抵抗素子の抵抗値と、磁化自由層及び磁化固定層の磁化方向の相対的変化との関係を示すグラフである。図4は、磁化固定層の磁化方向と、磁性体HB1、HB2の配置との関係を示す概念図である。図3に示すように、磁気抵抗素子は、磁化自由層の磁化方向(free)と磁化固定層の磁化方向(pin)とが平行(同一方向)である場合に、その抵抗値が最小値になり、反平行(向きが逆)の場合に最大値となる。最小値と最大値の間の状態では、磁化自由層の磁化方向が時計回りに変化する場合と、反時計回りに変化する場合とがあり、これは図4に示すように、磁性体HBの配置によって決まる。もっとも、どちらの場合も、磁化自由層の磁化方向と磁化固定層の磁化方向との間の相対角が同じである限り、同じ抵抗値を示す。換言すれば、磁気抵抗素子の抵抗値が最大値と最小値との間のいずれかにある場合には、磁化自由層と磁化固定層の磁化方向の状態として2通りの状態が存在する。
次に、図5、図6を参照して、被測定電流に基づく電流磁場以外の外部磁場が、磁気抵抗素子の抵抗値の変化にどのような変化を与えるかを説明する。前述したように、磁気抵抗素子100〜400の磁場に対する感度は、磁性体HB1、HB2からの磁場強度により調整することができる。図5は、磁性体HB1、HB2により与えられる磁化固定層の磁化方向に垂直な方向の磁場強度が、磁気抵抗素子の磁場感度に与える影響を示している。磁性体HB1、HB2の磁場強度が高くなるほど、磁化固定層の磁化方向に平行に印加される磁場に対して、磁場感度が高くなる。換言すれば、磁化固定層の磁化方向に垂直な磁場成分が、磁気抵抗素子の感度に影響を与える。
図6に示すように、磁性体HB1、HB2による磁場の方向と反平行な方向の外部磁場Nvが入力された場合、この外部磁場Nvにより磁化自由層の磁化が弱められるので、電流磁場により磁化自由層の磁化方向が変化しても、抵抗値の変化は小さくなってしまう。具体的には、磁場Hと抵抗値Rとの関係を表すグラフは、外部磁場Nvの無いときは太線のグラフとなる一方で、外部磁場Nvがあるときは、例えば細線のグラフのように傾きが小さいグラフとなり、電流センサの感度が弱まってしまう(図6中の矢印A参照)。
一方、磁性体HB1、HB2による磁場の方向と垂直な方向の外部磁場Nhが入力された場合、この外部磁場Nhは電流磁場と同一方向であるため、グラフの動作点を変化させる(図6の矢印B参照)。
このように、外部磁場すなわち磁気ノイズNv及びNhは、その方向により、電流センサの感度に影響したり、動作点を変化させたりする。 図7は、外部直流磁場Nvまたは外部直流磁場Nhが印加されると同時に交流電流による電流磁場が磁気抵抗素子に印加された場合の説明である。外部直流磁場Nvが印加された場合では、図5で説明したように電流センサの感度を弱めるので、元の出力信号より振幅が低下する。外部直流磁場Nhは、電流による電流磁場と同一方向であるため、電流による磁場か外部磁場かの判別が困難である。スマートメータのような測定電流周波数が既知であれば、それ以外の周波数成分は外部磁場と判断は可能である。しかし周波数が未知であれば判定ができない。図示は省略するが、外部磁場が交流磁場であった場合は、外部直流磁場Nvの方向では、出力信号が外部磁場の周波数に応じて重畳された出力信号になる。
図8は、図3〜図7で説明した特性を有する4個の磁気抵抗素子を、いずれも磁性体HB1、HB2により与えられる磁場方向を揃え、その結果いずれの磁気抵抗素子の磁化自由層の初期磁化方向(初期磁化ベクトルの方向)も同一方向を向くよう配置した例を示している。この場合、図示したような、被測定電流に基づく電流磁場とは別の外部磁場H2(第1〜第4の磁気抵抗素子100〜400の磁化固定層の磁化方向に垂直な方向の磁場)が入力された場合、4個の磁気抵抗素子100〜400のすべてにおいて、磁性体HB1、HB2により与えられる磁場が弱められる。その結果、図8の右側のグラフに示すように、順極性の磁気抵抗素子100、400においても感度が弱まり(グラフの傾きが小さくなり)、一方、逆極性の磁気抵抗素子200、300においても同じだけ感度が弱まる。このような状況が生じても、ユーザは、被測定電流が低下したのか、外部磁場により電流センサの磁場感度が低下したのかを判別することができない。
このため、本実施の形態の電流センサは、前述した通り、また、図9にも示されるように、順極性の磁気抵抗素子100、400の磁性体HB1,HB2による配列順を、逆極性の磁気抵抗素子200、300の磁性体HB1、HB2の配列順とは反対向きにしている。これにより、
順極性の磁気抵抗素子100、400の磁性体HB1,HB2による磁化方向を、逆極性の磁気抵抗素子200、300の磁性体HB1、HB2による磁化方向とは180°異ならせている。これにより、順極性の磁気抵抗素子100、400の磁化自由層の初期磁化ベクトルの方向は、逆極性の磁気抵抗素子200,300の磁化自由層の初期磁化ベクトルの方向と180°異なることになる。この構成によれば、順極性の磁気抵抗素子100、400においては、磁化固定層の磁化方向に垂直な方向の外部磁場H2が印加された場合に、図9の右側に示すように、磁場Hの変化に対する出力電圧Vout1の変化量(グラフの傾き)は小さくなり、逆に出力電圧Vout2の変化量(グラフの傾き)は大きくなる。この変化量を判定することにより、外部磁場H2を検知可能となる。
本実施の形態の電流センサは、この図9で説明した現象を利用して、外部磁場H2の存在の有無を判定する。この点を、図10を参照して説明する。なお、図10では、比較電圧Vout1a=Vout2a=V/2である場合を例として説明している。
ここで、ある電流磁場に対する出力電圧Vout1と比較電圧Vout1aとの間の差をΔVout1とし、ある電流磁場に対する出力電圧Vout2と比較電圧Vout2aとの間の差をΔVout2とする。磁気抵抗素子100〜400の無磁場での抵抗値が完全に一致している場合、Vout1aおよびVout2aは1/2V(Vは電源電圧)になる。実際には、磁気抵抗素子100〜400の無磁場での抵抗値は完全には一致しないため、比較電圧Vout1aは無磁場での出力電圧Vout1の値であり、比較電圧Vout2aは無磁場での出力電圧Vout2の値である。ただし、後者の場合においても、比較電圧Vout1a、Vout2aをV/2に設定してもよい。
もし、外部磁場H2が存在せず、磁気抵抗素子100〜400の測定感度が同じであれば、ΔVout1とΔVout2は略等しい。
一方、外部磁場H2が大きくなるに従い、ΔVout1とΔVout2の値の間の差ΔVは、図9で示した現象のために徐々に大きくなる。正常/異常判定回路700は、この電位差ΔVがしきい値電圧よりも大きいか否かを判定して、異常の度合を判定することが出来る。
図11Aは、正常/異常判定回路700の構成を示す機能ブロック図である。この正常/異常判定回路700は、絶対値生成回路700A、差分生成回路700B、及び比較回路700Cから構成される。
絶対値生成回路700Aは、出力電圧Vout1、Vout2と比較電圧Vout1a、vout2aとの差分の絶対値である電圧ΔVout1、ΔVout2を演算する回路である。すなわち、絶対値生成回路700Aは、電圧Vout1と比較電圧Vout1aとを差動処理して絶対値ΔVout1を生成する第1差動処理回路、及び電圧Vout2と比較電圧Vout2aとを差動増幅して絶対値ΔVout2を生成する第2差動処理回路として機能する。
また、差分生成回路700Bは、電圧ΔVout1と電圧Vout2の差分としての電圧ΔVを生成する回路である。すなわち、差分生成回路700Bは、絶対値ΔVout1とΔVout2を差動処理する第3差動処理回路として機能する。また、比較回路700Cは、電圧ΔVと、しきい値電圧Vthを比較してその大小を判定し(差動処理し)、その結果を出力する回路(第4差動処理回路)である。
正常/異常判定回路700での判定フローを図11Bに示す。まず、本実施の形態磁場測定時における出力電圧Vout1、Vout2を、絶対値生成回路700Aに入力する(S11)。続いて、絶対値生成回路700Aにおいて、出力電圧Vout1、Vout2と比較電圧Vout1a、Vout2aの差分の絶対値である電圧ΔVout1、ΔVout2を生成する(S12)。続いて、差分生成回路700Bにおいて、電圧ΔVout1、電圧Vout2の差分としての電圧ΔVを生成する(S13)。
こうして電圧ΔVが得られると、比較回路700Cにおいて、電圧ΔVと、しきい値電圧Vthとを比較する(S14)。比較の結果、電圧ΔVがしきい値電圧Vthよりも小さい場合には、外部磁場H2の影響はないと判定して、比較回路700Cは信号Lowを出力する。この信号Lowに基づき、出力回路(図11Aでは図示せず)から正常信号が出力される(S15)。一方、電圧ΔVがしきい値電圧Vthよりも大きい場合には、測定精度に影響する外部磁場H2が存在するとして、比較回路は信号Highを出力する。この信号Highに基づき、出力回路から異常信号が出力される。
図11Cに、正常/異常判定回路700の具体的構成例を示す回路図である。この正常/異常判定回路700は、差動増幅器701、702と、インバータ703と、差動増幅器704、705を備えている。
差動増幅器701は、出力電圧Vout1とV/2とを入力信号として差動増幅を行って電圧ΔVout1を出力する。差動増幅器702とインバータ703は、出力電圧Vout2とV/2とを入力信号として差動増幅を行った後反転させて電圧ΔVout2を出力する。
差動増幅器704は、電圧ΔVout1とΔVout2を差動増幅して電圧ΔVを生成する。差動増幅器705は、この電圧ΔVと閾値電圧との間の差異に基づき、外部磁場の有無を示す信号を出力する。
図11Cは、正常/異常判定回路700の具体的構成例を示す回路図である。この例での正常/異常判定回路700は、RMS/DCコンバータ706、707、差動増幅器701、702と、インバータ703と、差動増幅器704、705を備えている。
RMS/DCコンバータ706、707は入力された信号に対して実効値の直流電圧(DC)を出力する回路である。入力信号が交流信号である場合、その交流信号を、その交流信号の実効値を有する直流信号に変換する。実際の電流センサの使用時、測定電流は交流電流である場合も想定される。交流信号の瞬時値では判定が困難なため、実効電圧(RMS値)にて判定が行われる。なお信号が直流信号の場合でも、実効電圧は出力が可能である。
差動増幅器701は、出力電圧Vout1とV/2とを入力信号として差動増幅を行って電圧ΔVout1を出力する。差動増幅器702とインバータ703は、出力電圧Vout2とV/2とを入力信号として差動増幅を行った後反転させて電圧ΔVout2を出力する。
差動増幅器704は、電圧ΔVout1とΔVout2を差動増幅して電圧ΔVを生成する。差動増幅器705は、この電圧ΔVと閾値電圧との間の差異に基づき、外部磁場の有無を示す信号を出力する。
図11Dの上段の図は、RMS/DCコンバータ706、707の具体的構成例を示す回路図である。下段の図は、上段の図の更に具体的な回路図である。
このRMD/DCコンバータ706、707は、絶対値変換回路711、2乗除算回路712、積分回路713及び電圧フォロワ回路714を備えている。下段の図のように、入力側に更に電圧フォロワ回路715を備えても良い。
絶対値変換回路711は、入力電圧Vinを絶対値|Vin|に変換する機能を有する。2乗除算回路712は、絶対値|Vin|を2乗して実効値で除算した値を出力する。積分回路173は、この2乗除算回路713を所定期間において積分した積分値を出力する。
[1−2.磁気抵抗素子の動作原理]
図12は、本実施の形態に係る電流センサに用いられる磁気抵抗素子の概略構成を例示する模式的斜視図である。例えば第1の磁気抵抗素子100は、第1磁性層101と、第2磁性層102と、第1磁性層と第2磁性層との間に設けられた中間層103と、図示しない電極層とを含む。尚、第2,第3,第4の磁気抵抗素子200,300、400は、第1の磁気抵抗素子100と略同様に構成されているので説明は省略する。
中間層103は、例えば非磁性層である。第1磁性層101は、例えば、磁化が自由に変化する磁化自由層である。第2磁性層102は、例えば、磁化の固定された磁化固定層である。第1の磁気抵抗素子100及び第4の磁気抵抗素子400の第1磁性層101、401(磁化自由層)の初期磁化ベクトルと、第2の磁気抵抗素子200及び第3の磁気抵抗素子300の第1磁性層201,301(磁化自由層)の初期磁化ベクトルはその方向が互いに180°異なる。
第1の磁気抵抗素子100は、中間層103が導電材料で形成されている場合はGMR(Giant Magneto Resistance)素子であり、中間層103が絶縁材料で形成されている場合はTMR(Tunneling Magneto Resistance)素子である。第1の磁気抵抗素子100がGMR素子である場合には、電流が膜面垂直方向に通電されるCPP−GMR素子である場合や、電流が膜面内方向に通電されるCIP−GMR素子である場合がある。第1の磁気抵抗素子100がTMR素子である場合には、電流が膜面垂直方向に通電される。また、第1の磁気抵抗素子100は、AMR素子であっても良い。
図13は、本実施の形態で用いる磁気抵抗素子が磁場を検知する機能について説明する模式図である。以降、第1磁性層101が磁化自由層、第2磁性層102が磁化固定層の場合を例にとり、説明する。
磁気抵抗素子が磁場を検知する機能は「MR効果」に基づく。「MR効果」は、第1磁性層101と中間層103と第2磁性層102との積層膜において発現する。「MR効果」とは、磁性体を有する積層膜において、外部磁場が印加されたときに、磁性体の磁化の変化によって積層膜の電気抵抗の値が変化する現象である。
図13(b)に示すように第1の磁気抵抗素子100に誘導磁場が加わっていない初期状態では、第1磁性層101と第2磁性層102の磁化方向が所定の角度を有する。第2磁性層102の磁化方向は、後述するように積層方向に隣接する反強磁性層などで固定されており、第1磁性層101の磁化方向は、第1の線形応答磁性体160等や磁場中アニールの方向によって所定の向きに設定される。
図13(a),(c)に示すように、第1の磁気抵抗素子100に誘導磁場が加わることで、第1磁性層101の磁化方向が変化する。その結果、第1磁性層101と第2磁性層102の磁化方向の相対角度が変化する。
第1の磁気抵抗素子100に電流を流すと、磁化方向の相対角度の変化が抵抗変化として表れる。低抵抗状態の抵抗をRとし、MR効果によって変化する電気抵抗の変化量をΔRとしたときに、ΔR/Rを「MR変化率」という。第1磁性層101と中間層103と第2磁性層102の材料の組み合わせによって正の磁気抵抗効果が生ずる場合、第1磁性層101と第2磁性層102の磁化方向の相対角度の減少に伴って電気抵抗が減少する。一方、第1磁性層101と中間層103と第2磁性層102の材料の組み合わせによって負の磁気抵抗効果が生ずる場合、第1磁性層101と第2磁性層102の磁化方向の相対角度の減少に伴って電気抵抗が増大する。
図13(d)に示す例では、正の磁気抵抗効果を例にとっている。GMR素子やTMR素子などの磁気抵抗素子では、「MR変化率」が非常に大きいため、ホール素子などに比べて、磁場に対する感度が高い。また、磁気抵抗素子では、図13(d)に例示する通り、磁化自由層と磁化固定層が平行の場合が抵抗の最小値、反平行である場合が抵抗の最大値とした、磁場に対する電気抵抗変化のダイナミックレンジが存在する。図3(d)に示した通り、磁気抵抗素子のダイナミックレンジは2Hsで定義される。
[1−3.磁気抵抗素子の構成例]
以下、本実施の形態に係る磁気抵抗素子の構成例について説明する。図14(a)〜図14(d)は、本実施の形態に係る電流センサに用いられる磁気抵抗素子を例示する模式的斜視図である。尚、以下において、「材料A/材料B」の記載は、材料Aの層の上に、材料Bの層が設けられている状態を示す。尚、以下の説明においては第1の磁気抵抗素子100を例として説明するが、第2〜第4の磁気抵抗素子200、300、400も同様に構成することが可能であり、更に他の磁気抵抗素子を設ける場合にも、同様に構成することが可能である。
図14(a)は、所定の実施の形態に用いられる第1の磁気抵抗素子100Aを例示する模式的斜視図である。図14(a)に表したように、第1の磁気抵抗素子100Aは、順に並べられた、下部電極E1と、下地層104と、ピニング層105と、第2磁化固定層106と、磁気結合層107と、第2磁性層102と、中間層103と、第1磁性層101と、キャップ層108と、上部電極E2とを含む。
この例では、第1磁性層101は磁化自由層として機能し、第2磁性層102は第1磁化固定層として機能する。図14(a)の第1の磁気抵抗素子100Aは、ボトムスピンバルブ型と呼ばれる。
下地層104には、例えば、Ta/Ruが用いられる。このTa層の厚さ(Z軸方向の長さ)は、例えば、3nmである。このRu層の厚さは、例えば、2nmである。ピニング層105には、例えば、7nmの厚さのIrMn層が用いられる。第2磁化固定層106には、例えば、2.5nmの厚さのCo75Fe25層が用いられる。磁気結合層107には、例えば、0.9nmの厚さのRu層が用いられる。第1磁化固定層102には、例えば、3nmの厚さのCo40Fe4020層が用いられる。中間層103には、例えば、1.6nmの厚さのMgO層が用いられる。第1磁性層101には、例えば、Co40Fe4020/Ni80Fe20が用いられる。2nmの厚さのCo40Fe4020と8nmの厚さのNi80Fe20の積層体が用いられる。キャップ層108には、例えばTa/Ruが用いられる。このTa層の厚さは、例えば、1nmである。このRu層の厚さは、例えば、5nmである。
下部電極E1及び上部電極E2には、例えば、アルミニウム(Al)、アルミニウム銅合金(Al−Cu)、銅(Cu)、銀(Ag)、及び、金(Au)の少なくともいずれかが用いられる。下部電極E1及び上部電極E2として、このような電気抵抗が比較的小さい材料を用いることで、第1の磁気抵抗素子100Aに効率的に電流を流すことができる。
下部電極E1は、下部電極E1用の下地層(図示せず)と、キャップ層(図示せず)と、の間に、Al、Al−Cu、Cu、Ag、及び、Auの少なくともいずれかの層が設けられた構造を有しても良い。例えば、下部電極E1には、タンタル(Ta)/銅(Cu)/タンタル(Ta)などが用いられる。下部電極E1用の下地層としてTaを用いることで、例えば、下部電極E1を構成する層間の密着性を向上させることができる。下部電極E1用の下地層として、チタン(Ti)、または、窒化チタン(TiN)などを用いても良い。下部電極E1用のキャップ層としてTaを用いることで、そのキャップ層の下の銅(Cu)などの酸化を防ぐことができる。下部電極E1用のキャップ層として、チタン(Ti)、または、窒化チタン(TiN)などを用いても良い。
下地層104には、バッファ層(図示せず)とシード層(図示せず)との積層構造を用いることができる。このバッファ層は、例えば、下部電極E1の表面の荒れを緩和し、バッファ層の上に積層される層の結晶性を改善する。
バッファ層として、例えば、タンタル(Ta)、チタン(Ti)、バナジウム(V)、タングステン(W)、ジルコニウム(Zr)、ハフニウム(Hf)及びクロム(Cr)よりなる群から選択された少なくともいずれかが用いられる。バッファ層として、これらの材料から選択された少なくとも1つの材料を含む合金を用いても良い。
バッファ層の厚さは、1nm以上10nm以下が好ましい。バッファ層の厚さは、1nm以上5nm以下がより好ましい。バッファ層が薄すぎると、バッファ効果が失われる。バッファ層が厚すぎると、第1の磁気抵抗素子100Aが過度に厚くなる。バッファ層の上にシード層が形成され、そのシード層がバッファ効果を有することができる。バッファ層は省略しても良い。バッファ層には、例えば、3nmの厚さのTa層が用いられる。
図示しないシード層は、シード層の上に積層される層の結晶配向を制御する。シード層は、シード層の上に積層される層の結晶粒径を制御する。シード層として、fcc構造(Face-Centered Cubic Structure:面心立方格子構造)、hcp構造(Hexagonal Close-Packed Structure:六方最密格子構造)またはbcc構造(Body-Centered Cubic Structure:体心立方格子構造)の金属等が用いられる。
シード層として、hcp構造のルテニウム(Ru)、または、fcc構造のNiFe、または、fcc構造のCuを用いることにより、例えば、シード層の上のスピンバルブ膜の結晶配向をfcc(111)配向にすることができる。シード層には、例えば、2nmの厚さのCu層、または、2nmの厚さのRu層が用いられる。シード層の上に形成される層の結晶配向性を高める場合には、シード層の厚さは、1nm以上5nm以下が好ましい。シード層の厚さは、1nm以上3nm以下がより好ましい。これにより、結晶配向を向上させるシード層としての機能が十分に発揮される。一方、例えば、シード層の上に形成される層を結晶配向させる必要がない場合(例えば、アモルファスの磁化自由層を形成する場合など)には、シード層は省略しても良い。シード層としては、例えば、2nmの厚さのRu層が用いられる。
ピニング層105は、ピニング層105の上に形成される強磁性層に、一方向異方性(unidirectional anisotropy)を付与して磁化を固定する。図14(a)に示した例では、ピニング層105の上に形成される第2磁化固定層106の強磁性層に、一方向異方性(unidirectional anisotropy)を付与して磁化を固定する。ピニング層105には、例えば、反強磁性層が用いられる。ピニング層105には、例えば、Ir−Mn、Pt−Mn、Pd−Pt−Mn、Ru−Mn、Rh−Mn、Ru−Rh−Mn、Fe−Mn、Ni−Mn、Cr−Mn−PtおよびNi−Oよりなる群から選択された少なくともいずれかが用いられる。Ir−Mn、Pt−Mn、Pd−Pt−Mn、Ru−Mn、Rh−Mn、Ru−Rh−Mn、Fe−Mn、Ni−Mn、Cr−Mn−PtおよびNi−Oにさらに添加元素を加えた合金を用いても良い。十分な強さの一方向異方性を付与するために、ピニング層105の厚さが適切に設定する。
ピニング層105に接する強磁性層の磁化の固定を行うためには、磁場印加中での熱処理が行われる。熱処理時に印加されている磁場の方向にピニング層105に接する強磁性層の磁化が固定される。アニール温度は、例えば、ピニング層105に用いられる反強磁性材料の磁化固着温度よりも高い温度とする。また、Mnを含む反強磁性層を用いる場合、ピニング層105以外の層にMnが拡散してMR変化率を低減する場合がある。よってMnの拡散が起こる温度以下に設定することが望ましい。例えば200度(℃)以上、500度(℃)以下とすることができる。好ましくは、260度(℃)以上、400度(℃)以下とすることができる。
ピニング層105としてPt−MnまたはPd−Pt−Mnが用いられる場合には、ピニング層105の厚さは、8nm以上20nm以下が好ましい。ピニング層105の厚さは、10nm以上15nm以下がより好ましい。ピニング層105としてIrMnを用いる場合には、ピニング層105としてPtMnを用いる場合よりも薄いピニング層105で、一方向異方性を付与することができる。この場合には、ピニング層105の厚さは、4nm以上18nm以下が好ましい。ピニング層105の厚さは、5nm以上15nm以下がより好ましい。ピニング層105には、例えば、7nmの厚さのIr22Mn78層が用いられる。Ir22Mn78層を用いる場合、磁場中熱処理条件として、10kOeの磁場を印加しつつ320℃において一時間の熱処理を行うことができる。Pt50Mn50層を用いる場合、磁場中熱処理条件として、10kOeの磁場を印加しつつ320℃で10時間の熱処理を行うことができる。
第2磁化固定層106には、例えば、Fe、Co及びNiの少なくともいずれか、または、これらの少なくとも1種を含む合金とすることができる。また、これらの材料に添加元素を加えた材料とすることもできる。
第2磁化固定層106には、例えば、CoFe100−x合金(xは0at.%以上100at.%以下)、NiFe100−x合金(xは0at.%以上100at.%以下)、または、これらに非磁性元素を添加した材料が用いられる。第2磁化固定層106として、例えば、Co、Fe及びNiよりなる群から選択された少なくともいずれかが用いられる。第2磁化固定層106として、これらの材料から選択された少なくとも1つの材料を含む合金を用いても良い。
第2磁化固定層106の厚さは、例えば、1.5nm以上5nm以下が好ましい。これにより、例えば、ピニング層105による一方向異方性磁場の強度をより強くすることができる。例えば、第2磁化固定層106の上に形成される磁気結合層107を介して、第2磁化固定層106と第1磁化固定層102との間の反強磁性結合磁場の強度をより強くすることができる。第2磁化固定層106の磁気膜厚(飽和磁化Bsと厚さtとの積(Bs・t))は、第1磁化固定層102の磁気膜厚と実質的に等しいことが好ましい。
薄膜でのCo40Fe4020の飽和磁化は、約1.9T(テスラ)である。例えば、第1磁化固定層102として、3nmの厚さのCo40Fe4020層を用いる場合には、第1磁化固定層102の磁気膜厚は、1.9T×3nmであり、5.7Tnmとなる。一方、Co75Fe25の飽和磁化は、約2.1Tである。上記と等しい磁気膜厚が得られる第2磁化固定層106の厚さは、5.7Tnm/2.1Tであり、2.7nmとなる。この場合、第2磁化固定層106には、約2.7nmの厚さのCo75Fe25を用いることが好ましい。第2磁化固定層106として、例えば、2.5nmの厚さのCo75Fe25層が用いられる。
図14(a)に示す第1の磁気抵抗素子100Aにおいては、第2磁化固定層106と磁気結合層107と第1磁化固定層102とのシンセティックピン構造が用いられている。その代わりに、1層の磁化固定層からなるシングルピン構造を用いても良い。シングルピン構造を用いる場合には、磁化固定層として、例えば、3nmの厚さのCo40Fe4020層が用いられる。シングルピン構造の磁化固定層に用いる強磁性層として、後述する第1磁化固定層102と同じ材料を用いても良い。
磁気結合層107は、第2磁化固定層106と第1磁化固定層102との間に反強磁性結合を生じさせる。磁気結合層107は、シンセティックピン構造を形成する。磁気結合層107として、例えば、Ruが用いられる。磁気結合層107の厚さは、0.8nm以上1nm以下であることが好ましい。第2磁化固定層106と第1磁化固定層102との間に十分な反強磁性結合を生じさせる材料であれば、磁気結合層107としてRu以外の材料を用いても良い。磁気結合層107の厚さは、RKKY(Ruderman-Kittel-Kasuya-Yosida)結合のセカンドピーク(2ndピーク)に対応する0.8nm以上1nm以下の厚さに設定することができる。さらに、磁気結合層107の厚さは、RKKY結合のファーストピーク(1stピーク)に対応する0.3nm以上0.6nm以下の厚さに設定しても良い。磁気結合層107として、例えば、0.9nmの厚さのRuが用いられる。これにより、高信頼性の結合がより安定して得られる。
第1磁化固定層には、例えば、Fe、Co及びNiの少なくともいずれか、または、これらの少なくとも1種を含む合金とすることができる。また、これらの材料に添加元素を加えた材料とすることもできる。
第1磁化固定層102に用いられる磁性層は、MR効果に直接的に寄与する。第1磁化固定層102として、例えば、Co−Fe−B合金が用いられる。具体的には、第1磁化固定層102として、(CoFe100−x100−y合金(xは0at.%以上100at.%以下、yは0at.%以上30at.%以下)を用いることもできる。第1磁化固定層102として、(CoFe100−x100−yのアモルファス合金を用いた場合には、例えば、磁気抵抗素子のサイズが小さい場合においても、結晶粒に起因した素子間のばらつきを抑えることができる。第1磁化固定層102として、アモルファス合金を用いた場合には、第1磁化固定層102の上に形成される層(例えばトンネル絶縁層)を平坦化することができる。トンネル絶縁層の平坦化により、トンネル絶縁層の欠陥密度を減らすことができる。例えば、トンネル絶縁層の材料としてMgOを用いる場合には、(CoFe100−x100−yのアモルファス合金を用いることで、トンネル絶縁層の上に形成されるMgO層の(100)配向性を強めることができる。MgO層の(100)配向性をより高くすることで、より大きいMR変化率が得られる。(CoFe100−x100−y合金は、アニール時にMgO層の(100)面をテンプレートとして結晶化する。このため、MgOと(CoFe100−x100−y合金との良好な結晶整合が得られる。良好な結晶整合を得ることで、より大きいMR変化率が得られる。第1磁化固定層102として、Co−Fe−B合金以外に、例えば、Fe−Co合金を用いても良い。
第1磁化固定層102がより厚いと、より大きなMR変化率が得られる。より大きな固定磁場を得るためには、第1磁化固定層102は薄いほうが好ましい。MR変化率と固定磁場との間には、第1磁化固定層102の厚さにおいてトレードオフの関係が存在する。第1磁化固定層102としてCo−Fe−B合金を用いる場合には、第1磁化固定層102の厚さは、1.5nm以上5nm以下が好ましい。第1磁化固定層102の厚さは、2.0nm以上4nm以下がより好ましい。
第1磁化固定層102(第2磁性層20)には、上述した材料の他に、fcc構造のCo90Fe10合金、または、hcp構造のCo、または、hcp構造のCo合金が用いられる。第1磁化固定層102として、Co、Fe及びNiよりなる群から選択された少なくとも1つが用いられる。第1磁化固定層102として、これらの材料から選択された少なくとも1つの材料を含む合金が用いられる。第1磁化固定層102として、bcc構造のFeCo合金材料、50at.%以上のコバルト組成を含むCo合金、または、50at.%以上のNi組成の材料を用いることで、例えば、より大きなMR変化率が得られる。第1磁化固定層102として、CoMnGe、CoFeGe、CoMnSi、CoFeSi、CoMnAl、CoFeAl、CoMnGa0.5Ge0.5、及び、CoFeGa0.5Ge0.5などのホイスラー磁性合金層を用いることもできる。例えば、第1磁化固定層102として、3nmの厚さのCo40Fe4020層が用いられる。
中間層103は、第1磁化固定層102と第1磁性層101との磁気的な結合を分断する。中間層103には、金属または絶縁体または半導体が用いられる。中間層103として金属を用いる場合、例えば、Cu、AuまたはAg等が用いられる。この場合、中間層103の厚さは、例えば、1nm以上7nm以下程度である。中間層103として絶縁体または半導体を用いる場合、例えば、マグネシウム酸化物(Mg−O等)、アルミ酸化物(Al等)、チタン酸化物(Ti−O等)、亜鉛酸化物(Zn−O等)、または、酸化ガリウム(Ga−O)などが用いられる。この場合、中間層103の厚さは、例えば0.6nm以上5nm以下程度である。
第1磁性層101の材料は、例えば、Fe、Co及びNiの少なくともいずれか、または、これらの少なくとも1種を含む合金とすることができる。また、これらの材料に添加元素を加えた材料とすることもできる。第1磁性層は、磁化方向が外部磁場によって変化する強磁性体を有する層である。また、これらの金属、合金に、添加元素や極薄層として、B,Al,Si,Mg,C,Ti,V,Cr,Mn、Cu,Zn,Ga,Zr,Hfなどを添加することもできる。また、結晶磁性層だけではなく、アモルファス磁性層を用いることも可能である。
また、酸化物や窒化物の磁性層を用いることも可能である。例えば、界面にCoFeを形成してNiFeを用いたCo90Fe10[1nm]/Ni80Fe20[3.5nm]という二層構成を用いることができる。なお、NiFe層を用いない場合には、Co90Fe10[4nm]単層を用いることができる。また、第1磁性層101として、CoFe/NiFe/CoFeなどの三層構成を採用しても構わない。
第1磁性層101には、CoFe合金のなかでも、軟磁気特性が安定であることから、Co90Fe10が好ましい。Co90Fe10近傍のCoFe合金を用いる場合には、膜厚を0.5nm以上4nm以下とすることが好ましい。その他、CoFe100−x(x=70at.%〜90at.%)も用いることができる。
また、中間層にMgOを用いたTMR素子では、第1磁性層の材料として、(CoFe100−x100−y合金(x=0at.%〜100at.%、y=0at.%〜30at.%)を用いることが好ましい。(CoFe100−x100合金はアニール時にMgO(100)面をテンプレートとして結晶化するため、MgOと(CoFe100−x100合金の良好な結晶整合を得ることが出来る。このような良好な結晶整合は高いMR変化率を得る観点で重要である。一方で、第1磁性層にCo−Fe−B合金を用いる場合、軟磁気特性を良好にする観点で、Ni−Fe合金との積層体とすることが好ましい。例えば、Co40Fe4020[2nm]/Ni80Fe20[8nm]などを用いることができる。ここで、高いMR変化率を得る観点で、Co−Fe−B層は中間層側に配置するのが好ましい。また、Co40Fe4020層とNi80Fe20層の間の結晶整合を切ると、Co40Fe4020層がMgO中間層をテンプレートとして良好な配向が得られるため、TaやTiなどの非磁性金属を間に挿入しても良い。また、Co−Fe−B層とNi―Fe―B層の積層体としても良い。
キャップ層108は、キャップ層108の下に設けられる層を保護する。キャップ層108には、例えば、複数の金属層が用いられる。キャップ層108には、例えば、非磁性金属を用いることができる。キャップ層108には、例えば、Ta層とRu層との2層構造(Ta/Ru)が用いられる。このTa層の厚さは、例えば1nmであり、このRu層の厚さは、例えば5nmである。キャップ層108として、Ta層やRu層の代わりに他の金属層を設けても良い。キャップ層108の構成は、任意である。キャップ層108には、例えば、非磁性材料を用いることができる。キャップ層108の下に設けられる層を保護可能なものであれば、キャップ層108として、他の材料を用いても良い。
図14(b)は、他の実施の形態に用いられる第1の磁気抵抗素子100Bを例示する模式的斜視図である。図14(b)に表したように、第1の磁気抵抗素子100Bは、順に並べられた、下部電極E1と、下地層104と、第1磁性層101と、中間層103と、第2磁性層102と、磁気結合層107と、第2磁化固定層106と、ピニング層105と、キャップ層108と、上部電極E2とを含む。
この例では、第1磁性層101は磁化自由層として機能し、第2磁性層102は第1磁化固定層として機能する。図14(b)の第1の磁気抵抗素子100Bは、トップスピンバルブ型と呼ばれる。第1の磁気抵抗素子100Bに含まれる層のそれぞれには、例えば、図14(a)に示す磁気抵抗素子に関して説明した材料を用いることができる。
図14(c)は、他の実施の形態に用いられる第1の磁気抵抗素子100Cを例示する模式的斜視図である。図14(c)に表したように、第1の磁気抵抗素子100Cは、順に並べられた、下部電極E1と、下地層104と、下部ピニング層105aと、下部第2磁化固定層106aと、下部磁気結合層107aと、下部第2磁性層102aと、下部中間層103aと、第1磁性層101と、上部中間層103bと、上部第2磁性層102bと、上部磁気結合層107bと、上部第2磁化固定層106bと、上部ピニング層105bと、キャップ層108と、上部電極E2とを含む。
この例では、第1磁性層101が磁化自由層として機能し、下部第2磁性層102aが下部第1磁化固定層102aとして機能し、上部第2磁性層102bが上部第1磁化固定層として機能する。既に説明した図14(a)に示す第1の磁気抵抗素子100A及び図14(b)に示す第1の磁気抵抗素子100Bにおいては、磁化自由層である第1磁性層101の一方の面側に磁化固定層である第2磁性層102が配置されている。一方、図14(c)に示す第1の磁気抵抗素子100Cにおいては、2つの磁化固定層の間に磁化自由層が配置されている。図14(c)に示す第1の磁気抵抗素子100Cは、デュアルスピンバルブ型と呼ばれる。図14(c)に示す第1の磁気抵抗素子100Cに含まれる層のそれぞれには、例えば、図14(a)に示す第1の磁気抵抗素子100Aに関して説明した材料を用いることができる。
図14(d)は、他の実施の形態に用いられる第1の磁気抵抗素子100Dを例示する模式的斜視図である。図14(d)に表したように、第1の磁気抵抗素子100Dは、順に並べられた、下部電極E1と、下地層104と、ピニング層105と、第2磁性層102と、中間層103と、第1磁性層101と、キャップ層108と、上部電極E2とを含む。
この例では、第1磁性層101は磁化自由層として機能し、第2磁性層102は磁化固定層として機能する。既に説明した図14(a)に示す第1の磁気抵抗素子100A及び図14(b)に示す第1の磁気抵抗素子100Bにおいては、第2磁化固定層106と、磁気結合層107と、第1磁化固定層として機能する第2磁性層102とを用いた構造が適用されている。一方、図14(d)に示す第1の磁気抵抗素子100Dにおいては、単一の磁化固定層24を用いたシングルピン構造が適用されている。図14(d)に示す第1の磁気抵抗素子100Dに含まれる層のそれぞれには、例えば、図14(a)に示す第1の磁気抵抗素子100Aに関して説明した材料を用いることができる。
図15は、他の構成に係る第1の磁気抵抗素子100Eを例示する模式的斜視図である。図15に表したように、第1の磁気抵抗素子100Eにおいては、絶縁層109が設けられる。すなわち、下部電極E1と上部電極E2との間に、互いに離間する2つの絶縁層(絶縁部分)109が設けられ、それらの間に、下地層104と、ピニング層105と、第2磁化固定層106と、磁気結合層107と、第2磁性層102と、中間層103と、磁化自由層101と、キャップ層108からなる積層体が設けられる。
この例では、第1磁性層101は磁化自由層として機能し、第2磁性層102は第1磁化固定層として機能する。第1の磁気抵抗素子100Eに含まれる層のそれぞれには、例えば、図14(a)に示す磁気抵抗素子に関して説明した材料を用いることができる。また、絶縁層109には、例えば、アルミニウム酸化物(例えば、Al)、または、シリコン酸化物(例えば、SiO)などを用いることができる。絶縁層109により、上記積層体の周囲におけるリーク電流を抑制することができる。上記の絶縁層109は、図14(a)〜(d)に示すいずれの磁気抵抗素子にも適用できる。
[1−4.磁気抵抗素子の磁場感度の調整]
次に、磁気抵抗素子の磁場感度の調整について説明する。磁気抵抗素子の磁場感度を調整するためには、線形応答磁性体を用いる方法、磁束ガイドを用いる方法、及びその他の方法を適用することが可能である。線形応答磁性体は、被測定電流による電流磁場の方向と略垂直な方向から磁気抵抗素子に磁場を印加する。本実施の形態に係る電流センサは、この線形応答磁性体を用いて磁場感度の調整を行っている。
[1−5.横置き線形応答磁性体]
線形応答磁性体を用いて磁気抵抗素子の磁場感度を調整する方法について説明する。図16は、第1の磁気抵抗素子100と、第1の線形応答磁性体160Aの模式図である。第1の線形応答磁性体160Aは、線形応答磁性体の一態様である。
第1の線形応答磁性体160Aは、第1の磁気抵抗素子100中の第1磁性層101、第2磁性層102及び中間層103に隣接して配置され、第1磁性層101、第2磁性層102及び中間層103に磁場を加える。また、第1の線形応答磁性体160Aは、下部電極E1と上部電極E2との間に設けられる。更に、例えば第1の線形応答磁性体160Aと第1の磁気抵抗素子100との間には、絶縁層109が配置される。この例では、第1の線形応答磁性体160Aと下部電極E1との間に、絶縁層109が延在している。
図16では1つの第1の磁気抵抗素子100を挟むように一対の第1の線形応答磁性体160Aが設けられる。しかし、1つの第1の磁気抵抗素子100に対して1つの第1の線形応答磁性体160Aを設けてもよい。以降で説明する具体例においても1対の第1の線形応答磁性体160Aが設けられているが、片側のみとしてもよい。
第1の線形応答磁性体160Aの磁場により、外部磁場が印加されていない状態における第1の磁性層101の磁化方向を所望の方向に設定できる。例えば、第1の線形応答磁性体160Aの磁化方向を第2の磁性層102の磁化方向と直交方向に設定することで、図13(b)に示すように、第1の磁性層101の磁化方向を第2の磁性層102の磁化方向と直交させることができる。第1の磁性層101の磁化方向と第2の磁性層102の磁化方向とを交差(直交)させることで、図13(d)に示すように正負の磁場に線形的に感応させることができる。
第1の線形応答磁性体160Aには、例えば、Co−Pt、Fe−Pt、Co−Pd、Fe−Pdなどの磁気異方性および保磁力が比較的高いハード磁性材料(硬質強磁性材料)が用いられる。また、Co−Pt、Fe−Pt、Co−Pd、Fe−Pdにさらに添加元素を加えた合金を用いても良い。例えば、CoPt(Coの比率は、50at.%以上85at.%以下)、(CoPt100−x100−yCr(xは50at.%以上85at.%以下、yは0at.%以上40at.%以下)、または、FePt(Ptの比率は40at.%以上60at.%以下)などが用いられてもよい。このような材料を用いる場合、第1の線形応答磁性体160Aの磁化の方向は、線形応答磁性体160Aの保磁力よりも大きい外部磁場を加えることで、外部磁場を加えた方向に設定(固定)することができる。第1の線形応答磁性体160Aの厚さ(例えば、下部電極E1から上部電極E2に向かう方向に沿った長さ)は、例えば5nm以上50nm以下である。
図16に示すように、第1の線形応答磁性体160Aと下部電極E1との間に絶縁層109を配置する場合、絶縁層109の材料として、SiOやAlOを用いることができる。さらに、絶縁層109と第1の線形応答磁性体160Aの間に、図示しない磁性体下地層を設けてもよい。線形応答磁性体160AにCo−Pt、Fe−Pt、Co−Pd、Fe−Pdなどの磁気異方性および保磁力が比較的高い硬質強磁性材料を用いる場合には、磁性体下地層の材料として、CrやFe−Coなどを用いることができる。上記の第1の線形応答磁性体160Aは、上記及び以下で説明する第1の磁気抵抗素子100のいずれにも適用できる。
第1の線形応答磁性体160Aは、図示しない線形応答磁性体用ピニング層に積層された構造を有していてもよい。この場合、第1の線形応答磁性体160Aと線形応答磁性体用ピニング層の交換結合により、第1の線形応答磁性体160Aの磁化の方向を設定(固定)できる。この場合、第1の線形応答磁性体160Aには、Fe、Co及びNiの少なくともいずれか、または、これらの少なくとも1種を含む合金からなる強磁性材料を用いることができる。この場合、第1の線形応答磁性体160Aには、例えば、CoFe100−x合金(xは0at.%以上100at.%以下)、NiFe100−x合金(xは0at.%以上100at.%以下)、または、これらに非磁性元素を添加した材料が用いることができる。第1の線形応答磁性体160Aとして、前述した第2磁性層102と同様の材料を用いることができる。
また、線形応答磁性体用ピニング層には、前述した磁気抵抗素子のピニング層105と同様の材料を用いることができる。また、線形応答磁性体用ピニング層を設ける場合、磁気抵抗素子の下地層で説明した材料と同様の下地層を線形応答磁性体用ピニング層の下に設けても良い。また、線形応答磁性体用ピニング層は、第1の線形応答磁性体160Aの下部に設けても良いし、上部に設けても良い。この場合の第1の線形応答磁性体160Aの磁化方向は、磁気抵抗素子のピニング層で説明した通り、磁場中熱処理により決定することができる。
上記の第1の線形応答磁性体160Aは、上記第1の磁気抵抗素子100及び以下で説明する第1の磁気抵抗素子100のいずれにも適用できる。上述したような第1の線形応答磁性体160Aと線形応答磁性体用ピニング層の積層構造を用いた場合、被測定電流として瞬間的に大電流が流れ、大きい電流磁場が第1の線形応答磁性体160Aに加わった場合においても、第1の線形応答磁性体160Aの磁化の向きを容易に保持することが出来る。
ここで、磁気抵抗素子の磁場感度((dR/R)/2Hs)は、線形応答磁性体等の構成によって調整することができる。図17(a)〜(c)には、磁場感度を調整する方法の一例が示されている。また、図17では、図16に示すような、磁気抵抗素子の側方に隣接して第1線形応答磁性体160Aを設けた場合を例にとり説明しているが、磁気抵抗素子の斜め側方にの第1の線形応答磁性体160Aを設けた場合でも、同様に異なる磁場感度を得ることができる。
図17(a)に示す通り、磁気抵抗素子と第1の線形応答磁性体160Aとの間の距離の和L1a+L1bを変えることで、磁場感度を変えることが可能である。この場合、第1の線形応答磁性体160Aから距離が大きいほど、第1の磁気抵抗素子100に加わる磁場は小さくなる。従って、第1の磁気抵抗素子100の飽和磁場Hsは小さくなり、第1の磁気抵抗素子100の磁場感度((dR/R)/2Hs)高く設定される。
図17(b)に示す通り、第1の線形応答磁性体160Aの基板平面における面積の和S1a+S1bを変えることで、磁場感度を変えることが可能である。この場合、第1の線形応答磁性体160Aの面積が大きいほど、第1の線形応答磁性体160Aの磁気体積が大きくなる。従って、第1の磁気抵抗素子100の飽和磁場Hsは小さくなり、第1の磁気抵抗素子100の磁場感度((dR/R)/2Hs)は高く設定される。
図17(c)に示す通り、第1線形応答磁性体160Aの膜厚の和t1a+t1bを変えることで、磁場感度を変えることが可能である。この場合、第1の線形応答磁性体160Aの膜厚が厚いほど、第1の線形応答磁性体160Aの磁気体積が大きくなる。従って、第1の磁気抵抗素子100の飽和磁場Hsは小さくなり、第1の磁気抵抗素子100の磁場感度((dR/R)/2Hs)は高く設定される。
上述した図17(b)、図17(c)では、第1の線形応答磁性体160Aの面積または膜厚を変えることで磁気体積を変えた場合について説明したが、第1の線形応答磁性体160Aに用いられる磁性材料の種類を変えることでも磁気体積を変えることができる。
ここまで説明した線形応答磁性体160A〜Eのいずれにおいても、Co−Pt、Fe−Pt、Co−Pd、Fe−Pdなどの磁気異方性および保磁力が比較的高い硬質強磁性材料を用いることができ、また、線形応答磁性体と線形応答磁性体用ピニング層とを積層した構造を用いてもよい。図18には、図17(a)のバリエーションとして、それぞれ第1の線形応答磁性体160Aの下面に接する線形応答磁性体用ピニング層169を配置した例を示す。ピニング層169は、線形応答磁性体用ピニング層の一例である。尚、図18においては図8(a)の変形例を示しているが、このような線形応答磁性体と線形応答磁性体用のピニング層を用いたバリエーションは、図16〜図17のいずれの例にも適用できる。また、線形応答磁性体用ピニング層は、線形応答磁性体の下部に設けても良いし、上部に設けても良い。
図19は、第1の線形応答磁性体160Aと線形応答磁性体用ピニング層169の積層の構成例を示す模式図である。第1の線形応答磁性体160Aと線形応答磁性体用ピニング層169の積層構造を用いる場合、図19(a)に示す構造だけでなく、図19(b)に示すように、線形応答磁性体用ピニング層169/線形応答磁性体160A/線形応答磁性体用磁気結合層168/線形応答磁性体160Aのような積層構造としてもよい。
また、図19(c)に示すように、線形応答磁性体用磁気結合層168を介して線形応答磁性体160Aを3層以上積層してもよい。このような積層構造の場合、線形応答磁性体用磁気結合層169を介した2つの線形応答磁性体160Aは互いに反平行の磁化方向となる。この場合、第1の磁気抵抗素子100の第1磁性層101に最も距離の近い第1の線形応答磁性体160Aの磁化の向きに第1磁性層101の磁化が向く。また、このような構造を用いる場合、第1の磁気抵抗素子100の第1磁性層101に最も距離の近い線形応答磁性体160Aの厚みを、積層構造に含まれるほかの線形応答磁性体160Aの厚みよりも厚くすることが好ましい。
第1の線形応答磁性体160Aと線形応答磁性体用ピニング層169の積層構造を用いた場合、被測定電流として瞬間的に大電流が流れ、大きい電流磁場が第1の線形応答磁性体160Aに加わった場合においても、第1の線形応答磁性体160Aの磁化の向きを容易に保持することが出来る。
[1−6.縦置き線形応答磁性体]
次に、線形応答磁性体を磁気抵抗素子に積層して配置する場合の磁気抵抗素子と線形応答磁性体との関係について説明する。以下の説明においては、第1の磁気抵抗素子100と第1の線形応答磁性体160を例として説明するが、他の第2〜第4の磁気抵抗素子200〜400及びその線形応答磁性体について同様に構成することが可能である。
図20には、第1の磁気抵抗素子100と、線形応答磁性体として機能する第1の線形応答磁性体160Fの模式図を示す。第1の線形応答磁性体160Fは、第1の線形応答磁性体160の他の態様である。尚、図20においては、上部電極E2を省略している。
本実施の形態においては、第1の線形応答磁性体160Fが第1の磁気抵抗素子100の積層方向に設けられる。例えば、第1の線形応答磁性体160Fは、図20に示すように、第1の磁気抵抗素子100中のキャップ層108の上に設けられる。但し、第1の線形応答磁性体160Fは、例えば下地層104よりも下方に設けてもよい。但し、磁化自由層として機能する第1磁性層101が磁化固定層として機能する第2磁性層102よりも上に位置する場合には、第1磁性層101よりも上に第1の線形応答磁性体160Fを設けたほうが好ましく、第1磁性層101が第2磁性層102よりも下に位置する場合には、第2磁性層102よりも下に第1の線形応答磁性体160Fを設けたほうが好ましい。
また、図20に示す通り、第1の線形応答磁性体とキャップ層108の間に第1の線形応答磁性体160F用の下地層161を設けてもよい。図20において、第1の線形応答磁性体160上に図示しない上部電極を設けることで、上部電極と下部電極E1の間に通電した電流が第1の線形応答磁性体160Fと磁気抵抗素子に流れる。また、上部電極は、第1の線形応答磁性体160Fとキャップ層108の間に設けても良い。
第1の線形応答磁性体160Fを用いることにより、上述した第1の線形応答磁性体160Aを用いた場合と同様の効果を得ることが可能である。ここで、第1の線形応答磁性体160Fは第1の磁性層101等の積層方向に設けられる為、第1の線形応答磁性体160Fから第1の磁性層101への漏洩磁場は第1の線形応答磁性体160Fの磁化方向と逆向きとなる。尚、このような第1の線形応答磁性体160Fを前述した線形応答磁性体と組み合わせて使用してもよい。
第1の線形応答磁性体160Fや線形応答磁性体用下地層151に用いる材料は、図16の説明で述べた材料と同様のものを使うことができる。図20のような積層方向に配置した第1の線形応答磁性体では、第1の線形応答磁性体160Fの端部から漏洩磁場が発生する。従って、第1の線形応答磁性体160Fの面積を第1の磁気抵抗素子100の面積と比べて大きくしすぎると、第1の線形応答磁性体160Fからの磁場が第1の磁気抵抗素子100に十分加わらない。従って、第1の線形応答磁性体160Fの面積は、適切に設定する必要がある。例えば、第1の線形応答磁性体160Fの面積は第1磁性層100の面積と同等以上、25倍以下程度が好ましい。また、第1の線形応答磁性体160Fにおいても、前述した線形応答磁性体と線形応答磁性体用ピニング層の積層構造を用いてもよい。この場合、被測定電流として瞬間的に大電流が流れ、大きい電流磁場が第1の線形応答磁性体160Fに加わった場合においても、第1の線形応答磁性体160Fの磁化の向きを容易に保持することが出来る。
ここで、磁気抵抗素子の感度((dR/R)/2Hs)は、第1の線形応答磁性体160F等の構成によって調整することができる。図21(a)及び(b)には、第1の線形応答磁性体160Fの構成を異ならせた場合の例を示す。
図21(a)に示す通り、磁気抵抗素子と第1の線形応答磁性体160Fとの間の距離を変えることで、磁場を変えることが可能である。図12(a)に示す第1の磁気抵抗素子100と第1の線形応答磁性体160Fの間の距離L(図中左)を、これよりも大きい距離Lに設定する。この場合、第1又は第2の線形応答磁性体160Fから距離が大きいほど、第1の磁気抵抗素子100に加わる磁場は小さくなる。従って、第1の磁気抵抗素子100の飽和磁場Hsは小さくなり、第1の磁気抵抗素子100の磁場感度((dR/R)/2Hs)は高く設定される。
図21(b)に示す通り、第1線形応答磁性体160Fの膜厚を変えることで、磁場を変えることが可能である。図21(b)に示す第1の線形応答磁性体160Fの膜厚tを、これよりも小さい膜厚tに設定する。この場合、第1線形応答磁性体160Fの膜厚が厚いほど、第1の線形応答磁性体160Fの磁気体積が大きくなる。従って、第1の磁気抵抗素子100の飽和磁場Hsは小さくなり、第1の磁気抵抗素子100の磁場感度((dR/R)/2Hs)は高く設定される。
図21(b)では、第1の線形応答磁性体160Fの膜厚を変えることで磁気体積を変えた場合について説明したが、第1及の線形応答磁性体160Fに用いられる磁性材料の種類を変えることでも磁気体積を変えることができる。
また、前述したように第1の線形応答磁性体160Fの面積を変えることで、磁場を変えることが可能である。第1の線形応答磁性体160Fを第1の磁気抵抗素子100に対して積層方向に配置する場合、第1の線形応答磁性体160Fの端部と第1の磁気抵抗素子100の端部の距離が離れるほど、第1の磁気抵抗素子100に加わる磁場は小さくなり、第1の磁気抵抗素子100の磁場感度((dR/R)/2Hs)は高くなる。
[1−7.インスタック型の線形応答磁性体]
次に、線形応答磁性体を磁気抵抗素子に包含する場合の磁気抵抗素子と線形応答磁性体との関係について説明する。以下の説明においては、第1の磁気抵抗素子100と第1の線形応答磁性体160を例として説明するが第2〜第4の磁気抵抗素子200〜400やこれに付随する第2〜第4の線形応答磁性体も同様に構成することが可能である。
図22には、本実施の形態に係る第1の磁気抵抗素子100と第1の線形応答磁性体160Gの模式図を示す。第1の線形応答磁性体160Gは、第1の線形応答磁性体160の一態様である。
図22に示す態様においては、第1の磁気抵抗素子100が第1の線形応答磁性体160Gを包含している。第1の線形応答磁性体160Gは、積層構造からなるインスタックバイアス層として構成される。従って、第1の線形応答磁性体160Gは、内部に含まれるバイアス磁性層の磁化と磁化自由層の間の交換結合磁場により、第1の磁気抵抗素子100の磁場感度を調整することができる。例えば、第1の磁性層160Gの磁化方向を被測定電流から生ずる電流磁場と略垂直に設定することで、上述した第1の線形応答磁性体160Aを用いた場合と同様の効果を得ることが可能である。
図22に表した態様において、第1の線形応答磁性体160Gは、分離層162と、第1バイアス磁性層163と、バイアス磁気結合層164と、第2バイアス磁性層165と、バイアスピニング層166とを含む。
第1バイアス磁性層163および第2バイアス磁性層165は、例えば、磁性材料によって形成される。第2バイアス磁性層165の磁化は、バイアスピニング層166によって一方向に固定される。第1バイアス磁性層163の磁化は、バイアス磁気結合層164を介して隣り合う第2バイアス磁性層165の磁化とは反対に設定される。一方向に磁化が固定された第1バイアス磁性層163は、交換結合などの磁気的結合によって、第1磁性層101にバイアスを加える。このような、バイアス磁性層とバイアスピニング層の積層構造からなる線形応答磁性体160Gを用いた場合、被測定電流として瞬間的に大電流が流れ、大きい電流磁場が第1の線形応答磁性体160Gに加わった場合においても、第1の線形応答磁性体160Gの磁化の向きを容易に保持することが出来る。
分離層162は、例えば、非磁性材料などから形成され、第1バイアス磁性層163と第1磁性層101とを物理的に分離することで、第1バイアス磁性層163と第1磁性層101との間の磁気的結合の強度を調整する。なお、第1バイアス磁性層163の材料によっては、分離層162は必ずしも設けられなくともよい。図22のように、複数のオフセット磁性層の磁化を反平行(180°)とすることで、バイアス磁性層から外部への漏洩磁場を抑え、磁化自由層への交換結合によるバイアス印加以外の磁気的干渉を抑えることができる。
第1の線形応答磁性体160Gは、図22で示すように、第1バイアス磁性層163/バイアス磁気結合層164/第2バイアス磁性層165を含んでいるが、分離層162とバイアスピニング層166の間に単層の第1バイアス磁性層163のみを設けることによって構成してもよい。また、第1バイアス磁性層/第1磁気結合層/第2バイアス磁性層/第2磁気結合層/第3バイアス磁性層のように、オフセット磁性層の層数を3層以上としてもよい。
分離層162には、例えば、5nmのCuが用いられる。第1バイアス磁性層163には、例えば、3nmのFe50Co50が用いられる。バイアス磁気結合層164には、例えば、0.9nmのRuが用いられる。第2バイアス磁性層165には、例えば、3nmのFe50Co50が用いられる。バイアスピニング層166には、例えば、7nmのIrMnが用いられる。
第1バイアス磁性層163および第2バイアス磁性層165には、例えば、Co、Fe及びNiよりなる群から選択された少なくともいずれかを用いることができる。第1バイアス磁性層163として、Co、Fe及びNiよりなる群から選択された少なくとも1つの材料を含む合金を用いてもよい。例えば、第1バイアス磁性層163には、CoFe100−x合金(xは0at.%以上100at.%以下)、NiFe100−x合金(xは0at.%以上100at.%以下)、または、これらに非磁性元素を添加した材料が用いられる。第1バイアス磁性層163として、(CoFe100−x100−y合金(xは0at.%以上100at.%以下、yは0at.%以上30at.%以下)が用いられてもよい。
分離層162には、例えば、非磁性材料が用いられる。分離層43は、例えば、Cu、Ru、Rh、Ir、V、Cr、Nb、Mo、Ta、W、Rr、Au、Ag、Pt、Pd、Ti、Zr、Hf、及び、Hfの群から選択された少なくとも一つの元素を含む層を用いることができる。
バイアスピニング層166は、バイアスピニング層に接して形成される第2バイアス磁性層165に、一方向異方性(Unidirectional Anisotropy)を付与して第1オフセット磁性層163の磁化を固定する。バイアスピニング層166には、例えば、反強磁性層が用いられる。バイアスピニング層166には、例えば、Ir−Mn、Pt−Mn、Pd−Pt−Mn、Ru−Mn、Rh−Mn、Ru−Rh−Mn、Fe−Mn、Ni−Mn、Cr−Mn−PtおよびNi−Oよりなる群から選択された少なくともいずれかが用いられる。Ir−Mn、Pt−Mn、Pd−Pt−Mn、Ru−Mn、Rh−Mn、Ru−Rh−Mn、Fe−Mn、Ni−Mn、Cr−Mn−PtおよびNi−Oにさらに添加元素を加えた合金を用いても良い。十分な強さの一方向異方性を付与するために、バイアスピニング層166の厚さは適切に設定される。
バイアスピニング層166としてPtMnまたはPdPtMnが用いられる場合には、バイアスピニング層の厚さは、8nm以上20nm以下が好ましい。バイアスピニング層166の厚さは、10nm以上15nm以下がより好ましい。バイアスピニング層166としてIrMnが用いられる場合には、バイアスピニング層166としてPtMnが用いられる場合よりも薄いバイアスピニング層166で、一方向異方性を第1バイアス磁性層163に付与することができる。この場合には、バイアスピニング層166の厚さは、4nm以上18nm以下が好ましい。バイアスピニング層166の厚さは、5nm以上15nm以下がより好ましい。
バイアスピニング層166として、ハード磁性層(硬質強磁性材料)が用いられてもよい。例えば、Co−Pt、Fe−Pt、Co−Pd、Fe−Pdなどの磁気異方性および保磁力が比較的高いハード磁性材料(硬質強磁性材料)が用いられる。また、Co−Pt、Fe−Pt、Co−Pd、Fe−Pdにさらに添加元素を加えた合金を用いても良い。ハード磁性層として、例えば、CoPt(Coの比率は、50at.%以上85at.%以下)、(CoPt100−x100−yCr(xは50at.%以上85at.%以下、yは0at.%以上40at.%以下)、または、FePt(Ptの比率は40at.%以上60%at.以下)などが用いられてもよい。
バイアス磁気結合層165は、第1バイアス磁性層163と第2バイアス磁性層165との間に反強磁性結合を生じさせる。バイアス磁気結合層165は、シンセティックピン構造を形成する。第1磁気結合層として、例えば、Ruが用いられる。第1磁気結合層の厚さは、0.8nm以上1nm以下であることが好ましい。第1バイアス磁性層163と第2バイアス磁性層165との間に十分な反強磁性結合を生じさせる材料であれば、バイアス磁気結合層165としてRu以外の材料を用いてもよい。バイアス磁気結合層164の厚さは、RKKY(Ruderman-Kittel-Kasuya-Yosida)結合のセカンドピーク(2ndピーク)に対応する0.8nm以上1nm以下の厚さに設定することができる。さらに、バイアス磁気結合層164の厚さは、RKKY結合のファーストピーク(1stピーク)に対応する0.3nm以上0.6nm以下の厚さに設定してもよい。第1磁気結合層として、例えば、0.9nmの厚さのRuが用いられる。これにより、高信頼性の結合がより安定して得られる。
第1バイアス磁性層163の厚さは、例えば、1.5nm以上5nm以下が好ましい。第2バイアス磁性層165の厚さは、例えば、1.5nm以上5nm以下が好ましい。これにより、例えば、バイアスピニング層166による一方向異方性磁場の強度をより強くすることができる。第1バイアス磁性層163の磁気膜厚(飽和磁化Bsと厚さtとの積(Bs・t))は、第2バイアス磁性層165の磁気膜厚と実質的に等しいことが好ましい。
第1の線形応答磁性体160Gから第1磁性層101に加わるバイアス磁場の方向は、第2磁性層102の磁化方向に対して、任意の方向とすることが可能である。
図22(b)は、第1の線形応答磁性体160Gにおける磁化方向の設定方法を説明するための模式図である。例えば、第2磁性層102の磁化方向に対して、第1の線形応答磁性体160Gから第1磁性層101に加わるバイアス磁場の方向を90°(若しくは270℃)に設定することも可能である。このようなバイアス磁場の方向の設定は、2段階の磁場中アニール、並びに、ピニング層105に用いられる材料構成及びバイアスピニング層166に用いられる材料構成の選択によって可能となる。
ピニング層105またはバイアスピニング層166に用いられる反強磁性材料については、その組成によって磁化固着が生ずる温度が異なる。例えば、PtMnなど規則合金系の材料については、IrMnなどの不規則でも磁化固着を生ずる材料にくらべて、磁化固着が行われる温度が高い。例えば、ピニング層105にPtMnを用い、バイアスピニング層166にIrMnを用いることが可能である。
次に、図22(b)に示すような2段階の磁場中熱処理を行う。例えば、図22(b)の(1)に表すように、図22(b)の右方向に磁場を印加しつつ320℃において10時間アニールを行う。これにより、ピニング層105に接した第2磁化固定層106の磁化方向は、右向きに固着される。また、バイアスピニング層166に接した第2バイアス磁性層165の磁化方向は、いったん右向きに固着される。
次に、例えば、図22(b)の(2)に表すように、図24(b)の左方向に磁場を印加しつつ260℃において1時間アニールを行う。これにより、ピニング層105に接した第2磁化固定層106の磁化方向は右向きのまま変化せず、バイアスピニング層166に接した第2バイアス磁性層165の磁化方向は、左向きに固着される。この磁化の向きは、図22(b)の右図に示すように、室温においても保持される。
このように、磁場中アニールの方法、並びに、ピニング層105の材料構成及びバイアスピニング層166の材料構成の選択によって、第1の磁性層101及び第2の磁性層102へのバイアス磁場の方向を任意に設定することが可能である。そのほか、ピニング層105とバイアスピニング層166の磁化固着の温度差は、それぞれの材料の選定のみでなく、それぞれの層の膜厚で設定することも可能である。例えば、ピニング層105にIrMn7nmを用い、バイアスピニング層166にIrMn5nmを用いた場合においても、図22(b)に示した磁場中2段階アニールを行うことで、図22(a)に示したような磁化方向のアライメントを行うことが可能である。
ここで、磁気抵抗素子の磁場感度((dR/R)/2Hs)は、インスタックバイアス層の構成によって調整することができる。例えば、第1の磁気抵抗素子100及び第1の線形応答磁性体160Gを図22に示すように構成し、更に第2の磁気抵抗素子200及び第2の線形応答磁性体260をこれらと同様に構成する。但し、第2の線形応答磁性体260においては、第1の磁気抵抗素子160Gと比較して分離層162を厚くする。これによって、第1の磁気抵抗素子100のほうが、バイアス磁場が相対的に弱まる。そのほか、第1バイアス磁性層163と第2バイアス磁性層165の厚みを2つの磁気抵抗素子で差をつけることによってもバイアス磁場を変えることが可能である。この場合、第1バイアス磁性層163と第2バイアス磁性層165の厚みを厚くしたほうが、第1磁性層101に加わるバイアス磁場が弱まる。従って、飽和磁化Hsは低くなり、感度((dR/R)/2Hs)は高く設定させる。
尚、ここまでの説明では、第1の線形応答磁性体160Gの磁化方向を設定するために2段階の磁場中アニールを行う事について説明した。ここで、このような2段階の磁場中アニールを用いた場合、第1の磁性層101の磁化方向を設定することも可能である。図23は、この為の方法を説明するための模式図である。このような方法によっても、例えば、図22(b)に示すように、磁化自由層の磁化方向を磁化固定層の磁化方向と直交させ、図22(d)に示すように正負の磁場に線形的に感応させることができる。
第1磁性層101の磁化方向と第2磁性層102の磁化方向を異なる方向に設定するためには、例えば、図23(b)の左図に示すように、第1の磁場中熱処理を行う。第1の磁場中熱処理は、例えば図23(b)の右方向に磁場を印加しつつ320℃において10時間アニールを行うことによって行われる。これにより、ピニング層105に接した第2磁化固定層106の磁化方向は、右向きに固着される。
次に、例えば、第2の磁場中熱処理を行う。第2の磁場中熱処理は、例えば図14(b)の中図に示すように、図23(b)の上方向に磁場を印加しつつアニールを行うことによって行う。この際の温度は、320℃よりも低温であり、且つバイアスピニング層166に用いる反強磁性体の磁化固着温度よりも低温に設定する。これにより、第2磁化固定層106の磁化方向を右向きにしたままで、第1磁性層101の磁化方向を上向きに設定することができる。即ち、第1磁性層101の誘導磁気異方性の方向を上下方向に設定することが出来る。
ここで、磁気抵抗素子の磁場感度((dR/R)/2Hs)は、2段階アニールの第2の磁場中熱処理の温度や時間によって調整することができる。例えば、第1の磁気抵抗素子100と第2の磁気抵抗素子200を作製し、第1の磁気抵抗素子100製造時の第2の磁場中熱処理の時間を第2の磁気抵抗素子200製造時の第2の磁場中熱処理の時間よりも長時間とすることによって、第2の磁気抵抗素子200の第1磁性層の誘導磁気異方性が第1の磁気抵抗素子100のそれよりも高くなるため、Hsが大きくなり、磁場感度((dR/R)/2Hs)は低く設定される。
[1−8.製造方法]
次に、本実施の形態に係る電流センサの製造方法について述べる。図24(a)〜図24(j)は、本実施の形態に係る電流センサの製造方法を例示する工程順模式的斜視図である。
図24(a)に表したように、基板110上に下部電極E1を形成する。例えば、Ta(5nm)/Cu(200nm)/Ta(35nm)を形成する。この後に、下部電極E1の最表面にCMP処理などの表面平滑化処理を行い、下部電極E1上に形成される構成を平坦にしても良い。
次に、図24(b)に示すように、下部電極E1の平面形状を加工する。この工程では、レジストをフォトリソグラフィによりパターニングし、その後、図示しないレジストパターンをマスクとして用いて、物理ミリングまたは化学ミリングが実施される。例えば、Arイオンミリングを行う。
次に、図24(c)に示すように、下部電極E1の周辺に絶縁層111の埋め込み成膜を行う。この工程では、例えば、リフトオフ工程が行われる。例えば、図24(b)のフォトリソグラフィで形成したレジストパターンは残したままで、全面に絶縁層111を成膜し、その後レジストパターンを除去する。絶縁層111として、例えば、SiO、AlO、SiN及びAlNなどを用いることができる。
次に、下部電極E1上に磁気抵抗素子の電極間の構成を成膜する。例えば、下地層104として、Ta(3nm)/Ru(2nm)を形成する。その上にピニング層105として、IrMn(7nm)を形成する。その上に第2磁性膜102として、Co75Fe25(2.5nm)/Ru(0.9nm)/Co40Fe4020(3nm)を形成する。その上に中間層103として、MgO(2nm)を形成する。その上に第1磁性膜101として、Co40Fe4020(2nm)/Ta(0.4nm)/Ni80Fe20(6nm)を形成する。その上にキャップ層108として、Cu(1nm)/Ta(2nm)/Ru(5nm)を形成する。
次に、第2磁性膜102の磁化方向を固着する磁場中アニールを行う。例えば、7kOeの磁場を印加しつつで300℃で一時間のアニールを行う。このアニールは、例えば、誘導磁場印加方向(X方向)に対して、略平行に外部磁場を加えて行う。ここで、例えば、前述したインスタックバイアス層を設けた線形応答磁性体(160G,図22(a))を用いる場合などには、2段階のアニールを行っても良い。
次に、図24(e)に示すように、磁気抵抗素子の電極間の構成の平面形状を加工する。この工程では、レジストをフォトリソグラフィによりパターニングし、その後、図示しないレジストパターンをマスクとして用いて、物理ミリングまたは化学ミリングが実施される。この工程によって、図24(e)に示すように、複数の構成を一括して加工することができる。
次に、図24(f)に示すように、磁気抵抗素子の電極間の構成の周辺に絶縁層109の埋め込み成膜を行う。この工程では、例えば、リフトオフ工程が行われる。例えば、図24(e)のフォトリソグラフィで形成したレジストパターンは残したままで、全面に絶縁層109を成膜し、その後レジストパターンを除去する。絶縁層109として、例えば、SiO、AlO、SiN及びAlNなどを用いることができる。
次に、図24(g)に示すように、磁気抵抗素子の電極間の構成に隣接して設ける線形応答磁性体160を埋め込むためのホール109aを形成する。この工程では、レジストをフォトリソグラフィによりパターニングし、その後、図示しないレジストパターンをマスクとして用いて、物理ミリングまたは化学ミリングが実施される。図24(g)では、複数の磁気抵抗素子に対して、一対の第1の線形応答磁性体160Eを形成する場合を例にとっているが、複数の磁気抵抗素子に対して、別個にオフセット磁性体を形成する場合でも一括で加工することができる。この工程において、ホール109aは絶縁層109を貫通するところまで行っても良いし、途中で止めても良い。図24(g)では途中で止めた場合を例示している。後述するが、ホール109aを、絶縁層109を貫通するところまでエッチングした場合には、図24(h)に示す第1のオフセット磁性体150の埋め込み工程において、第1の線形応答磁性体160Eの下に図示しない絶縁層を成膜する必要がある。
次に、図24(h)に示すように、図24(g)で形成したホール109aに第1の線形応答磁性体160Eを埋め込む。この工程では、例えば、リフトオフ工程が行われる。例えば、図24(h)のフォトリソグラフィで形成したレジストパターンは残したままで、全面に第1の線形応答磁性体160Eを成膜し、その後レジストパターンを除去する。ここでは、例えば、第1の線形応答磁性体160E用下地層として、Cr(5nm)を形成し、その上に第1の線形応答磁性体160Eとして、例えば、Co80Pt20(20nm)を形成する。その上に、さらに図示しないキャップ層を形成しても良い。このキャップ層として、磁気抵抗素子のキャップ層108に使用可能な材料として上述した材料を用いても良いし、SiO、AlO、SiN及びAlNなどの絶縁層を用いても良い。図24(h)にて、第1の線形応答磁性体160Eを埋め込んだ後に、室温で外部磁場を加えて、第1の線形応答磁性体160Eに含まれるハード磁性層(硬質磁性材料)の磁化方向の設定を行う。例えば、誘導磁場の方向に対して、略垂直な方向に外部磁場の印加を行う。この外部磁場による第1の線形応答磁性体160Eの磁化方向の設定は、第1の線形応答磁性体160Eの埋め込み後であれば、レジストパターンの除去前、除去後、及び図24(j)に示す上部電極E2の加工後のいずれのタイミングに行っても良い。
次に、図24(i)に示すように、上部電極E2を成膜する。次に、図24(j)に示すように、上部電極E2の平面形状を加工する。この工程では、レジストをフォトリソグラフィによりパターニングし、その後、図示しないレジストパターンをマスクとして用いて、物理ミリングまたは化学ミリングが行われる。
このような態様に係る製造方法によれば、工程数の増加を招くことなく本実施の形態に係る電流センサを製造することが可能である。尚、図24(a)〜(j)では図示していないが、下部電極E1へのコンタクトホールの形成を行っても良いし、上部電極E2の加工後に保護膜を形成しても良い。
[効果]
以上説明したように、本実施の形態の電流センサによれば、順極性の磁気抵抗素子100、400の磁性体HB1、HB2により与えられる磁化の向きが、逆極性の磁気抵抗素子200、300の磁性体HB1、HB2により与えられる磁化の向きとは180°異なっている。このため、第1〜第4の磁気抵抗素子100〜400の磁化固定層の磁化方向に垂直な方向の外部磁場の存在の有無を、電流を測定するための磁気抵抗素子の出力に基づき判定することが可能になる。従って、本実施の形態の電流センサによれば、別途設けた外部磁場検知用磁場センサを使用することなく、出力信号をモニタすることにより誤動作を引き起こす外部磁場が印加されているか否かを検知することができる。
(スマートメータへの適用例)
図25は、第1の実施の形態の電流センサ(10)を、スマートメータに適用した例を示している。このスマートメータは、電流センサ10に加え、電圧測定器及びアナログ・ディジタル変換器1100を備えた電圧計20を備えている。この図25の例では、正常/異常判定回路700の判定結果が出力部800に出力される代りに、電線に直列に接続された遮断リレー900が作動し、電力の供給が遮断される。電力の供給を遮断する代りに、図16と同様に、判定結果を表示等することもできるし、また、判定結果を記憶して、以後の使用電力の計算等に用いることも可能である。
[2.第2の実施の形態]
[2−1.構成]
次に、図26及び図27を参照して、第2の実施の形態に係る電流センサについて説明する。図26は、第2の実施の形態に係る電流センサの一部の概略構成を示す平面図、図27は、同電流センサの構成例を示す概略図である。図26に示す通り、第2の実施の形態に係る電流センサは、第1の実施の形態に係る電流センサと同様に、配線Wの近傍に配置され、この配線Wに流れる測定電流からの電流磁場の印加により抵抗値が変化する第1〜第4の磁気抵抗素子100〜400を有し、これらは第1の実施の形態と同様にフルブリッジ回路を構成し、第1の磁気抵抗素子100と第4の磁気抵抗素子は順極性、第2の磁気抵抗素子200と第3の磁気抵抗素子300は逆極性を有している。また、順極性の磁気抵抗素子100、400の磁性体HB1、HB2による磁化方向は、逆極性の磁気抵抗素子200、300の磁性体HB1、HB2による磁化方向とは180°異なっている。以上の点は、第1の実施の形態と同一である。
しかしながら、本実施の形態に係る磁気抵抗素子は、線形応答磁性体では無く磁束ガイド170Aを用いて磁場感度の調整を行っている点において第1の実施の形態と異なる。図27では、図示の簡略化のために第2の磁気抵抗素子200にのみ磁束ガイド170Aが設置されているが、これに限定する趣旨ではなく、他の磁気抵抗素子100、300、400にも同様の磁束ガイドを設けても良い。
磁束ガイド170は従来のインダクタンス型で用いられている磁性コアと同一の原理で働くものであり、磁気抵抗素子の周辺に配置された高透磁率の磁性体からなる。高誘磁率の磁性体が配置されていた場合、この磁性体を通過する磁束が磁性体の飽和磁束以下である限り、磁束はこの磁性体に引き寄せられる。従って、上記磁束ガイドを使用することにより、磁気抵抗素子に磁束を集中させることが可能である。
図26及び図27に示す通り、本実施の形態に係る電流センサにおいては、第1の磁気抵抗素子100の周辺に、第1の磁束ガイド170Aが配置されている。第1の磁束ガイド170Aは、磁束ガイドの一態様である。
磁束ガイド170は、磁気抵抗素子100〜400の、被測定電流からの電流磁場が印加される方向の側面に配置される。また、磁束ガイド170は台形状に形成されており、第1の磁気抵抗素子100から離れた面170aが、第1の磁気抵抗素子100に対向する面よりも広くなるように形成されている。更に、磁束ガイド170の第1の磁気抵抗素子100に対向する面170bの幅は、第1の磁気抵抗素子100の幅より少し大きい。
被測定電流からの電流磁場は、第1磁性層101の磁化方向に対しては垂直、第2磁性層102の磁化方向に対しては平行に入射する。ここで、磁束ガイド170は高透磁率の磁性体から形成されている為、電流磁場は磁束ガイド170の面170aに向かって収束し、磁束ガイド170に入射する。また、磁束が出射する面170bの面積は、磁束が入射する面170aの面積と比較して小さい。従って、磁束ガイド170に入射した磁束は更に収束して第1の磁気抵抗素子100に入射する。従って、第1の磁気抵抗素子100に印加される磁場は、磁束ガイド170を設けない場合と比較して大きくなる。
磁束ガイド170は、種々の高透磁率の軟磁性体(Fe、Co、Niの単体または合金)から形成することが可能であるが、例えばニッケル鉄、コバルトジルコニウムニオブ、鉄アルミニウムシリコン、鉄コバルトニッケルと軟磁性アモルファス合金等の軟磁性材料を適用することが可能である。
ここで、磁気抵抗素子の磁場感度((dR/R)/2Hs)は、磁束ガイド170等の構成によって調整することもできる。図28(a)に示す通り、磁気抵抗素子と第1及び第2の磁束ガイド170A,170Aとの間の距離の和L1a+L1bを変えることで、磁場感度を変えることが可能である。この場合、第1又は第2の磁束ガイド170A、270Aからの距離が大きいほど、磁気抵抗素子100に加わる誘導磁場は小さくなる。
図28(b)に示す通り、第1の磁束ガイド170Aの第1の磁気抵抗素子100に対向する面の面積と、第2の磁束ガイド170Aの第2の磁気抵抗素子200に対向する面の面積S1aを変えることで、磁場感度を変えることが可能である。
図28(a)及び(b)では、第1及び第2の磁束ガイド170A、170Aの配置または膜厚を変えることで磁場感度を変えた場合について説明したが、第1及び第2の磁束ガイド170A、170Aに用いられる磁性材料の種類を変えることでも磁場感度を変えることができる。例えば、第1の磁束ガイド170Aと第2の磁束ガイド170Aのそれぞれに透磁率の異なる磁性材料を用いることも出来る。
[2−2.製造方法]
次に、図29(a)〜(g)、それぞれ本実施の形態に係る電流センサの製造方法を例示する工程順模式的斜視図である。本実施の形態に係る電流センサの製造方法は、第1の実施の形態に係る電流センサの製造方法とほぼ同様であるが、第1の線形応答磁性体160を製造する工程において、第1の磁束ガイド170を製造する点において異なる。尚、第1の磁束ガイド170の材料としては、上述した高透磁率の磁性体を適用することが可能である。
[3.第3の実施の形態]
次に、第3の実施の形態について説明する。本実施の形態は、上記第1〜第2の実施の形態に係る電流センサをスマートメータに搭載した例を示している。スマートメータは電圧及び電流を測定する。ここで、電圧は従来の半導体素子において測定することが可能である。従って、上記実施の形態のいずれかに係る電流センサにこの半導体素子を付加することで、スマートメータを構成することが可能である。以下においては、第4の実施の形態に係る電流センサ601をスマートメータに適用した例について説明するが、他の実施の形態に係る電流センサを適用することも可能である。
図30(a)は、本実施の形態に係るスマートメータ700の外観を示す模式的な斜視図、図30(b)は、同スマートメータ700の模式的な平面図、図30(c)は、同スマートメータ700の模式的な側面図である。
図30(a)〜(c)に示す通り、スマートメータ700は、センサ部を納めるための筐体710、並びに、筐体710に設けられた第1の端子部720、第2の端子部730及び電力量を外部に表示する表示部740を備える。筐体710は、本実施の形態に係るスマートメータ700の各構成を格納する。第1の端子部720及び第2の端子部730は、図示しないプローブを介してスマートメータ700の各構成と、被測定対象とを電気的に接続する。表示部740は、スマートメータ700による測定の結果等を表示する。尚、筐体710に収容されるスマートメータの各構成を電流測定モジュールと呼ぶ。
本実施の形態に係るスマートメータ700は、例えば50〜60Hz程度の交流電流及び交流電圧を計測することが可能である様に構成することが考えられるが、例えば直流電流及び直流電圧のみを計測可能な構成としても良い。また、図33においては、100〜200V程度の単層交流の電流及び電圧を測定可能である例を示しているが、例えば三相交流の電流及び電圧を測定可能に構成しても良い。この場合、上記端子部720及び730は、3対設けられる。
図30(b)に示す通り、スマートメータ700は、筐体710内に、配線Wと、電子基板モジュール711と、電流センサ601とを収容している。電流センサ601は、第1の実施の形態のものと同一でよい。
配線Wは、一端が第1の端子部720に、他端が第2の端子部730に接続されている。また、配線Wは、筐体710の上下方向(以下、Z方向)に被測定電流を流すように配置され、絶縁性の電流線固定支持部510(図37(c))を介して筐体710に固定されている。電子基板モジュール711は、筐体710内に、筐体710の底面と平行に固定されている。電流センサ601は、電子基板モジュール711上に、筐体710の底面と平行に固定されている。従って、本実施の形態に係るスマートメータ700においては、配線Wと電流センサ601の位置関係が固定されているため、被測定電流からの電流磁場を好適に測定可能である。
図31(a)及び(b)は、同スマートメータ700の一部の構成を説明するための模式図である。図31(a)及び(b)に示す通り、本実施の形態において、被測定電流からの電流磁場の方向は、筐体710の左右方向(以下、X方向)である。
図32は、スマートメータ700の概略構成を示す機能ブロック図である。図32に示す通り、スマートメータ700は、上記配線W及び電流センサ601に加え、電圧計750、A/D変換回路760、演算部770及び通信回路780を更に備える。尚、電圧計750、A/D変換回路760、演算部770及び通信回路780は、半導体素子として電子基板モジュール711上に作り込む事も可能である。
電流センサ601は、第1の実施の形態に係る電流センサであってよい。電流センサ601は、配線Wの近傍に配置され、配線Wに流れる電流を測定する。
電圧計750としては、種々の電圧計を適用することが可能である。電圧計750は、第1の端子部720及び第2の端子部730の間の電圧を測定する。A/D変換回路760は、電圧計750によって測定された電圧値をディジタル信号に変換する。
演算部770は、電流センサ601から電流値を、A/D変換回路760から電圧値を取得し、電力の算出等を行う。表示部740は、演算部から電流値、電圧値及び電力の大きさ等を取得し、表示する。通信回路780は、同じく演算部から電流値、電圧値及び電力の大きさ等を取得し、スマートメータ700の外部に出力する。
[4.第4の実施の形態]
次に、第4の実施の形態に係るスマートメータ1703について説明する。図33(a)は、本実施の形態に係るスマートメータ1703の外観を示す模式的な斜視図、図33(b)は、同スマートメータ1703の模式的な平面図、図33(c)は、同スマートメータ1703の模式的な側面図である。また、図33(a)及び(b)は、同スマートメータ703の一部の構成を説明するための模式図である。
本実施の形態に係るスマートメータ1703は、基本的には前述の実施の形態に係るスマートメータと同様に構成されているが、以下の点において、前述の実施の形態に係るスマートメータと異なる。
即ち、図33(a)に示す通り、本実施の形態に係るスマートメータ703においては、第1の端子部720及び第2の端子部730がX方向に配設されている。また、第1の端子部720及び第2の端子部730がX方向に配設されている為、図33(b)及び(c)に示す通り、配線Wは、筐体710のX方向に被測定電流を流すように配置されている。更に、この場合、被測定電流による電流磁場の方向は筐体710のY方向となる。従って、図33(a)及び(b)に示す通り、電流センサ601は、電子基板モジュール711上に、筐体710の底面と垂直に固定されている。
[5.第5の実施の形態]
次に、第5の実施の形態について説明する。第5の実施の形態に係る電流センサは、家庭用電化製品に搭載されている。これにより、HEMS(Home Energy Management System)を実現することも可能である。図34は、本実施の形態に係る家庭用電化製品の様子を示す模式図である。電流センサは、種々の家庭用電化製品に搭載することが可能であるが、図34においては、エアーコンディショナー800に搭載した場合の様子を示している。
本実施の形態に係るエアーコンディショナー800は、電流測定機構801を備えている。電流測定機構801は、例えば前述の実施の形態に係る電流センサ601を筐体802中に収容してなる。筐体802の側面には第1及び第2の端子部803、804が設けられており、電流センサ601はこれら第1及び第2の端子部を介して他の部品と接続される。
[その他]
本発明のいくつかの実施の形態を説明したが、これらの実施の形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施の形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施の形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
100、200、300、400…磁気抵抗素子、101、201、301、401…第1磁性層(磁化自由層)、102、202、302、402…第2磁性層(第1磁化固定層)、103…中間層、104…下地層、105…ピニング層、106…第2磁化固定層、107…磁気結合層、108…キャップ層、109…絶縁層、110…基板、111…絶縁層、112…絶縁層、160…第1の線形応答磁性体、161…下地層、162…分離層、163…第1バイアス磁性層、164…バイアス磁気結合層、165…第2バイアス磁性層、166…バイアスピニング層260…第2の線形応答磁性体、500…配線、E1…下部電極、E2…上部電極、HB1、HB2…磁性体。

Claims (11)

  1. 第1の信号を出力する第1の磁気抵抗素子と、
    第2の信号を出力する第の磁気抵抗素子と、
    前記第1の信号と前記第2の信号の差分を出力する信号出力回路と、
    第1の値と第2の値の差分がしきい値よりも小さい場合に第1の情報を出力し、前記第1の値と前記第2の値の差分が前記しきい値よりも大きい場合に第2の情報を出力し、前記第1の値は前記第1の信号と第1の大きさの差分の絶対値の大きさであり、前記第2の値は前記第2の信号と第2の大きさの差分の絶対値の大きさである情報回路と
    を備えるセンサ。
  2. 前記情報回路は、
    前記第1の信号と前記第1の大きさの差分の絶対値の大きさを出力する第1の差分出力回路と、
    前記第2の信号と前記第2の大きさの差分の絶対値の大きさを出力する第2の差分出力回路と、
    前記第1の差分出力回路の出力信号と前記第2の差分出力回路の出力信号の差分を出力する第3の差分出力回路と、
    前記第3の差分出力回路の出力信号が前記しきい値よりも小さい場合に前記第1の情報を出力し、前記第3の差分出力回路の出力信号が前記しきい値よりも大きい場合に前記第2の情報を出力する情報出力回路と
    を備える請求項1に記載のセンサ。
  3. 第1の端子と、
    第2の端子と、
    の磁気抵抗素子であって、前記第1の磁気抵抗素子と前記第の磁気抵抗素子とは前記第1の端子と前記第2の端子の間に直列に接続される前記第の磁気抵抗素子と、
    第4の磁気抵抗素子であって、前記第の磁気抵抗素子と前記第4の磁気抵抗素子とは前記第1の端子と前記第2の端子の間に直列に接続される前記第4の磁気抵抗素子と、
    前記第1の磁気抵抗素子と前記第の磁気抵抗素子の間のノード、前記信号出力回路、及び、前記情報回路に接続された第1のノードと、
    前記第の磁気抵抗素子と前記第4の磁気抵抗素子の間のノード、前記信号出力回路、及び、前記情報回路に接続された第2のノードと
    を更に備える請求項1又は2に記載のセンサ。
  4. 前記第1の端子と前記第2の端子の間に第1の電圧が印加され、
    前記第1の大きさと前記第2の大きさは、前記第1の電圧の半分の大きさである
    請求項3に記載のセンサ。
  5. 前記信号出力回路の出力信号は第1の方向における磁場に応じて変化し、
    前記情報回路の出力情報は第2の方向における磁場に応じて変化し、
    前記第2の方向は前記第1の方向と交差する
    請求項1〜4のいずれか1項に記載のセンサ。
  6. 前記信号出力回路は、前記第1の信号と前記第2の信号を受信して、前記第1の信号と前記第2の信号の差分を出力する
    請求項1〜5のいずれか1項に記載のセンサ。
  7. 第1の信号を出力する第1の磁気抵抗素子と、
    第2の信号を出力する第の磁気抵抗素子と、
    前記第1の信号と前記第2の信号の差分を出力する信号出力回路と、
    前記第1の信号と第1の大きさの差分の絶対値の大きさを出力する第1の差分出力回路と、
    前記第2の信号と第2の大きさの差分の絶対値の大きさを出力する第2の差分出力回路と、
    前記第1の差分出力回路の出力信号と前記第2の差分出力回路の出力信号の差分を出力する第3の差分出力回路と、
    前記第3の差分出力回路の出力信号がしきい値よりも小さい場合に第1の情報を出力し、前記第3の差分出力回路の出力信号が前記しきい値よりも大きい場合に第2の情報を出力する情報出力回路と
    を備えるセンサ。
  8. 第1の端子と、
    第2の端子と、
    の磁気抵抗素子であって、前記第1の磁気抵抗素子と前記第の磁気抵抗素子とは前記第1の端子と前記第2の端子の間に直列に接続される前記第の磁気抵抗素子と、
    第4の磁気抵抗素子であって、前記第の磁気抵抗素子と前記第4の磁気抵抗素子とは前記第1の端子と前記第2の端子の間に直列に接続される前記第4の磁気抵抗素子と、
    前記第1の磁気抵抗素子と前記第の磁気抵抗素子の間のノード、前記信号出力回路、及び、前記第1の差分出力回路に接続された第1のノードと、
    前記第の磁気抵抗素子と前記第4の磁気抵抗素子の間のノード、前記信号出力回路、及び、前記第2の差分出力回路に接続された第2のノードと
    を更に備える請求項7に記載のセンサ。
  9. 前記第1の端子と前記第2の端子の間に第1の電圧が印加され、
    前記第1の大きさと前記第2の大きさは、前記第1の電圧の半分の大きさである
    請求項8に記載のセンサ。
  10. 前記信号出力回路の出力信号は第1の方向における磁場に応じて変化し、
    前記情報出力回路の出力情報は第2の方向における磁場に応じて変化し、
    前記第2の方向は前記第1の方向と交差する
    請求項7〜9のいずれか1項に記載のセンサ。
  11. 前記信号出力回路は、前記第1の信号と前記第2の信号を受信して、前記第1の信号と前記第2の信号の差分を出力する
    請求項7〜10のいずれか1項に記載のセンサ。
JP2014226293A 2014-11-06 2014-11-06 電流センサ、及びスマートメータ Active JP6457243B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014226293A JP6457243B2 (ja) 2014-11-06 2014-11-06 電流センサ、及びスマートメータ
US14/933,642 US10295578B2 (en) 2014-11-06 2015-11-05 Current sensor and smart meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014226293A JP6457243B2 (ja) 2014-11-06 2014-11-06 電流センサ、及びスマートメータ

Publications (3)

Publication Number Publication Date
JP2016090440A JP2016090440A (ja) 2016-05-23
JP2016090440A5 JP2016090440A5 (ja) 2018-07-19
JP6457243B2 true JP6457243B2 (ja) 2019-01-23

Family

ID=55912052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014226293A Active JP6457243B2 (ja) 2014-11-06 2014-11-06 電流センサ、及びスマートメータ

Country Status (2)

Country Link
US (1) US10295578B2 (ja)
JP (1) JP6457243B2 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107110920B (zh) * 2014-11-18 2019-09-24 日立金属株式会社 磁传感器及其制造方法以及使用该磁传感器的电流量检测器
JP6520075B2 (ja) * 2014-11-25 2019-05-29 日立金属株式会社 電流検出装置
US10371739B2 (en) 2015-10-30 2019-08-06 Landis+Gyr Llc Arrangement for detecting a meter maintenance condition using winding resistance
JP6713867B2 (ja) * 2016-07-20 2020-06-24 アルプスアルパイン株式会社 デュアルスピンバルブ磁気検出素子の製造方法およびデュアルスピンバルブ磁気検出素子を使用した磁気検出装置の製造方法
KR101931559B1 (ko) * 2016-12-14 2018-12-24 한국표준과학연구원 멀티 클램프 계측 장치 및 전류 계측 시스템
KR102165935B1 (ko) * 2016-12-20 2020-10-14 한국전자기술연구원 전류센서 및 그의 제조방법
US10908198B2 (en) 2017-08-07 2021-02-02 Landis+Gyr Innovations, Inc. Determining meter phase using interval voltage measurements
US11183878B2 (en) 2017-08-07 2021-11-23 Landis+Gyr Innovations, Inc. Maintaining connectivity information for meters and transformers located in a power distribution network
US10393791B2 (en) 2017-09-28 2019-08-27 Landis+Gyr Llc Detection of deteriorated electrical connections in a meter using temperature sensing and time-variable thresholds
US10690519B2 (en) 2018-02-23 2020-06-23 Landis+Gyr Innovations, Inc. Meter reading sensor using TMR and hall effect sensors
CN108732408B (zh) * 2018-04-24 2023-11-07 厦门理工学院 一种基于磁化膜的应变式电流传感器
US11181555B2 (en) 2018-04-30 2021-11-23 Isentek Inc. Current sensing method and current sensor
JP6900936B2 (ja) * 2018-06-08 2021-07-14 Tdk株式会社 磁気検出装置
JP6694222B1 (ja) * 2019-03-18 2020-05-13 アルディーテック株式会社 半導体チップ集積装置の製造方法、半導体チップ集積装置、半導体チップインクおよび半導体チップインク吐出装置
CN110299953B (zh) * 2019-08-05 2022-01-25 国网重庆市电力公司电力科学研究院 一种电能表连接灵敏度测试系统及方法
US11536754B2 (en) 2019-08-15 2022-12-27 Landis+Gyr Innovations, Inc. Electricity meter with fault tolerant power supply
US11226357B2 (en) 2019-09-27 2022-01-18 Landis+Gyr Innovations, Inc. Electrical arc detection for electric meter socket connections
JP2020042038A (ja) * 2019-11-26 2020-03-19 株式会社東芝 磁気センサ、生体細胞検出装置及び診断装置
US11372029B2 (en) 2019-12-11 2022-06-28 Tdk Corporation Magnetic field detection apparatus and current detection apparatus
US11245260B2 (en) 2020-02-25 2022-02-08 Landis+Gyr Innovations, Inc. Automatic discovery of electrical supply network topology and phase
US11429401B2 (en) 2020-03-04 2022-08-30 Landis+Gyr Innovations, Inc. Navigating a user interface of a utility meter with touch-based interactions
US11646602B2 (en) 2020-03-11 2023-05-09 Landis+Gyr Innovations, Inc. Topology and phase detection for electrical supply network
US11536745B2 (en) 2020-03-18 2022-12-27 Landis+Gyr Innovations, Inc. Electric meter installation issue detection based on orientation change
US11385074B2 (en) 2020-03-18 2022-07-12 Landis+Gyr Innovations, Inc. Programming electric meter global positioning system coordinates using smart device
US11359934B2 (en) 2020-03-24 2022-06-14 Landis+Gyr Innovations, Inc. Variable rate monitoring in flow-based metering systems
US11515725B2 (en) 2020-09-21 2022-11-29 Landis+Gyr Innovations, Inc. Autonomous topology validation for electrical supply network
CN113777383B (zh) * 2021-07-29 2024-04-09 江苏思源赫兹互感器有限公司 一种量子电流互感器
CN113777550B (zh) * 2021-07-29 2024-07-16 江苏思源赫兹互感器有限公司 一种基于量子电流互感器的测量装置及其仿真测试方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3220278B2 (ja) * 1993-04-20 2001-10-22 カヤバ工業株式会社 位置検出装置
JPH0792199A (ja) * 1993-07-28 1995-04-07 Matsushita Electric Ind Co Ltd 電流センサ
DE10229390A1 (de) 2001-09-25 2003-04-24 Thomas Nikolaus Windkraftmaschine
US7259545B2 (en) * 2003-02-11 2007-08-21 Allegro Microsystems, Inc. Integrated sensor
JP4433820B2 (ja) 2004-02-20 2010-03-17 Tdk株式会社 磁気検出素子およびその形成方法ならびに磁気センサ、電流計
JP4508058B2 (ja) * 2005-09-26 2010-07-21 三菱電機株式会社 磁界検出装置およびその製造方法
JP4298691B2 (ja) 2005-09-30 2009-07-22 Tdk株式会社 電流センサおよびその製造方法
JP2010091366A (ja) * 2008-10-07 2010-04-22 Tdk Corp 磁気平衡式電流センサ
JP5299675B2 (ja) * 2008-11-27 2013-09-25 Tdk株式会社 信号伝送装置
JP5678287B2 (ja) 2010-12-09 2015-02-25 アルプス・グリーンデバイス株式会社 電流センサ
JP5380425B2 (ja) 2010-12-28 2014-01-08 日立オートモティブシステムズ株式会社 磁界角計測装置,回転角計測装置およびそれを用いた回転機,システム,車両および車両駆動装置
US8593133B2 (en) * 2010-12-29 2013-11-26 General Electric Company Current measuring systems and methods of assembling the same
JP5540299B2 (ja) 2011-01-11 2014-07-02 アルプス・グリーンデバイス株式会社 電流センサ
JP5679837B2 (ja) * 2011-01-27 2015-03-04 大和製衡株式会社 計量装置
TWI438933B (zh) * 2011-07-27 2014-05-21 Lextar Electronics Corp 發光二極體結構及其製造方法
US9823316B2 (en) * 2011-10-19 2017-11-21 Regents Of The University Of Minnesota Magnetic biomedical sensors and sensing system for high-throughput biomolecule testing
JP2014173970A (ja) * 2013-03-08 2014-09-22 Panasonic Corp 電流センサ

Also Published As

Publication number Publication date
JP2016090440A (ja) 2016-05-23
US10295578B2 (en) 2019-05-21
US20160131687A1 (en) 2016-05-12

Similar Documents

Publication Publication Date Title
JP6457243B2 (ja) 電流センサ、及びスマートメータ
JP6415813B2 (ja) 電流センサ、電流測定モジュール及びスマートメータ
US20180038899A1 (en) Current sensor, current measuring module, and smart meter
US8786278B2 (en) Three-dimensional magnetic field sensor and method of producing same
US9841444B2 (en) Current sensor and current sensor module
US11467232B2 (en) Magnetoresistive sensor and fabrication method for a magnetoresistive sensor
JP2018006598A (ja) 磁気センサ
JP2015135267A (ja) 電流センサ
JP2013113799A (ja) 電流検知装置、電流検知素子および電流検知方法
JP2016021518A (ja) 磁気抵抗素子、磁気センサ及び電流センサ
JP2012119613A (ja) 磁気検出素子及びそれを用いた磁気センサ
JP2017053723A (ja) センサ、情報端末、マイクロフォン、血圧センサ及びタッチパネル
JP5540326B2 (ja) 電流センサ
JP6007479B2 (ja) 電流センサ
JP6629413B2 (ja) 電流センサ、電流測定モジュール及びスマートメータ
JP6116694B2 (ja) 磁気抵抗効果素子を備えた磁界検出器、および電流検出器
CN103543414A (zh) 三维平面磁传感器
JP6040523B2 (ja) 電力検知センサ
JP5849654B2 (ja) 電流センサ
JP2017058376A (ja) 電力検知センサ
US20210382123A1 (en) Magneto-resistive element and magnetic sensor
JP2018115972A (ja) 磁気センサ
TW201403108A (zh) 三維平面磁感測器
JP2012037379A (ja) 電流検知器を備えた半導体装置
JP2010190571A (ja) 磁気検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181220

R151 Written notification of patent or utility model registration

Ref document number: 6457243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151