[go: up one dir, main page]

JP6455802B2 - 画像表示装置、物体装置、透過スクリーン及びスクリーン - Google Patents

画像表示装置、物体装置、透過スクリーン及びスクリーン Download PDF

Info

Publication number
JP6455802B2
JP6455802B2 JP2014247537A JP2014247537A JP6455802B2 JP 6455802 B2 JP6455802 B2 JP 6455802B2 JP 2014247537 A JP2014247537 A JP 2014247537A JP 2014247537 A JP2014247537 A JP 2014247537A JP 6455802 B2 JP6455802 B2 JP 6455802B2
Authority
JP
Japan
Prior art keywords
light
image
scanning
screen
image display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014247537A
Other languages
English (en)
Other versions
JP2016109883A (ja
Inventor
佐藤 康弘
康弘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2014247537A priority Critical patent/JP6455802B2/ja
Publication of JP2016109883A publication Critical patent/JP2016109883A/ja
Application granted granted Critical
Publication of JP6455802B2 publication Critical patent/JP6455802B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instrument Panels (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

本発明は、画像表示装置、物体装置、透過スクリーン及びスクリーンに係り、更に詳しくは、スクリーンを光により走査して画像を形成する画像表示装置、該画像表示装置を備える物体装置、光により走査され画像が形成される透過スクリーン及びスクリーンに関する。
従来、画像信号に応じて変調された光により対象物を走査して画像を形成する光走査素子と、該光走査素子からの検査用光を受光する光検出器と、を備える画像表示装置が知られている(例えば特許文献1参照)。
特許文献1に開示されている画像表示装置では、画像品質を安定して向上させることができなかった。
本発明は、透過スクリーンと、前記透過スクリーンの表面を光により走査して走査範囲内に画像を形成する画像形成部と、前記画像形成部からの光である走査光を検出するための光検出器と、を備え、前記透過スクリーンには、前記走査範囲内における前記画像が形成される領域外に、入射された前記走査光を導入する光導入部が設けられ、前記光導入部は、前記表面に設けられた凹部の一面であって、入射された前記走査光を前記透過スクリーンの側端面に向けて反射させる反射面を有し、前記光検出器は、前記透過スクリーン内を伝播し該透過スクリーンから出射した前記走査光を受光可能に配置されている画像表示装置である。
本発明によれば、画像品質を安定して向上させることができる。
一実施形態の画像表示装置の構成を概略的に示す図である。 光源部を説明するための図である。 微細凸レンズ構造による拡散作用を説明するための図である。 図4(A)及び図4(B)は、それぞれ微細凸レンズによる拡散と干渉性ノイズ発生を説明するための図(その1及びその2)である。 図5(A)及び図5(B)は、それぞれ本実施形態の透過スクリーンを説明するための図(その1及びその2)である。 図6(A)及び図6(B)は、それぞれ比較例の透過スクリーンに対する光走査を説明するための図(その1及びその2)である。 図7(A)及び図7(B)は、それぞれ本実施形態の透過スクリーンに対する光走査を説明するための図(その1及びその2)である。 図8(A)及び図8(B)は、それぞれ変形例1の透過スクリーンを説明するための図(その1及びその2)である。 図9(A)及び図9(B)は、それぞれ変形例2の透過スクリーンを説明するための図(その1及びその2)である。
以下、一実施形態を説明する。
一実施形態の画像表示装置1000は、2次元のカラー画像を表示するヘッドアップディスプレイ(HUD)であり、図1に装置の全体を説明図的に示す。
画像表示装置1000は、一例として、車両、航空機、船舶等の移動体に搭載され、該移動体のフロントガラス10(フロントウインドシールド)を介して該移動体の操縦に必要なナビゲーション情報(例えば速度、走行距離等の情報)を視認可能にする。この場合、フロントガラス10は、入射された光の一部を透過させ、残部の少なくとも一部を反射させる透過反射部材としても機能する。以下では、移動体に設定されたabc3次元直交座標系(移動体と共に移動する座標系)を適宜用いて説明する。ここでは、a方向は、移動体の左右方向(+a方向が右方向、−a方向が左方向)であり、b方向は、移動体の上下方向(+b方向が上方向、−b方向が下方向)であり、c方向は、移動体の前後方向(−c方向が前方向、+c方向が後方向)である。以下では、画像表示装置1000が車両(例えば自動車)に搭載される例を説明する。
図1において、符号100で示す部分は「光源部」であり、この光源部100からカラー画像表示用の画素表示用ビームLCが出射される。
画素表示用ビームLCは、赤(以下「R」と表示する。)、緑(以下「G」と表示する。)、青(以下「B」と表示する。)の3色のビームを1本に合成したビームである。
即ち、光源部100は、例えば、図2の如き構成となっている。
図2において、符号RS、GS、BSで示す光源としての半導体レーザは、それぞれR、G、Bのレーザ光を放射する。ここでは、各半導体レーザとして、端面発光レーザとも呼ばれるレーザダイオード(LD)が用いられている。
符号RCP、GCP、BCPで示すカップリングレンズは、半導体レーザRS、GS、BSから出射される各レーザ光の発散性を抑制する。
カップリングレンズRCP、GCP、BCPにより発散性を抑制された各色レーザ光束は、アパーチュアRAP、GAP、BAPにより整形される(光束径を規制される)。
整形された各色レーザ光束はビーム合成プリズム101に入射する。
ビーム合成プリズム101は、R色光を透過させG色光を反射するダイクロイック膜D1と、R・G色光を透過させB色光を反射するダイクロイック膜D2を有する。
従って、ビーム合成プリズム101からは、R、G、Bの各色レーザ光束が1本の光束に合成されて出射される。
出射される光束は、レンズ102により所定の光束径の「平行ビーム」に変換される。
この「平行ビーム」が、画素表示用ビームLCである。
画素表示用ビームLCを構成するR、G、Bの各色レーザ光束は、表示するべき「2次元のカラー画像」の画像信号により(画像データに応じて)強度変調されている。
ここでは、半導体レーザRS、GS、BSは、光源駆動手段としてのLDドライバ11により、R、G、Bの各色成分の画像信号により発光強度を変調(直接変調)される。なお、直接変調に代えて、各半導体レーザから出射されたレーザ光を光変調器で変調(外部変調)しても良い。
光源部100から出射された画素表示用ビームLCは、2次元偏向手段6に入射し、2次元的に偏向される。
2次元偏向手段6は、本実施形態では、微小なミラーを「互いに直交する2軸」を揺動軸として揺動するように構成されたものである。
すなわち、2次元偏向手段6は、具体的には、半導体プロセス等で微小揺動ミラー素子として作製されたMEMS(Micro Electro Mechanical Systems)ミラーを含む2次元スキャナである。2次元偏向手段6は、コントローラ12により制御される。以下では、2次元偏向手段6のMEMSミラーを「揺動ミラー」とも称する
コントローラ12は、後述するPD13からの検出信号に基づいて同期信号(画像出力信号)を生成し、LDドライバ11に出力する。LDドライバ11は、コントローラ12からの同期信号に基づいて各半導体レーザを発光させる(点灯する)。
2次元偏向手段は、この例に限らず、他の構成のもの、例えば、1軸の回りに揺動する微小ミラー(例えばMEMSミラーやガルバノミラー)を2個、揺動方向が互いに直交するように組み合わせたものでも良い。
上記の如く2次元的に偏向された画素表示用ビームLCは、走査ミラー7(例えば凹面鏡)に入射し、透過スクリーン8に向けて反射される。
走査ミラー7は、透過スクリーン8上で発生する走査線(走査軌跡)の曲がりを補正するように設計されている。
走査ミラー7により反射された画素表示用ビームLCは、2次元偏向手段6による偏向に伴い平行移動しつつ透過スクリーン8に入射し、該透過スクリーン8を2次元的に走査する。つまり、透過スクリーン8は、画素表示用ビームLCにより主走査方向及び副走査方向に2次元走査(例えばラスタースキャン)される。
この2次元走査により、透過スクリーン8に中間像としての「2次元のカラー画像」が形成される。ここでは、透過スクリーン8における矩形の画像表示領域(有効走査領域とも呼ぶ)が2次元走査され、該画像表示領域に中間像が形成される(図3参照)。
すなわち、光源部100、2次元偏向手段6及び走査ミラー7を含んで、透過スクリーン8に中間像(画像)を形成する中間像形成部(画像形成部)が構成されている。
勿論、透過スクリーン8に各瞬間に表示されるのは「画素表示用ビームLCが、その瞬間に照射している画素のみ」である。
カラーの2次元画像は、画素表示用ビームLCによる2次元的な走査により「各瞬間に表示される画素の集合」として形成される。
透過スクリーン8に、上記の如く「2次元のカラー画像」が形成され、該2次元のカラー画像を形成した画素表示用ビームLC、すなわち透過スクリーン8を透過した光が凹面ミラー9(凹面鏡)に入射し反射される。
図1には示されていないが、透過スクリーン8は、後述するように各画素表示用ビームLCを透過させる「微細凸レンズ構造」を画像表示領域に有している。凹面ミラー9は「虚像結像光学系」を構成する。
透過スクリーン8の近傍には、上記中間像形成部からの光である走査光を検出するための光検出器としてのPD13(フォトダイオード)が配置されている。PD13の検出信号は、コントローラ12に出力される。
凹面ミラー9は、後に詳述するように、水平面に対して傾斜し、かつ湾曲したフロントガラス10の影響で透過スクリーン8に形成された「2次元のカラー画像」(中間像)の虚像における水平線(横線)が縦に凸形状となる2次元的な歪み及び垂直線(縦線)が横に凸形状となる2次元的な歪みを補正するように設計、配置されている。
「虚像結像光学系」は、前記「カラー画像」の虚像Iを結像させる。
虚像Iの結像位置の手前側には、フロントガラス10が配置され、虚像Iを結像する光束を、観察者(例えば移動体の操縦者)の側へ反射する。なお、観察者は、フロントガラス10(透過反射部材)で反射されたレーザ光の光路上のアイボックス(観察者の目の近傍の領域)から虚像を視認する。ここで、アイボックスは、視点の位置の調整をすることなく虚像が視認可能な範囲を意味する。
この反射光により、観察者は虚像Iを視認できる。
図1に示す場合には、a方向は通常、観察者にとって左右方向であり、この方向を「横方向」とも呼ぶ。そして、横方向(a方向)に直交する方向を「縦方向」とも呼ぶ。
透過スクリーン8は、上述の如く、微細凸レンズ構造を画像表示領域に有している。
後述するように、微細凸レンズ構造は「複数の微細凸レンズ(マイクロレンズ)が、画素ピッチに近いピッチで密接して2次元配列された」ものである。すなわち、透過スクリーン8は、マイクロレンズアレイを画像表示領域に有する。
ここでは、複数の微細凸レンズは、凸面が入射面となるように、仮想平面に沿って所定ピッチで2次元配列されている。その具体的な配列形態としては、例えばa方向(X方向)を行方向とし、上記仮想平面内でa方向に直交する一方向(Y方向)を列方向とするマトリクス状の配列や、ハニカム状の配列(ジグザグ状の配列)が挙げられる。
各微細凸レンズの平面形状は、例えば円形、正N角形(Nは3以上の自然数)等である。ここでは、微細凸レンズの各々は、互いに曲率(曲率半径)が等しい。
そして、個々の微細凸レンズは、画素表示用ビームLCを等方的に拡散させる機能を持つ。すなわち、各微細凸レンズは、全方位に均等な拡散パワーを持つ。以下に、この「拡散機能」を簡単に説明する。
図3において、符号L1〜L4は、透過スクリーン8に入射する4本の画素表示用ビームを示している。
これ等の4本の画素表示用ビームL1〜L4は、透過スクリーン8に形成される画像の4隅に入射する画素表示用ビームであるものとする。
これら4本の画素表示用ビームL1〜L4は、透過スクリーン8を透過すると、ビームL11〜L14のように変換される。
仮に、画素表示用ビームL1〜L4で囲まれる断面が横長の4辺形の光束を、透過スクリーン8に入射させると、この光束は「ビームL11〜L14で囲まれる断面が横長の4辺形の発散性の光束」となる。
微細凸レンズのこの機能が「拡散機能」である。
「ビームL11〜L14で囲まれる発散性の光束」は、このように発散性光束に変換された画素表示用ビームを時間的に集合した結果である。
画素表示用ビームを拡散させるのは「フロントガラス10により反射された光束が、観察者の目の近傍の広い領域を照射する」ようにするためである。
上記拡散機能が無い場合には、フロントガラス10により反射された光束が「観察者の目の近傍の狭い領域」のみを照射する。
このため、観察者が頭部を動かして、目の位置が上記「狭い領域」から逸れると、観察者は虚像Iを視認できなくなる。
上記のように、画素表示用ビームLCを拡散させることにより、フロントガラス10による反射光束は「観察者の目の近傍の広い領域」を照射する。すなわち、アイボックスを大きくできる。
従って、観察者が「頭を少々動かし」ても、虚像Iを確実に視認できる。
以下に、図4(A)及び図4(B)を参照して、透過スクリーン8の画像表示領域に用いられるマイクロレンズアレイにおける拡散と干渉性ノイズ発生について説明する。
図4(A)において、符号802はマイクロレンズアレイを示す。マイクロレンズアレイ802は、微細凸レンズ801を配列した微細凸レンズ構造を有する。符号803で示す「画素表示用ビーム」の光束径807は、微細凸レンズ801の大きさよりも小さい。すなわち、微細凸レンズ801の大きさ806は、光束径807よりも大きい。なお、説明中の形態例で、画素表示用ビーム803はレーザ光束であり、光束中心のまわりにガウス分布状の光強度分布をなす。従って、光束径807は、光強度分布における光強度が「1/e」に低下する光束半径方向距離である。
図4(A)では、光束径807は微細凸レンズ801の大きさ806に等しく描かれているが、光束径807が「微細凸レンズ801の大きさ806」に等しい必要は無い。
微細凸レンズ801の大きさ806を食み出さなければよい。
図4(A)において、画素表示用ビーム803は、その全体が1個の微細凸レンズ801に入射し、発散角805をもつ拡散光束804に変換される。なお、「発散角」は、以下において「拡散角」と呼ぶこともある。
図4(A)の状態では、拡散光束804は1つで、干渉する光束が無いので、干渉性ノイズは発生しない。なお、発散角805の大きさは、微細凸レンズ801の形状により適宜設定できる。
図4(B)では、画素表示用ビーム811は、光束径が微細凸レンズの配列ピッチ812の2倍となっており、2個の微細凸レンズ813、814に跨って入射している。この場合、画素表示用ビーム811は、入射する2つの微細凸レンズ813、814により2つの発散光束815、816のように拡散される。2つの発散光束815、816は、領域817において重なり合い、この部分で互いに干渉して干渉性ノイズを発生する。
上に説明したヘッドアップディスプレイは、上述の如く、例えば、自動車等の車載用として用いることができ、a方向は「運転席から見て横方向」、b方向は「縦方向」である。
この場合、自動車等のフロントガラス10前方に虚像Iとして、例えば「ナビゲーション画像」を表示でき、観察者である運転者は、この画像を運転席に居ながらフロントガラス10前方から視線をほとんど動かさずに観察できる。
このような場合、上述の如く、表示される虚像Iは「運転者から見て横長の画像」であること、即ち、マイクロレンズアレイに形成される画像(中間像)および、虚像Iは、a方向に画角の大きい画像であることが一般に好ましい。
また、上述の如く、観測者である運転者が、左右斜め方向から表示画像を見た場合にも、表示を認識できるように、横方向には「縦方向に比して大きな視野角」が要求される。
このため、虚像Iの長手方向(a方向)には短手方向(b方向)に比して大きな拡散角(非等方拡散)が要求される。
従って、微細凸レンズ構造(マイクロレンズアレイ)の各微細凸レンズ(マイクロレンズ)を、透過スクリーン8に形成された中間像もしくは虚像Iの短手方向よりも長手方向の方の曲率が大きいアナモフィックなレンズとし、画素表示用ビームを拡散させる拡散角を「中間像の横方向を縦方向よりも広く」するのが好ましい。
このようにして、ヘッドアップディスプレイの要求画角を満たす必要最小限の範囲に光を発散させ、光の利用効率を向上させ、表示画像の輝度を向上させることが可能である。
勿論、上記のような「非等方拡散」ではなく、縦方向と横方向で拡散角が等しい「等方拡散」とする場合も可能である。
しかし、自動車等の車載用として用いるヘッドアップディスプレイの場合であれば、運転者が表示画像に対して上下方向の位置から観察を行なう場合はすくない。
従って、このような場合であれば、上記のように、画素表示用ビームを拡散させる拡散角を「中間像の横方向を縦方向よりも広く」するのが光利用効率の面から好ましい。
微細凸レンズ(マイクロレンズ)は、そのレンズ面を「非球面」として形成できることが従来から知られている。
直上に説明したアナモフィックなレンズ面も「非球面」であるが、微細凸レンズのレンズ面をより一般的な非球面として形成でき、収差補正を行なうこともできる。
収差の補正により「拡散の強度ムラ」を低減することも可能である。
微細凸レンズ構造の微細凸レンズは、上記の如く画素表示用ビームを拡散させるものであるが、x方向、y方向の2方向のうち、1方向のみの拡散を行なう場合も考えられる。
このような場合には、微細凸レンズのレンズ面として「微細凸シリンダ面」を用いることができる。
なお、微細凸レンズの形状を、六角形状とすることや、その配列をハニカム型配列とすることは、従来から、マイクロレンズアレイの製造方法に関連して知られている。
以下に、透過スクリーン8の全体的な構成について詳細に説明する。図5(A)には、透過スクリーン8の平面図が示されている。図5(B)には、図5(A)のA−A線断面図が示されている。
透過スクリーン8は、一例として図5(A)に示されるように、a方向を長手方向とする略矩形板状の基材の所定領域(画像表示領域)に上記微細凸レンズ構造としてのマイクロレンズアレイが形成された部材である。以下では、透過スクリーン8に設定したXYZ3次元直交座標系(X方向がa方向に一致、Y方向が透過スクリーン8の表面内でX方向に直交する方向)を適宜用いて説明する。ここではX方向が主走査方向、Y方向が副走査方向である。
透過スクリーン8の基材の材料としては、例えば透明樹脂材料、透明ガラス材料などの光透過性を有する材料(好ましくは空気よりも屈折率が大きい材料)が用いられている。
透過スクリーン8の走査範囲内であって画像表示領域の外側の所定位置には、入射された走査光(サンプリング光)を透過スクリーン8の内部に導入する光導入部8aが設けられている。なお、「走査範囲」は、2次元偏向手段6により光走査される画像表示領域を含む全領域を意味する。
詳述すると、光導入部8aは、図5(A)及び図5(B)から分かるように、透過スクリーン8における画像表示領域の−X側かつ+Y側の角部の−X側近傍に(該角部に隣接する位置に)、2次元偏向手段6による走査開始位置である画像表示領域の−Y側の辺の延長線に交差してY軸方向に延びるように形成されたXZ断面が三角形(例えば直角三角形)の傾斜溝(傾斜凹部)である。
この傾斜溝は、透過スクリーン8の−X側の側端面に対向する、XY平面に対して傾斜する傾斜面を有している。この傾斜面は、−Z側から入射された走査光を−X側に向けて反射する反射面として機能する。
この傾斜面は、透過スクリーン8の基材の樹脂成型面やガラス成形面をそのまま利用しても良いし、反射率を高めるための鏡面加工や反射膜コートを施しても良い。
光導入部8aの傾斜面(反射面)に入射した走査光は、−X側に反射され透過スクリーン8内を多重反射しながら−X方向に伝播(導波)する。
透過スクリーン8を−X方向に伝播した光は、透過スクリーン8の−X側の側端面(例えば透過スクリーン8の基材の樹脂成形端面やガラス成形端面)における光導入部8aの−X側の所定箇所から出射される(取り出される)。そこで、この所定箇所を「光取り出し部8b」とも称する。
なお、光導入部8aは、照射された(入射された)走査光の進行方向を光取り出し部8bに向ける機能を有すれば良く、上記傾斜面に代えて、微細な凹凸が形成されたXY平面に対して傾斜する散乱面であっても良い。
また、光取り出し部8bは、透過スクリーン8内を伝播する走査光を出射できれば良く、上述のように樹脂成形端面やガラス成形端面をそのまま利用しても良いし、検出感度を上げるためにPD13の受光感度や受光面の大きさに合わせたレンズ構造にしても良い。
PD13は、光取り出し部8bから出射した走査光を受光可能に配置されている。詳述すると、PD13は、光取り出し部8bの−X側に受光面を+X側に向けた状態で、透過スクリーン8と共にスクリーン取り付け冶具に固定されている(図7(A)及び図7(B)参照)。
ここで、比較例の画像表示装置(例えばHUD)による透過スクリーン上における画像の描画について説明する。図6(A)には、比較例の透過スクリーンの平面図が示されている。図6(B)には、図6(A)のA´−A´断面図が示されている。
比較例では、図6(A)及び図6(B)に示されるように、スクリーン取り付け冶具上に、透過スクリーンと、2次元スキャナによるレーザ光の走査タイミングを検出するためのPD(フォトダイオード)が取り付けられている。このPDの受光面は、透過スクリーンの入射面と同じ側(−Z側)を向いており、該レーザ光は2次元スキャナによってPDと透過スクリーンの画像描画領域(画像表示領域)を含む範囲で走査される。この際、PD上を走査したときの該PDの検出信号に基づいて、光源としてのLD(レーザダイオード)への同期信号(画像出力信号)の出力タイミングが調整される。
この場合、PDと透過スクリーンとのスクリーン取り付け冶具に対する取り付け位置のずれに応じて、PDが光を検出したタイミングと描画開始のタイミングをずらす必要があるため、画像表示装置の個体ごとに走査開始タイミングのキャリブレーションが必要になる。また、PDと画像描画領域とを含む範囲を走査する必要があるため、画像出力に利用できる時間の割合が減少し、画像の輝度が低下してしまう。
一方、本実施形態では、図7(A)及び図7(B)に示されるように、走査範囲は、光導入部8aと画像表示領域を含み、PD13の位置は含まれない。また、PDの受光面は、透過スクリーン8の−X側の端面側(+X側)を向いている。
そこで、光導入部8aに入射した走査光は、傾斜面で−X側に反射され、透過スクリーン8の内部を多重反射しながら伝播(導波)し、光取り出し部8bから出射し、PD13で受光、検出される。
この場合、レーザ光の検出タイミングは光導入部8aの位置で決まるため、透過スクリーン8とPD13の取り付け位置のばらつきによらず高い精度でビーム位置を検出できる。また、走査範囲も画像表示領域と光導入部8aを含む範囲で良いため、画像出力可能な時間を十分に確保し、輝度の高い画像出力が可能になる。
以上説明した本実施形態の画像表示装置1000(ヘッドアップディスプレイ)は、透過スクリーン8と、該透過スクリーン8の表面を光により走査して走査範囲内に画像を形成する画像形成部と、該画像形成部から光である走査光を検出するための光検出器としてのPD13と、を備え、透過スクリーン8には、走査範囲内における画像が形成される領域(画像表示領域)外に、入射された走査光を導入する光導入部8aが設けられ、PD13は、透過スクリーン8内を伝播し該透過スクリーン8から出射した走査光を受光可能に配置されている。
この場合、走査光の位置を検出する基準となる画像表示領域と光導入部8aとの位置関係が不変なため、透過スクリーン8とPD13との位置関係(組み付け時の位置ずれや経時変化による位置ずれを含む)にずれが生じても、走査光の位置を精度良く検出できる。
この結果、画像品質を安定して向上させることができる。
一方、特許文献1の画像表示装置では、光走査素子とフォトディテクタ(光検出器)との位置関係(組み付け時の位置ずれや経時変化による位置ずれを含む)にずれが生じると、走査光の位置を精度良く検出できず、ひいては画像品質を安定して向上させることができない。
また、特許文献1では、光走査素子とフォトディテクタとを高い位置精度で実装する必要があるため、実装コストが増加する点や、ビーム走査領域を画像表示領域より広く取る必要があるため画像形成に寄与しない無駄な走査時間が発生し、画像の明るさ(輝度)が確保しにくいなどの問題がある。
また、透過スクリーン8では、光導入部8aを画像表示領域の近傍に設けることができ、画像表示領域の直近で走査光の位置の検出が可能になる。このため、走査光の位置に対して精度良く画像出力信号(同期信号)を生成することが可能であり、かつ画像表示領域に対して走査範囲をあまり広げずにすむため、無駄な走査時間を削減し、画像の明るさ(輝度)を確保することが可能になる。
また、透過スクリーン8は、光透過性を有する材料からなるため、表面に光導入部8a(例えば傾斜溝)を設けるだけの簡素な構成により、走査光を導入し内部を伝播させ出射させることができる。そして、透過スクリーン8は、透明樹脂材料や透明ガラス材料を用いたモールド成型等により容易に製造することできる。
また、光導入部8aは、透過スクリーン8の表面に設けられた傾斜凹部(傾斜溝)の一面であって、入射された走査光を透過スクリーン8の側端面に向けて反射させる反射面を有するため、該走査光を確実に該側端面から出射させることができる。
また、光導入部8aの反射面が透過スクリーン8の表面に対して傾斜する傾斜面である場合、入射された走査光を効率(光利用効率)良く、透過スクリーン8の側端面の狭範囲から出射させることができる。この結果、PD13に安定した光量の走査光を入射させることができる。
また、光導入部8aの反射面が透過スクリーン8の表面に対して傾斜する散乱面である場合、入射された走査光を透過スクリーン8の側端面の広範囲から出射させることができる。この結果、PD13と透過スクリーン8との間の位置ずれが多少大きくてもPD13に走査光を入射させることができる。
また、透過スクリーン8の側端面にレンズ構造が設けられている場合、走査光をPD13に安定して入射(集光)させることができる。
また、光導入部8aは、画像表示領域の主走査方向の一側に設けられているため、副走査方向の走査範囲の拡大を極力抑制できる。副走査方向では、通常、主走査方向よりも走査速度が遅いので、副走査方向の走査範囲の拡大は主走査方向の走査範囲の拡大に比べて、多くの無駄な走査時間を要することになり、画像の輝度の低下につながる。
また、光導入部8aは、画像表示領域の副走査方向の走査開始位置に対応する位置に設けられているため、少なくとも副走査方向の走査開始タイミングと画像出力タイミングのずれを検出することが可能になるため、画質を改善できる。
また、透過スクリーン8は、画像表示領域にマイクロレンズアレイを有するため、画像品質(虚像の視認性)の更なる向上を図ることができる。
また、画像表示装置1000は、透過スクリーン8からの画像を形成した光を透過反射部材に導く凹面ミラー9(光学系)を更に備えるため、拡大されかつ歪みが抑制された虚像Iを透過反射部材を介して視認可能とすることができる。
また、画像表示装置1000と該画像表示装置1000が搭載される移動体とを備える移動体装置では、観察者(例えば移動体の操縦者)がストレスなく迅速かつ確実に虚像Iを視認できる。
また、透過スクリーン8は、光により走査され走査範囲内に画像が形成される透過スクリーンであり、走査範囲内における画像が形成される領域外に、入射された光を導入する光導入部8aが設けられている。
この場合、走査光の位置の検出の正確な基準となるサンプリング光(走査光)を出射させることができる。
ところで、揺動ミラーでレーザ光を偏向走査する際のタイミングは、副走査方向の位置によってわずかにずれる場合があり、例えば副走査方向に直線のパターンを描画する場合に直線が波打った形になることがある。
そこで、図8(A)及び該図8(A)のB−B線断面図である図8(B)に示される変形例1では、副走査方向の位置による走査タイミングのずれを検出するため、光導入部18aを画像表示領域の副走査方向の全域に対応する位置を含むように形成している。なお、図8(A)及び図8(B)では、スクリーン取り付け治具の図示が省略されている。
詳述すると、光導入部18aは、画像表示領域の−X側の辺に沿って、該辺よりも+Y側及び−Y側に突き出すようにY軸方向に細長く形成されている。
ここでは、光導入部18aにおけるY軸方向の任意の位置から導入されたサンプリング光がPD13に到達するよう、光導入部18a(傾斜溝)の反射面を微細な凹凸が形成された傾斜した散乱面としている。また、ここでは、PD13は、透過スクリーンの−X側の端面のY軸方向中央部の−X側近傍の位置に配置されているが、この位置からY軸方向にずれた位置に配置されても良い。
なお、変形例2では、光導入部18aを、画像表示領域の副走査方向の全域に対応する位置を含むように形成しているが、これに限らず、要は、少なくとも画像表示領域の副走査方向の全域に対応する位置に設けられれば良い。
また、図9(A)及び該図9(A)のC−C線断面図である図9(B)に示される変形例2のように、2つの光導入部28a、28bを、画像表示領域の副走査方向の走査開始位置(画像表示領域の+Y側の辺)及び走査終了位置(画像表示領域の−Y側の辺)に対応する2つの位置に個別に形成しても良い。これら2つの位置間でのサンプリング光の検出タイミングを測定すれば、副走査方向の移動範囲と画像出力信号のタイミングをより正解に調整し、画質を改善することが可能になる。なお、図9(A)及び図9(B)では、スクリーン取り付け治具の図示が省略されている。
変形例2では、各光導入部の反射面は、傾斜溝の傾斜面でも良いし、傾斜溝の傾斜した散乱面でも良い。PD13を、2つの光導入部28a、28bの−X側に1つずつ設けても良いし、2つの光導入部28a、28bの中央の−X側に1つ設けても良い。
なお、変形例2では、光導入部は、画像表示領域の副走査方向の走査開始位置及び走査終了位置に対応する2つの位置に設けられているが、これに限らず、要は、これら2つの位置の少なくとも一方に設けられれば良い。
また、変形例2では、2つの光導入部28a、28bが設けられているが、例えば、これら2つの光導入部28a、28b間に少なくとも1つの光導入部を設けても良い。
また、変形例2では、各光導入部は、Y軸方向に延びているが(傾斜面や散乱面が−X側を向いているが)、これに限らず、特に、PD13を1つだけ用いる場合には、複数(例えば2つ)の光導入部の少なくとも1つを、傾斜面又は散乱面がPD13側を向くようにY軸方向に傾斜する方向に延びるように形成しても良い。この場合、PD13に、効率良く走査光を入射させることができる。
また、上記実施形態及び各変形例では、光導入部は、画像表示領域の−X側(主走査方向の一側)に設けられているが、これに代えて又は加えて、画像表示領域の+X側(主走査方向の他側)に設けても良い。この場合、透過スクリーンの+X側にPDを配置することが好ましい。
また、上記実施形態及び各変形例において、光導入部の反射面に曲率を持たせても良い。要は、光導入部は、スクリーン(透過スクリーンや反射スクリーン)の表面の走査範囲内における画像表示領域外に設けられた凹部であって、入射された走査光を該スクリーンの側端面に向けて反射させる反射面を一面とする凹部であることが好ましい。
また、上記実施形態及び各変形例では、光導入部は、画像表示領域の−X側(主走査方向の一側)に設けられているが、これに代えて又は加えて、画像表示領域の+Y側(副走査方向の一側)及び−Y側(副走査方向の他側)の少なくとも一方に設けても良い。この場合、透過スクリーンの+Y側及び−Y側の少なくとも一方にPDを配置することが好ましい。
また、上記実施形態及び各変形例では、光導入部から導入され透過スクリーン内を伝播した走査光を透過スクリーンの側端面から取り出しているが、これに限らず、例えば、透過スクリーンの表面又は裏面に光取り出し部を設け、該光取り出し部から走査光を取り出すようにしても良い。この光取り出し部としては、光導入部の傾斜溝の反射面からの走査光の伝播経路上に位置する、該反射面とは逆方向に傾斜する反射面(傾斜面や傾斜した散乱面)を有する傾斜溝が挙げられる。この場合に、該傾斜溝の反射面で反射された走査光を受光可能な位置(透過スクリーンの表面側や裏面側)にPDを配置することが好ましい。
また、上記実施形態及び各変形例では、光により走査されるスクリーンとして、光透過性を有する材料からなる透過スクリーンがそのまま用いられているが、これに限られない。
例えば、透過スクリーンの画像表示領域の全域に反射膜が形成された反射スクリーンを用いても良い。
また、光により走査されるスクリーンとして、走査範囲内における反射面で構成される画像表示領域の外側に設けられた光導入部と、該光導入部から導入された光を伝播させるための光伝播構造と、該光伝播構造を伝播した光を取り出すための光取り出し部とが設けられた反射スクリーンであっても良い。そこで、この反射スクリーンを備える画像表示装置を提供することもできる。
この反射スクリーンの光伝播構造としては、例えば光の少なくとも一部を反射させる材料で形成された筒状の構造(光伝播路)であっても良いし、光の少なくとも一部を反射させる一対の反射面間で光を伝播させる構造であっても良い。この場合、光伝播構造を反射スクリーンの側端面で終端させ、該側端面に光取り出し部としての光透過窓(又はレンズ構造)を設けることが好ましい。また、反射面を有する傾斜溝及び光透過窓(又はレンズ構造)を含む光取り出し部を反射スクリーンの表面又は裏面に設け、かつ光伝播構造を該光取り出し部で終端させても良い。
なお、上記実施形態及び各変形例では、複数の光源を用いてカラー画像を形成しているが、単一の光源を用いてモノクロ画像を形成しても良い。
また、上記実施形態及び各変形例では、透過スクリーンの画像形成領域に微細凸レンズ構造(マイクロレンズアレイ)を設けているが、これに限らず、例えば、ランダムな凹凸構造を有する拡散板を設けても良い。この場合も、スペックルノイズの発生をある程度抑制できる。この拡散板は、透過型でも反射型でも良い。
また、上記実施形態及び各変形例では、スクリーンに2次元偏向手段を用いて2次元走査して2次元画像を形成しているが、例えば、MEMSミラー、ガルバノミラー、ポリゴンミラー等を含む1次元偏向手段を用いて1次元走査して1次元画像を形成しても良い。
また、上記実施形態及び各変形例では、光源として、LD(端面発光レーザ)を用いているが、これに限らず、VCSEL(面発光レーザ)、半導体レーザ以外のレーザ、レーザ以外の光源を用いても良い。
また、上記実施形態及び各変形例では、光検出器として、フォトダイオードが用いられている、これに限らず、例えばフォトトランジスタ等を用いても良い。
また、上記実施形態及び各変形例において、光源からの光を透過スクリーン8に導く光学系も適宜変更可能である。例えば、走査ミラー7を省略しても良い。この場合、2次元偏向手段6で偏向された光を透過スクリーン8に直接入射させても良い。
また、上記実施形態及び各変形例において、走査ミラー7として凹面鏡の代わりに、平面鏡を設けても良い。
また、上記実施形態及び各変形例において、凹面ミラー9に代えて又は加えて、平面ミラーや凸面ミラーを設けても良い。
また、上記実施形態及び各変形例では、透過スクリーン8上の中間像(画像表示領域)は、矩形であるが、これに限らず、例えば円形、楕円形、正方形等の矩形以外の平行四辺形、五角形以上の正多角形であっても良い。
また、透過反射部材は、移動体のフロントガラスに限らず、例えばサイドガラス、リアガラス等の移動体の搭乗者(例えば操縦者、ナビゲータ、乗組員、乗客等)が移動体の外部を視認するための他の窓部材であっても良い。また、透過反射部材は、ガラス製のものに限らず、例えば樹脂製であっても良い。また、透過反射部材の形状も適宜変更可能である。
また、透過反射部材は、例えば、いわゆるコンバイナのように、移動体の窓部材(例えばフロントガラス)とは別の部材で構成され、観察者から見て該窓部材よりも手前に配置されていても良い。
また、上記実施形態及び各変形例では、画像表示装置は、例えば車両、航空機、船舶等の移動体に搭載されるものを一例として説明したが、要は、物体に搭載されるものであれば良い。この場合も、物体と、該物体に搭載された画像形成装置とを備える物体装置では、上記実施形態及び各変形例と同様の効果が得られる。この場合、画像表示装置は、透過反射部材を構成要素として備えていても良いし、備えていなくても良い。なお、「物体」は、移動体の他、恒常的に設置されるものや運搬可能なものを含む。
また、本発明の画像表示装置は、物体に搭載されるものに限らず、例えば、単独で設置されるものや人体に装着可能なもの(例えばヘッドマウントディスプレイ)にも応用可能である。例えば、映画鑑賞用の画像表示装置としても実施可能である。
以下に、本発明の発明者が上記実施形態及び各変形例を発案する至った思考プロセスを説明する。
近年、運転者が少ない視線移動で警報・情報を認知できるアプリケーションとして市場の期待が高まっている、車両に搭載されるHUD(ヘッドアップディスプレイ)の技術開発が進んでいる。特に、ADAS(Advanced Driving Assistance System)という言葉に代表される車載センシング技術の進展に伴い、車両はさまざまな走行環境情報および車内乗員の情報を取り込むことができるようになっており、それらの情報を運転者に伝える「ADASの出口」としてもHUDが注目されている。
HUDの投射方式は、液晶やDMDのようなイメージングデバイスで中間像を表現する「パネル方式」と、半導体レーザから出射したレーザビームを偏向ミラーを含む2次元走査デバイスで走査し中間像を形成する「レーザ走査方式」がある。特に、後者のレーザ走査方式は、全画面発光の部分的遮光で画像を形成する前者のパネル方式とは違い、各画素に対して発光/非発光を割り当てることができるため、一般に高コントラストの画像を形成することができる。
ところで、偏向ミラーを用いたレーザ走査方式のHUDにおいて、偏向ミラーを動作させるタイミングと画像出力のタイミング(レーザ点灯タイミング)のずれにより、画質が劣化する問題がある。
この問題に対し、(1)偏向ミラーに角度検出のためのセンサー構造を追加する方法、(2)偏向ミラーで反射された光の一部を画像形成領域の外側に置いたフォトディテクタで検出し、フォトディテクタの位置と検出信号から、画像出力のタイミングを補正する方法などが検討されているが、(1)では偏向ミラーの構造が複雑になり、適切なコストで製造することが難しくなる点、(2)ではフォトディテクタを高い位置精度で実装したり、実装後に検出タイミングのキャリブレーション工程が必要であったり、画像に無関係の領域まで走査領域を広げる必要があるため、画像出力に利用できる時間が短くなり、輝度が確保しにくいなどの問題があった。
そこで、発明者は、レーザ走査方式のHUDの画像の品質を改善するため、高い精度でビームの位置を検出し、かつ画像の明るさを確保するために上記実施形態及び各変形例を発案するに至った。
6…2次元偏向手段(画像形成部の一部)、7…走査ミラー(画像形成部の一部)、8…透過スクリーン(画像形成部の一部)、8a…光導入部、8b…光取り出し部、9…凹面ミラー(光学系)、10…フロントガラス(透過反射部材)、13…PD(光検出器)、100…光源部(画像形成部の一部)、1000…画像表示装置。
特開2009‐014791号公報

Claims (13)

  1. 透過スクリーンと、
    前記透過スクリーンの表面を光により走査して走査範囲内に画像を形成する画像形成部と、
    前記画像形成部からの光である走査光を検出するための光検出器と、を備え、
    前記透過スクリーンには、前記走査範囲内における前記画像が形成される領域外に、入射された前記走査光を導入する光導入部が設けられ、
    前記光導入部は、前記表面に設けられた凹部の一面であって、入射された前記走査光を前記透過スクリーンの側端面に向けて反射させる反射面を有し、
    前記光検出器は、前記透過スクリーン内を伝播し該透過スクリーンから出射した前記走査光を受光可能に配置されている画像表示装置。
  2. 前記反射面は、前記表面に対して傾斜する傾斜面であることを特徴とする請求項に記載の画像表示装置。
  3. 前記反射面は、前記表面に対して傾斜する散乱面であることを特徴とする請求項に記載の画像表示装置。
  4. 前記光導入部は、前記画像が形成される領域の少なくとも副走査方向の全域に対応する位置に設けられていることを特徴とする請求項に記載の画像表示装置。
  5. 前記側端面にレンズ構造が設けられていることを特徴とする請求項〜4のいずれか一項に記載の画像表示装置。
  6. 前記光導入部は、前記画像が形成される領域の主走査方向の一側に設けられていることを特徴とする請求項1〜5のいずれか一項に記載の画像表示装置。
  7. 前記光導入部は、前記画像が形成される領域の副走査方向の走査開始位置及び走査終了位置の少なくとも一方に対応する位置に設けられていることを特徴とする請求項6に記載の画像表示装置。
  8. 前記透過スクリーンは、前記画像が形成される領域にマイクロレンズアレイを有することを特徴とする請求項1〜のいずれか一項に記載の画像表示装置。
  9. 前記透過スクリーンからの前記画像を形成した光を透過反射部材に導く光学系を更に備えることを特徴とする請求項1〜のいずれか一項に記載の画像表示装置。
  10. 請求項に記載の画像表示装置と、
    前記画像表示装置が搭載される物体と、を備える物体装置。
  11. 光により走査され走査範囲内に画像が形成される透過スクリーンにおいて、
    前記走査範囲内における前記画像が形成される領域外に、入射された光を導入する光導入部が設けられ
    前記光導入部は、表面に設けられた凹部の一面であって、前記入射された光を側端面に向けて反射させる反射面を有していることを特徴とする透過スクリーン。
  12. スクリーンと、
    前記スクリーンの表面を光により走査して走査範囲内に画像を形成する画像形成部と、
    前記画像形成部からの光である走査光を検出するための光検出器と、を備え、
    前記スクリーンは、
    前記走査範囲内における前記画像が形成される領域外に設けられ、入射された前記走査光を導入する光導入部と、
    前記光導入部から導入された前記走査光を伝播させる光伝播構造と、
    前記光伝播構造を伝播した前記走査光を取り出すための光取り出し部と、を含み、
    前記光導入部は、前記表面に設けられた凹部の一面であって、入射された前記走査光を前記スクリーンの側端面に向けて反射させる反射面を有し、
    前記光検出器は、前記光取り出し部から取り出された前記走査光を受光可能に配置されている画像表示装置。
  13. 光により走査され走査範囲内に画像が形成されるスクリーンにおいて、
    前記走査範囲内における前記画像が形成される領域外に設けられ、入射された光を導入する光導入部と、
    前記光導入部から導入された光を伝播させる光伝播構造と、
    前記光伝播構造を伝播した光を取り出すための光取り出し部と、を備え
    前記光導入部は、表面に設けられた凹部の一面であって、入射された光を側端面に向けて反射させる反射面を有することを特徴とするスクリーン。
JP2014247537A 2014-12-08 2014-12-08 画像表示装置、物体装置、透過スクリーン及びスクリーン Expired - Fee Related JP6455802B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014247537A JP6455802B2 (ja) 2014-12-08 2014-12-08 画像表示装置、物体装置、透過スクリーン及びスクリーン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014247537A JP6455802B2 (ja) 2014-12-08 2014-12-08 画像表示装置、物体装置、透過スクリーン及びスクリーン

Publications (2)

Publication Number Publication Date
JP2016109883A JP2016109883A (ja) 2016-06-20
JP6455802B2 true JP6455802B2 (ja) 2019-01-23

Family

ID=56122057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014247537A Expired - Fee Related JP6455802B2 (ja) 2014-12-08 2014-12-08 画像表示装置、物体装置、透過スクリーン及びスクリーン

Country Status (1)

Country Link
JP (1) JP6455802B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017159443A1 (ja) 2016-03-16 2019-02-28 株式会社リコー スクリーン部材及び画像表示装置
JP6903875B2 (ja) * 2016-07-04 2021-07-14 株式会社リコー 光走査装置、プロジェクタ装置およびヘッドアップディスプレイ装置
JP6814966B2 (ja) * 2017-03-08 2021-01-20 パナソニックIpマネジメント株式会社 画像表示装置
JP6720903B2 (ja) * 2017-03-21 2020-07-08 株式会社デンソー ヘッドアップディスプレイ装置
JP2020129087A (ja) * 2019-02-12 2020-08-27 株式会社リコー 表示装置、表示システム、移動体、表示制御方法および表示制御プログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0626436Y2 (ja) * 1987-05-29 1994-07-20 矢崎総業株式会社 車輌用表示装置
JP2005073132A (ja) * 2003-08-27 2005-03-17 Sony Corp 電子装置および表示装置
JP2008261901A (ja) * 2007-04-10 2008-10-30 Nippon Seiki Co Ltd 液晶表示装置
JP2011033712A (ja) * 2009-07-30 2011-02-17 Nippon Seiki Co Ltd 液晶表示装置
JP2011133583A (ja) * 2009-12-23 2011-07-07 Nippon Seiki Co Ltd 液晶表示装置
JP5333943B2 (ja) * 2010-03-04 2013-11-06 日本精機株式会社 表示装置
JP6074964B2 (ja) * 2012-09-17 2017-02-08 日本精機株式会社 車両用表示装置
JP2014153450A (ja) * 2013-02-06 2014-08-25 Nippon Seiki Co Ltd 画像投影装置

Also Published As

Publication number Publication date
JP2016109883A (ja) 2016-06-20

Similar Documents

Publication Publication Date Title
US10502972B2 (en) Image display device and mobile object
JP6478151B2 (ja) 画像表示装置及び物体装置
JP6315240B2 (ja) 画像表示装置、移動体及びレンズアレイ
US10078217B2 (en) Image display device and apparatus
US20170115553A1 (en) Scanning projector transmissive screen, and scanning projector system
CN108369342B (zh) 光学扫描设备、图像显示设备和车辆
JP6645567B2 (ja) 画像表示装置及び移動体及び被走査面素子
JP6455802B2 (ja) 画像表示装置、物体装置、透過スクリーン及びスクリーン
WO2016072372A1 (ja) ヘッドアップディスプレイ装置
JP6551738B2 (ja) 光走査装置、画像表示装置、物体装置及び光走査方法
JP2014139656A (ja) 2次元画像表示装置および2次元画像表示装置用の光走査装置および被走査面素子および移動体
JP2014139657A (ja) 2次元画像表示装置および2次元画像表示装置用の光走査装置および被走査面素子および移動体
US11561396B2 (en) Head-up display device and transportation device
JP2017067944A (ja) 表示画像作成装置および画像表示装置
US10598830B2 (en) Screen member, image display apparatus, and object apparatus
JP6555568B2 (ja) 画像表示装置
JP2018010138A (ja) 表示装置、投影装置、及び表示装置または投影装置を備えた移動体
US20200241294A1 (en) Optical scanner, display system, and mobile object
JP2017227681A (ja) ヘッドアップディスプレイ装置
EP3176627B1 (en) Light source apparatus, image display apparatus and system
JP6907488B2 (ja) 光源装置、画像表示装置及び物体装置
JP2018136558A (ja) 画像表示装置及び移動体
JP2016218210A (ja) 光走査装置
JP2020194122A (ja) 光走査装置、表示システム、および移動体
JP2021144131A (ja) 表示装置、及び移動体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181209

R151 Written notification of patent or utility model registration

Ref document number: 6455802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees