[go: up one dir, main page]

JP6319041B2 - エジェクタ式冷凍サイクル - Google Patents

エジェクタ式冷凍サイクル Download PDF

Info

Publication number
JP6319041B2
JP6319041B2 JP2014217454A JP2014217454A JP6319041B2 JP 6319041 B2 JP6319041 B2 JP 6319041B2 JP 2014217454 A JP2014217454 A JP 2014217454A JP 2014217454 A JP2014217454 A JP 2014217454A JP 6319041 B2 JP6319041 B2 JP 6319041B2
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
compressor
gas
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014217454A
Other languages
English (en)
Other versions
JP2016084964A (ja
Inventor
粂 真
真 粂
山田 雅啓
雅啓 山田
田代 敏幸
敏幸 田代
嘉徳 荒木
嘉徳 荒木
西嶋 春幸
春幸 西嶋
陽平 長野
陽平 長野
佳之 横山
佳之 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014217454A priority Critical patent/JP6319041B2/ja
Priority to CN201580057520.9A priority patent/CN107076471B/zh
Priority to PCT/JP2015/004096 priority patent/WO2016063444A1/ja
Priority to US15/513,508 priority patent/US10495350B2/en
Priority to DE112015004847.2T priority patent/DE112015004847T5/de
Publication of JP2016084964A publication Critical patent/JP2016084964A/ja
Application granted granted Critical
Publication of JP6319041B2 publication Critical patent/JP6319041B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/06Compression machines, plants or systems with non-reversible cycle with compressor of jet type, e.g. using liquid under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0014Ejectors with a high pressure hot primary flow from a compressor discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

本発明は、冷媒減圧手段としてエジェクタを備えるエジェクタ式冷凍サイクルに関する。
従来、冷媒減圧手段としてエジェクタを備える蒸気圧縮式の冷凍サイクル装置であるエジェクタ式冷凍サイクルが知られている。
この種のエジェクタ式冷凍サイクルでは、エジェクタの昇圧作用によって、蒸発器における冷媒蒸発圧力と圧縮機へ吸入される吸入冷媒の圧力が略同等となる通常の冷凍サイクル装置よりも、吸入冷媒の圧力を上昇させることができる。これにより、エジェクタ式冷凍サイクルでは、圧縮機の消費動力を低減させて、サイクルの成績係数(COP)の向上を狙うことができる。
さらに、特許文献1には、気液分離手段が一体的に構成された気液分離手段一体型エジェクタ(以下、エジェクタモジュールと記載する。)が開示されている。
この特許文献1のエジェクタモジュールによれば、気液分離手段にて分離された気相冷媒を流出させる気相冷媒流出口に圧縮機の吸入口側を接続し、気液分離手段にて分離された液相冷媒を流出させる液相冷媒流出口に蒸発器の冷媒入口側を接続し、さらに、冷媒吸引口に蒸発器の冷媒出口側を接続すること等によって、極めて容易にエジェクタ式冷凍サイクルを構成することができる。
特開2013−177879号公報
ところで、一般的な冷凍サイクル装置では、冷媒中に圧縮機を潤滑するための冷凍機油が混入されている。さらに、この種の冷凍機油としては、液相冷媒に相溶性を有するものが採用されている。そこで、特許文献1のエジェクタモジュールでは、気液分離空間(気液分離手段)にて分離された液相冷媒の一部を、オイル戻し通路を介して圧縮機の吸入側へ戻すことによって圧縮機を潤滑しようとしている。
しかし、気液分離空間にて分離された液相冷媒をオイル戻し通路を介して圧縮機の吸入側へ戻すためには、気液分離空間内の冷媒圧力と圧縮機の吸入側の冷媒圧力との圧力差が所定値以上になっている必要がある。このため、特許文献1のエジェクタモジュールでは、サイクルの高圧側冷媒圧力と低圧側冷媒圧力との圧力差が縮小してしまうと、冷凍機油が溶け込んだ液相冷媒を圧縮機へ戻すことができなくなってしまうおそれがある。
そして、冷凍機油が溶け込んだ液相冷媒を圧縮機へ戻すことができなくなってしまうと、圧縮機の耐久寿命に悪影響を及ぼしてしまう。
本発明は、上記点に鑑み、気液分離空間が一体的に構成されたエジェクタを備えるエジェクタ式冷凍サイクルにおいて、冷凍機油を適切に圧縮機へ戻すことを目的とする。
本発明は、上記目的を達成するために案出されたもので、請求項1に記載の発明では、冷凍機油が混入した冷媒を圧縮して吐出する圧縮機(11)と、圧縮機(11)から吐出された冷媒を放熱させる放熱器(12)と、放熱器(12)から流出した冷媒を減圧させるノズル部(13a)、並びに、ノズル部(13a)から噴射される高速度の噴射冷媒の吸引作用によって冷媒を吸引する冷媒吸引口(31b)、噴射冷媒と冷媒吸引口(31b)から吸引された吸引冷媒とを混合させて昇圧させる昇圧部(13c)、および昇圧部(13c)から流出した冷媒の気液を分離する気液分離空間(30f)が形成されたボデー部(30)を有するエジェクタモジュール(13)と、気液分離空間(30f)にて分離された液相冷媒を蒸発させる蒸発器(14)と、圧縮機(11)の冷媒吐出能力を制御する吐出能力制御手段(60a)と、サイクルの高圧側冷媒圧力(Pd)からサイクルの低圧側冷媒圧力(Ps)を減算した圧力差(ΔP)が予め定めた基準圧力差(KΔP1)以下となる運転条件を低圧力差運転条件としたときに、当該低圧力差運転条件になっているか否かを判定する圧力差判定手段(S81)と、を備え、
ボデー部(30)には、気液分離空間(30f)にて分離された液相冷媒の一部を気液分離空間(30f)から圧縮機(11)の吸入側へ導くオイル戻し通路(31f)が形成されており、
吐出能力制御手段(60a)は、圧力差判定手段(S81)によって低圧力差運転条件になっていることが判定された際に、圧縮機(11)の冷媒吐出能力を予め定めた基準吐出能力以上とするものであり、
基準圧力差(KΔP1)として、気液分離空間(30f)にて分離された液相冷媒を、圧縮機(11)の吸入側へ確実に戻すことのできる値が採用されており、基準吐出能力として、気液分離空間(30f)にて分離された液相冷媒を、圧縮機(11)の吸入側へ確実に戻すことのできる冷媒吐出能力が採用されているエジェクタ式冷凍サイクルを特徴とする。
これによれば、圧力差判定手段(S81)によって低圧力差運転条件になっていることが判定された際に、吐出能力制御手段(60a)が、圧縮機(11)の冷媒吐出能力を基準吐出能力以上とする。従って、サイクルの高圧側冷媒圧力(Pd)と低圧側冷媒圧力(Ps)との圧力差(ΔP)を拡大させて、気液分離空間(30f)内の冷媒圧力と圧縮機(11)の吸入側の冷媒圧力との圧力差を拡大させることができる。
そして、気液分離空間(30f)にて分離された冷凍機油が溶け込んだ液相冷媒を、オイル戻し通路(31f)を介して、圧縮機(11)の吸入側へ戻すことができる。その結果、冷凍機油の不足によって圧縮機(11)の耐久寿命に悪影響を及ぼしてしまうことを抑制できる。さらに、本請求項に記載の発明によれば、従来技術のエジェクタ式冷凍サイクルに対して、新たな構成部品を追加することなく、冷凍機油を圧縮機(11)へ確実に戻すことができる。
ここで、本請求項における高圧側冷媒圧力(Pd)としては、圧縮機(11)の吐出口からノズル部(13a)の入口へ至る冷媒流路を流通する冷媒の圧力を採用することができる。また、低圧側冷媒圧力(Ps)としては、気液分離空間(30f)の液相冷媒流出口から冷媒吸引口(31b)へ至る冷媒流路を流通する冷媒の圧力を採用することができる。
さらに、基準吐出能力としては、気液分離空間(30f)にて分離された冷凍機油が溶け込んだ液相冷媒を、オイル戻し通路(31f)を介して、圧縮機(11)の吸入側へ戻すことができる程度の吐出能力を採用すればよい。
また、「吐出能力制御手段(60a)が、圧縮機(11)の冷媒吐出能力を基準吐出能力以上とする」とは、圧力差判定手段(S81)によって低圧力差運転条件になっていることが判定された際に、連続的に基準吐出能力以上にすることのみを意味するものではなく、断続的に基準吐出能力以上にすることも含む意味である。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
第1実施形態のエジェクタ式冷凍サイクルが適用された車両用空調装置の模式的な全体構成図である。 第1実施形態の車両用空調装置の電気制御部を示すブロック図である。 第1実施形態の車両用空調装置の制御処理を示すフローチャートである。 第1実施形態の車両用空調装置の制御処理の要部を示すフローチャートである。 第2実施形態の車両用空調装置の制御処理の要部を示すフローチャートである。 他の実施形態の低圧力差運転条件における圧縮機の冷媒吐出能力の変化を示すタイムチャートである。
(第1実施形態)
以下、図面を用いて、本発明の第1実施形態を説明する。図1の全体構成図に示す本実施形態のエジェクタ式冷凍サイクル10は、車両用空調装置1に適用されており、空調対象空間である車室内(室内空間)へ送風される送風空気を冷却する機能を果たす。従って、エジェクタ式冷凍サイクル10の冷却対象流体は、送風空気である。
また、エジェクタ式冷凍サイクル10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。もちろん、冷媒としてHFO系冷媒(具体的には、R1234yf)等を採用してもよい。
さらに、冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。この冷凍機油としては、液相冷媒に相溶性を有するものが採用されている。
エジェクタ式冷凍サイクル10の構成機器のうち、圧縮機11は、冷媒を吸入して高圧冷媒となるまで昇圧して吐出するものである。圧縮機11は、車両走行用の駆動力を出力する図示しない内燃機関(エンジン)とともにエンジンルーム内に配置されている。そして、圧縮機11は、プーリ、ベルト等を介してエンジンから出力される回転駆動力によって駆動される。
より具体的には、本実施形態では、圧縮機11として、吐出容量を変化させることによって冷媒吐出能力を調整可能に構成された可変容量型圧縮機を採用している。この圧縮機11の吐出容量(冷媒吐出能力)は、後述する制御装置60から圧縮機11の吐出容量制御弁に出力される制御電流によって制御される。
ここで、本実施形態におけるエンジンルームとは、エンジンが収容される室外空間であって、車両ボデーや後述するファイアウォール50等によって囲まれた空間である。エンジンルームは、エンジンコンパートメントと呼ばれることもある。圧縮機11の吐出口には、放熱器12の凝縮部12aの冷媒流入口が接続されている。
放熱器12は、圧縮機11から吐出された高圧冷媒と冷却ファン12dにより送風される車室外空気(外気)を熱交換させることによって、高圧冷媒を放熱させて冷却する放熱用熱交換器である。放熱器12は、エンジンルーム内の車両の前方側に配置されている。
より具体的には、本実施形態の放熱器12は、圧縮機11から吐出された高圧気相冷媒と冷却ファン12dから送風された外気とを熱交換させ、高圧気相冷媒を放熱させて凝縮させる凝縮部12a、凝縮部12aから流出した冷媒の気液を分離して余剰液相冷媒を蓄えるレシーバ部12b、およびレシーバ部12bから流出した液相冷媒と冷却ファン12dから送風される外気とを熱交換させ、液相冷媒を過冷却する過冷却部12cを有して構成される、いわゆるサブクール型の凝縮器として構成されている。
冷却ファン12dは、制御装置60から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。放熱器12の過冷却部12cの冷媒流出口には、エジェクタモジュール13の冷媒流入口31aが接続されている。
エジェクタモジュール13は、放熱器12から流出した過冷却状態の高圧液相冷媒を減圧させる冷媒減圧手段としての機能を果たすとともに、高速度で噴射される冷媒流の吸引作用によって後述する蒸発器14から流出した冷媒を吸引(輸送)して循環させる冷媒循環手段(冷媒輸送手段)としての機能を果たすものである。
さらに、本実施形態のエジェクタモジュール13は、減圧させた冷媒の気液を分離する気液分離手段としての機能も有している。
つまり、本実施形態のエジェクタモジュール13は、「気液分離手段一体型エジェクタ」あるいは「気液分離機能付きエジェクタ」として構成されている。本実施形態では、気液分離手段(気液分離空間)を有していないエジェクタとの相違を明確化するために、エジェクタと気液分離手段とを一体化(モジュール化)させた構成を、エジェクタモジュールという用語を用いて表す。
エジェクタモジュール13は、圧縮機11および放熱器12とともに、エンジンルーム内に配置されている。なお、図1における上下の各矢印は、エジェクタモジュール13を車両に搭載した状態における上下の各方向を示したものであり、他の構成部材を車両に搭載した状態における上下の各方向は、これに限定されない。また、図1では、エジェクタモジュール13の軸方向断面図を図示している。
より具体的には、本実施形態のエジェクタモジュール13は、図1に示すように、複数の構成部材を組み合わせることによって構成されたボデー部30を備えている。ボデー部30は、円柱状の金属部材にて形成されている。このボデー部30には、複数の冷媒流入口や複数の内部空間等が形成されている。
ボデー部30に形成された複数の冷媒流入出口としては、具体的に、放熱器12から流出した冷媒を内部へ流入させる冷媒流入口31a、蒸発器14から流出した冷媒を吸引する冷媒吸引口31b、ボデー部30の内部に形成された気液分離空間30fにて分離された液相冷媒を蒸発器14の冷媒入口側へ流出させる液相冷媒流出口31c、および気液分離空間30fにて分離された気相冷媒を圧縮機11の吸入側へ流出させる気相冷媒流出口31dが形成されている。
また、ボデー部30の内部に形成された内部空間としては、冷媒流入口31aから流入した冷媒を旋回させる旋回空間30a、旋回空間30aから流出した冷媒を減圧させる減圧用空間30b、減圧用空間30bから流出した冷媒を流入させる昇圧用空間30e、昇圧用空間30eから流出した冷媒の気液を分離する気液分離空間30f等が形成されている。
旋回空間30aおよび気液分離空間30fは、略円柱状の回転体形状に形成されている。減圧用空間30bおよび昇圧用空間30eは、旋回空間30a側から気液分離空間30f側へ向かって徐々に拡大する略円錐台状の回転体形状に形成されている。これらの空間の中心軸はいずれも同軸上に配置されている。なお、回転体形状とは、平面図形を同一平面上の1つの直線(中心軸)の周りに回転させた際に形成される立体形状である。
さらに、ボデー部30には、冷媒吸引口31bから吸引された冷媒を、減圧用空間30bの冷媒流れ下流側であって昇圧用空間30eの冷媒流れ上流側へ導く吸引用通路13bが形成されている。
冷媒流入口31aと旋回空間30aとを接続する冷媒流入通路31eは、旋回空間30aの中心軸方向から見たときに旋回空間30aの内壁面の接線方向に延びている。これにより、冷媒流入通路31eから旋回空間30aへ流入した冷媒は、旋回空間30aの内壁面に沿って流れ、旋回空間30aの中心軸周りに旋回する。
旋回空間30a内で旋回する冷媒には遠心力が作用するので、旋回空間30a内では中心軸側の冷媒圧力が外周側の冷媒圧力よりも低下する。そこで、本実施形態では、エジェクタ式冷凍サイクル10の通常運転時に、旋回空間30a内の中心軸側の冷媒圧力を、飽和液相冷媒となる圧力、あるいは、冷媒が減圧沸騰する(キャビテーションを生じる)圧力まで低下させるようにしている。
このような旋回空間30a内の中心軸側の冷媒圧力の調整は、旋回空間30a内で旋回する冷媒の旋回流速を調整することによって実現することができる。さらに、旋回流速の調整は、例えば、冷媒流入通路31eの通路断面積と旋回空間30aの軸方向垂直断面積との面積比を調整すること等によって行うことができる。なお、本実施形態の旋回流速とは、旋回空間30aの最外周部近傍における冷媒の旋回方向の流速を意味している。
また、減圧用空間30bおよび昇圧用空間30eの内部には、通路形成部材35が配置されている。通路形成部材35は、減圧用空間30bから離れるに伴って外周側に広がる略円錐形状に形成されており、通路形成部材35の中心軸も減圧用空間30b等の中心軸と同軸上に配置されている。
そして、ボデー部30の減圧用空間30bおよび昇圧用空間30eを形成する部位の内周面と通路形成部材35の円錐状側面との間には、軸方向垂直断面の形状が円環状(円形状から同軸上に配置された小径の円形状を除いたドーナツ形状)の冷媒通路が形成されている。
この冷媒通路のうち、ボデー部30の減圧用空間30bを形成する部位と通路形成部材35の円錐状側面の頂部側の部位との間に形成される冷媒通路は、冷媒流れ下流側に向かって通路断面積を小さく絞る形状に形成されている。この形状により、この冷媒通路は、冷媒を等エントロピ的に減圧させて噴射するノズル部として機能するノズル通路13aを構成している。
より具体的には、本実施形態のノズル通路13aは、ノズル通路13aの入口側から最小通路面積部へ向かって通路断面積を徐々に縮小させ、最小通路面積部からノズル通路13aの出口側に向かって通路断面積を徐々に拡大させる形状に形成されている。つまり、本実施形態のノズル通路13aでは、いわゆるラバールノズルと同様に冷媒通路断面積が変化する。
ボデー部30の昇圧用空間30eを形成する部位と通路形成部材35の円錐状側面の下流側の部位との間に形成される冷媒通路は、冷媒流れ下流側に向かって通路断面積を徐々に拡大させる形状に形成されている。この形状により、この冷媒通路は、ノズル通路13aから噴射された噴射冷媒と冷媒吸引口31bから吸引された吸引冷媒とを混合させて昇圧させるディフューザ部(昇圧部)として機能するディフューザ通路13cを構成している。
また、ボデー部30の内部には、通路形成部材35を変位させてノズル通路13aの最小通路面積部の通路断面積を変化させる駆動手段としてのエレメント37が配置されている。
より具体的には、エレメント37は、吸引用通路13bを流通する冷媒(すなわち、蒸発器14流出冷媒)の温度および圧力に応じて変位するダイヤフラムを有している。そして、このダイヤフラムの変位を作動棒37aを介して、通路形成部材35へ伝達することによって、通路形成部材35を上下方向に変位させる。
さらに、エレメント37は、蒸発器14流出冷媒の温度(過熱度)が上昇するに伴って、最小通路面積部の通路断面積を拡大させる方向(鉛直方向下方側)に通路形成部材35を変位させる。一方、エレメント37は、蒸発器14流出冷媒の温度(過熱度)が低下するに伴って、最小通路面積部の通路断面積を縮小させる方向(鉛直方向上方側)に通路形成部材35を変位させる。
本実施形態では、このように、エレメント37が蒸発器14流出冷媒の過熱度に応じて通路形成部材35を変位させることによって、蒸発器14出口側冷媒の過熱度が予め定めた基準過熱度に近づくように、ノズル通路13aの最小通路面積部の通路断面積が調整される。
気液分離空間30fは、通路形成部材35の下方側に配置されている。気液分離空間30fは、ディフューザ通路13cから流出した冷媒を中心軸周りに旋回させて、遠心力の作用によって冷媒の気液を分離する遠心分離方式の気液分離手段を構成している。
さらに、本実施形態では、気液分離空間30fの内容積を、サイクルに負荷変動が生じてサイクルを循環する冷媒循環流量が変動しても、極少量の余剰冷媒しか貯めることのできない程度、あるいは実質的に余剰冷媒を殆ど溜めることができない程度の容積として、エジェクタモジュール13全体としての小型化を図っている。
また、ボデー部30のうち気液分離空間30fの底面を形成する部位には、分離された液相冷媒中の冷凍機油を、気液分離空間30fと気相冷媒流出口31dとを接続する気相冷媒通路へ戻すためのオイル戻し通路31fが形成されている。気相冷媒流出口31dには、圧縮機11の吸入口が接続されている。
従って、このオイル戻し通路31fは、気液分離空間30fにて分離された冷凍機油の溶け込んだ液相冷媒の一部を気液分離空間30fから圧縮機11の吸入側へ導く通路である。
一方、気液分離空間30fと液相冷媒流出口31cとを接続する液相冷媒通路には、蒸発器14へ流入させる冷媒を減圧させる減圧手段としてのオリフィス31iが配置されている。液相冷媒流出口31cには、入口配管15aを介して、蒸発器14の冷媒流入口が接続されている。
蒸発器14は、エジェクタモジュール13のノズル通路13aにて減圧された低圧冷媒と送風機42から車室内へ送風される送風空気とを熱交換させることによって、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。さらに、蒸発器14は、後述する室内空調ユニット40のケーシング41内に配置されている。
ここで、本実施形態の車両には、車室内と車室外のエンジンルームとを仕切る仕切り板としてのファイアウォール50が設けられている。ファイアウォール50は、エンジンルーム内から車室内へ伝達される熱、音等を低減する機能も有しており、ダッシュパネルと呼ばれることもある。
そして、図1に示すように、室内空調ユニット40は、ファイアウォール50よりも車室内側に配置されている。従って、蒸発器14は車室内(室内空間)に配置されている。蒸発器14の冷媒流出口には、出口配管15bを介して、エジェクタモジュール13の冷媒吸引口31bが接続されている。
また、前述の如くエジェクタモジュール13は、エンジンルーム内(室外空間)に配置されているので、入口配管15aおよび出口配管15bは、ファイアウォール50を貫通するように配置されている。
より具体的には、ファイアウォール50には、エンジンルーム側と車室内(室内空間)側とを貫通する円形状あるいは矩形状の貫通穴50aが設けられている。また、入口配管15aおよび出口配管15bは、接続用の金属部材であるコネクタ51に接続されることによって一体化されている。そして、入口配管15aおよび出口配管15bは、コネクタ51によって一体化された状態で貫通穴50aを貫通するように配置されている。
この際、コネクタ51は、貫通穴50aの内周側あるいは近傍に位置付けられる。そして、コネクタ51の外周側と貫通穴50aの開口縁部との隙間には、弾性部材で形成されたパッキン52が配置されている。本実施形態では、パッキン52として、耐熱性に優れるゴム材料であるエチレンプロピレンジエン共重合ゴム(EPDM)にて形成されたものを採用している。
このようにコネクタ51と貫通穴50aとの隙間にパッキン52を介在させることによって、コネクタ51と貫通穴50aとの隙間を介して、エンジンルーム内から車室内へ水や騒音等が漏れてしまうことを抑制している。
次に、室内空調ユニット40について説明する。室内空調ユニット40は、エジェクタ式冷凍サイクル10によって温度調整された送風空気を車室内へ吹き出すためのもので、車室内最前部の計器盤(インストルメントパネル)の内側に配置されている。さらに、室内空調ユニット40は、その外殻を形成するケーシング41内に送風機42、蒸発器14、ヒータコア44、エアミックスドア46等を収容することによって構成されている。
ケーシング41は、車室内に送風される送風空気の空気通路を形成するもので、ある程度の弾性を有し、強度的にも優れた樹脂(例えば、ポリプロピレン)にて成形されている。このケーシング41内の送風空気流れ最上流側には、ケーシング41内へ内気(車室内空気)と外気(車室外空気)とを切替導入する内外気切替手段としての内外気切替装置43が配置されている。
内外気切替装置43は、ケーシング41内へ内気を導入させる内気導入口および外気を導入させる外気導入口の開口面積を、内外気切替ドアによって連続的に調整して、内気の風量と外気の風量との風量割合を連続的に変化させるものである。内外気切替ドアは、内外気切替ドア用の電動アクチュエータによって駆動され、この電動アクチュエータは、制御装置60から出力される制御信号によって、その作動が制御される。
内外気切替装置43の送風空気流れ下流側には、内外気切替装置43を介して吸入した空気を車室内へ向けて送風する送風手段としての送風機(ブロワ)42が配置されている。この送風機42は、遠心多翼ファン(シロッコファン)を電動モータにて駆動する電動送風機であって、制御装置60から出力される制御電圧によって回転数(送風空気量)が制御される。
送風機42の送風空気流れ下流側には、蒸発器14およびヒータコア44が、送風空気の流れに対して、この順に配置されている。換言すると、蒸発器14は、ヒータコア44よりも送風空気流れ上流側に配置されている。ヒータコア44は、エンジン冷却水と蒸発器14通過後の送風空気とを熱交換させて、送風空気を加熱する加熱用熱交換器である。
また、ケーシング41内には、蒸発器14を通過した送風空気を、ヒータコア44を迂回させて下流側へ流す冷風バイパス通路45が形成されている。蒸発器14の送風空気流れ下流側であって、かつ、ヒータコア44の送風空気流れ上流側には、エアミックスドア46が配置されている。
エアミックスドア46は、蒸発器14通過後の空気のうち、ヒータコア44を通過させる空気と冷風バイパス通路45を通過させる空気との風量割合を調整する風量割合調整手段である。エアミックスドア46は、エアミックスドア駆動用の電動アクチュエータによって駆動され、この電動アクチュエータは、制御装置60から出力される制御信号によって、その作動が制御される。
ヒータコア44の空気流れ下流側および冷風バイパス通路45の空気流れ下流側には、ヒータコア44を通過した空気と冷風バイパス通路45を通過した空気とを混合させる混合空間が設けられている。従って、エアミックスドア46が、風量割合を調整することによって、混合空間にて混合された送風空気(空調風)の温度が調整される。
さらに、ケーシング41の送風空気流れ最下流部には、混合空間にて混合された空調風を、空調対象空間である車室内へ吹き出す図示しない開口穴が配置されている。具体的には、この開口穴としては、車室内の乗員の上半身に向けて空調風を吹き出すフェイス開口穴、乗員の足元に向けて空調風を吹き出すフット開口穴、および車両前面窓ガラス内側面に向けて空調風を吹き出すデフロスタ開口穴が設けられている。
これらのフェイス開口穴、フット開口穴およびデフロスタ開口穴の送風空気流れ下流側は、それぞれ空気通路を形成するダクトを介して、車室内に設けられたフェイス吹出口、フット吹出口およびデフロスタ吹出口(いずれも図示せず)に接続されている。
また、フェイス開口穴、フット開口穴、およびデフロスタ開口穴の送風空気流れ上流側には、それぞれ、フェイス開口穴の開口面積を調整するフェイスドア、フット開口穴の開口面積を調整するフットドア、デフロスタ開口穴の開口面積を調整するデフロスタドア(いずれも図示せず)が配置されている。
これらのフェイスドア、フットドア、デフロスタドアは、吹出口モードを切り替える吹出口モード切替手段を構成するものであって、リンク機構等を介して、吹出口モードドア駆動用の電動アクチュエータに連結されて連動して回転操作される。なお、この電動アクチュエータも、制御装置60から出力される制御信号によって、その作動が制御される。
なお、吹出口モードとしては、フェイス開口穴を全開として乗員の上半身へ向けて送風空気を吹き出すフェイスモード、フェイス開口穴およびフット開口穴の両方を開口して乗員の上半身と足元へ向けて送風空気を吹き出すバイレベルモード、フット開口穴を全開するとともにデフロスタ開口穴を小開度だけ開口して主に車室内乗員の足元へ向けて送風空気を吹き出すフットモード、デフロスタ開口穴を全開として車両フロント窓ガラス内面に向けて送風空気を吹き出すデフロスタモード等がある。
次に、図2を用いて、本実施形態の電気制御部の概要について説明する。制御装置60は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成される。この制御装置60は、そのROM内に記憶された空調制御プログラムに基づいて各種演算、処理を行う。そして、出力側に接続された圧縮機11、冷却ファン12d、送風機42等の各種電気式のアクチュエータの作動を制御する。
また、制御装置60には、車室内温度(内気温)Trを検出する内気温センサ61、外気温Tamを検出する外気温検出手段としての外気温センサ62、車室内の日射量Asを検出する日射センサ63、蒸発器14の吹出空気温度(蒸発器温度)Tefinを検出する蒸発器温度センサ64、ヒータコア44へ流入するエンジン冷却水の冷却水温度Twを検出する冷却水温度センサ65、圧縮機11から吐出された高圧冷媒の圧力(高圧側冷媒圧力)Pdを検出する高圧側圧力センサ66等の空調制御用のセンサ群が接続され、これらのセンサ群の検出値が入力される。
さらに、制御装置60の入力側には、車室内前部の計器盤付近に配置された図示しない操作パネル70が接続され、この操作パネル70に設けられた各種操作スイッチからの操作信号が制御装置60へ入力される。操作パネル70に設けられた各種操作スイッチとしては、車両用空調装置1の自動制御運転を設定するオートスイッチ、車室内設定温度Tsetを設定する車室内温度設定スイッチ、送風機42の風量をマニュアル設定する風量設定スイッチ等が設けられている。
なお、本実施形態の制御装置60は、その出力側に接続された各種の制御対象機器の作動を制御する制御手段が一体に構成されたものであるが、制御装置60のうち、各制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が各種制御対象機器の制御手段を構成している。
例えば、本実施形態では、圧縮機11の吐出容量制御弁の作動を制御する構成が圧縮機11の冷媒吐出能力を制御する吐出能力制御手段60aを構成している。もちろん、吐出能力制御手段を制御装置60に対して別体の制御装置で構成してもよい。
次に、図3、図4を用いて、上記構成における本実施形態の車両用空調装置1の作動について説明する。図3のフローチャートは、制御装置60が実行する空調制御プログラムのメインルーチンの制御処理を示している。この空調制御プログラムは、操作パネル70のオートスイッチが投入(ON)されると実行される。なお、図3、図4に示すフローチャートの各制御ステップは、制御装置60が有する各種の機能実現手段を構成している。
まず、ステップS1では、制御装置60の記憶回路によって構成されるフラグ、タイマ等の初期化、および上述した各種電動アクチュエータの初期位置合わせ等のイニシャライズが行われる。なお、ステップS1のイニシャライズでは、フラグや演算値のうち、前回の車両用空調装置1の停止時や車両システム終了時に記憶された値が読み出されるものもある。
次に、ステップS2では、空調制御用のセンサ群61〜66等の検出信号および操作パネル70の操作信号等を読み込む。続くステップS3では、ステップS2にて読み込まれた検出信号および操作信号に基づいて、車室内へ吹き出す送風空気の目標温度である目標吹出温度TAOを算出する。
具体的には、目標吹出温度TAOは、以下数式F1によって算出される。
TAO=Kset×Tset−Kr×Tr−Kam×Tam−Ks×As+C…(F1)
なお、Tsetは車室内温度設定スイッチによって設定された車室内設定温度、Trは内気温センサ61によって検出された車室内温度(内気温)であり、Tamは外気温センサ62によって検出された外気温であり、Asは日射センサ63によって検出された日射量である。また、Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
続くステップS4〜S8では、制御装置60に接続された各種制御対象機器の制御状態が決定される。
まず、ステップS4では、送風機42の回転数(送風能力)、すなわち送風機42の電動モータに印加するブロワモータ電圧(制御電圧)を決定してステップS5へ進む。具体的には、ステップS4では、ステップS3にて決定された目標吹出温度TAOに基づいて、予め制御装置60に記憶された制御マップを参照して、ブロワモータ電圧を決定する。
より詳細には、ブロワモータ電圧については、目標吹出温度TAOの極低温域(最大冷房域)および極高温域(最大暖房域)で略最大値となるように決定する。さらに、目標吹出温度TAOが極低温域あるいは極高温域から中間温度域に向かうに伴って、ブロワモータ電圧を略最大値から徐々に減少させるように決定する。
次に、ステップS5では、吸込口モード、すなわち内外気切替ドア用の電動アクチュエータに出力される制御信号を決定してステップS6へ進む。具体的には、ステップS5では、目標吹出温度TAOに基づいて、予め制御装置60に記憶された制御マップを参照して、吸込口モードを決定する。
より詳細には、吸込口モードについては、基本的に外気を導入する外気モードに決定される。そして、目標吹出温度TAOが極低温域となって高い冷房性能を得たい場合等に、内気を導入する内気モードに決定される。
次に、ステップS6では、エアミックスドア46の開度、すなわちエアミックスドア駆動用の電動アクチュエータに出力される制御信号を決定してステップS7へ進む。
具体的には、ステップS6では、目標吹出温度TAO、蒸発器温度センサ64によって検出された蒸発器温度Tefin、および冷却水温度センサ65によって検出された冷却水温度Twに基づいて、車室内へ吹き出される送風空気の温度が目標吹出温度TAOに近づくようにエアミックスドア46の開度を算定する。
次に、ステップS7では、吹出口モード、すなわち吹出口モードドア駆動用の電動アクチュエータに出力される制御信号を決定してステップS8へ進む。具体的には、ステップS8では、目標吹出温度TAOに基づいて、予め制御装置60に記憶された制御マップを参照して吹出口モードを決定する。
より詳細には、吹出口モードについては、目標吹出温度TAOが高温域から低温域へと下降するに伴って、フットモード→バイレベルモード→フェイスモードの順で切り替えられる。
次に、ステップS8では、圧縮機11の冷媒吐出能力、すなわち圧縮機11の吐出容量制御弁に出力される制御電流を決定してステップS9へ進む。このステップS8の詳細については、図4のフローチャートを用いて説明する。
図4のステップS81では、サイクルの高圧側冷媒圧力Pdから低圧側冷媒圧力Psを減算した圧力差ΔPが、予め定めた第1基準圧力差KΔP1以下となる低圧力差運転条件になっているか否かを判定する。従って、制御ステップS81は、特許請求の範囲に記載された圧力差判定手段を構成している。
なお、サイクルの高圧側冷媒圧力Pdとは、圧縮機11の吐出口からエジェクタ13の冷媒流入口31aへ至る冷媒流路を流通する冷媒の圧力であって、本実施形態では、高圧側圧力センサ66によって検出された高圧側冷媒圧力Pdを採用している。また、サイクルの低圧側冷媒圧力Psとは、エジェクタ13の液相冷媒流出口31cから蒸発器14を介してエジェクタ13の冷媒吸引口31bへ至る冷媒流路を流通する冷媒の圧力であって、本実施形態では、蒸発器温度Tefinに基づいて決定した値を採用している。
さらに、本実施形態のステップS81では、図4に記載された制御特性図に示すように、低圧力差運転条件になっていると判定されておらず、かつ、圧力差ΔPが縮小する過程で、圧力差ΔPが第1基準圧力差KΔP1以下となった際に、低圧力差運転条件になっている(Yes)と判定してステップS83へ進む。
一方、低圧力差運転条件になっていると判定されており、かつ、圧力差ΔPが増加する過程で、圧力差ΔPが予め定めた第2基準圧力差KΔP2以上となった際に、低圧力差運転条件になっていない(No)と判定してステップS82へ進む。なお、第1基準圧力差KΔP1と第2基準圧力差KΔP2との差は、制御ハンチング防止のためのヒステリシス幅として設定されている。
ステップS82では、通常運転条件における圧縮機11の冷媒吐出能力、すなわち圧縮機11の吐出容量制御弁に出力される制御電流を決定してステップS9へ進む。具体的には、ステップS82では、目標吹出温度TAOに基づいて、予め制御装置60に記憶された制御マップを参照して、蒸発器14の目標蒸発器吹出温度TEOを決定する。
そして、この目標蒸発器吹出温度TEOと蒸発器温度センサによって検出された蒸発器温度Tefinとの偏差に基づいて、フィードバック制御手法を用いて蒸発器温度Tefinが目標蒸発器吹出温度TEOに近づくように、圧縮機11の吐出容量制御弁に出力される制御電流を決定する。
一方、ステップS82では、低圧力差運転条件における圧縮機11の冷媒吐出能力を決定してステップS9へ進む。具体的には、ステップS82では、圧縮機11の冷媒吐出能力が予め定めた基準吐出能力以上となるように、圧縮機11の吐出容量制御弁に出力される制御電流が決定される。
ここで、本実施形態のエジェクタ式冷凍サイクル10では、エジェクタモジュール13の気液分離空間30fにて分離された液相冷媒の一部を、オイル戻し通路31fを介して圧縮機11の吸入側へ導いている。これにより、液相冷媒に溶け込んだ冷凍機油を圧縮機11へ戻し、圧縮機11の潤滑を行っている。
このように、気液分離空間30fにて分離された液相冷媒をオイル戻し通路31fを介して圧縮機11の吸入側へ戻すためには、気液分離空間30f内の冷媒圧力と圧縮機11の吸入側の冷媒圧力との圧力差が所定の値以上となっている必要がある。このため、圧力差ΔPが小さくなる低圧力差運転条件では、気液分離空間30fにて分離された液相冷媒を圧縮機11へ戻すことができなくなってしまうおそれがある。
そこで、本実施形態では、第1基準圧力差KΔP1として、気液分離空間30fにて分離された液相冷媒を、圧縮機11の吸入側へ確実に戻すことのできる値を採用している。さらに、基準吐出能力として、気液分離空間30fにて分離された液相冷媒を、圧縮機11の吸入側へ確実に戻すことのできる冷媒吐出能力、すなわち圧力差ΔPが第1基準圧力差KΔP1以上となる冷媒吐出能力が採用されている。
次に、図3に示すステップS9では、上述のステップS4〜S8にて決定された制御状態が得られるように、制御装置60から出力側に接続された各種制御対象機器に対して、制御信号および制御電圧が出力される。続くステップS10では、制御周期τの間待機し、制御周期τの経過を判定するとステップS2に戻るようになっている。
つまり、制御装置60が実行する空調制御プログラムでは、車両用空調装置1の作動停止が要求されるまで、検出信号および操作信号の読み込み→各制御対象機器の制御状態の決定→各制御対象機器に対する制御信号および制御電圧の出力を繰り返す。そして、この空調制御プログラムが実行されることにより、エジェクタ式冷凍サイクル10では、図1の太実線矢印に示すように冷媒が流れる。
すなわち、圧縮機11から吐出された高温高圧冷媒が放熱器12の凝縮部12aへ流入する。凝縮部12aへ流入した冷媒は、冷却ファン12dから送風された外気と熱交換し、放熱して凝縮する。凝縮部12aにて凝縮した冷媒は、レシーバ部12bにて気液分離される。レシーバ部12bにて気液分離された液相冷媒は、過冷却部12cにて冷却ファン12dから送風された外気と熱交換し、さらに放熱して過冷却液相冷媒となる。
放熱器12の過冷却部12cから流出した過冷却液相冷媒は、エジェクタモジュール13の減圧用空間30bの内周面と通路形成部材35の外周面との間に形成されるノズル通路13aにて等エントロピ的に減圧されて噴射される。この際、減圧用空間30bの最小通路面積部における冷媒通路面積は、蒸発器14出口側冷媒の過熱度が基準過熱度に近づくように調整される。
そして、ノズル通路13aから噴射された噴射冷媒の吸引作用によって、蒸発器14から流出した冷媒が、冷媒吸引口31bからエジェクタモジュール13の内部へ吸引される。ノズル通路13aから噴射された噴射冷媒および吸引用通路13bを介して吸引された吸引冷媒は、ディフューザ通路13cへ流入して合流する。
ディフューザ通路13cでは冷媒通路面積の拡大により、冷媒の運動エネルギが圧力エネルギに変換される。これにより、噴射冷媒と吸引冷媒が混合されながら混合冷媒の圧力が上昇する。ディフューザ通路13cから流出した冷媒は気液分離空間30fにて気液分離される。気液分離空間30fにて分離された液相冷媒は、オリフィス30iにて減圧されて、蒸発器14へ流入する。
蒸発器14へ流入した冷媒は、送風機42によって送風された送風空気から吸熱して蒸発する。これにより、送風空気が冷却される。一方、気液分離空間30fにて分離された気相冷媒は気相冷媒流出口31dから流出して、圧縮機11へ吸入され再び圧縮される。
蒸発器14にて冷却された送風空気は、エアミックスドア46の開度に応じて、ヒータコア44側の通風路および冷風バイパス通路45へ流入する。ヒータコア44側の通風路へ流入した冷風は、ヒータコア44を通過する際に再加熱され、混合空間にて冷風バイパス通路45を通過した冷風と混合される。そして、混合空間にて温度調整された空調風が、混合空間から各吹出口を介して車室内に吹き出される。
以上の如く、本実施形態の車両用空調装置1によれば、車室内の空調を行うことができる。さらに、本実施形態のエジェクタ式冷凍サイクル10によれば、ディフューザ通路13cにて昇圧された冷媒を圧縮機11に吸入させるので、圧縮機11の駆動動力を低減させて、サイクル効率(COP)を向上させることができる。
さらに、本実施形態のエジェクタモジュール13では、旋回空間30aにて冷媒を旋回させることで、旋回空間30a内の旋回中心側の冷媒圧力を、飽和液相冷媒となる圧力、あるいは、冷媒が減圧沸騰する(キャビテーションを生じる)圧力まで低下させている。そして、旋回中心側に気相冷媒が多く存在する気液二相冷媒をノズル通路13aへ流入させている。
これにより、冷媒とノズル通路13aの壁面との摩擦による壁面沸騰、および旋回中心側の冷媒のキャビテーションによって生じた沸騰核による界面沸騰によって、ノズル通路13aにおける冷媒の沸騰を促進することができる。その結果、ノズル通路13aにて冷媒の圧力エネルギを速度エネルギへ変換する際のエネルギ変換効率を向上させることができる。
また、本実施形態のエジェクタ式冷凍サイクル10によれば、圧力差判定手段を構成するステップS81にて、低圧力差運転条件になっていることが判定された際に、制御装置60の吐出能力制御手段60aが、圧縮機11の冷媒吐出能力を基準吐出能力以上とする。
従って、高圧側冷媒圧力Pdと低圧側冷媒圧力Psとの圧力差ΔPを拡大させて、気液分離空間30f内の冷媒圧力と圧縮機11の吸入側の冷媒圧力との圧力差を拡大させることができる。その結果、気液分離空間30fにて分離された冷凍機油が溶け込んだ液相冷媒を、オイル戻し通路31fを介して、圧縮機11の吸入側へ確実に戻すことができる。
そして、冷凍機油の不足によって圧縮機11の耐久寿命に悪影響を及ぼしてしまうことを抑制できる。さらに、本実施形態のエジェクタ式冷凍サイクル10では、従来技術のエジェクタ式冷凍サイクルに対して、新たな構成部品を追加することなく、冷凍機油を圧縮機11へ確実に戻すことができる。
(第2実施形態)
本実施形態では、圧力差判定手段を構成する制御ステップS81の制御態様を変更した例を説明する。本実施形態の制御ステップS81では、外気温センサ62によって検出された外気温Tamを用いて、低圧力差運転条件になっているか否かを判定する。
ここで、低外気温時に実行される除湿暖房運転では、エジェクタ式冷凍サイクル10に要求される送風空気の冷却能力が低くなり、エジェクタ式冷凍サイクル10の熱負荷が小さくなる。従って、圧縮機11の冷媒吐出能力が低下して、サイクルの高圧側冷媒圧力Pdと低圧側冷媒圧力Psとの圧力差ΔPも低下してしまいやすい。
そこで、本実施形態では、図5に記載された制御特性図に示すように、低圧力差運転条件になっていると判定されておらず、かつ、外気温Tamが低下する過程で、外気温Tamが予め定めた第1基準外気温KTam1以下となった際に、低圧力差運転条件になっている(Yes)と判定してステップS83へ進む。
一方、低圧力差運転条件になっていると判定されており、かつ、外気温Tamが上昇する過程で、外気温Tamが予め定めた第2基準外気温KTam2以上となった際に、低圧力差運転条件になっていない(No)と判定してステップS82へ進む。
この第1基準外気温KTam1は、外気温Tamが第1基準外気温KTam1以下となっている際に除湿暖房運転を実行すると、圧力差ΔPが第1実施形態で説明した第1基準圧力差ΔPと同等となってしまう温度に設定されている。また、第1基準外気温KTam1と第2基準外気温KTam2との差は、制御ハンチング防止のためのヒステリシス幅として設定されている。
その他の車両用空調装置1の構成および作動は第1実施形態と同様である。従って、本実施形態の車両用空調装置1においても第1実施形態と同様に車室内の空調を実現することができる。さらに、本実施形態のエジェクタ式冷凍サイクル10によれば、第1実施形態と同様に、気液分離空間30fにて分離された冷凍機油が溶け込んだ液相冷媒を、オイル戻し通路31fを介して、圧縮機11の吸入側へ確実に戻すことができる。
(他の実施形態)
本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
(1)上述の実施形態では、圧力差判定手段を構成する制御ステップS81にて低圧力差運転条件になっていると判定された際に、吐出能力制御手段60aが、圧縮機11の冷媒吐出能力を連続的に基準吐出能力以上とした例を説明したが、吐出能力制御手段60aの制御態様はこれに限定されない。
例えば、断続的に冷媒吐出能力を基準吐出能力以上となるように制御してもよい。その理由は、圧縮機11の潤滑のためには、連続的に冷凍機油を圧縮機11の摺動部に供給する必要はなく、摺動部における油膜が切れないように周期的に供給すればよいからである。
従って、低圧力差運転条件の圧縮機の冷媒吐出能力を、図6のタイムチャートに示すように、周期的に、かつ、断続的に基準吐出能力以上となるように制御してもよい。
(2)上述の第1実施形態では、サイクルの低圧側冷媒圧力Psとして蒸発器温度Tefinに基づいて決定した値を採用した例を説明したが、例えば、蒸発器14出口側冷媒の圧力(低圧側冷媒圧力Ps)を検出する低圧側圧力センサを設け、制御ステップS81にて、この低圧側圧力センサよって検出された低圧側冷媒圧力Psを用いて、低圧力差運転条件になっているか否かを判定してもよい。
(3)エジェクタ式冷凍サイクル10を構成する各構成機器は、上述の実施形態に開示されたものに限定されない。
例えば、上述の実施形態では、圧縮機11として、可変容量型圧縮機を採用した例を説明したが、圧縮機11はこれに限定されない。圧縮機11として、電磁クラッチ、ベルト等を介してエンジンから出力される回転駆動力によって駆動される固定容量型圧縮機を採用してもよい。
固定容量型圧縮機を採用した場合は、電磁クラッチの断続により圧縮機の稼働率を変化させて冷媒吐出能力を調整すればよい。つまり、制御ステップS83では、圧縮機の稼働率を向上させて、圧縮機の冷媒吐出能力が基準吐出能力以上となるようにすればよい。
さらに、圧縮機11として、電動モータの回転数を変化させて冷媒吐出能力を調整する電動圧縮機を採用してもよい。電動圧縮機を採用した場合は、電動モータの回転数を変化させて冷媒吐出能力を調整すればよい。つまり、制御ステップS83では、電動モータの回転数を増加させて、圧縮機の冷媒吐出能力が基準吐出能力以上となるようにすればよい。
また、上述の実施形態では、放熱器12として、サブクール型の熱交換器を採用した例を説明したが、凝縮部12aのみからなる通常の放熱器を採用し、さらに、通常の放熱器とともに、この放熱器にて放熱した冷媒の気液を分離して余剰液相冷媒を蓄える受液器(レシーバ)を採用してもよい。
また、エジェクタモジュール13を構成する各構成部材は、上述の実施形態に開示されたものに限定されない。例えば、エジェクタモジュール13のボデー部30、通路形成部材35等の構成部材は金属で形成されたものに限定されず、樹脂にて形成されたものであってもよい。
さらに、上述の実施形態のエジェクタモジュール13では、オリフィス31iを設けた例を説明したが、オリフィス31iを廃止して、入口配管15aに減圧手段を配置してもよい。この減圧手段としては、オリフィスやキャピラリチューブ等を採用することができる。
(4)上述の実施形態では、エジェクタモジュール13をエンジンルーム内に配置した例を説明したが、ファイアウォール50よりも車室内側に配置してもよい。
さらに、エジェクタモジュール13を、ファイアウォール50の貫通穴50aの内周側に配置してもよい。この場合は、エジェクタモジュール13の一部がエンジンルーム側に配置され、別の一部が車室内側に配置される。従って、エジェクタモジュール13の外周側と貫通穴50aの開口縁部の隙間には、第1実施形態と同様の機能を果たすパッキンを配置することが望ましい。
(5)上述の実施形態では、本発明に係るエジェクタ式冷凍サイクル10を、車両用空調装置1に適用した例を説明したが、本発明に係るエジェクタ式冷凍サイクル10の適用はこれに限定されない。例えば、車両用の冷凍冷蔵装置に適用してもよい。さらに、車両用に限定されることなく、据置型空調装置、冷温保存庫等に適用してもよい。
10 エジェクタ式冷凍サイクル
11 圧縮機
12 放熱器
13 エジェクタモジュール
14 蒸発器
13a ノズル通路(ノズル部)
13c ディフューザ通路(昇圧部)
30f 気液分離空間
31b 冷媒吸引口
31f オイル戻し通路

Claims (1)

  1. 冷凍機油が混入した冷媒を圧縮して吐出する圧縮機(11)と、
    前記圧縮機(11)から吐出された冷媒を放熱させる放熱器(12)と、
    前記放熱器(12)から流出した冷媒を減圧させるノズル部(13a)、並びに、前記ノズル部(13a)から噴射される高速度の噴射冷媒の吸引作用によって冷媒を吸引する冷媒吸引口(31b)、前記噴射冷媒と前記冷媒吸引口(31b)から吸引された吸引冷媒とを混合させて昇圧させる昇圧部(13c)、および前記昇圧部(13c)から流出した冷媒の気液を分離する気液分離空間(30f)が形成されたボデー部(30)を有するエジェクタモジュール(13)と、
    前記気液分離空間(30f)にて分離された液相冷媒を蒸発させる蒸発器(14)と、
    前記圧縮機(11)の冷媒吐出能力を制御する吐出能力制御手段(60a)と、
    サイクルの高圧側冷媒圧力(Pd)からサイクルの低圧側冷媒圧力(Ps)を減算した圧力差(ΔP)が予め定めた基準圧力差(KΔP1)以下となる運転条件を低圧力差運転条件としたときに、前記低圧力差運転条件になっているか否かを判定する圧力差判定手段(S81)と、を備え、
    前記ボデー部(30)には、前記気液分離空間(30f)にて分離された液相冷媒の一部を前記気液分離空間(30f)から前記圧縮機(11)の吸入側へ導くオイル戻し通路(31f)が形成されており、
    前記吐出能力制御手段(60a)は、前記圧力差判定手段(S81)によって前記低圧力差運転条件になっていることが判定された際に、前記圧縮機(11)の冷媒吐出能力を予め定めた基準吐出能力以上とするものであり、
    前記基準圧力差(KΔP1)として、前記気液分離空間(30f)にて分離された液相冷媒を、前記圧縮機(11)の吸入側へ確実に戻すことのできる値が採用されており、
    前記基準吐出能力として、前記気液分離空間(30f)にて分離された液相冷媒を、前記圧縮機(11)の吸入側へ確実に戻すことのできる冷媒吐出能力が採用されていることを特徴とするエジェクタ式冷凍サイクル。
JP2014217454A 2014-10-24 2014-10-24 エジェクタ式冷凍サイクル Expired - Fee Related JP6319041B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014217454A JP6319041B2 (ja) 2014-10-24 2014-10-24 エジェクタ式冷凍サイクル
CN201580057520.9A CN107076471B (zh) 2014-10-24 2015-08-18 喷射器式制冷循环
PCT/JP2015/004096 WO2016063444A1 (ja) 2014-10-24 2015-08-18 エジェクタ式冷凍サイクル
US15/513,508 US10495350B2 (en) 2014-10-24 2015-08-18 Ejector-type refrigeration cycle
DE112015004847.2T DE112015004847T5 (de) 2014-10-24 2015-08-18 Ejektorkältekreislauf

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014217454A JP6319041B2 (ja) 2014-10-24 2014-10-24 エジェクタ式冷凍サイクル

Publications (2)

Publication Number Publication Date
JP2016084964A JP2016084964A (ja) 2016-05-19
JP6319041B2 true JP6319041B2 (ja) 2018-05-09

Family

ID=55760508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014217454A Expired - Fee Related JP6319041B2 (ja) 2014-10-24 2014-10-24 エジェクタ式冷凍サイクル

Country Status (5)

Country Link
US (1) US10495350B2 (ja)
JP (1) JP6319041B2 (ja)
CN (1) CN107076471B (ja)
DE (1) DE112015004847T5 (ja)
WO (1) WO2016063444A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6683111B2 (ja) 2016-11-28 2020-04-15 株式会社島津製作所 試料解析システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6477857B2 (en) * 2000-03-15 2002-11-12 Denso Corporation Ejector cycle system with critical refrigerant pressure
US6834514B2 (en) * 2002-07-08 2004-12-28 Denso Corporation Ejector cycle
JP2005009774A (ja) * 2003-06-19 2005-01-13 Denso Corp エジェクタサイクル
JP2005016747A (ja) 2003-06-23 2005-01-20 Denso Corp 冷凍サイクル装置
JP2005037093A (ja) * 2003-07-18 2005-02-10 Tgk Co Ltd 冷凍サイクル
JP2008121913A (ja) * 2006-11-08 2008-05-29 Denso Corp 蒸気圧縮式冷凍サイクル
JP4897464B2 (ja) * 2006-12-15 2012-03-14 サンデン株式会社 蒸気圧縮式冷凍サイクル
JP2010032158A (ja) * 2008-07-30 2010-02-12 Denso Corp 冷凍サイクル装置
JP5446694B2 (ja) 2008-12-15 2014-03-19 株式会社デンソー エジェクタ式冷凍サイクル
CN201945081U (zh) * 2010-12-15 2011-08-24 广州恒星冷冻机械制造有限公司 一种满液式冷水机组
JP5920110B2 (ja) 2012-02-02 2016-05-18 株式会社デンソー エジェクタ
JP5821709B2 (ja) 2012-03-07 2015-11-24 株式会社デンソー エジェクタ
JP6119566B2 (ja) 2012-12-27 2017-04-26 株式会社デンソー エジェクタ
JP6248499B2 (ja) 2013-09-23 2017-12-20 株式会社デンソー エジェクタ式冷凍サイクル
JP2016084966A (ja) 2014-10-24 2016-05-19 株式会社デンソー エジェクタ式冷凍サイクル

Also Published As

Publication number Publication date
JP2016084964A (ja) 2016-05-19
CN107076471A (zh) 2017-08-18
CN107076471B (zh) 2020-06-16
US10495350B2 (en) 2019-12-03
DE112015004847T5 (de) 2017-07-06
WO2016063444A1 (ja) 2016-04-28
US20170299227A1 (en) 2017-10-19

Similar Documents

Publication Publication Date Title
JP5949648B2 (ja) 冷凍サイクル装置
JP6275372B2 (ja) 冷凍サイクル装置
JP5729359B2 (ja) 冷凍サイクル装置
JP4832458B2 (ja) 蒸気圧縮式冷凍サイクル
WO2016152048A1 (ja) エジェクタ式冷凍サイクル
JP6390437B2 (ja) 車両用空調装置
JP5083106B2 (ja) 膨張弁及びそれを備えた蒸気圧縮式冷凍サイクル
JP2018146219A (ja) エジェクタモジュール
WO2016063441A1 (ja) エジェクタ式冷凍サイクル装置
JP6319043B2 (ja) エジェクタ式冷凍サイクル
JP6459807B2 (ja) エジェクタ式冷凍サイクル
JP6319041B2 (ja) エジェクタ式冷凍サイクル
JP6720934B2 (ja) エジェクタモジュール
WO2016031157A1 (ja) エジェクタ式冷凍サイクル
JP6547698B2 (ja) エジェクタ式冷凍サイクル
JP6319042B2 (ja) エジェクタ式冷凍サイクル
WO2016181639A1 (ja) 冷凍サイクル装置
WO2018159321A1 (ja) エジェクタモジュール
JP2016048156A (ja) エジェクタ式冷凍サイクル

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180319

R151 Written notification of patent or utility model registration

Ref document number: 6319041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees