[go: up one dir, main page]

JP6431738B2 - Fluid filled cylindrical vibration isolator - Google Patents

Fluid filled cylindrical vibration isolator Download PDF

Info

Publication number
JP6431738B2
JP6431738B2 JP2014206151A JP2014206151A JP6431738B2 JP 6431738 B2 JP6431738 B2 JP 6431738B2 JP 2014206151 A JP2014206151 A JP 2014206151A JP 2014206151 A JP2014206151 A JP 2014206151A JP 6431738 B2 JP6431738 B2 JP 6431738B2
Authority
JP
Japan
Prior art keywords
fluid
intermediate sleeve
diameter cylindrical
elastic body
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014206151A
Other languages
Japanese (ja)
Other versions
JP2016075347A (en
Inventor
牧野 孝司
孝司 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2014206151A priority Critical patent/JP6431738B2/en
Publication of JP2016075347A publication Critical patent/JP2016075347A/en
Application granted granted Critical
Publication of JP6431738B2 publication Critical patent/JP6431738B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Description

本発明は、自動車のサスペンションブッシュなどに用いられる筒型防振装置に係り、特に内部に封入された流体の流動作用等に基づいた防振効果を利用する流体封入式筒型防振装置に関するものである。   The present invention relates to a cylindrical vibration isolator used for a suspension bush of an automobile, and more particularly to a fluid-filled cylindrical vibration isolator using a vibration isolating effect based on a fluid action or the like of a fluid sealed inside. It is.

従来から、振動伝達系を構成する部材間に介装されて、それら部材を相互に防振連結する防振連結体乃至は防振支持体の一種として、筒型防振装置が知られている。筒型防振装置は、振動伝達系を構成する一方の部材に取り付けられるインナ軸部材と、振動伝達系を構成する他方の部材に取り付けられるアウタ筒部材とを、本体ゴム弾性体によって弾性連結した構造を有している。   2. Description of the Related Art Conventionally, a cylindrical vibration isolator is known as a type of anti-vibration coupling body or anti-vibration support body interposed between members constituting a vibration transmission system and mutually anti-vibrating and connecting these members. . In the cylindrical vibration isolator, an inner shaft member attached to one member constituting the vibration transmission system and an outer cylinder member attached to the other member constituting the vibration transmission system are elastically connected by a main rubber elastic body. It has a structure.

また、防振性能の更なる向上などを目的として、特許第3736155号公報(特許文献1)などには、流体封入式筒型防振装置が提案されている。この流体封入式筒型防振装置は、インナ軸部材と中間スリーブが本体ゴム弾性体で弾性連結されていると共に、本体ゴム弾性体に形成された複数のポケット部が中間スリーブの複数の窓部を通じて外周に開口しており、中間スリーブに外嵌されるアウタ筒部材でそれら窓部が覆われることにより、非圧縮性流体を封入された複数の流体室が形成された構造を有している。更に、複数の流体室を相互に連通するオリフィス通路が形成されて、振動入力時に流体の流動作用などに基づいた防振効果が発揮されるようになっている。   Further, for the purpose of further improving the vibration isolation performance, a fluid filled type cylindrical vibration isolation device is proposed in Japanese Patent No. 3736155 (Patent Document 1). In this fluid-filled cylindrical vibration isolator, the inner shaft member and the intermediate sleeve are elastically connected by the main rubber elastic body, and a plurality of pocket portions formed in the main rubber elastic body are a plurality of window portions of the intermediate sleeve. And has a structure in which a plurality of fluid chambers filled with an incompressible fluid are formed by covering the window portions with an outer cylindrical member that is externally fitted to the intermediate sleeve. . Furthermore, an orifice passage that communicates a plurality of fluid chambers with each other is formed, so that an anti-vibration effect based on a fluid flow action or the like is exerted at the time of vibration input.

ところで、特許文献1の流体封入式筒型防振装置は、内外挿配置されたインナ軸部材と中間スリーブの径方向間に本体ゴム弾性体を配して、それらインナ軸部材と中間スリーブを本体ゴム弾性体によって径方向に弾性連結した構造とされている。それ故、軸直角方向の振動入力時に本体ゴム弾性体が圧縮変形されると共に、軸方向の振動入力時に本体ゴム弾性体が剪断変形されるようになっており、軸方向のばねが軸直角方向のばねよりも柔らかくなり易い。特に流体封入式筒型防振装置では、内部に流体室が形成されることで、本体ゴム弾性体が軸方向で薄肉になり易く、軸方向のばねがより小さくなる場合もある。   By the way, the fluid-filled cylindrical vibration isolator disclosed in Patent Document 1 has a main rubber elastic body disposed between the radially inserted inner shaft member and the intermediate sleeve, and the inner shaft member and the intermediate sleeve are connected to the main body. The rubber elastic body is elastically connected in the radial direction. Therefore, the main rubber elastic body is compressed and deformed at the time of vibration input in the direction perpendicular to the axis, and the main rubber elastic body is sheared and deformed at the time of vibration input in the direction of the axis. It tends to be softer than the spring. In particular, in a fluid-filled cylindrical vibration isolator, a fluid chamber is formed inside, so that the main rubber elastic body tends to be thin in the axial direction and the axial spring may be smaller.

しかし、流体封入式筒型防振装置が自動車のサスペンション機構などに適用されると、軸方向に大きな荷重が入力される場合もあり、その場合には、本体ゴム弾性体の過大な変形による耐久性の低下が問題になり得る。なお、軸方向入力に対する本体ゴム弾性体の変形量を制限するために、流体封入式筒型防振装置の軸方向外方に軸方向ストッパ手段を設けることも考えられるが、配設スペースなどの制限によってそのような軸方向ストッパ手段を設けることが難しい場合もあり、他の解決手段も求められていた。   However, if the fluid-filled cylindrical vibration isolator is applied to an automobile suspension mechanism or the like, a large load may be input in the axial direction. In such a case, durability due to excessive deformation of the main rubber elastic body may occur. Sexual decline can be a problem. In order to limit the deformation amount of the main rubber elastic body with respect to the axial input, it is conceivable to provide axial stopper means on the axially outward side of the fluid-filled cylindrical vibration isolator. Due to limitations, it may be difficult to provide such axial stopper means, and other solutions have been sought.

特許第3736155号公報Japanese Patent No. 3736155

本発明は、上述の事情を背景に為されたものであって、その解決課題は、軸方向の振動入力に対して、簡単な構造によって本体ゴム弾性体の耐久性を十分に得ることが可能とされた、新規な構造の流体封入式筒型防振装置を提供することにある。   The present invention has been made in the background of the above-mentioned circumstances, and the solution to the problem is that the durability of the main rubber elastic body can be sufficiently obtained with a simple structure against axial vibration input. An object of the present invention is to provide a fluid-filled cylindrical vibration isolator having a novel structure.

以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。   Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible.

すなわち、本発明の第一の態様は、インナ軸部材が中間スリーブに内挿配置されて、それらインナ軸部材と中間スリーブが本体ゴム弾性体によって弾性連結されており、該本体ゴム弾性体に形成された複数のポケット部が該中間スリーブの軸方向中間部分に形成された複数の窓部を通じて外周面に開口していると共に、該中間スリーブにはアウタ筒部材が外嵌されて、該窓部が該アウタ筒部材で覆蓋されることにより非圧縮性流体を封入された複数の流体室が該ポケット部によって形成されていると共に、それら流体室を相互に連通するオリフィス通路が形成されている流体封入式筒型防振装置において、前記インナ軸部材には軸方向中間部分で外周側に突出する凸部が設けられていると共に、前記中間スリーブに大径筒部が設けられて、前記アウタ筒部材が該大径筒部に外嵌されていると共に、該中間スリーブの軸方向両側端部に小径筒部が設けられて、それら大径筒部と小径筒部が段差部によって相互に連結されており、該凸部と該段差部軸方向両側での対向面が該本体ゴム弾性体によって弾性連結されている一方、該小径筒部の外周側には流路形成ゴムが該アウタ筒部材との間に配されていると共に、該流路形成ゴムには前記オリフィス通路が周方向に延びて形成されていることを、特徴とする。 That is, according to the first aspect of the present invention, the inner shaft member is inserted and arranged in the intermediate sleeve, and the inner shaft member and the intermediate sleeve are elastically connected by the main rubber elastic body. A plurality of pocket portions opened to the outer peripheral surface through a plurality of window portions formed in an axially intermediate portion of the intermediate sleeve, and an outer cylinder member is externally fitted to the intermediate sleeve, and the window portion Is covered with the outer cylinder member, so that a plurality of fluid chambers filled with an incompressible fluid are formed by the pocket portions, and an orifice passage that connects the fluid chambers to each other is formed. in-filled cylindrical vibration damping device, wherein with the inner shaft member has a convex portion is provided to protrude on the outer peripheral side in the axial direction intermediate portion, the large diameter cylindrical portion is provided on said intermediate sleeve, before With outer cylindrical member is fitted on the large-diameter tubular portion, and the small-diameter tubular portion is provided in the axial direction both ends of the intermediate sleeve, mutually by their larger-diameter tubular portion and a small diameter cylinder portion is stepped portion are connected, while the opposing surfaces in the axial direction on both sides of the convex portion and the respective stepped portions are elastically connected by the rubber elastic body, the outer peripheral side of the small diameter cylinder portion passage forming rubber It is arranged between the outer cylinder member and the orifice passage is formed in the flow path forming rubber so as to extend in the circumferential direction.

このような第一の態様に従う構造とされた流体封入式筒型防振装置によれば、軸方向の入力に対して、本体ゴム弾性体が、インナ軸部材に設けられた凸部と中間スリーブの段差部との対向面間で、軸方向に圧縮される。それ故、本体ゴム弾性体の圧縮ばね成分により、軸方向のばね特性においてばね定数を大きく設定することが可能になって、入力に対する本体ゴム弾性体の変形量を抑えることができる。その結果、特別なストッパ手段などを設けることなく、本体ゴム弾性体の過大な変形による損傷が回避されて、耐久性の向上が図られる。   According to the fluid-filled cylindrical vibration isolator having the structure according to the first aspect as described above, the main rubber elastic body is provided with the convex portion provided on the inner shaft member and the intermediate sleeve with respect to the input in the axial direction. It is compressed in the axial direction between the opposed surfaces to the step portion. Therefore, the compression spring component of the main rubber elastic body makes it possible to set a large spring constant in the spring characteristics in the axial direction, thereby suppressing the deformation amount of the main rubber elastic body with respect to the input. As a result, damage due to excessive deformation of the main rubber elastic body can be avoided without providing special stopper means and the like, and durability can be improved.

さらに、中間スリーブに段差部を設けたことで、中間スリーブの軸方向端部に小径筒部が形成されており、大径筒部に外嵌されるアウタ筒部材と小径筒部との間にスペースが形成されることから、当該スペースを利用して、オリフィス通路を形成することができる。その結果、オリフィス通路を形成するために従来採用されていた別部材を廃することができて、部品点数を削減することができる。特に、オリフィス通路形成用の別部材が流体室まで延び出すように配設された従来構造に比して、流体室の容積を効率的に大きく得ることができることから、目的とする防振性能を実現しながら、本体ゴム弾性体のゴムボリュームを十分に確保して、軸方向のばね定数を大きく設定できる。   Further, since the intermediate sleeve is provided with a stepped portion, a small-diameter cylindrical portion is formed at the axial end portion of the intermediate sleeve, and between the outer cylindrical member and the small-diameter cylindrical portion that are externally fitted to the large-diameter cylindrical portion. Since the space is formed, the orifice passage can be formed using the space. As a result, another member conventionally employed for forming the orifice passage can be eliminated, and the number of parts can be reduced. In particular, the volume of the fluid chamber can be efficiently increased as compared with the conventional structure in which the separate member for forming the orifice passage extends to the fluid chamber. While realizing, it is possible to secure a sufficient rubber volume of the main rubber elastic body and to set a large spring constant in the axial direction.

しかも、小径筒部とアウタ筒部材の間に流路形成ゴムが配されていることにより、段差部や小径筒部の形状を目的とするばね特性に応じて設定しながら、オリフィス通路のチューニング周波数を適切に調節することができる。加えて、中間スリーブやアウタ筒部材を変更することなく流路形成ゴムの形状を変更すれば、防振特性の異なる流体封入式筒型防振装置を、共通の部材を用いて簡単に得ることができる。   In addition, since the flow path forming rubber is arranged between the small diameter cylindrical portion and the outer cylindrical member, the tuning frequency of the orifice passage can be set while setting the shape of the stepped portion and the small diameter cylindrical portion according to the desired spring characteristics. Can be adjusted appropriately. In addition, if the shape of the flow path forming rubber is changed without changing the intermediate sleeve or the outer cylinder member, a fluid-filled cylindrical vibration isolator having different vibration isolation characteristics can be easily obtained using a common member. Can do.

本発明の第二の態様は、第一の態様に記載された流体封入式筒型防振装置において、前記段差部の径方向中間部分に中径筒部が形成されて、前記大径筒部と該中径筒部が外周段差部によって相互に連結されていると共に、前記小径筒部と該中径筒部が内周段差部によって相互に連結されており、該段差部がそれら中径筒部と外周段差部と内周段差部とを含んで構成されているものである。   According to a second aspect of the present invention, in the fluid-filled cylindrical vibration isolator described in the first aspect, an intermediate-diameter cylindrical portion is formed at a radial intermediate portion of the stepped portion, and the large-diameter cylindrical portion And the medium-diameter cylinder part are mutually connected by an outer peripheral step part, and the small-diameter cylinder part and the medium-diameter cylinder part are mutually connected by an inner peripheral step part, and the step part is the medium-diameter cylinder. Part, an outer periphery step part, and an inner periphery step part are comprised.

第二の態様によれば、小径筒部よりも大径の中径筒部とアウタ筒部材との径方向間に流路形成ゴムを挟み込むことによって、より優れたシール性能が発揮される。しかも、外周段差部と内周段差部が中径筒部を挟んで設けられることによって、大径筒部と小径筒部の直径の差を十分に確保して、本体ゴム弾性体の軸方向での圧縮を有効に実現できると共に、絞り加工などによって大径筒部と小径筒部を形成する際に、軸方向に離れた位置に設けられる外周段差部と内周段差部を段階的な加工で得ることにより、目的とする段付き構造を容易に得ることができる。   According to the 2nd aspect, the more excellent sealing performance is exhibited by pinching | interposing a flow path formation rubber | gum between the radial directions of a medium diameter cylinder part larger diameter than a small diameter cylinder part, and an outer cylinder member. In addition, since the outer peripheral stepped portion and the inner peripheral stepped portion are provided with the intermediate diameter cylindrical portion interposed therebetween, a sufficient difference in diameter between the large diameter cylindrical portion and the small diameter cylindrical portion can be ensured in the axial direction of the main rubber elastic body. Can be effectively realized, and when forming the large-diameter cylindrical part and the small-diameter cylindrical part by drawing, etc., the outer peripheral step part and the inner peripheral step part provided at positions separated in the axial direction can be processed stepwise. By obtaining, the target stepped structure can be obtained easily.

本発明の第三の態様は、第一又は第二の態様に記載された流体封入式筒型防振装置において、前記凸部の軸方向表面が外周側に行くに従って次第に軸方向内方に傾斜する傾斜面を有していると共に、前記段差部の軸方向内面が外周側に行くに従って次第に軸方向内方に傾斜する傾斜面を有しているものである。   According to a third aspect of the present invention, in the fluid-filled cylindrical vibration isolator described in the first or second aspect, the axial surface of the convex portion is gradually inclined inward in the axial direction as going to the outer peripheral side. And an inclined surface that inclines gradually inward in the axial direction as the axial inner surface of the stepped portion goes to the outer peripheral side.

第三の態様によれば、凸部と段差部の対向面がそれぞれ傾斜面を有していることから、それら凸部と段差部の傾斜面を弾性連結する本体ゴム弾性体において、軸方向のばね特性と軸直角方向のばね特性の両方を、本体ゴム弾性体の傾斜角度や傾斜面の向き等によって簡単に調節することができる。   According to the third aspect, since the opposing surfaces of the convex part and the step part each have an inclined surface, in the main rubber elastic body elastically connecting the convex part and the inclined surface of the step part, Both the spring characteristics and the spring characteristics in the direction perpendicular to the axis can be easily adjusted by the inclination angle of the main rubber elastic body, the direction of the inclined surface, and the like.

本発明の第四の態様は、第一〜第三の何れか一つの態様に記載された流体封入式筒型防振装置において、前記本体ゴム弾性体の軸方向端部にすぐり部が形成されており、該すぐり部の最深部が軸方向で前記大径筒部と前記小径筒部の間に位置しているものである。   According to a fourth aspect of the present invention, in the fluid-filled cylindrical vibration isolator described in any one of the first to third aspects, a straight portion is formed at an end portion in the axial direction of the main rubber elastic body. The deepest portion of the straight portion is positioned between the large diameter cylindrical portion and the small diameter cylindrical portion in the axial direction.

第四の態様によれば、本体ゴム弾性体の軸直角方向のばね定数が、すぐり部の形成によって小さくされることから、軸方向のばねを硬く設定しても、軸直角方向では柔軟なばね特性を得ることができて、流体室の容積変化による流体流動を有効に生ぜしめて、目的とする防振性能を得ることができる。特に、本体ゴム弾性体のゴムボリュームが小さくなる小径筒部とインナ軸部材の間に、すぐり部が形成されていることにより、軸直角方向のばね定数が著しく大きくなるのを防ぐことができると共に、本体ゴム弾性体のゴムボリュームが大きくなる大径筒部とインナ軸部材の径方向間までは、すぐり部が達していないことから、軸直角方向および軸方向のばね定数を十分に大きく設定することができる。   According to the fourth aspect, since the spring constant in the direction perpendicular to the axis of the main rubber elastic body is reduced by the formation of the straight portion, even if the spring in the axis direction is set to be hard, the spring that is flexible in the direction perpendicular to the axis The characteristics can be obtained, and the fluid flow caused by the volume change of the fluid chamber can be effectively generated to obtain the desired vibration-proof performance. In particular, since the straight portion is formed between the small-diameter cylindrical portion where the rubber volume of the main rubber elastic body becomes small and the inner shaft member, the spring constant in the direction perpendicular to the axis can be prevented from becoming extremely large. Since the straight part does not reach the radial direction between the large-diameter cylindrical part where the rubber volume of the main rubber elastic body becomes large and the inner shaft member, the spring constant in the direction perpendicular to the axis and in the axial direction is set sufficiently large. be able to.

本発明の第五の態様は、第一〜第四の何れか一つの態様に記載された流体封入式筒型防振装置において、前記アウタ筒部材の軸方向端部には内周側に突出する内フランジ部が設けられており、該内フランジ部が前記流路形成ゴムの軸方向外面に当接しているものである。   According to a fifth aspect of the present invention, in the fluid-filled cylindrical vibration isolator described in any one of the first to fourth aspects, the outer cylindrical member protrudes toward the inner peripheral side at the axial end portion. An inner flange portion is provided, and the inner flange portion is in contact with the outer surface in the axial direction of the flow path forming rubber.

第五の態様によれば、中間スリーブとアウタ筒部材の間で圧縮された流路形成ゴムが、軸方向外方に逃げるのを、内フランジ部によって制限することができる。その結果、流路形成ゴムが変形を拘束されることから、シール性の向上やオリフィス通路の形状の安定化が図られて、目的とする防振特性を有効に得ることができる。   According to the fifth aspect, the inner flange portion can restrict the flow path forming rubber compressed between the intermediate sleeve and the outer cylindrical member from escaping outward in the axial direction. As a result, since the flow path forming rubber is restrained from being deformed, the sealing performance is improved and the shape of the orifice passage is stabilized, so that the desired vibration isolation characteristics can be obtained effectively.

本発明の第六の態様は、第五の態様に記載された流体封入式筒型防振装置において、前記内フランジ部が前記中間スリーブに軸方向で当接しているものである。   According to a sixth aspect of the present invention, in the fluid-filled cylindrical vibration isolator described in the fifth aspect, the inner flange portion is in contact with the intermediate sleeve in the axial direction.

第六の態様によれば、内フランジ部が流路形成ゴムの軸方向外面により広い範囲で当接することから、シール性の向上やオリフィス通路の形状安定化がより効果的に実現されて、目的とする防振特性をより有効に得ることができる。   According to the sixth aspect, since the inner flange portion comes into contact with the outer surface in the axial direction of the flow path forming rubber in a wider range, the improvement in sealing performance and the stabilization of the shape of the orifice passage are more effectively realized, The anti-vibration characteristic can be obtained more effectively.

また、中間スリーブと内フランジ部が軸方向で当接することにより、中間スリーブとアウタ筒部材が軸方向で相互に位置決めされて、中間スリーブとアウタ筒部材を所定の組付け状態で容易に組み付けることができる。   In addition, the intermediate sleeve and the inner flange are in contact with each other in the axial direction, so that the intermediate sleeve and the outer cylindrical member are positioned relative to each other in the axial direction, and the intermediate sleeve and the outer cylindrical member are easily assembled in a predetermined assembled state. Can do.

本発明の第七の態様は、第一〜第六の何れか一つの態様に記載された流体封入式筒型防振装置において、前記凸部と前記段差部が軸方向の投影において相互に重なり合っているものである。   According to a seventh aspect of the present invention, in the fluid-filled cylindrical vibration isolator described in any one of the first to sixth aspects, the convex portion and the stepped portion overlap each other in the axial projection. It is what.

第七の態様によれば、軸方向の入力に際して、軸方向投影において重なり合った凸部と段差部の間で、本体ゴム弾性体が軸方向に圧縮されることから、軸方向のばね定数がより大きく設定可能とされて、耐久性の向上がより有利に実現される。   According to the seventh aspect, when the axial input is performed, the main rubber elastic body is compressed in the axial direction between the protruding portion and the stepped portion which are overlapped in the axial projection. It is possible to set a large value, and an improvement in durability is realized more advantageously.

本発明の第八の態様は、第一〜第七の何れか一つの態様に記載された流体封入式筒型防振装置において、前記凸部が全周に亘って連続して設けられていると共に、前記段差部が全周に亘って連続して設けられており、それら凸部と段差部の対向面が前記本体ゴム弾性体によって全周に亘って弾性連結されているものである。   According to an eighth aspect of the present invention, in the fluid-filled cylindrical vibration isolator described in any one of the first to seventh aspects, the convex portion is continuously provided over the entire circumference. And the said level | step-difference part is continuously provided over the perimeter, and the opposing surface of these convex parts and a level | step-difference part is elastically connected over the perimeter by the said main body rubber elastic body.

第八の態様によれば、インナ軸部材とアウタ筒部材の間への軸方向入力に対して、本体ゴム弾性体が全周に亘って凸部と段差部の間で軸方向に圧縮されることから、軸方向のばね定数をより大きく得ることができて、軸方向入力に対する耐久性の向上がより有利に図られる。
本発明の第九の態様は、インナ軸部材が中間スリーブに内挿配置されて、それらインナ軸部材と中間スリーブが本体ゴム弾性体によって弾性連結されており、該本体ゴム弾性体に形成された複数のポケット部が該中間スリーブの軸方向中間部分に形成された複数の窓部を通じて外周面に開口していると共に、該中間スリーブにはアウタ筒部材が外嵌されて、該窓部が該アウタ筒部材で覆蓋されることにより非圧縮性流体を封入された複数の流体室が該ポケット部によって形成されていると共に、それら流体室を相互に連通するオリフィス通路が形成されている流体封入式筒型防振装置において、前記インナ軸部材には外周側に突出する凸部が設けられていると共に、前記中間スリーブに大径筒部が設けられて、前記アウタ筒部材が該大径筒部に外嵌されていると共に、該中間スリーブの少なくとも一方の軸方向端部に小径筒部が設けられて、それら大径筒部と小径筒部が段差部によって相互に連結されており、該凸部と該段差部の対向面が該本体ゴム弾性体によって弾性連結されている一方、該小径筒部の外周側には流路形成ゴムが該アウタ筒部材との間に配されていると共に、該流路形成ゴムには前記オリフィス通路が周方向に延びて形成されており、且つ、該段差部の径方向中間部分に中径筒部が形成されて、該大径筒部と該中径筒部が外周段差部によって相互に連結されていると共に、該小径筒部と該中径筒部が内周段差部によって相互に連結されており、該段差部がそれら中径筒部と外周段差部と内周段差部とを含んで構成されていることを、特徴とする。
本発明の第十の態様は、インナ軸部材が中間スリーブに内挿配置されて、それらインナ軸部材と中間スリーブが本体ゴム弾性体によって弾性連結されており、該本体ゴム弾性体に形成された複数のポケット部が該中間スリーブの軸方向中間部分に形成された複数の窓部を通じて外周面に開口していると共に、該中間スリーブにはアウタ筒部材が外嵌されて、該窓部が該アウタ筒部材で覆蓋されることにより非圧縮性流体を封入された複数の流体室が該ポケット部によって形成されていると共に、それら流体室を相互に連通するオリフィス通路が形成されている流体封入式筒型防振装置において、前記インナ軸部材には外周側に突出する凸部が設けられていると共に、前記中間スリーブに大径筒部が設けられて、前記アウタ筒部材が該大径筒部に外嵌されていると共に、該中間スリーブの少なくとも一方の軸方向端部に小径筒部が設けられて、それら大径筒部と小径筒部が段差部によって相互に連結されており、該凸部と該段差部の対向面が該本体ゴム弾性体によって弾性連結されている一方、該小径筒部の外周側には流路形成ゴムが該アウタ筒部材との間に配されていると共に、該流路形成ゴムには前記オリフィス通路が周方向に延びて形成されており、且つ、該アウタ筒部材の軸方向端部には内周側に突出する内フランジ部が設けられており、該内フランジ部が該流路形成ゴムの軸方向外面に当接していることを、特徴とする。
本発明の第十一の態様は、第十の態様に記載された流体封入式防振装置において、前記内フランジ部が前記中間スリーブに軸方向で当接しているものである。
本発明の第十二の態様は、インナ軸部材が中間スリーブに内挿配置されて、それらインナ軸部材と中間スリーブが本体ゴム弾性体によって弾性連結されており、該本体ゴム弾性体に形成された複数のポケット部が該中間スリーブの軸方向中間部分に形成された複数の窓部を通じて外周面に開口していると共に、該中間スリーブにはアウタ筒部材が外嵌されて、該窓部が該アウタ筒部材で覆蓋されることにより非圧縮性流体を封入された複数の流体室が該ポケット部によって形成されていると共に、それら流体室を相互に連通するオリフィス通路が形成されている流体封入式筒型防振装置において、前記インナ軸部材には外周側に突出する凸部が設けられていると共に、前記中間スリーブに大径筒部が設けられて、前記アウタ筒部材が該大径筒部に外嵌されていると共に、該中間スリーブの少なくとも一方の軸方向端部に小径筒部が設けられて、それら大径筒部と小径筒部が段差部によって相互に連結されており、該凸部と該段差部の対向面が該本体ゴム弾性体によって弾性連結されている一方、該小径筒部の外周側には流路形成ゴムが該アウタ筒部材との間に配されていると共に、該流路形成ゴムには前記オリフィス通路が周方向に延びて形成されており、且つ、該凸部と該段差部が軸方向の投影において相互に重なり合っていることを、特徴とする。
According to the eighth aspect, the main rubber elastic body is compressed in the axial direction between the convex portion and the step portion over the entire circumference in response to the axial input between the inner shaft member and the outer cylindrical member. As a result, the spring constant in the axial direction can be increased, and the durability against axial input can be improved more advantageously.
According to a ninth aspect of the present invention, the inner shaft member is inserted and arranged in the intermediate sleeve, and the inner shaft member and the intermediate sleeve are elastically connected by the main rubber elastic body, and are formed in the main rubber elastic body. A plurality of pocket portions open to the outer peripheral surface through a plurality of window portions formed in an axially intermediate portion of the intermediate sleeve, and an outer cylinder member is fitted on the intermediate sleeve, and the window portion is A fluid-filled type in which a plurality of fluid chambers filled with an incompressible fluid by being covered with an outer cylinder member are formed by the pocket portions, and an orifice passage is formed to communicate the fluid chambers with each other. In the cylindrical vibration isolator, the inner shaft member is provided with a convex portion protruding outward, the intermediate sleeve is provided with a large-diameter cylindrical portion, and the outer cylindrical member is the large-diameter cylindrical portion. A small-diameter cylindrical portion is provided at the axial end of at least one of the intermediate sleeves, and the large-diameter cylindrical portion and the small-diameter cylindrical portion are connected to each other by a stepped portion. And the opposite surface of the stepped portion is elastically connected by the main rubber elastic body, and on the outer peripheral side of the small-diameter cylindrical portion, a flow path forming rubber is disposed between the outer cylindrical member, In the flow path forming rubber, the orifice passage is formed to extend in the circumferential direction, and an intermediate diameter cylindrical portion is formed at a radial intermediate portion of the stepped portion, and the large diameter cylindrical portion and the intermediate diameter cylinder are formed. Are connected to each other by an outer peripheral step portion, and the small-diameter cylindrical portion and the medium-diameter cylindrical portion are connected to each other by an inner peripheral step portion, and the step portion is the medium-diameter cylindrical portion and the outer peripheral step portion. And an inner circumferential step portion.
According to a tenth aspect of the present invention, the inner shaft member is inserted and disposed in the intermediate sleeve, and the inner shaft member and the intermediate sleeve are elastically connected by the main rubber elastic body, and are formed in the main rubber elastic body. A plurality of pocket portions open to the outer peripheral surface through a plurality of window portions formed in an axially intermediate portion of the intermediate sleeve, and an outer cylinder member is fitted on the intermediate sleeve, and the window portion is A fluid-filled type in which a plurality of fluid chambers filled with an incompressible fluid by being covered with an outer cylinder member are formed by the pocket portions, and an orifice passage is formed to communicate the fluid chambers with each other. In the cylindrical vibration isolator, the inner shaft member is provided with a convex portion protruding outward, the intermediate sleeve is provided with a large-diameter cylindrical portion, and the outer cylindrical member is the large-diameter cylindrical portion. A small-diameter cylindrical portion is provided at the axial end of at least one of the intermediate sleeves, and the large-diameter cylindrical portion and the small-diameter cylindrical portion are connected to each other by a stepped portion. And the opposite surface of the stepped portion is elastically connected by the main rubber elastic body, and on the outer peripheral side of the small-diameter cylindrical portion, a flow path forming rubber is disposed between the outer cylindrical member, The flow path forming rubber is formed with the orifice passage extending in the circumferential direction, and the outer cylindrical member is provided with an inner flange portion projecting toward the inner circumferential side at the axial end portion. The flange portion is in contact with the outer surface in the axial direction of the flow path forming rubber.
An eleventh aspect of the present invention is the fluid-filled vibration isolator described in the tenth aspect, wherein the inner flange portion is in contact with the intermediate sleeve in the axial direction.
According to a twelfth aspect of the present invention, an inner shaft member is inserted and arranged in an intermediate sleeve, and the inner shaft member and the intermediate sleeve are elastically connected by a main rubber elastic body, and are formed in the main rubber elastic body. A plurality of pocket portions are opened to the outer peripheral surface through a plurality of window portions formed in an axially intermediate portion of the intermediate sleeve, and an outer cylinder member is fitted on the intermediate sleeve, and the window portion is A plurality of fluid chambers filled with an incompressible fluid by being covered with the outer cylinder member are formed by the pocket portions, and an orifice passage is formed to communicate the fluid chambers with each other. In the cylindrical vibration isolator, the inner shaft member is provided with a convex portion projecting to the outer peripheral side, the intermediate sleeve is provided with a large-diameter cylindrical portion, and the outer cylindrical member is the large-diameter cylinder. The intermediate sleeve is provided with a small-diameter cylindrical portion at at least one axial end of the intermediate sleeve, and the large-diameter cylindrical portion and the small-diameter cylindrical portion are connected to each other by a stepped portion. The opposite surface of the step portion and the stepped portion are elastically connected by the main rubber elastic body, and on the outer peripheral side of the small diameter cylindrical portion, a flow path forming rubber is disposed between the outer cylindrical member, The flow path forming rubber is characterized in that the orifice passage is formed to extend in the circumferential direction, and the convex portion and the stepped portion overlap each other in the axial projection.

本発明によれば、インナ軸部材が外周に突出する凸部を備えると共に、中間スリーブが大径筒部と小径筒部を段差部を介して設けた段付き構造とされており、凸部と段差部の対向面が本体ゴム弾性体によって相互に弾性連結されていることから、軸方向入力に対して圧縮ばね成分による大きなばね定数を設定することができて、本体ゴム弾性体の変形量を特別なストッパ手段を設けることなく制限することができる。しかも、小径筒部とアウタ筒部材の間にできたスペースに流路形成ゴムを配して、当該スペースを利用してオリフィス通路を形成することにより、目的とする本体ゴム弾性体のばね特性を有効に得ながら、オリフィス通路をチューニングできると共に、本体ゴム弾性体のゴムボリュームを大きく得て、耐久性の向上と軸方向の硬いばね特性とを実現することが可能とされている。   According to the present invention, the inner shaft member has a protruding portion that protrudes to the outer periphery, and the intermediate sleeve has a stepped structure in which the large-diameter cylindrical portion and the small-diameter cylindrical portion are provided via the stepped portion. Since the opposing surfaces of the stepped portions are elastically connected to each other by the main rubber elastic body, a large spring constant can be set by the compression spring component for the axial input, and the deformation amount of the main rubber elastic body can be reduced. It is possible to limit without providing special stopper means. In addition, by arranging a flow path forming rubber in a space formed between the small diameter cylindrical portion and the outer cylindrical member and forming an orifice passage using the space, the spring characteristic of the intended main rubber elastic body can be obtained. While being effectively obtained, the orifice passage can be tuned, the rubber volume of the main rubber elastic body can be increased, and durability can be improved and a hard spring characteristic in the axial direction can be realized.

本発明の第一の実施形態としての自動車用サスペンションブッシュを示す右側面図。The right view which shows the suspension bush for motor vehicles as 1st embodiment of this invention. 図1のII−II断面図。II-II sectional drawing of FIG. 図1のIII−III断面図。III-III sectional drawing of FIG. 図3のIV−IV断面図。IV-IV sectional drawing of FIG. 図1に示すサスペンションブッシュを構成する中間スリーブの右側面図。The right view of the intermediate sleeve which comprises the suspension bush shown in FIG. 図5のVI−VI断面図。VI-VI sectional drawing of FIG. 図5のVII−VII断面図。VII-VII sectional drawing of FIG. 本発明の第二の実施形態としての自動車用サスペンションブッシュを示す断面図であって、図10のVIII−VIII断面に相当する図。It is sectional drawing which shows the suspension bush for motor vehicles as 2nd embodiment of this invention, Comprising: The figure corresponded in the VIII-VIII cross section of FIG. 図8に示すサスペンションブッシュの断面図であって、図10のIX−IX断面に相当する図。It is sectional drawing of the suspension bush shown in FIG. 8, Comprising: The figure corresponded in the IX-IX cross section of FIG. 図9のX−X断面図。XX sectional drawing of FIG.

以下、本発明の実施形態について、図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1〜4には、本発明に従う構造とされた流体封入式筒型防振装置の第一の実施形態として、自動車用のサスペンションブッシュ10が示されている。サスペンションブッシュ10は、インナ軸部材12と中間スリーブ14が、本体ゴム弾性体16によって弾性連結された構造を有している。   1 to 4 show a suspension bush 10 for an automobile as a first embodiment of a fluid-filled cylindrical vibration isolator having a structure according to the present invention. The suspension bush 10 has a structure in which an inner shaft member 12 and an intermediate sleeve 14 are elastically connected by a main rubber elastic body 16.

より詳細には、インナ軸部材12は、鉄やアルミニウム合金等の金属又は繊維補強された合成樹脂などで形成された高剛性の部材であって、厚肉小径の略円筒形状を有している。また、インナ軸部材12の軸方向中間部分には、凸部18が設けられている。凸部18は、インナ軸部材12の外周面から径方向外方に向かって突出しており、略一定の断面形状で全周に亘って連続する環状とされている。本実施形態では、凸部18は、突出先端側である外周側に向かって、次第にインナ軸部材12の軸方向で狭幅となる先細断面形状を有しており、軸方向両側の表面が、それぞれ外周側に行くに従って軸方向内側に傾斜する傾斜面20とされている。   More specifically, the inner shaft member 12 is a high-rigidity member formed of a metal such as iron or aluminum alloy, or a fiber-reinforced synthetic resin, and has a substantially cylindrical shape with a thick wall and a small diameter. . In addition, a convex portion 18 is provided at an intermediate portion in the axial direction of the inner shaft member 12. The convex portion 18 protrudes radially outward from the outer peripheral surface of the inner shaft member 12, and has an annular shape that is continuous over the entire circumference with a substantially constant cross-sectional shape. In the present embodiment, the convex portion 18 has a tapered cross-sectional shape that gradually becomes narrower in the axial direction of the inner shaft member 12 toward the outer peripheral side that is the protruding tip side, and the surfaces on both sides in the axial direction are The inclined surface 20 is inclined inward in the axial direction as it goes to the outer peripheral side.

中間スリーブ14は、インナ軸部材12と同様の材料で形成された高剛性の部材であって、図5〜7に示すように、薄肉大径の略円筒形状を有している。また、中間スリーブ14は、軸方向の中央部分が大径筒部22とされていると共に、軸方向の両端部分が、大径筒部22に比して小径とされた小径筒部24とされている。更に、大径筒部22と小径筒部24は、全周に亘って連続する段差部26によって、相互に一体的に繋がっている。段差部26の中間には、大径筒部22よりも小径且つ小径筒部24よりも大径の中径筒部28が形成されており、大径筒部22と中径筒部28が外周段差部30によって一体的に連結されていると共に、小径筒部24と中径筒部28が内周段差部32によって一体的に連結されている。要するに、大径筒部22と小径筒部24は、外周段差部30と内周段差部32とそれらを繋ぐ中径筒部28とによって相互に連結されており、それら中径筒部28と外周段差部30と内周段差部32とによって、本実施形態の段差部26が構成されている。本実施形態の外周段差部30と内周段差部32は、何れも外周側に行くに従って軸方向内側に傾斜する傾斜形状とされており、段差部26の軸方向内面が、外周側に行くに従って軸方向内側に傾斜する傾斜面34とされている。本実施形態では、大径筒部22の軸方向両側に設けられる一対の段差部26,26が、軸直平面に対して対称となる互いに略同じ形状を有していると共に、中間スリーブ14の軸方向端面から略同じ距離となる位置に形成されている。これにより、中間スリーブ14は、軸方向中央で広がる軸直平面に対して面対称形状とされている。   The intermediate sleeve 14 is a highly rigid member formed of the same material as the inner shaft member 12, and has a thin cylindrical shape with a large diameter as shown in FIGS. The intermediate sleeve 14 has a central portion in the axial direction as a large-diameter cylindrical portion 22 and both end portions in the axial direction as a small-diameter cylindrical portion 24 having a smaller diameter than the large-diameter cylindrical portion 22. ing. Further, the large-diameter cylindrical portion 22 and the small-diameter cylindrical portion 24 are integrally connected to each other by a step portion 26 that is continuous over the entire circumference. In the middle of the stepped portion 26, an intermediate diameter cylindrical portion 28 smaller in diameter than the large diameter cylindrical portion 22 and larger in diameter than the small diameter cylindrical portion 24 is formed, and the large diameter cylindrical portion 22 and the intermediate diameter cylindrical portion 28 are arranged on the outer periphery. The small diameter cylindrical portion 24 and the medium diameter cylindrical portion 28 are integrally connected by the inner peripheral stepped portion 32 while being integrally connected by the stepped portion 30. In short, the large-diameter cylindrical portion 22 and the small-diameter cylindrical portion 24 are connected to each other by the outer peripheral step portion 30, the inner peripheral step portion 32, and the intermediate-diameter cylindrical portion 28 that connects them. The step portion 26 and the inner circumferential step portion 32 constitute the step portion 26 of the present embodiment. Each of the outer peripheral stepped portion 30 and the inner peripheral stepped portion 32 of the present embodiment has an inclined shape that is inclined inward in the axial direction as it goes to the outer peripheral side, and the axial inner surface of the stepped portion 26 goes to the outer peripheral side. The inclined surface 34 is inclined inward in the axial direction. In the present embodiment, the pair of stepped portions 26, 26 provided on both axial sides of the large-diameter cylindrical portion 22 have substantially the same shape that is symmetric with respect to the axial plane, and the intermediate sleeve 14. It is formed at a position that is substantially the same distance from the axial end face. As a result, the intermediate sleeve 14 has a plane-symmetric shape with respect to the axial plane that extends at the center in the axial direction.

なお、本実施形態の中間スリーブ14では、外周段差部30と内周段差部32が中径筒部28を挟んで分かれて設けられていることから、例えば、パイプ材の軸方向両端部分に絞り加工を施して中間スリーブ14を形成する場合に、外周段差部30と内周段差部32が軸方向で離れて形成されるように二段階に絞ることで、目的とする段差部26,26を備えた中間スリーブ14を得ることができる。それ故、一カ所だけに大きな段差を形成する場合よりも絞り加工が容易になって、段付き構造の中間スリーブ14を製造し易くなる。   In the intermediate sleeve 14 of the present embodiment, the outer peripheral step portion 30 and the inner peripheral step portion 32 are provided separately with the intermediate diameter cylindrical portion 28 interposed therebetween. When the intermediate sleeve 14 is formed by processing, the desired stepped portions 26 and 26 are formed by narrowing the outer stepped portion 30 and the inner peripheral stepped portion 32 in two stages so as to be formed apart from each other in the axial direction. The provided intermediate sleeve 14 can be obtained. Therefore, drawing is easier than in the case where a large step is formed only at one place, and the intermediate sleeve 14 having a stepped structure can be easily manufactured.

さらに、中間スリーブ14には、一対の窓部36a,36bが形成されている。窓部36は、軸方向中央部分を径方向に貫通して形成されており、本実施形態では、中径筒部28まで達する軸方向寸法で開口していると共に、半周に満たない長さで周方向に延びている。本実施形態では、一対の窓部36a,36bが互いに略同一形状とされて、径方向一方向に対向して配されている。   Further, the intermediate sleeve 14 is formed with a pair of windows 36a and 36b. The window portion 36 is formed so as to penetrate the central portion in the axial direction in the radial direction. In the present embodiment, the window portion 36 is opened with an axial dimension reaching the middle diameter cylindrical portion 28 and has a length less than a half circumference. It extends in the circumferential direction. In this embodiment, a pair of window parts 36a and 36b are made into the mutually substantially identical shape, and are arrange | positioned facing one radial direction.

そして、図2〜4に示すように、インナ軸部材12が中間スリーブ14に対して内挿されて、径方向で相互に離れて配置されており、それらインナ軸部材12と中間スリーブ14の間に本体ゴム弾性体16が配されている。本体ゴム弾性体16は、全体として厚肉の略円筒形状を有しており、内周面がインナ軸部材12および凸部18に加硫接着されていると共に、外周面が中間スリーブ14に加硫接着されている。なお、本実施形態の本体ゴム弾性体16は、インナ軸部材12と中間スリーブ14を備えた一体加硫成形品38として形成されている。   As shown in FIGS. 2 to 4, the inner shaft member 12 is inserted with respect to the intermediate sleeve 14 and is arranged away from each other in the radial direction, and between the inner shaft member 12 and the intermediate sleeve 14. A main rubber elastic body 16 is disposed on the main body. The main rubber elastic body 16 has a thick, generally cylindrical shape as a whole. The inner peripheral surface is vulcanized and bonded to the inner shaft member 12 and the convex portion 18, and the outer peripheral surface is added to the intermediate sleeve 14. Sulfur bonded. The main rubber elastic body 16 of the present embodiment is formed as an integrally vulcanized molded product 38 including the inner shaft member 12 and the intermediate sleeve 14.

さらに、中間スリーブ14の軸方向両側にそれぞれ設けられた段差部26,26は、凸部18に対して軸方向各一方の側に配されており、凸部18に対して軸方向に離れて位置している。そして、凸部18と段差部26,26の対向面は、本体ゴム弾性体16によって、全周に亘って相互に弾性連結されている。特に本実施形態では、一体加硫成形品38が軸方向中央を通る軸直平面に対して面対称形状とされており、段差部26,26が凸部18に対して略同じ位置関係で軸方向各一方側に配されている。   Further, the step portions 26, 26 provided on both sides in the axial direction of the intermediate sleeve 14 are arranged on one side in the axial direction with respect to the convex portion 18, and are separated from the convex portion 18 in the axial direction. positioned. And the opposing surface of the convex part 18 and the level | step-difference parts 26 and 26 is mutually elastically connected by the main body rubber elastic body 16 over the perimeter. In particular, in this embodiment, the integrally vulcanized molded product 38 is formed in a plane-symmetrical shape with respect to the axial straight plane passing through the center in the axial direction, and the step portions 26 and 26 are axially aligned with the convex portion 18 in substantially the same positional relationship. It is arranged on one side of each direction.

更にまた、凸部18の傾斜面20と段差部26の傾斜面34は、軸方向に対して傾斜した斜め方向で相互に対向していると共に、それら傾斜面20,34に本体ゴム弾性体16が加硫接着されている。本実施形態では、それら傾斜面20,34の対向面間に、全周に亘って本体ゴム弾性体16が配されて、凸部18と段差部26の対向面が全周に亘って本体ゴム弾性体16で弾性連結されている。また、凸部18と段差部26は、軸方向の投影において相互に重なり合っており、本実施形態では、段差部26の内周段差部32が凸部18の突出先端部分と重なり合っていると共に、段差部26の外周段差部30が凸部18よりも外周側に位置している。   Furthermore, the inclined surface 20 of the convex portion 18 and the inclined surface 34 of the step portion 26 are opposed to each other in an oblique direction inclined with respect to the axial direction, and the main rubber elastic body 16 is opposed to the inclined surfaces 20 and 34. Is vulcanized and bonded. In the present embodiment, the main rubber elastic body 16 is disposed over the entire circumference between the opposed surfaces of the inclined surfaces 20 and 34, and the opposed surfaces of the convex portion 18 and the stepped portion 26 are formed over the entire circumference. The elastic body 16 is elastically connected. Further, the convex portion 18 and the stepped portion 26 overlap each other in the axial projection, and in this embodiment, the inner peripheral stepped portion 32 of the stepped portion 26 overlaps the protruding tip portion of the convex portion 18, and The outer peripheral step portion 30 of the step portion 26 is located on the outer peripheral side with respect to the convex portion 18.

さらに、図3,4に示すように、本体ゴム弾性体16には、一対のポケット部40a,40bが形成されている。ポケット部40は、本体ゴム弾性体16の軸方向中央部分において外周面に開口する凹所状とされており、径方向一方向で対向する位置に形成されていると共に、周方向で半周に満たない長さで延びている。そして、一対のポケット部40a,40bは、中間スリーブ14の一対の窓部36a,36bと周上で位置決めされており、一対の窓部36a,36bを通じて外周面に開口している。なお、ポケット部40a,40bの形成部分においても、凸部18は本体ゴム弾性体16で覆われている。   Further, as shown in FIGS. 3 and 4, a pair of pocket portions 40 a and 40 b are formed in the main rubber elastic body 16. The pocket portion 40 is formed in a concave shape that opens to the outer peripheral surface in the axial central portion of the main rubber elastic body 16, is formed at a position facing in one radial direction, and fills a half circumference in the circumferential direction. Extends with no length. The pair of pocket portions 40a, 40b are positioned on the periphery of the pair of window portions 36a, 36b of the intermediate sleeve 14, and open to the outer peripheral surface through the pair of window portions 36a, 36b. In addition, also in the formation part of pocket part 40a, 40b, the convex part 18 is covered with the main body rubber elastic body 16. FIG.

更にまた、本体ゴム弾性体16の軸方向両端部には、それぞれすぐり部42が形成されている。すぐり部42は、本体ゴム弾性体16の軸方向端面に開口する凹所状であって、本実施形態では、図2,3に示すように、軸方向外方に向かって径方向に拡開する断面形状を有していると共に、全周に亘って略一定の断面形状で連続的に形成されている。更に、すぐり部42の最深部44は、小径筒部24の軸方向内端よりも軸方向内方に位置していると共に、大径筒部22の軸方向外端よりも軸方向外方に位置している。   Furthermore, the straight portions 42 are formed at both ends in the axial direction of the main rubber elastic body 16. The straight portion 42 has a concave shape that opens in the axial end surface of the main rubber elastic body 16. In the present embodiment, as shown in FIGS. 2 and 3, the axial portion 42 expands radially outward in the axial direction. And has a substantially constant cross-sectional shape continuously around the entire circumference. Further, the deepest portion 44 of the straight portion 42 is positioned axially inward from the axial inner end of the small diameter cylindrical portion 24 and axially outward from the axial outer end of the large diameter cylindrical portion 22. positioned.

また、中間スリーブ14の軸方向両端部分の外周側には、それぞれ流路形成ゴム46が配設されている。流路形成ゴム46は、周方向に連続する環状とされて、中間スリーブ14の外周面に小径筒部24から中径筒部28にかけて固着されており、本実施形態では、中間スリーブ14に貫通形成された図示しない連通孔を通じて本体ゴム弾性体16と一体形成されている。更に、流路形成ゴム46には、外周面に開口して周方向全周に連続して延びる周溝48が形成されている。本実施形態の周溝48は、内周段差部32および小径筒部24の外周側に形成されており、それら内周段差部32および小径筒部24の外周面形状に応じた溝断面形状を有している。なお、流路形成ゴム46は、外周面の軸方向全体が大径筒部22の外周面と略同じ直径の円筒面とされており、中径筒部28に固着された軸方向内側部分が、小径筒部24に固着された軸方向外側部分よりも薄肉とされている。また、周溝の周方向長さは、後述するオリフィス通路のチューニング等に応じて適宜に変更され得るものであり、例えば、周方向に一周に満たない長さで延びており、周方向端部間が隔壁部で隔てられた構造の周溝も、採用され得る。   Further, flow path forming rubbers 46 are respectively disposed on the outer peripheral sides of both end portions in the axial direction of the intermediate sleeve 14. The flow path forming rubber 46 has an annular shape that is continuous in the circumferential direction, and is fixed to the outer peripheral surface of the intermediate sleeve 14 from the small-diameter cylindrical portion 24 to the intermediate-diameter cylindrical portion 28, and in this embodiment, penetrates the intermediate sleeve 14. It is integrally formed with the main rubber elastic body 16 through the formed communication hole (not shown). Further, the flow path forming rubber 46 is formed with a circumferential groove 48 that opens to the outer peripheral surface and extends continuously along the entire circumference. The circumferential groove 48 of the present embodiment is formed on the outer peripheral side of the inner peripheral stepped portion 32 and the small diameter cylindrical portion 24, and has a groove cross-sectional shape corresponding to the outer peripheral surface shape of the inner peripheral stepped portion 32 and the small diameter cylindrical portion 24. Have. The flow path forming rubber 46 has a cylindrical surface having a substantially same diameter as the outer peripheral surface of the large-diameter cylindrical portion 22 in the entire axial direction of the outer peripheral surface, and an axially inner portion fixed to the medium-diameter cylindrical portion 28. The wall is thinner than the axially outer portion fixed to the small diameter cylindrical portion 24. The circumferential length of the circumferential groove can be appropriately changed according to the tuning of the orifice passage, which will be described later. For example, the circumferential length extends less than one round in the circumferential direction. A circumferential groove having a structure in which the partition walls are separated from each other can also be adopted.

また、一体加硫成形品38の中間スリーブ14には、アウタ筒部材50が取り付けられている。アウタ筒部材50は、インナ軸部材12および中間スリーブ14と同様の材料で形成された高剛性の部材であって、薄肉大径の略円筒形状を有している。更に、アウタ筒部材50の軸方向両端部には、内周側に向かって延び出す内フランジ部52が、それぞれ全周に亘って連続的に形成されている。   Further, an outer cylinder member 50 is attached to the intermediate sleeve 14 of the integrally vulcanized molded product 38. The outer cylinder member 50 is a highly rigid member formed of the same material as the inner shaft member 12 and the intermediate sleeve 14 and has a thin cylindrical shape with a large diameter. Furthermore, the inner flange part 52 extended toward the inner peripheral side is continuously formed in the axial direction both ends of the outer cylinder member 50, respectively over the perimeter.

さらに、アウタ筒部材50の内周面には、シールゴム層54が被着形成されている。シールゴム層54は、薄肉筒状のゴム層であって、アウタ筒部材50における内フランジ部52を除く中間部分の内周面を被覆している。なお、本実施形態のシールゴム層54には、軸方向両端部にそれぞれ二条のシールリップ56,56が一体形成されており、それらシールリップ56が、何れも、シールゴム層54から内周側に突出していると共に、全周に亘って連続して延びている。   Further, a seal rubber layer 54 is formed on the inner peripheral surface of the outer cylinder member 50. The seal rubber layer 54 is a thin-walled cylindrical rubber layer and covers the inner peripheral surface of the intermediate portion of the outer cylinder member 50 excluding the inner flange portion 52. The seal rubber layer 54 of this embodiment is integrally formed with two seal lips 56, 56 at both ends in the axial direction, and both of these seal lips 56 protrude from the seal rubber layer 54 to the inner peripheral side. And extends continuously over the entire circumference.

そして、アウタ筒部材50は、一体加硫成形品38の中間スリーブ14に嵌着されている。即ち、アウタ筒部材50が中間スリーブ14に外挿されて、アウタ筒部材50の軸方向中央部分が、図2に示すように、中間スリーブ14の大径筒部22に外嵌固定されている。更に、流路形成ゴム46が中間スリーブ14とアウタ筒部材50の径方向間に配設されて、それら中間スリーブ14とアウタ筒部材50の径方向間で挟圧されており、流路形成ゴム46の外周面がアウタ筒部材50の内周面に密着している。更にまた、アウタ筒部材50の内フランジ部52は、流路形成ゴム46の軸方向外面に当接状態で重ね合わされていると共に、突出先端部が中間スリーブ14に軸方向で当接されて、中間スリーブ14とアウタ筒部材50が軸方向に位置決めされている。換言すれば、アウタ筒部材50の軸方向中央部分が中間スリーブ14に外嵌されると共に、アウタ筒部材50の内フランジ部52が中間スリーブ14の軸方向端面に当接されることにより、中間スリーブ14の小径筒部24および段差部26とアウタ筒部材50とによって囲まれた略環状のスペースが形成されており、当該スペースに流路形成ゴム46が圧縮状態で収容されている。なお、アウタ筒部材50の内周面にシールゴム層54が設けられていることにより、中間スリーブ14の大径筒部22および流路形成ゴム46は、アウタ筒部材50に対して、シールゴム層54を介して流体密に密着されている。   The outer cylinder member 50 is fitted to the intermediate sleeve 14 of the integrally vulcanized molded product 38. That is, the outer cylinder member 50 is extrapolated to the intermediate sleeve 14, and the axially central portion of the outer cylinder member 50 is externally fixed to the large-diameter cylinder portion 22 of the intermediate sleeve 14 as shown in FIG. . Further, a flow path forming rubber 46 is disposed between the radial directions of the intermediate sleeve 14 and the outer cylindrical member 50, and is sandwiched between the radial directions of the intermediate sleeve 14 and the outer cylindrical member 50. The outer peripheral surface of 46 is in close contact with the inner peripheral surface of the outer cylinder member 50. Furthermore, the inner flange portion 52 of the outer cylinder member 50 is superimposed on the axial outer surface of the flow path forming rubber 46 in a contact state, and the protruding tip portion is in contact with the intermediate sleeve 14 in the axial direction. The intermediate sleeve 14 and the outer cylinder member 50 are positioned in the axial direction. In other words, the axially central portion of the outer cylindrical member 50 is externally fitted to the intermediate sleeve 14, and the inner flange portion 52 of the outer cylindrical member 50 is brought into contact with the axial end surface of the intermediate sleeve 14, thereby A substantially annular space surrounded by the small diameter cylindrical portion 24 and the stepped portion 26 of the sleeve 14 and the outer cylindrical member 50 is formed, and the flow path forming rubber 46 is accommodated in the compressed space. Since the seal rubber layer 54 is provided on the inner peripheral surface of the outer cylinder member 50, the large-diameter cylinder portion 22 and the flow path forming rubber 46 of the intermediate sleeve 14 have a seal rubber layer 54 with respect to the outer cylinder member 50. Is in close contact with the fluid tightly.

また、アウタ筒部材50が中間スリーブ14に外嵌装着されることによって、中間スリーブ14の一対の窓部36a,36bが、アウタ筒部材50によって流体密に閉塞されている。これにより、本体ゴム弾性体16の一対のポケット部40a,40bの開口部が、アウタ筒部材50によって流体密に覆蓋されており、壁部の一部を本体ゴム弾性体16で構成された一対の流体室58a,58bが、一対のポケット部40a,40bを用いて形成されている。更に、一対の流体室58a,58bには、非圧縮性流体が封入されている。この非圧縮性流体は、特に限定されないが、例えば、水やエチレングリコール、アルキレングリコール、ポリアルキレングリコール、シリコーン油、或いはそれらの混合液などの液体が、好適に用いられる。より好適には、後述する流体の流動作用に基づいた防振効果を有利に得るために、0.1Pa・s以下の低粘性流体が採用される。   Further, the outer cylinder member 50 is externally fitted to the intermediate sleeve 14, whereby the pair of windows 36 a and 36 b of the intermediate sleeve 14 are closed fluid-tightly by the outer cylinder member 50. Thereby, the opening part of a pair of pocket part 40a, 40b of the main body rubber elastic body 16 is covered fluid-tightly by the outer cylinder member 50, and a part of wall part is comprised by the main body rubber elastic body 16. The fluid chambers 58a and 58b are formed using a pair of pocket portions 40a and 40b. Further, an incompressible fluid is sealed in the pair of fluid chambers 58a and 58b. Although this incompressible fluid is not specifically limited, For example, liquids, such as water, ethylene glycol, alkylene glycol, polyalkylene glycol, silicone oil, or those liquid mixture, are used suitably. More preferably, a low-viscosity fluid of 0.1 Pa · s or less is employed in order to advantageously obtain a vibration isolation effect based on the fluid flow action described later.

また、流路形成ゴム46に形成された周溝48の開口部が、アウタ筒部材50で流体密に覆蓋されることによって、周方向環状に延びるトンネル状の流路が形成されている。そして、当該トンネル状流路が周上の二箇所に形成された連通路60を通じて一対の流体室58a,58bに連通されることにより、一対の流体室58a,58bを相互に連通するオリフィス通路62が、周方向に延びて形成されている。このオリフィス通路62は、流動流体の共振周波数であるチューニング周波数が、一対の流体室58a,58bの壁ばね剛性を考慮しながら、通路断面積(A)と通路長(L)の比(A/L)を調節することにより、適宜に設定されている。本実施形態では、軸方向両側に互いに略同じ形状のオリフィス通路62がそれぞれ形成されており、それらオリフィス通路62のチューニング周波数が互いに略同じとされているが、軸方向両側に互いに異なる形状のオリフィス通路が形成されるなどして、それらオリフィス通路のチューニング周波数が互いに異なっていても良い。なお、シールゴム層54に形成された二条一組のシールリップ56,56が、周溝48の開口に対して軸方向各一方において流路形成ゴム46に当接しており、オリフィス通路62の流体密性が確保されている。   In addition, the opening of the circumferential groove 48 formed in the flow path forming rubber 46 is fluid-tightly covered with the outer cylindrical member 50, thereby forming a tunnel-shaped flow path extending in the circumferential direction. And the said tunnel-shaped flow path is connected to a pair of fluid chamber 58a, 58b through the communication path 60 formed in two places on the circumference, The orifice channel | path 62 which connects a pair of fluid chamber 58a, 58b mutually Is formed extending in the circumferential direction. In the orifice passage 62, the tuning frequency, which is the resonance frequency of the flowing fluid, takes into account the wall spring rigidity of the pair of fluid chambers 58a and 58b, and the ratio of the passage sectional area (A) to the passage length (L) (A / It is set appropriately by adjusting L). In the present embodiment, orifice passages 62 having substantially the same shape are formed on both sides in the axial direction, and the tuning frequencies of the orifice passages 62 are substantially the same, but orifices having different shapes on both sides in the axial direction. The tuning frequencies of these orifice passages may be different from each other, for example, by forming passages. A pair of two seal lips 56, 56 formed on the seal rubber layer 54 are in contact with the flow path forming rubber 46 in one axial direction with respect to the opening of the circumferential groove 48, so that the fluid tightness of the orifice passage 62 is maintained. Is secured.

かくの如き構造とされたサスペンションブッシュ10は、インナ軸部材12が図示しない車両ボデー側に取り付けられると共に、アウタ筒部材50が図示しないサスペンション側のトレーリングアームなどに取り付けられることにより、車両に装着されて、車両ボデーとサスペンションを防振連結するようになっている。   The suspension bush 10 having such a structure is mounted on the vehicle by the inner shaft member 12 being attached to the vehicle body side (not shown) and the outer cylinder member 50 being attached to a trailing arm on the suspension side (not shown). Thus, the vehicle body and the suspension are connected in a vibration-proof manner.

そして、車両装着状態において、インナ軸部材12とアウタ筒部材50の間に、一対の流体室58a,58bが対向する径方向の振動が入力されると、一対の流体室58a,58bに惹起される相対的な圧力差に基づいて、一対の流体室58a,58b間でオリフィス通路62を通じた流体流動が生ぜしめられる。これにより、流体の共振作用等の流動作用に基づく防振効果が発揮される。   In the vehicle mounted state, when vibration in the radial direction in which the pair of fluid chambers 58a and 58b oppose each other is input between the inner shaft member 12 and the outer cylinder member 50, the pair of fluid chambers 58a and 58b are caused. Based on the relative pressure difference, fluid flow through the orifice passage 62 occurs between the pair of fluid chambers 58a and 58b. Thereby, an anti-vibration effect based on a fluid action such as a resonance action of the fluid is exhibited.

さらに、一対の流体室58a,58bが形成された径方向に過大な振幅の荷重が入力されると、凸部18がアウタ筒部材50に当接することにより、インナ軸部材12とアウタ筒部材50の相対変位量が制限されて、径方向のストッパ手段が構成されるようになっている。   Further, when an excessively large load is input in the radial direction in which the pair of fluid chambers 58a and 58b is formed, the projecting portion 18 comes into contact with the outer cylinder member 50, whereby the inner shaft member 12 and the outer cylinder member 50 are contacted. The relative displacement amount is limited, and the stopper means in the radial direction is configured.

また、インナ軸部材12とアウタ筒部材50の間に軸方向の振動が入力されると、本体ゴム弾性体16の弾性変形によるエネルギー減衰作用などに基づいて、目的とする防振効果が発揮される。   Further, when an axial vibration is input between the inner shaft member 12 and the outer cylinder member 50, a target vibration-proofing effect is exhibited based on an energy damping action due to elastic deformation of the main rubber elastic body 16. The

ここにおいて、本体ゴム弾性体16は、インナ軸部材12の凸部18と中間スリーブ14の段差部26との対向面間にも配されており、軸方向の振動入力に対して、本体ゴム弾性体16がそれら凸部18と段差部26との間で軸方向に圧縮される。これにより、本体ゴム弾性体16が軸方向入力で変形する際には、圧縮ばね成分による比較的に硬いばね特性が発揮されて、軸方向入力に対する本体ゴム弾性体16の変形量が低減されることから、耐久性の向上が図られる。しかも、本体ゴム弾性体16の変形量が、本体ゴム弾性体16自体のばね定数を大きくすることで制限されることから、インナ軸部材12とアウタ筒部材50の軸方向への相対変位量を制限するストッパ手段を特別に設ける必要がなく、部品点数の少ない簡単且つコンパクトな構造を採用することができる。   Here, the main rubber elastic body 16 is also disposed between the opposed surfaces of the convex portion 18 of the inner shaft member 12 and the stepped portion 26 of the intermediate sleeve 14, and the main rubber elastic body 16 is subjected to main body rubber elasticity against axial vibration input. The body 16 is compressed in the axial direction between the convex portion 18 and the step portion 26. Accordingly, when the main rubber elastic body 16 is deformed by the axial input, a relatively hard spring characteristic is exerted by the compression spring component, and the deformation amount of the main rubber elastic body 16 with respect to the axial input is reduced. Therefore, the durability is improved. In addition, since the deformation amount of the main rubber elastic body 16 is limited by increasing the spring constant of the main rubber elastic body 16 itself, the relative displacement amount in the axial direction of the inner shaft member 12 and the outer cylinder member 50 can be reduced. There is no need to provide a special stopper means for limiting, and a simple and compact structure with a small number of parts can be employed.

本実施形態では、凸部18の軸方向外面が傾斜面20とされていると共に、段差部26の軸方向内面が傾斜面34とされており、それら傾斜面20,34の対向間に本体ゴム弾性体16が配されて、本体ゴム弾性体16が軸方向および軸直角方向に対して傾斜して延びている。それ故、本体ゴム弾性体16の延出方向の傾斜角度や、傾斜面20,34の傾斜角度などを、適宜に設定することで、軸方向のばねと軸直角方向のばねとの比を適切に調節することができる。   In the present embodiment, the outer surface in the axial direction of the convex portion 18 is an inclined surface 20, and the inner surface in the axial direction of the step portion 26 is an inclined surface 34, and the main rubber is between the inclined surfaces 20 and 34. The elastic body 16 is disposed, and the main rubber elastic body 16 extends while being inclined with respect to the axial direction and the direction perpendicular to the axis. Therefore, by appropriately setting the inclination angle of the main rubber elastic body 16 in the extending direction and the inclination angles of the inclined surfaces 20 and 34, the ratio of the axial spring to the axially perpendicular spring is appropriately set. Can be adjusted to.

さらに、本体ゴム弾性体16の軸方向両端部にすぐり部42が形成されて、本体ゴム弾性体16の軸直角方向でのばねが低減されていることから、軸直角方向の振動入力に対して、優れた振動絶縁作用を得ることができると共に、一対の流体室58a,58bの相対的な圧力変動が生じ易くなって、流体の流動作用に基づいた防振効果を有利に得ることができる。本実施形態のすぐり部42は、最深部44が軸方向で大径筒部22と小径筒部24の間に位置する深さとされていることから、軸直角方向のばねを有効に低減しながら、ゴムボリュームを十分に確保することで軸方向のばねの低下が防止されている。特に、すぐり部42の内面における最深部44よりも外周部分は、凸部18と段差部26の対向方向に広がっており、本体ゴム弾性体16が凸部18と段差部26の対向面間で有効に圧縮されるようになっている。   Further, since the straight portions 42 are formed at both axial end portions of the main rubber elastic body 16 and the spring in the direction perpendicular to the axis of the main rubber elastic body 16 is reduced, the vibration input in the direction perpendicular to the axis can be reduced. In addition to being able to obtain an excellent vibration isolation action, relative pressure fluctuations of the pair of fluid chambers 58a and 58b are likely to occur, and a vibration isolation effect based on the fluid flow action can be advantageously obtained. In the straight portion 42 of the present embodiment, the deepest portion 44 has a depth located between the large-diameter cylindrical portion 22 and the small-diameter cylindrical portion 24 in the axial direction, so that the spring in the direction perpendicular to the axis is effectively reduced. By ensuring a sufficient rubber volume, the axial spring is prevented from lowering. In particular, the outer peripheral portion of the inner surface of the straight portion 42 is wider than the deepest portion 44 in the opposing direction of the convex portion 18 and the step portion 26, and the main rubber elastic body 16 is between the opposing surfaces of the convex portion 18 and the step portion 26. It is designed to be effectively compressed.

更にまた、凸部18と段差部26の内周段差部32とが、軸方向の投影において相互に重なり合っており、それら凸部18と内周段差部32の軸方向間に本体ゴム弾性体16が配されていることから、軸方向の振動入力時に本体ゴム弾性体16の圧縮ばね成分がより支配的になる。その結果、軸方向において本体ゴム弾性体16のばね定数が大きくされて、荷重入力に対する変形量が抑えられることから、耐久性の向上が図られる。   Furthermore, the convex portion 18 and the inner peripheral step portion 32 of the step portion 26 overlap each other in the axial projection, and the main rubber elastic body 16 is interposed between the convex portion 18 and the inner peripheral step portion 32 in the axial direction. Therefore, the compression spring component of the main rubber elastic body 16 becomes more dominant at the time of axial vibration input. As a result, the spring constant of the main rubber elastic body 16 is increased in the axial direction, and the amount of deformation with respect to the load input is suppressed, so that the durability is improved.

さらに、凸部18と段差部26がそれぞれ全周に亘って形成されており、それら凸部18と段差部26の間に本体ゴム弾性体16が全周に亘って介在されていることから、軸方向のばねをより効率的に得ることができる。なお、本実施形態では、段差部26の内周段差部32だけが全周に亘って形成されており、外周段差部30は窓部36a,36bの形成部分には設けられていないが、外周段差部30を含む段差部26の全体が全周に亘って形成されていても良い。   Furthermore, since the convex part 18 and the level | step difference part 26 are each formed over the perimeter, and the main body rubber elastic body 16 is interposed over the perimeter between these convex parts 18 and the level | step difference part 26, An axial spring can be obtained more efficiently. In the present embodiment, only the inner circumferential step portion 32 of the step portion 26 is formed over the entire circumference, and the outer circumferential step portion 30 is not provided in the formation portion of the window portions 36a and 36b. The entire stepped portion 26 including the stepped portion 30 may be formed over the entire circumference.

また、本体ゴム弾性体16の軸方向のばね定数を大きくするために、中間スリーブ14に段差部26を形成したことによって、中間スリーブ14の軸方向両端部分とアウタ筒部材50との径方向間にスペースが形成されており、かかるスペースを巧く利用してオリフィス通路62が形成されている。その結果、従来ではポケット部40a,40bの開口部まで延び出して配されていたオリフィス通路の形成部材を廃することができて、流体室58a,58bの容積を確保しながら、本体ゴム弾性体16のゴムボリュームを大きく得ることが可能とされている。   Further, in order to increase the spring constant in the axial direction of the main rubber elastic body 16, the step portion 26 is formed in the intermediate sleeve 14, so that the distance between the axial end portions of the intermediate sleeve 14 and the outer cylindrical member 50 is reduced. The orifice passage 62 is formed by making good use of the space. As a result, it is possible to eliminate the orifice passage forming member that has been conventionally extended to the openings of the pocket portions 40a and 40b, and to ensure the volume of the fluid chambers 58a and 58b, while maintaining the volume of the fluid chambers 58a and 58b. It is possible to obtain a large 16 rubber volume.

しかも、段差部26の形成によってできたスペースに流路形成ゴム46を配することにより、オリフィス通路62を流路形成ゴム46の形状によって適宜にチューニングすることができる。従って、要求される本体ゴム弾性体16のばね特性に応じて段差部26の位置や径方向寸法などを適宜に設定しつつ、防振対象振動に応じたオリフィス通路62のチューニングを容易に実現することができる。特に本実施形態では、流路形成ゴム46が本体ゴム弾性体16と一体形成されていることから、部品点数の削減も実現される。   Moreover, by arranging the flow path forming rubber 46 in the space formed by the formation of the stepped portion 26, the orifice passage 62 can be appropriately tuned according to the shape of the flow path forming rubber 46. Therefore, the orifice passage 62 can be easily tuned in accordance with the vibration-proof vibration while appropriately setting the position and radial dimension of the stepped portion 26 according to the required spring characteristic of the main rubber elastic body 16. be able to. In particular, in this embodiment, since the flow path forming rubber 46 is integrally formed with the main rubber elastic body 16, the number of parts can be reduced.

さらに、アウタ筒部材50の内フランジ部52が、流路形成ゴム46の軸方向外面に当接状態で重ね合わされており、中間スリーブ14とアウタ筒部材50の径方向間で圧縮された流路形成ゴム46が、軸方向外方への膨出変形を内フランジ部52によって制限されている。それ故、流路形成ゴム46の外周面がアウタ筒部材50の内周面に密着されて、優れたシール性が発揮されることから、流体室58a,58bとオリフィス通路62の短絡などが防止される。加えて、流路形成ゴム46が十分に弾性変形した状態で配されることにより、流路形成ゴム46の更なる弾性変形が制限されて、オリフィス通路62の形状の安定化なども図られる。   Further, the inner flange portion 52 of the outer cylinder member 50 is overlapped in contact with the outer surface in the axial direction of the flow path forming rubber 46, and the flow path is compressed between the radial direction of the intermediate sleeve 14 and the outer cylinder member 50. The forming rubber 46 is restricted by the inner flange portion 52 from bulging outward in the axial direction. Therefore, since the outer peripheral surface of the flow path forming rubber 46 is brought into close contact with the inner peripheral surface of the outer cylinder member 50 and excellent sealing performance is exhibited, short circuit between the fluid chambers 58a and 58b and the orifice passage 62 is prevented. Is done. In addition, since the flow path forming rubber 46 is arranged in a state of being sufficiently elastically deformed, further elastic deformation of the flow path forming rubber 46 is limited, and the shape of the orifice passage 62 is stabilized.

しかも、本実施形態では、内フランジ部52が中間スリーブ14の軸方向端面に当接していることから、中間スリーブ14とアウタ筒部材50が軸方向で相対的に位置決めされると共に、流路形成ゴム46の軸方向外方への逃げをより効果的に防いで、シール性の向上やオリフィス通路62の形状安定化などが有利に実現される。   Moreover, in the present embodiment, since the inner flange portion 52 is in contact with the axial end surface of the intermediate sleeve 14, the intermediate sleeve 14 and the outer cylinder member 50 are relatively positioned in the axial direction, and the flow path is formed. The escape of the rubber 46 in the axially outward direction can be prevented more effectively, and an improvement in sealing performance and a stabilization of the shape of the orifice passage 62 can be advantageously realized.

更にまた、段差部26は、外周段差部30と内周段差部32の間に、軸方向に延びる中径筒部28が設けられて、外周段差部30と内周段差部32が軸方向に分かれて設けられた構造を有している。それ故、流路形成ゴム46の薄肉部分が、小径筒部24よりも大径とされた中径筒部28とアウタ筒部材50との間で径方向に狭圧されることにより、優れたシール性能を得ることができる。本実施形態では、アウタ筒部材50の中間スリーブ14への嵌着時に、小径筒部24の外周に配されるアウタ筒部材50の軸方向端部が、軸方向中間部分に比してより大きく縮径されており、流路形成ゴム46が厚肉とされた軸方向端部においても十分なシール性能が発揮される。なお、アウタ筒部材50は、中間スリーブ14への外嵌装着状態において、軸方向両端部が中間部分よりも小径とされた段付き筒形状とされている。   Furthermore, the step portion 26 is provided with an intermediate-diameter cylindrical portion 28 extending in the axial direction between the outer peripheral step portion 30 and the inner peripheral step portion 32, so that the outer peripheral step portion 30 and the inner peripheral step portion 32 extend in the axial direction. It has a separate structure. Therefore, the thin-walled portion of the flow path forming rubber 46 is excellent in that it is narrowed in the radial direction between the middle-diameter cylindrical portion 28 and the outer cylindrical member 50 that have a larger diameter than the small-diameter cylindrical portion 24. Sealing performance can be obtained. In the present embodiment, when the outer cylindrical member 50 is fitted to the intermediate sleeve 14, the axial end of the outer cylindrical member 50 disposed on the outer periphery of the small diameter cylindrical portion 24 is larger than the axial intermediate portion. Sufficient sealing performance is exhibited even at the axial end where the diameter is reduced and the flow path forming rubber 46 is thick. Note that the outer cylinder member 50 has a stepped cylinder shape in which both end portions in the axial direction are smaller in diameter than the intermediate portion in the external fitting state to the intermediate sleeve 14.

図8〜10には、本発明に従う構造とされた流体封入式筒型防振装置の第二の実施形態として、自動車用のサスペンションブッシュ70が示されている。以下の説明において、第一の実施形態と実質的に同一の部材および部位については、図中に同一の符号を付すことにより、説明を省略する。   8 to 10 show a suspension bush 70 for an automobile as a second embodiment of the fluid-filled cylindrical vibration isolator having a structure according to the present invention. In the following description, members and portions that are substantially the same as those in the first embodiment are denoted by the same reference numerals in the drawings, and the description thereof is omitted.

より詳細には、サスペンションブッシュ70は、インナ軸部材72を備えている。インナ軸部材72は、全体として厚肉小径の略円筒形状を有していると共に、軸方向中央部分には外周側に突出する凸部74を一体的に備えている。凸部74は、略一定の断面形状で全周に亘って連続的に形成されている。本実施形態のインナ軸部材72は、内径寸法が軸方向の全体に亘って略一定とされていると共に、外径寸法が凸部74を形成された軸方向中央部分で部分的に大きくされており、凸部74の形成部分が径方向に厚肉とされている。尤も、凸部は、例えば、インナ軸部材の軸方向中央部分が、外径寸法だけでなく内径寸法も大きくなるように拡径されることによって、バルジ状の態様で形成されていても良い。   More specifically, the suspension bush 70 includes an inner shaft member 72. The inner shaft member 72 as a whole has a substantially cylindrical shape with a large wall thickness and a small diameter, and is integrally provided with a convex portion 74 protruding toward the outer peripheral side at the central portion in the axial direction. The convex portion 74 is continuously formed over the entire circumference with a substantially constant cross-sectional shape. The inner shaft member 72 of the present embodiment has an inner diameter dimension that is substantially constant over the entire axial direction, and an outer diameter dimension that is partially increased at the central portion in the axial direction where the convex portion 74 is formed. And the formation part of the convex part 74 is made thick in radial direction. However, the convex portion may be formed in a bulge-like manner, for example, by expanding the central portion of the inner shaft member in the axial direction so that not only the outer diameter dimension but also the inner diameter dimension is increased.

このような本実施形態に従う構造とされたサスペンションブッシュ70においても、第一の実施形態に係るサスペンションブッシュ10と同様の効果を得ることができる。更に、本実施形態では、凸部74がインナ軸部材72に一体形成されていることから、部品点数の削減が図られると共に、別体の凸部を形成する工程や凸部をインナ軸部材に固着する工程などを省略することができて、製造がより容易になる。   Also in the suspension bush 70 having the structure according to this embodiment, the same effect as that of the suspension bush 10 according to the first embodiment can be obtained. Furthermore, in this embodiment, since the convex part 74 is integrally formed with the inner shaft member 72, the number of parts can be reduced, and the process of forming a separate convex part and the convex part can be used as the inner shaft member. The step of fixing can be omitted, and the manufacturing becomes easier.

以上、本発明の実施形態について詳述してきたが、本発明はその具体的な記載によって限定されない。例えば、段差部は、必ずしも前記実施形態のような外周段差部30と内周段差部32に分かれた構造を有するものに限定されず、例えば、大径筒部22と小径筒部24が一つの段差部で繋がれた、中径筒部28の無い構造も採用され得る。   As mentioned above, although embodiment of this invention was explained in full detail, this invention is not limited by the specific description. For example, the stepped portion is not necessarily limited to the one having the structure divided into the outer peripheral stepped portion 30 and the inner peripheral stepped portion 32 as in the above-described embodiment. For example, the large diameter cylindrical portion 22 and the small diameter cylindrical portion 24 are one. A structure without the middle-diameter cylindrical portion 28 connected by a stepped portion can also be adopted.

また、段差部は、必ずしも軸直角方向に対して傾斜していなくても良く、例えば段差部の軸方向内面が軸直角方向に広がっていても良い。同様に、凸部の軸方向表面も、例えば軸直角方向に広がる非傾斜面で構成され得る。更に、前記実施形態のように、段差部が中間スリーブの軸方向両側に形成される場合には、それら一対の段差部は互いに異なる形状や軸方向位置をもって形成されていても良く、中間スリーブは軸直平面に対して対称形状である必要はない。このような非対称形状の中間スリーブを採用すれば、防振特性のブロード化などが実現可能となり得る。   Further, the stepped portion does not necessarily have to be inclined with respect to the direction perpendicular to the axis. For example, the inner surface in the axial direction of the stepped portion may extend in the direction perpendicular to the axis. Similarly, the axial surface of the convex portion can also be constituted by a non-inclined surface extending in a direction perpendicular to the axis, for example. Further, when the stepped portions are formed on both sides in the axial direction of the intermediate sleeve as in the above-described embodiment, the pair of stepped portions may be formed with different shapes and axial positions. The shape need not be symmetric with respect to the axial plane. By adopting such an asymmetrical intermediate sleeve, it is possible to realize broadening of vibration-proof characteristics.

また、凸部18と段差部26は、要求されるばね特性などによっては、軸方向投影において重なり合っていなくても良く、例えば、凸部18の全体が段差部26に対して内周側に位置していても良い。   Further, depending on the required spring characteristics and the like, the projection 18 and the stepped portion 26 may not overlap in the axial projection. For example, the entire projection 18 is positioned on the inner peripheral side with respect to the stepped portion 26. You may do it.

また、流路形成ゴム46は、本体ゴム弾性体16とは別体で形成することも可能であり、例えば、シールゴム層54と一体形成されて、アウタ筒部材50の内周面に固着されていても良い。   The flow path forming rubber 46 may be formed separately from the main rubber elastic body 16. For example, the flow path forming rubber 46 is integrally formed with the seal rubber layer 54 and fixed to the inner peripheral surface of the outer cylinder member 50. May be.

また、オリフィス通路62は、中間スリーブ14の何れか一方の軸方向端部においてのみ、流路形成ゴム46によって形成されていても良い。この場合には、オリフィス通路62を形成されない他方の軸方向端部では、中間スリーブ14の軸方向端部とアウタ筒部材50との間のスペースが、ゴム弾性体で充填されることが望ましい。尤も、中間スリーブが軸方向一方の端部だけに小径筒部24を設けた構造とされて、小径筒部24を備える軸方向一方の端部においてのみ流路形成ゴム46によるオリフィス通路62が形成されていても良い。なお、オリフィス通路62の周方向長さや断面形状などといった具体的な構造も、前記実施形態によって限定的に解釈されるものではない。   Further, the orifice passage 62 may be formed by the flow path forming rubber 46 only at one axial end portion of the intermediate sleeve 14. In this case, it is desirable that the space between the axial end of the intermediate sleeve 14 and the outer cylindrical member 50 is filled with a rubber elastic body at the other axial end where the orifice passage 62 is not formed. However, the intermediate sleeve has a structure in which the small diameter cylindrical portion 24 is provided only at one end portion in the axial direction, and the orifice passage 62 is formed by the flow path forming rubber 46 only at one axial end portion including the small diameter cylindrical portion 24. May be. The specific structure such as the circumferential length and cross-sectional shape of the orifice passage 62 is not limitedly interpreted by the embodiment.

また、アウタ筒部材50の内フランジ部52は、中間スリーブ14の軸方向端面まで達していなくても良いし、中間スリーブ14の軸方向端面を越えて内周まで突出していても良い。更に、内フランジ部52は、中間スリーブ14の軸方向端面に当接していなくても良く、内フランジ部52と中間スリーブ14の当接によって、中間スリーブ14とアウタ筒部材50を軸方向で位置決めする手段を構成することは、本発明において必須ではない。なお、アウタ筒部材50において、内フランジ部52は省略され得る。   Further, the inner flange portion 52 of the outer cylinder member 50 may not reach the axial end surface of the intermediate sleeve 14, or may protrude to the inner periphery beyond the axial end surface of the intermediate sleeve 14. Further, the inner flange portion 52 may not be in contact with the axial end surface of the intermediate sleeve 14, and the intermediate sleeve 14 and the outer cylindrical member 50 are positioned in the axial direction by the contact between the inner flange portion 52 and the intermediate sleeve 14. It is not essential in the present invention to configure the means to do this. In the outer cylinder member 50, the inner flange portion 52 can be omitted.

また、流体室は三つ以上が形成される場合もあり、それに伴って本体ゴム弾性体のポケット部および中間スリーブの窓部も三つ以上が形成され得る。   In addition, three or more fluid chambers may be formed, and accordingly, three or more pocket portions of the main rubber elastic body and a window portion of the intermediate sleeve may be formed.

前記実施形態では、本発明に係る流体封入式筒型防振装置をサスペンションブッシュに適用した例を示したが、本発明に係る流体封入式筒型防振装置は、サスペンションブッシュに限定されることなく、例えばエンジンマウントなどにも好適に採用され得る。また、本発明は、自動車用に限定されず、自動二輪車や鉄道用車両、産業用車両などに用いられる流体封入式筒型防振装置にも適用され得る。   In the above-described embodiment, an example in which the fluid-filled cylindrical vibration isolator according to the present invention is applied to a suspension bush has been shown. However, the fluid-filled cylindrical vibration isolator according to the present invention is limited to a suspension bush. For example, it can be suitably employed for an engine mount or the like. Further, the present invention is not limited to automobiles, and can be applied to fluid-filled cylindrical vibration damping devices used for motorcycles, railway vehicles, industrial vehicles, and the like.

10,70:サスペンションブッシュ(流体封入式筒型防振装置)、12,72:インナ軸部材、14:中間スリーブ、16:本体ゴム弾性体、18,74:凸部、20:傾斜面、22:大径筒部、24:小径筒部、26:段差部、28:中径筒部、30:外周段差部、32:内周段差部、34:傾斜面、36:窓部、40:ポケット部、42:すぐり部、44:最深部、46:流路形成ゴム、48:周溝、50:アウタ筒部材、52:内フランジ部、58:流体室、62:オリフィス通路 10, 70: Suspension bush (fluid-filled cylindrical vibration isolator), 12, 72: Inner shaft member, 14: Intermediate sleeve, 16: Rubber elastic body, 18, 74: Projection, 20: Inclined surface, 22 : Large diameter cylindrical portion, 24: Small diameter cylindrical portion, 26: Stepped portion, 28: Medium diameter cylindrical portion, 30: Outer peripheral stepped portion, 32: Inner peripheral stepped portion, 34: Inclined surface, 36: Window portion, 40: Pocket Part: 42: straight part, 44: deepest part, 46: flow path forming rubber, 48: circumferential groove, 50: outer cylindrical member, 52: inner flange part, 58: fluid chamber, 62: orifice passage

Claims (12)

インナ軸部材が中間スリーブに内挿配置されて、それらインナ軸部材と中間スリーブが本体ゴム弾性体によって弾性連結されており、該本体ゴム弾性体に形成された複数のポケット部が該中間スリーブの軸方向中間部分に形成された複数の窓部を通じて外周面に開口していると共に、該中間スリーブにはアウタ筒部材が外嵌されて、該窓部が該アウタ筒部材で覆蓋されることにより非圧縮性流体を封入された複数の流体室が該ポケット部によって形成されていると共に、それら流体室を相互に連通するオリフィス通路が形成されている流体封入式筒型防振装置において、
前記インナ軸部材には軸方向中間部分で外周側に突出する凸部が設けられていると共に、
前記中間スリーブに大径筒部が設けられて、前記アウタ筒部材が該大径筒部に外嵌されていると共に、
該中間スリーブの軸方向両側端部に小径筒部が設けられて、それら大径筒部と小径筒部が段差部によって相互に連結されており、該凸部と該段差部軸方向両側での対向面が該本体ゴム弾性体によって弾性連結されている一方、
該小径筒部の外周側には流路形成ゴムが該アウタ筒部材との間に配されていると共に、該流路形成ゴムには前記オリフィス通路が周方向に延びて形成されていることを特徴とする流体封入式筒型防振装置。
The inner shaft member is inserted into the intermediate sleeve, the inner shaft member and the intermediate sleeve are elastically connected by the main rubber elastic body, and a plurality of pocket portions formed in the main rubber elastic body are formed in the intermediate sleeve. Opening to the outer peripheral surface through a plurality of window portions formed in the intermediate portion in the axial direction, the outer sleeve member is externally fitted to the intermediate sleeve, and the window portion is covered with the outer tube member. In a fluid-filled cylindrical vibration isolator in which a plurality of fluid chambers filled with an incompressible fluid are formed by the pocket portion and an orifice passage is formed to communicate the fluid chambers with each other.
The inner shaft member is provided with a convex portion projecting to the outer peripheral side at the axially intermediate portion ,
The intermediate sleeve is provided with a large-diameter cylindrical portion, and the outer cylindrical member is externally fitted to the large-diameter cylindrical portion,
And small-diameter cylindrical portion is provided in the axial both ends of the intermediate sleeve, which large-diameter portion and the small-diameter tubular portion are connected to each other by the step portion, the axial direction between the convex portion and the respective stepped portions While opposing surfaces on both sides are elastically connected by the main rubber elastic body,
A flow path forming rubber is disposed between the outer cylindrical member and the outer diameter side of the small diameter cylindrical portion, and the orifice passage is formed in the flow path forming rubber so as to extend in the circumferential direction. A fluid-filled cylindrical vibration isolator.
前記段差部の径方向中間部分に中径筒部が形成されて、前記大径筒部と該中径筒部が外周段差部によって相互に連結されていると共に、前記小径筒部と該中径筒部が内周段差部によって相互に連結されており、該段差部がそれら中径筒部と外周段差部と内周段差部とを含んで構成されている請求項1に記載の流体封入式筒型防振装置。   An intermediate-diameter cylindrical portion is formed at a radial intermediate portion of the stepped portion, and the large-diameter cylindrical portion and the intermediate-diameter cylindrical portion are connected to each other by an outer peripheral step portion, and the small-diameter cylindrical portion and the intermediate-diameter 2. The fluid-filled type according to claim 1, wherein the cylindrical portions are connected to each other by an inner circumferential stepped portion, and the stepped portion includes the medium-diameter cylindrical portion, the outer circumferential stepped portion, and the inner circumferential stepped portion. Cylindrical vibration isolator. 前記凸部の軸方向表面が外周側に行くに従って次第に軸方向内方に傾斜する傾斜面を有していると共に、前記段差部の軸方向内面が外周側に行くに従って次第に軸方向内方に傾斜する傾斜面を有している請求項1又は2に記載の流体封入式筒型防振装置。   The convex surface has an inclined surface that is gradually inclined inward in the axial direction as it goes to the outer peripheral side, and is gradually inclined inward in the axial direction as the axial inner surface of the stepped portion goes to the outer peripheral side. The fluid-filled cylindrical vibration isolator according to claim 1 or 2, further comprising an inclined surface. 前記本体ゴム弾性体の軸方向端部にすぐり部が形成されており、該すぐり部の最深部が軸方向で前記大径筒部と前記小径筒部の間に位置している請求項1〜3の何れか一項に記載の流体封入式筒型防振装置。   A straight portion is formed at an axial end of the main rubber elastic body, and the deepest portion of the straight portion is positioned between the large-diameter cylindrical portion and the small-diameter cylindrical portion in the axial direction. 4. The fluid-filled cylindrical vibration isolator according to any one of 3 above. 前記アウタ筒部材の軸方向端部には内周側に突出する内フランジ部が設けられており、該内フランジ部が前記流路形成ゴムの軸方向外面に当接している請求項1〜4の何れか一項に記載の流体封入式筒型防振装置。   An inner flange portion projecting toward the inner peripheral side is provided at an axial end portion of the outer cylinder member, and the inner flange portion is in contact with an outer surface in the axial direction of the flow path forming rubber. The fluid-filled cylindrical vibration isolator according to any one of the above. 前記内フランジ部が前記中間スリーブに軸方向で当接している請求項5に記載の流体封入式筒型防振装置。   The fluid-filled cylindrical vibration damping device according to claim 5, wherein the inner flange portion is in contact with the intermediate sleeve in the axial direction. 前記凸部と前記段差部が軸方向の投影において相互に重なり合っている請求項1〜6の何れか一項に記載の流体封入式筒型防振装置。   The fluid-filled cylindrical vibration isolator according to any one of claims 1 to 6, wherein the convex portion and the stepped portion overlap each other in the axial projection. 前記凸部が全周に亘って連続して設けられていると共に、前記段差部が全周に亘って連続して設けられており、それら凸部と段差部の対向面が前記本体ゴム弾性体によって全周に亘って弾性連結されている請求項1〜7の何れか一項に記載の流体封入式筒型防振装置。   The convex portions are provided continuously over the entire circumference, and the step portions are provided continuously over the entire circumference, and the opposing surfaces of the convex portions and the step portions are the main rubber elastic body. The fluid-filled cylindrical vibration damping device according to any one of claims 1 to 7, wherein the fluid-filled cylindrical vibration damping device is elastically connected over the entire circumference. インナ軸部材が中間スリーブに内挿配置されて、それらインナ軸部材と中間スリーブが本体ゴム弾性体によって弾性連結されており、該本体ゴム弾性体に形成された複数のポケット部が該中間スリーブの軸方向中間部分に形成された複数の窓部を通じて外周面に開口していると共に、該中間スリーブにはアウタ筒部材が外嵌されて、該窓部が該アウタ筒部材で覆蓋されることにより非圧縮性流体を封入された複数の流体室が該ポケット部によって形成されていると共に、それら流体室を相互に連通するオリフィス通路が形成されている流体封入式筒型防振装置において、
前記インナ軸部材には外周側に突出する凸部が設けられていると共に、
前記中間スリーブに大径筒部が設けられて、前記アウタ筒部材が該大径筒部に外嵌されていると共に、
該中間スリーブの少なくとも一方の軸方向端部に小径筒部が設けられて、それら大径筒部と小径筒部が段差部によって相互に連結されており、該凸部と該段差部の対向面が該本体ゴム弾性体によって弾性連結されている一方、
該小径筒部の外周側には流路形成ゴムが該アウタ筒部材との間に配されていると共に、該流路形成ゴムには前記オリフィス通路が周方向に延びて形成されており、且つ、
段差部の径方向中間部分に中径筒部が形成されて、大径筒部と該中径筒部が外周段差部によって相互に連結されていると共に、小径筒部と該中径筒部が内周段差部によって相互に連結されており、該段差部がそれら中径筒部と外周段差部と内周段差部とを含んで構成されていることを特徴とする流体封入式筒型防振装置。
The inner shaft member is inserted into the intermediate sleeve, the inner shaft member and the intermediate sleeve are elastically connected by the main rubber elastic body, and a plurality of pocket portions formed in the main rubber elastic body are formed in the intermediate sleeve. Opening to the outer peripheral surface through a plurality of window portions formed in the intermediate portion in the axial direction, the outer sleeve member is externally fitted to the intermediate sleeve, and the window portion is covered with the outer tube member. In a fluid-filled cylindrical vibration isolator in which a plurality of fluid chambers filled with an incompressible fluid are formed by the pocket portion and an orifice passage is formed to communicate the fluid chambers with each other.
The inner shaft member is provided with a convex portion protruding to the outer peripheral side,
The intermediate sleeve is provided with a large-diameter cylindrical portion, and the outer cylindrical member is externally fitted to the large-diameter cylindrical portion,
A small-diameter cylindrical portion is provided at at least one axial end portion of the intermediate sleeve, and the large-diameter cylindrical portion and the small-diameter cylindrical portion are connected to each other by a stepped portion, and the opposing surface of the convex portion and the stepped portion. Are elastically connected by the main rubber elastic body,
A flow path forming rubber is disposed between the outer diameter cylindrical member and the outer cylindrical member, and the orifice passage is formed in the flow path forming rubber so as to extend in the circumferential direction. ,
And medium-diameter cylindrical portion is formed in the diametrically medial section of the stepped portion, together with the large-diameter portion and the middle-diameter tubular portion are connected to each other by the outer peripheral step portion, the small diameter cylinder portion and the intermediate diameter A fluid-filled cylinder characterized in that the cylindrical portions are connected to each other by an inner peripheral stepped portion, and the stepped portion includes the intermediate diameter cylindrical portion, the outer peripheral stepped portion, and the inner peripheral stepped portion. Mold vibration isolator.
インナ軸部材が中間スリーブに内挿配置されて、それらインナ軸部材と中間スリーブが本体ゴム弾性体によって弾性連結されており、該本体ゴム弾性体に形成された複数のポケット部が該中間スリーブの軸方向中間部分に形成された複数の窓部を通じて外周面に開口していると共に、該中間スリーブにはアウタ筒部材が外嵌されて、該窓部が該アウタ筒部材で覆蓋されることにより非圧縮性流体を封入された複数の流体室が該ポケット部によって形成されていると共に、それら流体室を相互に連通するオリフィス通路が形成されている流体封入式筒型防振装置において、
前記インナ軸部材には外周側に突出する凸部が設けられていると共に、
前記中間スリーブに大径筒部が設けられて、前記アウタ筒部材が該大径筒部に外嵌されていると共に、
該中間スリーブの少なくとも一方の軸方向端部に小径筒部が設けられて、それら大径筒部と小径筒部が段差部によって相互に連結されており、該凸部と該段差部の対向面が該本体ゴム弾性体によって弾性連結されている一方、
該小径筒部の外周側には流路形成ゴムが該アウタ筒部材との間に配されていると共に、該流路形成ゴムには前記オリフィス通路が周方向に延びて形成されており、且つ、
アウタ筒部材の軸方向端部には内周側に突出する内フランジ部が設けられており、該内フランジ部が該流路形成ゴムの軸方向外面に当接していることを特徴とする流体封入式筒型防振装置。
The inner shaft member is inserted into the intermediate sleeve, the inner shaft member and the intermediate sleeve are elastically connected by the main rubber elastic body, and a plurality of pocket portions formed in the main rubber elastic body are formed in the intermediate sleeve. Opening to the outer peripheral surface through a plurality of window portions formed in the intermediate portion in the axial direction, the outer sleeve member is externally fitted to the intermediate sleeve, and the window portion is covered with the outer tube member. In a fluid-filled cylindrical vibration isolator in which a plurality of fluid chambers filled with an incompressible fluid are formed by the pocket portion and an orifice passage is formed to communicate the fluid chambers with each other.
The inner shaft member is provided with a convex portion protruding to the outer peripheral side,
The intermediate sleeve is provided with a large-diameter cylindrical portion, and the outer cylindrical member is externally fitted to the large-diameter cylindrical portion,
A small-diameter cylindrical portion is provided at at least one axial end portion of the intermediate sleeve, and the large-diameter cylindrical portion and the small-diameter cylindrical portion are connected to each other by a stepped portion, and the opposing surface of the convex portion and the stepped portion. Are elastically connected by the main rubber elastic body,
A flow path forming rubber is disposed between the outer diameter cylindrical member and the outer cylindrical member, and the orifice passage is formed in the flow path forming rubber so as to extend in the circumferential direction. ,
The axial end of the outer tubular member has a flange portion is provided inside protruding on the inner circumferential side, characterized in that the inner flange is in contact with the axially outer surface of the flow path forming rubber Fluid filled cylindrical vibration isolator.
前記内フランジ部が前記中間スリーブに軸方向で当接している請求項10に記載の流体封入式筒型防振装置。 The fluid-filled cylindrical vibration damping device according to claim 10 , wherein the inner flange portion is in contact with the intermediate sleeve in the axial direction. インナ軸部材が中間スリーブに内挿配置されて、それらインナ軸部材と中間スリーブが本体ゴム弾性体によって弾性連結されており、該本体ゴム弾性体に形成された複数のポケット部が該中間スリーブの軸方向中間部分に形成された複数の窓部を通じて外周面に開口していると共に、該中間スリーブにはアウタ筒部材が外嵌されて、該窓部が該アウタ筒部材で覆蓋されることにより非圧縮性流体を封入された複数の流体室が該ポケット部によって形成されていると共に、それら流体室を相互に連通するオリフィス通路が形成されている流体封入式筒型防振装置において、
前記インナ軸部材には外周側に突出する凸部が設けられていると共に、
前記中間スリーブに大径筒部が設けられて、前記アウタ筒部材が該大径筒部に外嵌されていると共に、
該中間スリーブの少なくとも一方の軸方向端部に小径筒部が設けられて、それら大径筒部と小径筒部が段差部によって相互に連結されており、該凸部と該段差部の対向面が該本体ゴム弾性体によって弾性連結されている一方、
該小径筒部の外周側には流路形成ゴムが該アウタ筒部材との間に配されていると共に、該流路形成ゴムには前記オリフィス通路が周方向に延びて形成されており、且つ、
凸部と段差部が軸方向の投影において相互に重なり合っていることを特徴とする流体封入式筒型防振装置。
The inner shaft member is inserted into the intermediate sleeve, the inner shaft member and the intermediate sleeve are elastically connected by the main rubber elastic body, and a plurality of pocket portions formed in the main rubber elastic body are formed in the intermediate sleeve. Opening to the outer peripheral surface through a plurality of window portions formed in the intermediate portion in the axial direction, the outer sleeve member is externally fitted to the intermediate sleeve, and the window portion is covered with the outer tube member. In a fluid-filled cylindrical vibration isolator in which a plurality of fluid chambers filled with an incompressible fluid are formed by the pocket portion and an orifice passage is formed to communicate the fluid chambers with each other.
The inner shaft member is provided with a convex portion protruding to the outer peripheral side,
The intermediate sleeve is provided with a large-diameter cylindrical portion, and the outer cylindrical member is externally fitted to the large-diameter cylindrical portion,
A small-diameter cylindrical portion is provided at at least one axial end portion of the intermediate sleeve, and the large-diameter cylindrical portion and the small-diameter cylindrical portion are connected to each other by a stepped portion, and the opposing surface of the convex portion and the stepped portion. Are elastically connected by the main rubber elastic body,
A flow path forming rubber is disposed between the outer diameter cylindrical member and the outer cylindrical member, and the orifice passage is formed in the flow path forming rubber so as to extend in the circumferential direction. ,
Fluid-filled cylindrical vibration damping device, characterized in that the projection and the step portion are overlapped with each other in the projection in the axial direction.
JP2014206151A 2014-10-07 2014-10-07 Fluid filled cylindrical vibration isolator Expired - Fee Related JP6431738B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014206151A JP6431738B2 (en) 2014-10-07 2014-10-07 Fluid filled cylindrical vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014206151A JP6431738B2 (en) 2014-10-07 2014-10-07 Fluid filled cylindrical vibration isolator

Publications (2)

Publication Number Publication Date
JP2016075347A JP2016075347A (en) 2016-05-12
JP6431738B2 true JP6431738B2 (en) 2018-11-28

Family

ID=55951032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014206151A Expired - Fee Related JP6431738B2 (en) 2014-10-07 2014-10-07 Fluid filled cylindrical vibration isolator

Country Status (1)

Country Link
JP (1) JP6431738B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10507703B2 (en) 2016-06-27 2019-12-17 Sumitomo Riko Company Limited Strut mount and suspension mechanism using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100861A (en) * 1995-10-05 1997-04-15 Toyoda Gosei Co Ltd Suspension bush
JP2002181121A (en) * 2000-12-15 2002-06-26 Tokai Rubber Ind Ltd Liquid sealed type vibration control device
FR2904075A1 (en) * 2006-07-19 2008-01-25 Hutchinson Sa Hydraulic anti-vibration support for use as e.g. engine support, has elastomer member including slot that is partially closed with pre-tensioning of member with respect to initial configuration of slot before encasing member in outer frame
JP4716387B2 (en) * 2008-09-02 2011-07-06 東洋ゴム工業株式会社 Anti-vibration bush

Also Published As

Publication number Publication date
JP2016075347A (en) 2016-05-12

Similar Documents

Publication Publication Date Title
JP5783858B2 (en) Fluid filled cylindrical vibration isolator
JP2010159873A (en) Cylindrical vibration isolating device of fluid encapsulation type
US11255404B2 (en) Anti-vibration device
CN110168248B (en) Fluid-filled cylindrical vibration damping device
JP2006064119A (en) Fluid sealed-type vibration control device
US20100213651A1 (en) Fluid-filled cylindrical vibration-damping device
JPH08177945A (en) Fluid sealing type cylindrical vibration proof device
JP2015068356A (en) Fluid sealed type cylindrical vibration-proofing device
JP2002327788A (en) Vibrationproof device sealed with fluid
JP5738074B2 (en) Fluid filled vibration isolator
JPH0546450B2 (en)
JP6431738B2 (en) Fluid filled cylindrical vibration isolator
JP6297371B2 (en) Method for manufacturing fluid-filled vibration isolator
JP2008151215A (en) Fluid filled type cylindrical vibration controller
JP4073028B2 (en) Fluid filled cylindrical vibration isolator
JP5907777B2 (en) Fluid filled cylindrical vibration isolator
JP3998491B2 (en) Fluid filled anti-vibration bush
JP3763024B1 (en) Liquid-filled vibration isolator
JP4697459B2 (en) Fluid filled cylindrical vibration isolator
JP2017172744A (en) Fluid sealed type cylindrical vibration-proof device
JP2017172623A (en) Fluid filled cylindrical vibration isolator
JP2000120761A (en) Fluid sealed type cylindrical mount
JP4896895B2 (en) Fluid-filled cylindrical vibration isolator and manufacturing method thereof
JP2022152163A (en) Fluid-sealed type cylindrical vibration isolator
JP2003269525A (en) Fluid-filled cylindrical vibration isolator and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181105

R150 Certificate of patent or registration of utility model

Ref document number: 6431738

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees