[go: up one dir, main page]

JP6393181B2 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
JP6393181B2
JP6393181B2 JP2014259962A JP2014259962A JP6393181B2 JP 6393181 B2 JP6393181 B2 JP 6393181B2 JP 2014259962 A JP2014259962 A JP 2014259962A JP 2014259962 A JP2014259962 A JP 2014259962A JP 6393181 B2 JP6393181 B2 JP 6393181B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
heat exchanger
refrigeration cycle
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014259962A
Other languages
English (en)
Other versions
JP2016121812A (ja
Inventor
坪江 宏明
宏明 坪江
横関 敦彦
敦彦 横関
浩之 豊田
浩之 豊田
正記 宇野
正記 宇野
植田 英之
英之 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Priority to JP2014259962A priority Critical patent/JP6393181B2/ja
Publication of JP2016121812A publication Critical patent/JP2016121812A/ja
Application granted granted Critical
Publication of JP6393181B2 publication Critical patent/JP6393181B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、冷凍サイクルを利用した空気調和機、冷凍機などの冷凍サイクル装置に関し、特に冷媒としてR407Eを採用した冷凍サイクル装置に関する。
地球温暖化防止の観点から、冷凍サイクル装置から万が一冷媒が漏えいした際に地球温暖化への影響を最小限に抑える目的として、冷凍サイクル装置に封入する冷媒として地球温暖化係数(GWP;global warming potential)の小さい冷媒(低GWP冷媒)の採用が検討されている。特に冷凍機ではGWP値の高いR404A(GWP=3940)が採用されており、低GWP冷媒の採用が急務である。
現在、冷凍サイクル装置に採用する低GWP冷媒の候補としては、不燃性冷媒と、燃焼性を有する微燃性冷媒と、が存在する。冷媒量の少ない冷凍サイクル装置においては、万が一冷媒が漏えいしたとしても漏えい先の冷媒濃度を可燃濃度未満に設定できる可能性があるので、微燃性冷媒を採用できる場合がある。しかし、冷媒量の多い冷凍サイクル装置に微燃性冷媒を採用する場合は、何らかの安全対策を施す必要があり、不燃性冷媒よりも取り扱い面で劣る。
このため、冷媒量の多いビル用マルチ機や冷凍機では、不燃性の低GWP冷媒を採用することが望ましい。不燃性の低GWP冷媒としては、例えば、R32やR125などのHFC冷媒に、冷媒の分子構造に二重結合を有するHFO冷媒を混合したHFO混合冷媒がある。しかし、HFO冷媒は空気や水分混入時の化学安定性が低いため、HFO冷媒の分解生成物により冷凍機油の全酸価が上昇し、圧縮機摺動部の摩耗を促進するおそれがある。このため、冷凍サイクル装置に冷媒としてHFO冷媒やHFO混合冷媒を採用した構成においては、冷凍機油の選定等に工夫が必要となる。
そこで、HFO冷媒を混合していないHFC冷媒のみで構成された冷媒が望ましく、その候補として、R407E(R32:R125:R134a=25:15:60wt%)がある。R407Eは、GWP=1425(IPCC Fifth Assessment Report(AR5))とR404Aの半分以下のGWP値であるとともに、GWP1500以下の冷媒であり、GWP値の低減に有効である。
冷凍機では、利用側熱交換器における冷媒の蒸発温度を−40℃程度まで低下させる必要があり、圧縮機での圧力比が大きくなり、圧縮機から吐出される冷媒の温度が高くなるおそれがある。このため、圧縮機から吐出される冷媒の温度を低く抑えるために、圧縮機の圧縮過程の途中に液相を含む冷媒を導入する液インジェクション圧縮機を搭載する場合がある。また、空気調和機のおいても、外気温度が低い寒冷地仕様においては、冷凍機と同様に、圧縮機での圧力比が大きくなり、圧縮機から吐出される冷媒の温度が高くなるおそれがあることから、液インジェクション圧縮機を採用した製品が存在する。
液インジェクション圧縮機を搭載した冷凍サイクル装置に、冷媒としてR407Eを採用した構成としては、例えば、特許文献1(特開2002−106917号公報)が開示されている。
特開2002−106917号公報
前述のように、圧縮機の吸入側の圧力が低下する冷凍機や寒冷地向け空気調和機では、圧縮機での圧力比が大きくなり、圧縮機から吐出される冷媒の温度が高くなる。これにより、圧縮機摺動部を潤滑する冷凍機油の温度が上昇し、冷凍機油の劣化が促進され、劣化生成物であるカルボン酸により冷凍機油の全酸価が上昇し、圧縮機摺動部の摩耗を促進するおそれがある。このため、圧縮機から吐出される冷媒の温度には適正値が存在する。
また、圧縮機の吐出側の冷媒が気液二相の状態であると、液相の冷媒が存在するので圧縮室をシールしている冷凍機油の粘度が低下しシール性が低下することで、圧縮室から冷媒が漏れて圧縮機の効率が低下する、あるいは、圧縮機摺動部の潤滑性が低下するおそれがある。このため、圧縮機の吐出側の冷媒は、過熱状態(冷媒の温度が飽和温度より高温の状態)が望ましい。
ゆえに、圧縮機から吐出される冷媒の温度を制御する目的で、冷凍サイクル装置の圧縮機として液インジェクション圧縮機を採用する場合がある。また、液インジェクション圧縮機を冷却するために必要な液インジェクション量は、熱源側熱交換器での凝縮温度と、利用側熱交換器での蒸発温度と、によって変化する。このため、圧縮機から吐出される冷媒の温度を適正値に制御するためには、凝縮温度と蒸発温度に応じた液インジェクション量の適正範囲が存在する。しかしながら、引用文献1に開示された冷凍サイクル装置には、液インジェクション量について、検討されていない。
そこで、本発明は、圧縮機の信頼性を確保するとともに、圧縮機の効率低下を抑制する冷凍サイクル装置を提供することを課題とする。
このような課題を解決するために、本発明に係る冷凍サイクル装置は、液インジェクション圧縮機、熱源側熱交換器、液側接続配管、膨張装置、利用側熱交換器、ガス側接続配管を順次連結してなる冷凍サイクルと、前記熱源側熱交換器と液側接続配管の間から流量調整装置を介して前記液インジェクション圧縮機のインジェクションポートに冷媒を導入するバイパス経路と、前記流量調整装置の開度を制御する制御装置と、を備える冷凍サイクル装置であって、前記冷凍サイクル装置に封入する冷媒としてR407Eを採用し、前記制御装置は、前記液インジェクション圧縮機から吐出される冷媒の温度Tdが110℃以下、かつ、前記液インジェクション圧縮機から吐出された冷媒の過熱度TdSHが10K以上の範囲で制御する場合、前記バイパス経路を流れる冷媒の流量と、前記利用側熱交換器を流れる冷媒の流量との比が、前記利用側熱交換器での蒸発温度が−40℃のときは、8.11×10-3 ×Tc+1.28×10-1 以上、かつ、1.52×10-2 ×Tc+4.81×10-1 以下、前記利用側熱交換器での蒸発温度が−20℃のときは、6.60×10-3 ×Tc+2.14×10-1 (但し、0未満の場合は0とする)以上、かつ、7.86×10-3 ×Tc+1.99×10-1 以下、前記利用側熱交換器での蒸発温度が−10℃のときは、0以上、かつ、5.54×10-3 ×Tc+1.49×10-1 以下(但し、Tc:前記熱源側熱交換器の凝縮温度[℃])になるように、前記流量調整装置の開度を制御することを特徴とする。
本発明によれば、圧縮機の信頼性を確保するとともに、圧縮機の効率低下を抑制する冷凍サイクル装置を提供することができる。
第1実施形態に係る冷凍サイクル装置の冷凍サイクル系統図である。 蒸発温度−40℃、吐出側冷媒過熱度10Kにおけるインジェクション流量比と凝縮温度との関係を示すグラフである。 蒸発温度−40℃、吐出側冷媒温度110℃におけるインジェクション流量比と凝縮温度との関係を示すグラフである。 蒸発温度−20℃、吐出側冷媒過熱度10Kにおけるインジェクション流量比と凝縮温度との関係を示すグラフである。 蒸発温度−20℃、吐出側冷媒温度110℃におけるインジェクション流量比と凝縮温度との関係を示すグラフである。 蒸発温度−10℃、吐出側冷媒過熱度10Kにおけるインジェクション流量比と凝縮温度との関係を示すグラフである。 蒸発温度−10℃、吐出側冷媒温度110℃におけるインジェクション流量比と凝縮温度との関係を示すグラフである。 第1実施形態の変形例に係る冷凍サイクル装置の冷凍サイクル系統図である。 第2実施形態に係る冷凍サイクル装置の冷凍サイクル系統図である。
以下、本発明を実施するための形態(以下「実施形態」という)について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。
≪第1実施形態≫
<冷凍サイクル装置>
第1実施形態に係る冷凍サイクル装置Sについて図1を用いて説明する。図1は、第1実施形態に係る冷凍サイクル装置Sの冷凍サイクル系統図である。なお、以下の説明において、冷凍サイクル装置Sは、冷媒としてR407Eを採用した冷凍機であるものとして説明する。
冷凍サイクル装置Sは、室外機ユニット10と、利用側ユニット20と、を備え、液側接続配管5及びガス側接続配管6で接続されて構成されている。室外機ユニット10は、液インジェクション圧縮機(圧縮機)1と、凝縮器として作用する熱源側熱交換器2と、液配管3と、阻止弁4と、阻止弁7と、ガス配管8と、アキュムレータ9と、インジェクション流量調整装置30と、インジェクション配管31と、制御装置50と、を備えている。利用側ユニット20は、膨張装置21と、蒸発器として作用する利用側熱交換器22と、を備えている。
液インジェクション圧縮機1、熱源側熱交換器2、液配管3、阻止弁4、液側接続配管5、膨張装置21、利用側熱交換器22、ガス側接続配管6、阻止弁7、ガス配管8、アキュムレータ9を順次連結してなる冷凍サイクル(冷媒循環路)が形成されている。
また、液配管3から分岐して、インジェクション流量調整装置30、インジェクション配管31を通って、液インジェクション圧縮機1のインジェクションポートに接続するバイパス経路が形成されている。制御装置50は、インジェクション流量調整装置30の開度を制御することにより、インジェクション配管31を流れる冷媒の流量、即ち、液インジェクション圧縮機1のインジェクションポートに流入する冷媒の流量を制御する。なお、インジェクション流量調整装置30は、開度を制御可能な電子膨張弁で構成されていてもよく、複数のキャピラリと電磁弁の組み合わせで構成され、電磁弁の開閉により開度を制御可能に構成されるものであってもよい。
冷凍サイクル装置Sの冷凍運転の場合、圧縮機1で圧縮された高温高圧のガス冷媒は、冷凍機油とともに圧縮機1から吐出され、凝縮器として作用する熱源側熱交換器2に流入し、ここで熱源側熱媒体(室外空気)と熱交換することにより凝縮・液化して液冷媒となる。その後、液冷媒は、液配管3、阻止弁4を通り、液側接続配管5を経て、利用側ユニット20へ送られる。利用側ユニット20へ送られた液冷媒は、膨張装置21へ流入し、ここで低圧まで減圧されて低圧二相状態となり、蒸発器として作用する利用側熱交換器22に流入し、ここで空気等の利用側熱媒体と熱交換することにより蒸発・ガス化してガス冷媒となる。その後、ガス冷媒は、ガス側接続配管6を経て、室外機ユニット10に送られる。室外機ユニット10へ送られたガス冷媒は、阻止弁7、ガス配管8を通り、アキュムレータ9にて適切な吸入かわき度に調整され、再び圧縮機1へ吸入され圧縮される。なお、余剰冷媒は、アキュムレータ9に貯留され、冷凍サイクルの運転圧力、温度が正常な状態に保たれる。
ここで、利用側熱交換器22での蒸発温度ETは、冷却対象物(図示せず)に応じて使用者が設定する(例えば、−40℃、−20℃、−10℃等)。冷凍サイクル装置Sの制御装置50は、設定された蒸発温度ETになるように、圧縮機1の運転周波数、膨張装置21等を制御する。また、熱源側熱交換器2での凝縮温度Tcは、熱源側熱媒体(室外空気)の温度(外気温度)、冷媒循環量、熱源側熱交換器2を流れる熱源側熱媒体(室外空気)の流量によって変化する。
また、圧縮機1から吐出される冷媒の温度(吐出側冷媒温度)Tdには、適正値が存在する。利用側熱交換器22での蒸発温度ETが低くなると、蒸発圧力が低下し、圧縮機1の吸入側の圧力が低下する。圧縮機1の吸入側の圧力が低下するほど、熱源側熱交換器2での凝縮温度Tcが一定であるならば、圧縮機1の吐出側冷媒温度Tdが上昇する。圧縮機1の吐出側冷媒温度Tdが上昇すると、圧縮機1の摺動部(図示せず)を潤滑する冷凍機油の温度が上昇するため、冷凍機油の劣化が促進され、劣化生成物であるカルボン酸により冷凍機油の全酸価が上昇し、圧縮機1の摺動部の摩耗を促進するおそれがある。なお、冷凍機油の劣化は、温度が高いほど劣化が促進され、概ね温度が10℃上昇すると劣化は2倍促進される。
ゆえに、圧縮機1の吐出側冷媒温度Tdは、冷凍機油の化学安定性を設計する際の設定温度である110℃以下に制御されることが望ましい。
さらに、圧縮機1の吐出側の冷媒が気液二相の状態であると、液相の冷媒が存在するので圧縮機1の圧縮室(図示せず)をシールしている冷凍機油の粘度が低下し、圧縮室のシール性が低下することで、圧縮室から冷媒が漏れて圧縮機1の効率が低下する、あるいは、圧縮機1の摺動部の潤滑性が低下するおそれがある。
そのため、圧縮機1の吐出側の冷媒は過熱状態(冷媒の温度が飽和温度より高温の状態)が望ましく、冷却対象物の搬入、取り出しに伴う冷凍サイクルの状態の急変時においても圧縮機1の吐出側の冷媒過熱度(吐出側冷媒過熱度)TdSHが0Kを超えるために、定常運転時の吐出側冷媒過熱度TdSHの目標値の最小値を10K以上に設定することが望ましい。なお、過熱度とは、冷媒の温度が飽和温度から何度[K]高いかを示す値である。
上記の如く設定した吐出側冷媒温度Td(Td≦110[℃])と、吐出側冷媒過熱度TdSH(TdSH≧10[K])と、が満たされるように制御するために、第1実施形態に係る冷凍サイクル装置Sは、図1に示すように、圧縮機として圧縮過程の途中に液相を含む冷媒を導入するインジェクションポートを有する液インジェクション圧縮機1を採用する。そして、制御装置50は、インジェクション流量調整装置30の開度を制御することにより、吐出側冷媒温度Td≦110[℃]、かつ、吐出側冷媒過熱度TdSH≧10[K]となるように制御する。
また、液インジェクション圧縮機1を冷却するために必要なインジェクション配管31を流れる冷媒の液インジェクション流量は、熱源側熱交換器2での凝縮温度Tcと、利用側熱交換器22での蒸発温度ETと、によって変化する。ここで、熱源側熱交換器2での凝縮温度Tcが高いほど、また、利用側熱交換器22での蒸発温度ETが低いほど、圧縮機1の吐出側冷媒温度Tdは高くなる傾向にある。このため、圧縮機1を冷却するために必要なインジェクション流量は増加する。ゆえに、液インジェクション圧縮機1の吐出側冷媒温度Tdを適正値に制御するためには、凝縮温度Tcと蒸発温度ETに応じた液インジェクション量の適正範囲が存在する。
図2から図7は、利用側熱交換器22での蒸発温度ETが−40℃(図2、図3参照)、−20℃(図4、図5参照)、−10℃(図6、図7参照)における液インジェクション圧縮機1の吸入側の冷媒過熱度(吸入側冷媒過熱度)TsSHをパラメータとした際の、横軸xである熱源側熱交換器2での凝縮温度Tc[℃]に対する縦軸yであるインジェクション流量比[−]の関係を示すグラフである。また、図2、図4、図6は、液インジェクション圧縮機1の吐出側冷媒過熱度TdSHの目標過熱度を10Kとした場合を示し、図3、図5、図7は、液インジェクション圧縮機1の吐出側冷媒温度Tdの目標温度を110℃とした場合を示す。ここで、インジェクション流量比とは、利用側熱交換器22を流れる冷媒の質量流量に対するインジェクション配管31を流れる冷媒の質量流量の比を示す表すものとする。なお、図2から図7のグラフは、理論サイクル計算により算出した結果である。
ここで、吸入側冷媒過熱度TsSHが高くなるほど、圧縮機1の吸入側の冷媒の温度(吸入側冷媒温度)Tsが高くなることから、吐出側冷媒温度Tdも高くなる。また、吸入側冷媒過熱度TsSHは、利用側ユニット20に搭載された膨張装置21にて設定することが可能である。しかし、膨張装置21が温度式膨張弁の場合や、室外機ユニット10と利用側ユニット20とが別々の機器メーカで製造され、膨張装置21が電子膨張弁であったとしても膨張装置21の開度を室外機ユニット10の制御装置50で制御できない場合がある。
このため、図3、図5、図7に示すように、吐出側冷媒温度Tdの目標温度を110℃とした場合が、前述の設定条件(Td≦110[℃]、かつ、TdSH≧10[K])において、吐出側冷媒温度Tdが高く、液インジェクション圧縮機1の冷却量が小さく、液インジェクション圧縮機1のインジェクションポートに導入する冷媒量が最も少なくなるときであるので、検討した吸入側冷媒過熱度TsSHの中で最小のインジェクション流量比を採用した。
また、図2、図4、図6に示すように、吐出側冷媒過熱度TdSHの目標過熱度を10Kとした場合が、前述の設定条件(Td≦110[℃]、かつ、TdSH≧10[K])において、吐出側冷媒温度Tdが低く、液インジェクション圧縮機1の冷却量が大きく、液インジェクション圧縮機1のインジェクションポートに導入する冷媒量が最も多くなるときであるので、検討した吸入側冷媒過熱度TsSHの中で最大のインジェクション流量比を採用した。
また、図2から図7において検討する吸入側冷媒過熱度TsSHの設定値の下限値は、液インジェクション圧縮機1の吸入側の冷媒の状態が飽和ガスの状態となる吸入側冷媒過熱度TsSH=0[K]を下限とした。
また、利用側ユニット20の利用側熱交換器22で蒸発したガス冷媒は、ガス側接続配管6を経て、室外機ユニット10へ送られ、液インジェクション圧縮機1へ吸入される。この際、ガス側接続配管6の周囲の温度が、ガス側接続配管6を流れるガス冷媒の温度よりも高い場合、周囲の温度から熱を授受してガス冷媒の温度が上昇する。このため、ガス側接続配管6の周囲の温度を30℃と設定して、図2から図7において検討する吸入側冷媒過熱度TsSHの設定値の上限値は、吸入側冷媒温度Tsが約30℃以下となる吸入側冷媒過熱度TsSHを上限とした。また、図2から図7において吸入側冷媒過熱度TsSHは、20K毎に計算した。
この結果、図2及び図3に示すように、利用側熱交換器22での蒸発温度ETが−40℃の場合において、熱源側熱交換器2での凝縮温度Tc[℃]に対して、インジェクション流量比が、8.11×10-3 ×Tc+1.28×10-1 以上、かつ、1.52×10-2 ×Tc+4.81×10-1 以下となるようにインジェクション流量調整装置30の開度を調整すればよい。
また、図4及び図5に示すように、利用側熱交換器22での蒸発温度ETが−20℃の場合において、熱源側熱交換器2での凝縮温度Tc[℃]に対して、インジェクション流量比が、6.60×10-3 ×Tc+2.14×10-1 (但し、0未満の場合は0とする)以上、かつ、7.86×10-3 ×Tc+1.99×10-1 以下となるようにインジェクション流量調整装置30の開度を調整すればよい。
また、図6及び図7に示すように、利用側熱交換器22での蒸発温度ETが−10℃の場合において、熱源側熱交換器2での凝縮温度Tc[℃]に対して、インジェクション流量比が、0以上、かつ、5.54×10-3 ×Tc+1.49×10-1 以下となるようにインジェクション流量調整装置30の開度を調整すればよい。
<作用効果>
第1実施形態に係る冷凍サイクル装置Sの作用効果について説明する。
第1実施形態に係る冷凍サイクル装置Sによれば、冷媒として、低GWP冷媒であり、不燃性冷媒であり、HFO冷媒を混合していないHFC冷媒のみで構成されたR407Eを採用することができる。
そして、第1実施形態に係る冷凍サイクル装置Sの制御装置50は、利用側熱交換器22での蒸発温度ET毎に、熱源側熱交換器2での凝縮温度Tcに応じた関数で定義された所定の範囲内のインジェクション流量比となるように、インジェクション流量調整装置30を制御する。これにより、液インジェクション圧縮機1から吐出される冷媒の温度を適正値(吐出側冷媒温度Tdが110℃以下、かつ、吐出側冷媒過熱度TdSHが10K以上)となるように制御することができる。
圧縮機1の吐出側冷媒温度Tdが110℃以下となるように制御することにより、冷凍機油の熱による劣化を抑制し、劣化した冷凍機油による圧縮機摺動部の摩耗を抑制することができ、冷凍サイクル装置Sの信頼性を向上させることができる。
また、圧縮機1の吐出側冷媒過熱度TdSHが10K以上となるように制御することにより、吐出側冷媒をガス冷媒のみとすることができる。即ち、気液二相状態となることを防止して、圧縮機1の圧縮室のシール性を向上させ、圧縮機1の効率低下を抑制し、ひいては、冷凍サイクル装置Sの運転効率を向上させることができる。
以上のように、冷媒としてR407Eを採用し、液インジェクション圧縮機1を搭載した冷凍サイクル装置Sにおいて、信頼性の確保を確保するとともに、圧縮機1の効率低下を抑制することができる。
≪第1実施形態の変形例≫
図8は、第1実施形態の変形例に係る冷凍サイクル装置Sの冷凍サイクル系統図である。図8に示すように、冷凍サイクル装置Sは、液配管3を流れる冷媒とインジェクション配管31(インジェクション流量調整装置30よりも下流側)を流れる冷媒とで熱交換する過冷却熱交換器32を備えていてもよい。
液配管3からバイパス経路へと分岐した液冷媒は、インジェクション流量調整装置30を通過し減圧され、低圧低温の冷媒となる。このインジェクション配管31を流れる低圧低温の冷媒と、液配管3を流れる相対的に高温高圧の冷媒と、を過冷却熱交換器32で熱交換させることにより、液側接続配管5を流れる冷媒を過冷却状態に設定する。
このような構成により、利用側熱交換器22に導入前の冷媒の比エンタルピを低下させることができるので、利用側熱交換器22の入口と出口の冷媒の比エンタルピ差が大きくなり、利用側熱交換器22を流れる冷媒の質量流量が一定であるならば、利用側熱交換器22での冷凍能力が向上する。
また、冷凍能力が一定値でよいならば、利用側熱交換器22を流れる冷媒の質量流量を低下することができるので、ガス側接続配管6を流れる冷媒の質量流量が低下し、ガス側接続配管6での冷媒側圧力損失が低減する。これにより、ガス側接続配管6の配管径を細く設定することができ、施工性の向上を図ることが可能である。
≪第2実施形態≫
次に、第2実施形態に係る冷凍サイクル装置Sについて説明する。なお、第2実施形態に係る冷凍サイクル装置Sの構成は、前述(図1、図8参照)と同様であるため、重複する説明は省略する。
R407Eは、R404Aよりも低圧側の冷媒ガス密度が小さい。つまり、圧縮機1に吸入する冷媒の密度が小さい。このため、冷凍サイクル装置の冷媒としてR407Eを採用した場合、R404Aを採用した場合と比較して、圧縮機1から吐出される冷媒の体積流量を大きく設定する必要がある。具体的には、圧縮機1の圧縮室の体積を大きくする必要がある。その結果、冷媒としてR407Eを採用した冷凍サイクル装置では、圧縮機1を大型化する必要があるため、冷凍サイクル装置が大きくなり、施工性が悪化するという課題がある。
ここで、R407Eは、R32、R125、R134aを混合した非共沸混合冷媒である。このため、アキュムレータ9などの圧力の低い部位にR407Eが気液二相の状態で存在すると、R32とR125はR134aよりも沸点が低くいので、気相にR32とR125が多く存在し、液相にR134aが多く存在する状態となる。
また、アキュムレータ9は、気相の冷媒を液相の冷媒よりも多く導出する構造であるので、アキュムレータ9からはR32とR125の割合の多い冷媒が導出される。
このように、アキュムレータ9に冷媒の一部を貯留させることにより、R407Eの混合割合よりもR32とR125の割合が多い冷媒が圧縮機1に供給され、冷凍サイクル中を循環する。
ここで、R32及びR125は、R134aやR407Eよりも高圧の冷媒であり、かつ、低圧の密度が大きい冷媒である。このような構成により、圧縮機1の吸込側に供給される冷媒の密度を大きくすることができるので、圧縮機1の大型化を抑制し、コンパクトな冷凍サイクル装置Sとすることができる。
アキュムレータ9への冷媒の貯留方法は、アキュムレータ9から導出される冷媒の設定かわき度よりも小さいかわき度の冷媒をアキュムレータ9に導入する必要がある。
具体的には、図1、図8に示す冷凍サイクル装置Sの構成において、膨張装置21の開度を大きく設定することで利用側熱交換器22を流れる冷媒流量が大きくなり、利用側熱交換器22での熱交換量が一定であるならば、利用側熱交換器22の出口の冷媒の比エンタルピが低下、つまり、利用側熱交換器22の出口の冷媒のかわき度を小さく設定することができる。
あるいは、図9に示すように、液配管3を流れる液相の冷媒の一部を液バイパス配管41と、液バイパス流量調整装置40と、を介して、アキュムレータ9の入口に導入することで、アキュムレータ9の入口の冷媒のかわき度を小さく設定することが可能である。なお、液バイパス流量調整装置40は、開度を制御可能な電子膨張弁で構成されていてもよく、複数のキャピラリと電磁弁の組み合わせで構成され、電磁弁の開閉により開度を制御可能に構成されるものであってもよい。
一方で、冷凍サイクル中を循環する冷媒におけるR32とR125の割合が多くなると、R32とR125は高圧冷媒であるため、冷凍サイクルの運転圧力が上昇する。このため、冷凍サイクルの高圧側の運転圧力に応じて、冷凍サイクル装置Sの設計圧力を高く設定する必要がある。
例えば、冷凍サイクル装置Sを循環する冷媒におけるR32とR125とR134aとの割合が、33:33:34wt%になるだけの冷媒がアキュムレータ9に貯まるように、冷凍サイクル装置Sに冷媒(R407E)を封入することで、圧縮機1の圧縮室の体積をR404Aと同程度に設定できる可能性がある。
このときの設定温度が60℃のときの飽和圧力は3.0MPa、設定温度が65℃のときは3.4Pa、設定温度が70℃のときは、3.8MPaである。
そのため、冷凍サイクル装置Sの高圧側の設計圧力を、設定温度が60℃のときは、3.0MPa以上、設定温度が65℃のときは3.4Pa以上、設定温度が70℃のときは、3.8MPa以上に設定することが望ましい。なお、圧力はゲージ圧力である。
さらに、R407Eは、利用側熱交換器22での蒸発温度ETが−40℃のとき、蒸発圧力は大気圧よりも低くなる(負圧)。そのため、冷凍サイクル装置Sの低温側で冷媒漏れ箇所が存在すると、大気中の空気が冷凍サイクル内に侵入する。これにより、圧縮機1での吐出圧力が上昇し、冷凍機油が酸化劣化し、劣化生成物であるカルボン酸により圧縮機1の摺動部の摩耗が促進されるなど、冷凍サイクル装置Sの信頼性を低下させるおそれがある。
これに対し、アキュムレータ9に冷媒を貯留し、冷凍サイクル中を循環する冷媒の循環組成をR32とR125の割合が多い状態に設定することで、利用側熱交換器22での蒸発圧力を大気圧よりも高い状態に維持することが可能である。
≪変形例≫
なお、本実施形態に係る冷凍サイクル装置Sは、上記実施形態の構成に限定されるものではなく、発明の趣旨を逸脱しない範囲内で種々の変更が可能である。
本実施形態に係る冷凍サイクル装置Sは、冷凍機であるものとして説明したが、これに限られるものではない。例えば、蒸発温度が低くなる寒冷地向け空気調和機に適用してもよい。この場合、冷凍サイクル装置Sは、四方弁(図示せず)と、液配管3に室外機側膨張装置(図示せず)と、を備え、四方弁(図示せず)により流路が切り替えられており、熱源側熱交換器2が蒸発器として作用し、利用側熱交換器22が凝縮器として作用する。
S 冷凍サイクル装置
10 室外機ユニット
1 液インジェクション圧縮機(圧縮機)
2 熱源側熱交換器(凝縮器)
3 液配管
4 阻止弁
5 液側接続配管
6 ガス側接続配管
7 阻止弁
8 ガス配管
9 アキュムレータ
20 利用側ユニット
21 膨張装置
22 利用側熱交換器(蒸発器)
30 インジェクション流量調整装置(流量調整装置)
31 インジェクション配管(バイパス経路)
32 過冷却熱交換器
40 液バイパス流量調整装置
41 液バイパス配管
50 制御装置
Tc 凝縮温度
ET 蒸発温度
Ts 吸入側冷媒温度
Td 吐出側冷媒温度
TsSH 吸入側冷媒過熱度
TdSH 吐出側冷媒過熱度

Claims (4)

  1. 液インジェクション圧縮機、熱源側熱交換器、液側接続配管、膨張装置、利用側熱交換器、ガス側接続配管を順次連結してなる冷凍サイクルと、
    前記熱源側熱交換器と液側接続配管の間から流量調整装置を介して前記液インジェクション圧縮機のインジェクションポートに冷媒を導入するバイパス経路と、
    前記流量調整装置の開度を制御する制御装置と、を備える冷凍サイクル装置であって、
    前記冷凍サイクル装置に封入する冷媒としてR407Eを採用し、
    前記制御装置は、
    前記液インジェクション圧縮機から吐出される冷媒の温度Tdが110℃以下、かつ、前記液インジェクション圧縮機から吐出された冷媒の過熱度TdSHが10K以上の範囲で制御する場合、
    前記バイパス経路を流れる冷媒の流量と、前記利用側熱交換器を流れる冷媒の流量との比が、
    前記利用側熱交換器での蒸発温度が−40℃のときは、
    8.11×10-3 ×Tc+1.28×10-1 以上、かつ、1.52×10-2 ×Tc+4.81×10-1 以下、
    前記利用側熱交換器での蒸発温度が−20℃のときは、
    6.60×10-3 ×Tc+2.14×10-1 (但し、0未満の場合は0とする)以上、かつ、7.86×10-3 ×Tc+1.99×10-1 以下、
    前記利用側熱交換器での蒸発温度が−10℃のときは、
    0以上、かつ、5.54×10-3 ×Tc+1.49×10-1 以下
    (但し、Tc:前記熱源側熱交換器の凝縮温度[℃])
    になるように、前記流量調整装置の開度を制御する
    ことを特徴とする冷凍サイクル装置。
  2. 前記熱源側熱交換器と液側接続配管の間の液管を流れる冷媒と、前記バイパス経路に設置した前記流量調整装置後の冷媒と、が熱交換する過冷却熱交換器を更に備える
    ことを特徴とする請求項1に記載の冷凍サイクル装置。
  3. 前記冷凍サイクルに連結されるアキュムレータと、
    前記アキュムレータに液相の冷媒を貯留させる制御手段と、を備える
    ことを特徴とする請求項1に記載の冷凍サイクル装置。
  4. 前記冷凍サイクルの高温側の設計圧力を、
    設定温度が60℃のときは、3.0MPa以上、
    設定温度が65℃のときは、3.4Pa以上、
    設定温度が70℃のときは、3.8MPa以上に設定する
    ことを特徴とする請求項3に記載の冷凍サイクル装置。
JP2014259962A 2014-12-24 2014-12-24 冷凍サイクル装置 Active JP6393181B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014259962A JP6393181B2 (ja) 2014-12-24 2014-12-24 冷凍サイクル装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014259962A JP6393181B2 (ja) 2014-12-24 2014-12-24 冷凍サイクル装置

Publications (2)

Publication Number Publication Date
JP2016121812A JP2016121812A (ja) 2016-07-07
JP6393181B2 true JP6393181B2 (ja) 2018-09-19

Family

ID=56328322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014259962A Active JP6393181B2 (ja) 2014-12-24 2014-12-24 冷凍サイクル装置

Country Status (1)

Country Link
JP (1) JP6393181B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6388010B2 (ja) * 2016-09-30 2018-09-12 ダイキン工業株式会社 空気調和装置
WO2021095131A1 (ja) * 2019-11-12 2021-05-20 三菱電機株式会社 熱交換ユニットおよび冷凍サイクル装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448160A (ja) * 1990-06-14 1992-02-18 Hitachi Ltd 冷凍サイクル装置
JPH11237126A (ja) * 1998-02-20 1999-08-31 Hitachi Ltd Hfc系冷媒対応冷凍装置
JP3567168B2 (ja) * 2000-09-28 2004-09-22 株式会社日立製作所 寒冷地用蓄熱式ヒートポンプ空気調和機
JP4403300B2 (ja) * 2004-03-30 2010-01-27 日立アプライアンス株式会社 冷凍装置
JP5818885B2 (ja) * 2011-05-23 2015-11-18 三菱電機株式会社 空気調和装置
WO2013093979A1 (ja) * 2011-12-22 2013-06-27 三菱電機株式会社 空気調和装置

Also Published As

Publication number Publication date
JP2016121812A (ja) 2016-07-07

Similar Documents

Publication Publication Date Title
JP5318099B2 (ja) 冷凍サイクル装置、並びにその制御方法
CN104094069B (zh) 制冷循环装置
US10508847B2 (en) Refrigeration apparatus
US9709304B2 (en) Air-conditioning apparatus
US9523520B2 (en) Air-conditioning apparatus
US10018389B2 (en) Air-conditioning apparatus
US20200333056A1 (en) Refrigeration cycle apparatus
WO2015140879A1 (ja) 冷凍サイクル装置
WO2014030236A1 (ja) 冷凍装置
JP4974658B2 (ja) 空気調和装置
AU2012303446A1 (en) Refrigeration apparatus
KR101901540B1 (ko) 공기 조화 장치
JP2010156524A (ja) 冷凍サイクル装置
JPWO2015140870A1 (ja) 冷凍サイクル装置
JP6902390B2 (ja) 冷凍サイクル装置
JP6080939B2 (ja) 空気調和装置
JP6393181B2 (ja) 冷凍サイクル装置
WO2023047440A1 (ja) 空気調和装置
WO2014199445A1 (ja) 冷凍装置
JP2015087020A (ja) 冷凍サイクル装置
US12215897B2 (en) Air conditioning apparatus and outdoor unit
CN212253263U (zh) 制冷空调装置
WO2015140950A1 (ja) 空気調和装置
JP2015129609A (ja) 冷凍装置
JP2016035354A (ja) 冷凍装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170619

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180824

R150 Certificate of patent or registration of utility model

Ref document number: 6393181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150