JP6268530B2 - 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 - Google Patents
硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 Download PDFInfo
- Publication number
- JP6268530B2 JP6268530B2 JP2014070927A JP2014070927A JP6268530B2 JP 6268530 B2 JP6268530 B2 JP 6268530B2 JP 2014070927 A JP2014070927 A JP 2014070927A JP 2014070927 A JP2014070927 A JP 2014070927A JP 6268530 B2 JP6268530 B2 JP 6268530B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- composite
- cubic
- crystal
- crystal grains
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
- B23B27/148—Composition of the cutting inserts
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/36—Carbonitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2228/00—Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
- B23B2228/04—Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner applied by chemical vapour deposition [CVD]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2228/00—Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
- B23B2228/10—Coatings
- B23B2228/105—Coatings with specified thickness
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Description
本願は、2013年4月1日に、日本に出願された特願2013−075856号に基づき優先権を主張し、その内容をここに援用する。
ただ、前記従来のTi−Al系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性にすぐれるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
ただ、この被覆工具は、物理蒸着法により硬質被覆層を蒸着形成するため、Alの含有割合xを0.6以上にすることは困難で、より一段と切削性能を向上させることが望まれている。
例えば、特許文献2には、TiCl4、AlCl3、NH3の混合反応ガス中で、650〜900℃の温度範囲において化学蒸着を行うことにより、Alの含有割合xの値が0.65〜0.95である(Ti1−xAlx)N層を蒸着形成できることが記載されているが、この文献では、この(Ti1−xAlx)N層の上にさらにAl2O3層を被覆し、これによって断熱効果を高めることを目的とするものであるから、xの値を0.65〜0.95まで高めた(Ti1−xAlx)N層の形成によって、切削性能へ如何なる影響があるかという点についてまでの開示はない。
しかし、前記特許文献1に記載されている被覆工具は、(Ti1−xAlx)N層からなる硬質被覆層が物理蒸着法で蒸着形成され、硬質被覆層中のAl含有量xを高めることが困難であるため、例えば、合金鋼の高速断続切削に供した場合には、耐摩耗性、耐チッピング性が十分であるとは言えないという課題があった。
一方、前記特許文献2に記載されている化学蒸着法で蒸着形成した(Ti1−xAlx)N層については、Al含有量xを高めることができ、また、立方晶構造を形成させることができることから、所定の硬さを有し耐摩耗性にすぐれた硬質被覆層が得られるものの、基体との密着強度は十分でなく、また、靭性に劣るという課題があった。
さらに、前記特許文献3に記載されている被覆工具は、所定の硬さを有し耐摩耗性にはすぐれるものの、靭性に劣ることから、合金鋼の高速断続切削加工等に供した場合には、チッピング、欠損、剥離等の異常損傷が発生しやすく、満足できる切削性能を発揮するとは言えないという課題があった。
そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、合金鋼等の高速断続切削等に供した場合であっても、すぐれた靭性を備え、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮する被覆工具を提供することである。
そこで、本発明者らは、硬質被覆層を構成する(Ti1−xAlx)(CyN1−y)層について鋭意研究したところ、(Ti1−xAlx)(CyN1−y)層を立方晶結晶相と六方晶結晶相とで構成し、かつ、立方晶結晶粒内にTiとAlの周期的な濃度変化を形成させるという全く新規な着想により、立方晶結晶粒に歪みを生じさせ、硬さと靭性を高めることに成功し、その結果、硬質被覆層の耐チッピング性、耐欠損性を向上させることができるという新規な知見を見出した。
(a)成膜工程
工具基体表面に、反応ガス組成(容量%)を、TiCl4:0.5〜1.5%、Al(CH3)3:0〜2.0%、AlCl3:1.5〜2.5%、NH3:1.0〜3.0%、N2:11〜15%、C2H4:0〜0.5%、H2:残、反応雰囲気圧力:2.0〜5.0kPa、反応雰囲気温度:700〜900℃として、所定時間、熱CVD法を行うことにより、所定の目標層厚の(Ti1−xAlx)(CyN1−y)層を成膜する。
(b)エッチング工程
前記(a)の成膜工程時に、TiCl4:2.0〜5.0%、H2:残、反応雰囲気圧力:2.0〜5.0kPa、反応雰囲気温度:700〜900℃の条件からなる、TiCl4エッチング工程を所定時間、所定回数挟む。
(1)炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、
前記硬質被覆層は、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−xAlx)(CyN1−y)で表した場合、AlのTiとAlの合量に占める含有割合xおよびCのCとNの合量に占める含有割合y(但し、x、yはいずれも原子比)が、それぞれ、0.60≦x≦0.95、0≦y≦0.005を満足し、
前記複合窒化物または複合炭窒化物層を構成する結晶粒は、立方晶構造を有するものと六方晶構造を有するものが存在し、工具基体と垂直な面における立方晶結晶相の占める面積割合は30〜80面積%であり、立方晶構造を有する結晶粒の平均粒子幅Wが0.05〜1.0μm、平均アスペクト比Aが5以下であり、前記立方晶構造を有する結晶粒内に、組成式:(Ti1−xAlx)(CyN1−y)におけるTiとAlの周期的な濃度変化が存在し、周期的に変化するxの極大値と極小値の差が0.05〜0.25であることを特徴とする表面被覆切削工具。
(2)前記複合窒化物または複合炭窒化物層中のTiとAlの周期的な濃度変化が存在する立方晶構造を有する結晶粒において、TiとAlの周期的な濃度変化が立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位に沿った周期が3〜30nmであり、その方位に直交する面内でのTiとAlの濃度xの変化は0.01以下であること特徴とする(1)に記載の表面被覆切削工具。
(3)前記複合窒化物または複合炭窒化物層中のTiとAlの周期的な濃度変化が存在する立方晶構造を有する結晶粒において、
(a)TiとAlの周期的な濃度変化が立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位を方位dAとすると、方位dAに沿った周期が3〜30nmであり、方位dAに直交する面内でのTiとAlの濃度xの変化は0.01以下である領域A、および(b)TiとAlの周期的な濃度変化が、方位dAと直交する立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位を方位dBとすると、方位dBに沿った周期が3〜30nmであり、方位dBに直交する面内でのTiとAlの濃度xの変化は0.01以下である領域Bである二つの領域、(a)領域Aと(b)領域Bが結晶粒内に存在し、前記(a)領域Aと(b)領域Bの境界が{110}で表される等価な結晶面のうちの一つの面に形成されることを特徴とする(1)に記載の表面被覆切削工具。
(4)前記炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体と前記TiとAlの複合窒化物または複合炭窒化物層の間にTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、0.1〜20μmの合計平均層厚を有するTi化合物層を含む下部層が存在することを特徴とする(1)乃至(3)のいずれかに記載の表面被覆切削工具。
(5)前記複合窒化物または複合炭窒化物層の上部に、少なくとも1〜25μmの平均層厚を有する酸化アルミニウム層を含む上部層が存在することを特徴とする(1)乃至(4)のいずれかに記載の表面被覆切削工具。
(6)前記複合炭窒化物層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜することを特徴とする(1)乃至(5)のいずれかに記載の表面被覆切削工具の製造方法。
なお、本発明における硬質被覆層は、前述のような複合窒化物または複合炭窒化物層をその本質的構成とするが、さらに、従来から知られている下部層や上部層などと併用することにより、複合窒化物または複合炭窒化物層が奏する効果と相俟って、一層すぐれた特性を創出することができることは言うまでもない。
本発明の硬質被覆層は、化学蒸着された組成式:(Ti1−xAlx)(CyN1−y)で表されるTiとAlの複合窒化物または複合炭窒化物層を少なくとも含む。この複合窒化物または複合炭窒化物層は、硬さが高く、すぐれた耐摩耗性を有するが、特に平均層厚が1〜20μmのとき、その効果が際立って発揮される。その理由は、平均層厚が1μm未満では、層厚が薄いため長期の使用に亘っての耐摩耗性を十分確保することができず、一方、その平均層厚が20μmを越えると、TiとAlの複合窒化物または複合炭窒化物層の結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。したがって、その平均層厚を1〜20μmと定めた。
本発明の硬質被覆層を構成する複合窒化物または複合炭窒化物層は、AlのTiとAlの合量に占める含有割合xおよびCのCとNの合量に占める含有割合y(但し、x、yはいずれも原子比)が、それぞれ、0.60≦x≦0.95、0≦y≦0.005を満足するように制御する。
その理由は、Alの含有割合xが0.60未満であると、TiとAlの複合窒化物または複合炭窒化物層の硬さに劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でない。一方、Alの含有割合xが0.95を超えると、相対的にTiの含有割合が減少するため、脆化を招き、耐チッピング性が低下する。したがって、Alの含有割合xは、0.60≦x≦0.95と定めた。
また、複合窒化物または複合炭窒化物層に含まれるCの含有割合(原子比)yは、0≦y≦0.005の範囲の微量であるとき、複合窒化物または複合炭窒化物層と工具基体もしくは下部層との密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和し、結果として複合窒化物または複合炭窒化物層の耐欠損性および耐チッピング性が向上する。一方、Cの含有割合yが0≦y≦0.005の範囲を逸脱すると、複合窒化物または複合炭窒化物層の靭性が低下するため耐欠損性および耐チッピング性が逆に低下するため好ましくない。したがって、Cの含有割合yは、0≦y≦0.005と定めた。
前記複合窒化物または複合炭窒化物層中の各立方晶結晶粒について、工具基体表面と平行な方向の粒子幅をw、また、工具基体表面に垂直な方向の粒子長さをlとし、前記wとlとの比l/wを各結晶粒のアスペクト比aとし、さらに、個々の結晶粒について求めたアスペクト比aの平均値を平均アスペクト比A、個々の結晶粒について求めた粒子幅wの平均値を平均粒子幅Wとした場合、平均粒子幅Wが0.05〜1.0μm、平均アスペクト比Aが5以下を満足するように制御する。
この条件を満たすとき、複合窒化物または複合炭窒化物層を構成する立方晶結晶粒は粒状組織となり、すぐれた耐摩耗性を示す。一方、平均アスペクト比Aが5を超えると結晶粒が柱状晶になり、立方晶結晶相内に本発明の特徴である組成の周期的な分布を形成しにくくなるため好ましくない。また、平均粒子幅Wが0.05μm未満であると耐摩耗性が低下し、1.0μmを超えると靭性が低下する。したがって、複合窒化物または複合炭窒化物層を構成する立方晶結晶粒の平均粒子幅Wは、0.05〜1.0μmと定めた。
さらに、電子線後方散乱回折装置(EBSD)を用いて個々の結晶粒の結晶方位を、前記TiとAlの複合窒化物または複合炭窒化物層の縦断面(工具基体と垂直な面)方向から解析した場合、立方晶結晶格子の電子後方散乱回折像が観測される立方晶結晶相と六方晶結晶格子の電子後方散乱回折像が観測される六方晶結晶相が存在し、立方晶結晶相と六方晶結晶相の占める合計の面積に対する立方晶結晶相の占める面積割合が30〜80面積%であることがより好ましい。結晶粒中の立方晶結晶相の占める面積割合が30面積%を下回ると硬さが低下し、その結果、耐摩耗性が低下する。一方、80面積%を超えると靭性が低下し、その結果、耐チッピング性が低下する。したがって、結晶粒中の立方晶結晶相の占める面積割合は、30〜80面積%と定めた。
前記TiとAlの複合窒化物または複合炭窒化物層は、立方晶結晶層および六方晶結晶層からなるが、それ以外にも成膜時に不可避的に形成されるアモルファス層をわずかに含んでも良い。この場合、前記TiとAlの複合窒化物または複合炭窒化物層の縦断面における、立方晶結晶相と六方晶結晶相の占める合計の面積に対するアモルファス層の占める面積割合は、10%以下である。
さらに、立方晶構造を有する結晶を組成式:(Ti1−xAlx)(CyN1−y)で表した場合、結晶粒内にTiとAlの周期的な濃度変化が存在するとき、結晶粒に歪みが生じ、硬さが向上する。しかしながら、TiとAlの濃度変化の大きさの指標である前記組成式におけるxの極大値と極小値の差が0.05より小さいと前述した結晶粒の歪みが小さく十分な硬さの向上が見込めない。一方、xの極大値と極小値の差が0.25を超えると結晶粒の歪みが大きくなり過ぎ、格子欠陥が大きくなり、硬さが低下する。そこで、立方晶構造を有する結晶粒内に存在するTiとAlの濃度変化は、周期的に変化するxの極大値と極小値の差を0.05〜0.25とした。また、前記複合窒化物または複合炭窒化物層中のTiとAlの周期的な濃度変化が存在する立方晶構造を有する結晶粒において、TiとAlの周期的な濃度変化が立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在した場合、結晶粒の歪みによる格子欠陥が生じにくく、靭性が向上する。また、前記のTiとAlの周期的な濃度変化が存在する方位に直交する面内ではTiとAlの濃度は実質的に変化しない。また、上記の立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿った濃度変化の周期が3nm未満では靭性が低下し、30nmを超えると硬さの向上効果が見込めない。したがって、前記濃度変化の周期は3〜30nmとした。また、TiとAlの周期的な濃度変化が直交する2方向に存在する、領域Aと領域Bが結晶粒内に存在する結晶粒については、結晶粒内で2方向の歪みが存在することで靭性が向上する。さらに、領域Aと領域Bの境界が{110}で表される等価な結晶面のうちの一つの面に形成されることで領域Aと領域Bの境界のミスフィットが生じないため、高い靭性を維持することが出来る。
結晶粒内にTiとAlの周期的な濃度変化が存在するとは、結晶粒内のTiおよびAlの比を(Ti1−xAlx)のxの値で規定したときに、xの値が0.05〜0.25の範囲の間で、3〜30nmの一定の周期幅で上昇下降することを意味する。そして、xの値の上昇と下降を周期の1セットと定義した場合、結晶粒一つに少なくとも5セット以上の周期が存在することを意味する。
末、Co粉末およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の工具基体Dを作製した。
(a)表4に示される形成条件A〜J、すなわち、反応ガス組成(容量%)を、TiCl4:0.5〜1.5%、Al(CH3)3:0〜2.0%、AlCl3:1.5〜2.5%、NH3:1.0〜3.0%、N2:11〜15%、C2H4:0〜0.5%、H2:残として、反応雰囲気圧力:2.0〜5.0kPa、反応雰囲気温度:700〜900℃として、所定時間、熱CVD法を行うことにより、表6に示される平均粒子幅Wおよび平均アスペクト比Aの粒状組織の(Ti1−xAlx)(CyN1−y)層を成膜する(成膜工程)。
(b)前記(a)の成膜工程時に、表4に示される形成条件a〜j、すなわち、反応ガス組成(容量%)を、TiCl4:2.0〜5.0%、H2:残として、反応雰囲気圧力:2.0〜5.0kPa、反応雰囲気温度:700〜900℃とするTiCl4エッチング工程を所定時間、所定回数挟む(エッチング工程)。
(c)前記(a)の成膜工程中に(b)からなるエッチング工程を表6に示された所定時間、所定回数、挟むことによって、表6に示される目標層厚を有する立方晶結晶と六方晶結晶とが存在する粒状組織の(Ti1−xAlx)(CyN1−y)層からなる硬質被覆層を形成することにより本発明被覆工具1〜15を製造した。
なお、本発明被覆工具6〜13については、表3に示される形成条件で、表5に示される下部層および/または表6に示される上部層を形成した。
なお、本発明被覆工具6〜13と同様に、比較被覆工具6〜13については、表3に示される形成条件で、表5に示される下部層および/または表7に示される上部層を形成した。
参考のため、工具基体Bおよび工具基体Cの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Ti1−xAlx)(CyN1−y)層を目標層厚で蒸着形成することにより、表7に示される参考被覆工具14、15を製造した。
なお、参考例の蒸着に用いたアークイオンプレーティングの条件は、次のとおりである。
(a)前記工具基体BおよびCを、アセトン中で超音波洗浄し、乾燥した状態で、アークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、また、カソード電極(蒸発源)として、所定組成のAl−Ti合金を配置し、
(b)まず、装置内を排気して10−2Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつAl−Ti合金からなるカソード電極とアノード電極との間に200Aの電流を流してアーク放電を発生させ、装置内にAlおよびTiイオンを発生させ、もって工具基体表面をボンバード処理し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−50Vの直流バイアス電圧を印加し、かつ、前記Al−Ti合金からなるカソード電極(蒸発源)とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表7に示される目標組成、目標層厚の(Ti,Al)N層を蒸着形成し、参考被覆工具14、15を製造した。
また、複合窒化物または複合炭窒化物層の平均Al含有割合xについては、電子線マイクロアナライザ(EPMA,Electron−Probe−Micro−Analyser)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均からAlの平均Al含有割合xを求めた。平均C含有割合yについては、二次イオン質量分析(SIMS,Secondary−Ion−Mass−Spectroscopy)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。平均C含有割合yはTiとAlの複合窒化物または複合炭窒化物層についての深さ方向の平均値を示す。
また、本発明被覆工具1〜15および比較被覆工具1〜13、参考被覆工具14、15について、工具基体に垂直な方向の断面方向から走査型電子顕微鏡(倍率5000倍及び20000倍)を用いて、工具基体表面と水平方向に長さ10μmの範囲に存在する複合窒化物または複合炭窒化物層を構成する粒状組織(Ti1−xAlx)(CyN1−y)層中の個々の結晶粒について、基体表面と平行な方向の粒子幅w、基体表面に垂直な方向の粒子長さlを測定し、各結晶粒のアスペクト比a(=l/w)を算出するとともに、個々の結晶粒について求めたアスペクト比aの平均値を平均アスペクト比Aとして算出し、また、個々の結晶粒について求めた粒子幅wの平均値を平均粒子幅Wとして算出した。その結果を、表6および表7に示した。
また、電子線後方散乱回折装置を用いて、TiとAlの複合窒化物または複合炭窒化物層からなる硬質被覆層の工具基体に垂直な方向の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在する結晶粒個々に照射し、工具基体と水平方向に長さ100μmに亘り硬質被覆層について0.01μm/stepの間隔で、電子線後方散乱回折像を測定し、個々の結晶粒の結晶構造を解析することで立方晶構造あるいは六方晶構造であるかを同定し、TiとAlの複合窒化物または複合炭窒化物層を構成する結晶粒の立方晶結晶相の占める面積割合を求めた。その結果を、同じく、表6および表7に示す。
さらに、透過型電子顕微鏡(倍率200000倍)を用いて、複合窒化物または複合炭窒化物層の微小領域の観察を行い、エネルギー分散型X線分光法(EDS)を用いて、断面側から面分析を行ったところ、前記立方晶構造を有する結晶粒内に、組成式:(Ti1−xAlx)(CyN1−y)におけるTiとAlの周期的な濃度変化が存在することを確認した。また、該結晶粒について電子線回折を行うことで、TiとAlの周期的な濃度変化が立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在することを確認し、その方位に沿ったEDSによる線分析を行い、TiとAlの周期的な濃度変化の極大値と極小値のそれぞれの平均値の差を極大値と極小値の差Δxとして求め、さらに極大値の周期をTiとAlの周期的な濃度変化の周期として求め、その方位に直交する方向に沿った線分析を行い、TiとAlの濃度xの最大値と最小値の差をTiとAlの濃度xの変化として求めた。また、領域Aと領域Bが結晶粒内に存在する結晶粒については、領域Aと領域Bのそれぞれに対して、上記と同様にTiとAlの周期的な濃度変化の極大値と極小値の差Δx、周期、直交する面内の濃度変化を求め、領域AのTiとAlの周期的な濃度変化が立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位を方位dAとし、領域BのTiとAlの周期的な濃度変化が立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位を方位dBとし、dAとdBが直交し、領域Aと領域Bの境界が{110}で表される等価な結晶面のうちの一つの面に形成されることを確認した。
切削試験:乾式高速正面フライス、センターカット切削加工、
被削材:JIS・SCM440幅100mm、長さ400mmのブロック材、
回転速度:917 min−1、
切削速度:360 m/min、
切り込み:1.0 mm、
一刃送り量:0.14 mm/刃、
切削時間:8分、
(a)表4に示される形成条件A〜J、すなわち、反応ガス組成(容量%)を、TiCl4:1.5〜2.5%、Al(CH3)3:3.0〜5.0%、AlCl3:3.0〜5.0%、NH3:2.0〜5.0%、N2:6.0〜7.0%、C2H4:0〜1.0%、Ar:6.0〜7.0%、H2:残として、反応雰囲気圧力:2.0〜5.0kPa、反応雰囲気温度:750〜900℃として、所定時間、熱CVD法を行うことにより、表12に示される平均粒子幅Wおよび平均アスペクト比Aの粒状組織の(Ti1−xAlx)(CyN1−y)層を成膜する(成膜工程)。
(b)前記(a)の成膜工程時に、表4に示される形成条件a〜j、すなわち、反応ガス組成(容量%)を、TiCl4:2.0〜5.0%、H2:残として、反応雰囲気圧力:2.0〜5.0kPa、反応雰囲気温度:750〜900℃とするTiCl4エッチング工程を所定時間、所定回数挟む(エッチング工程)。
(c)前記(a)の成膜工程中に(b)からなるエッチング工程を表12に示された所定時間、所定回数、挟むことによって、表12に示される目標層厚を有する立方晶結晶と六方晶結晶とが存在する粒状組織の(Ti1−xAlx)(CyN1−y)層からなる硬質被覆層を形成することにより本発明被覆工具16〜30を製造した。
なお、本発明被覆工具19〜28については、表3に示される形成条件で、表11に示される下部層および/または表12に示される上部層を形成した。
なお、本発明被覆工具19〜28と同様に、比較被覆工具19〜28については、表3に示される形成条件で、表11に示される下部層および/または表13に示される上部層を形成した。
なお、アークイオンプレーティングの条件は、実施例1に示される条件と同様の条件を用いた。
また、前記本発明被覆工具16〜30、比較被覆工具16〜28および参考被覆工具29、30の硬質被覆層について、実施例1に示される方法と同様の方法を用いて、平均Al含有割合x、平均C含有割合y、粒状組織(Ti1−xAlx)(CyN1−y)層を構成する結晶粒の平均粒子幅W、平均アスペクト比A、結晶粒における立方晶結晶相の占める面積割合を求めた。その結果を、表12および表13に示す。
切削条件1:
被削材:JIS・SCM435の長さ方向等間隔4本縦溝入り丸棒、
切削速度:360m/min、
切り込み:1.2mm、
送り:0.2mm/rev、
切削時間:5分、
(通常の切削速度は、220m/min)、
切削条件2:
被削材:JIS・FCD450の長さ方向等間隔4本縦溝入り丸棒、
切削速度:340m/min、
切り込み:1.0mm、
送り:0.2mm/rev、
切削時間:5分、
(通常の切削速度は、200m/min)、
表14に、前記切削試験の結果を示す。
なお、本発明被覆工具34〜38については、表3に示される形成条件で、表16に示すような下部層および/または表17に示すような上部層を形成した。
なお、本発明被覆工具34〜38と同様に、比較被覆工具34〜38については、表3に示される形成条件で、表16に示すような下部層および/または表18に示すような上部層を形成した。
なお、アークイオンプレーティングの条件は、実施例1に示される条件と同様の条件を用い、前記工具基体の表面に、表18に示される目標組成、目標層厚の(Al,Ti)N層を蒸着形成し、参考被覆工具39,40を製造した。
工具基体:立方晶窒化ホウ素基超高圧焼結体、
切削試験:浸炭焼入れ合金鋼の乾式高速断続切削加工、
被削材:JIS・SCr420(硬さ:HRC60)の長さ方向等間隔4本縦溝入り丸棒、
切削速度:220 m/min、
切り込み:0.12mm、
送り:0.10mm/rev、
切削時間:4分、
表19に、前記切削試験の結果を示す。
2 硬質被覆層
3 複合窒化物層または複合炭窒化物層
4 Al含有量が相対的に多い領域
5 Al含有量が相対的に少ない領域
6 領域A
7 領域B
8 領域Aと領域Bとの境界
Claims (6)
- 炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、
前記硬質被覆層は、化学蒸着法により成膜された平均層厚1〜20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−xAlx)(CyN1−y)で表した場合、AlのTiとAlの合量に占める含有割合xおよびCのCとNの合量に占める含有割合y(但し、x、yはいずれも原子比)が、それぞれ、0.60≦x≦0.95、0≦y≦0.005を満足し、
前記複合窒化物または複合炭窒化物層を構成する結晶粒は、立方晶構造を有するものと六方晶構造を有するものが存在し、工具基体と垂直な面における立方晶結晶相の占める面積割合は30〜80面積%であり、立方晶構造を有する結晶粒の平均粒子幅Wが0.05〜1.0μm、平均アスペクト比Aが5以下であり、前記立方晶構造を有する結晶粒内に、組成式:(Ti1−xAlx)(CyN1−y)におけるTiとAlの周期的な濃度変化が存在し、周期的に変化するxの極大値と極小値の差が0.05〜0.25であることを特徴とする表面被覆切削工具。 - 前記複合窒化物または複合炭窒化物層中のTiとAlの周期的な濃度変化が存在する立方晶構造を有する結晶粒において、TiとAlの周期的な濃度変化が立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位に沿った周期が3〜30nmであり、その方位に直交する面内でのTiとAlの濃度xの変化は0.01以下であること特徴とする請求項1に記載の表面被覆切削工具。
- 前記複合窒化物または複合炭窒化物層中のTiとAlの周期的な濃度変化が存在する立方晶構造を有する結晶粒において、
(a)TiとAlの周期的な濃度変化が立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位を方位dAとすると、方位dAに沿った周期が3〜30nmであり、方位dAに直交する面内でのTiとAlの濃度xの変化は0.01以下である領域A
(b)TiとAlの周期的な濃度変化が、方位dAと直交する立方晶結晶粒の<001>で表される等価の結晶方位のうちの一つの方位に沿って存在し、その方位を方位dBとすると、方位dBに沿った周期が3〜30nmであり、方位dBに直交する面内でのTiとAlの濃度xの変化は0.01以下である領域B
である二つの領域、(a)領域Aと(b)領域Bが結晶粒内に存在し、前記(a)領域Aと(b)領域Bの境界が{110}で表される等価な結晶面のうちの一つの面に形成されることを特徴とする請求項1に記載の表面被覆切削工具。 - 前記炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体と前記TiとAlの複合窒化物または複合炭窒化物層の間にTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、0.1〜20μmの合計平均層厚を有するTi化合物層を含む下部層が存在することを特徴とする請求項1乃至3のいずれかに記載の表面被覆切削工具。
- 前記複合窒化物または複合炭窒化物層の上部に、少なくとも1〜25μmの平均層厚を有する酸化アルミニウム層を含む上部層が存在することを特徴とする請求項1乃至4のいずれかに記載の表面被覆切削工具。
- 前記複合炭窒化物層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により成膜することを特徴とする請求項1乃至5のいずれかに記載の表面被覆切削工具の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014070927A JP6268530B2 (ja) | 2013-04-01 | 2014-03-31 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
KR1020157029409A KR20150138246A (ko) | 2013-04-01 | 2014-04-01 | 표면 피복 절삭 공구 |
CN201480019230.0A CN105073313B (zh) | 2013-04-01 | 2014-04-01 | 表面包覆切削工具 |
PCT/JP2014/059648 WO2014163081A1 (ja) | 2013-04-01 | 2014-04-01 | 表面被覆切削工具 |
US14/781,522 US9797040B2 (en) | 2013-04-01 | 2014-04-01 | Surface coated cutting tool |
EP14778479.7A EP2982466B1 (en) | 2013-04-01 | 2014-04-01 | Surface-coated cutting tool |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013075856 | 2013-04-01 | ||
JP2013075856 | 2013-04-01 | ||
JP2014070927A JP6268530B2 (ja) | 2013-04-01 | 2014-03-31 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014210333A JP2014210333A (ja) | 2014-11-13 |
JP6268530B2 true JP6268530B2 (ja) | 2018-01-31 |
Family
ID=51658376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014070927A Active JP6268530B2 (ja) | 2013-04-01 | 2014-03-31 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9797040B2 (ja) |
EP (1) | EP2982466B1 (ja) |
JP (1) | JP6268530B2 (ja) |
KR (1) | KR20150138246A (ja) |
CN (1) | CN105073313B (ja) |
WO (1) | WO2014163081A1 (ja) |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014103220A1 (de) * | 2014-03-11 | 2015-09-17 | Walter Ag | TiAIN-Schichten mit Lamellenstruktur |
JP6548071B2 (ja) | 2014-04-23 | 2019-07-24 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
JP6548073B2 (ja) * | 2014-05-28 | 2019-07-24 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
JP6344601B2 (ja) * | 2014-06-17 | 2018-06-20 | 住友電工ハードメタル株式会社 | 硬質被膜、切削工具および硬質被膜の製造方法 |
WO2016084938A1 (ja) * | 2014-11-28 | 2016-06-02 | 三菱マテリアル株式会社 | 表面被覆切削工具 |
JP6617917B2 (ja) * | 2014-11-28 | 2019-12-11 | 三菱マテリアル株式会社 | 表面被覆切削工具 |
JP6650108B2 (ja) * | 2014-12-26 | 2020-02-19 | 三菱マテリアル株式会社 | 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具 |
JP6651130B2 (ja) * | 2014-12-26 | 2020-02-19 | 三菱マテリアル株式会社 | 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具 |
JP6478100B2 (ja) * | 2015-01-28 | 2019-03-06 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
WO2016148056A1 (ja) * | 2015-03-13 | 2016-09-22 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
JP6590255B2 (ja) | 2015-03-13 | 2019-10-16 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
JP6709536B2 (ja) * | 2015-05-26 | 2020-06-17 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
WO2016190332A1 (ja) * | 2015-05-26 | 2016-12-01 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
JP6519952B2 (ja) * | 2015-07-30 | 2019-05-29 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
JP6507959B2 (ja) * | 2015-09-14 | 2019-05-08 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
JP6931452B2 (ja) * | 2015-10-30 | 2021-09-08 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐摩耗性および耐チッピング性を発揮する表面被覆切削工具 |
JP6931453B2 (ja) * | 2015-10-30 | 2021-09-08 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
JP6646064B2 (ja) | 2015-12-01 | 2020-02-14 | 株式会社キョクトー | チップドレス用切削カッター及びチップドレッサ |
KR20190099394A (ko) * | 2016-12-28 | 2019-08-27 | 스미토모덴키고교가부시키가이샤 | 피막 |
JP7098932B2 (ja) * | 2017-01-18 | 2022-07-12 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具 |
JP6781954B2 (ja) * | 2017-01-25 | 2020-11-11 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性、耐剥離性を発揮する表面被覆切削工具 |
JP6796257B2 (ja) * | 2017-03-01 | 2020-12-09 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐チッピング性、耐剥離性を発揮する表面被覆切削工具 |
JP6931458B2 (ja) * | 2017-07-18 | 2021-09-08 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐摩耗性と耐チッピング性を発揮する表面被覆切削工具 |
JP6813103B2 (ja) * | 2018-03-19 | 2021-01-13 | 住友電気工業株式会社 | 表面被覆切削工具 |
EP3769872A4 (en) * | 2018-03-22 | 2021-12-29 | Sumitomo Electric Hardmetal Corp. | Surface-coated cutting tool and manufacturing method therefor |
US11274366B2 (en) | 2018-03-22 | 2022-03-15 | Sumitomo Electric Hardmetal Corp. | Surface-coated cutting tool and method for manufacturing same |
JP6565093B1 (ja) | 2018-03-22 | 2019-08-28 | 住友電工ハードメタル株式会社 | 表面被覆切削工具およびその製造方法 |
WO2019181136A1 (ja) | 2018-03-22 | 2019-09-26 | 住友電工ハードメタル株式会社 | 表面被覆切削工具及びその製造方法 |
WO2020138304A1 (ja) * | 2018-12-27 | 2020-07-02 | 三菱マテリアル株式会社 | 表面被覆切削工具 |
JP7125013B2 (ja) * | 2019-03-22 | 2022-08-24 | 三菱マテリアル株式会社 | 硬質被覆層が優れた耐チッピング性を発揮する表面被覆切削工具 |
JP7329180B2 (ja) * | 2020-02-03 | 2023-08-18 | 三菱マテリアル株式会社 | 表面被覆切削工具 |
JP7453616B2 (ja) * | 2020-02-03 | 2024-03-21 | 三菱マテリアル株式会社 | 表面被覆切削工具 |
WO2022264196A1 (ja) * | 2021-06-14 | 2022-12-22 | 住友電工ハードメタル株式会社 | 切削工具 |
CN113529025B (zh) * | 2021-07-06 | 2022-05-31 | 山东大学 | 一种硬质合金涂层刀具制备方法及涂层刀具 |
CN114606461B (zh) * | 2022-04-18 | 2023-02-28 | 东莞理工学院 | 一种Al-Ti-C-N纳米晶的制备方法及在铝合金中的应用 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3416937B2 (ja) * | 1994-10-28 | 2003-06-16 | 住友電気工業株式会社 | 積層体 |
JP3416938B2 (ja) * | 1994-10-28 | 2003-06-16 | 住友電気工業株式会社 | 積層体 |
EP0709483B1 (en) | 1994-10-28 | 2002-04-10 | Sumitomo Electric Industries, Ltd. | Multilayer material |
SE518145C2 (sv) * | 1997-04-18 | 2002-09-03 | Sandvik Ab | Multiskiktbelagt skärverktyg |
DE102005032860B4 (de) * | 2005-07-04 | 2007-08-09 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Hartstoffbeschichtete Körper und Verfahren zu deren Herstellung |
DE102007000512B3 (de) * | 2007-10-16 | 2009-01-29 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Hartstoffbeschichtete Körper und Verfahren zu deren Herstellung |
WO2009105024A1 (en) * | 2008-02-21 | 2009-08-27 | Seco Tools Ab | Multilayered coated cutting tool |
DE102008013966A1 (de) * | 2008-03-12 | 2009-09-17 | Kennametal Inc. | Hartstoffbeschichteter Körper |
DE102008013965A1 (de) * | 2008-03-12 | 2009-09-17 | Kennametal Inc. | Hartstoffbeschichteter Körper |
US8277958B2 (en) * | 2009-10-02 | 2012-10-02 | Kennametal Inc. | Aluminum titanium nitride coating and method of making same |
JP5594575B2 (ja) | 2010-04-20 | 2014-09-24 | 三菱マテリアル株式会社 | 硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具 |
DE102010038077B4 (de) | 2010-10-08 | 2018-05-30 | Msm Krystall Gbr (Vertretungsberechtigte Gesellschafter: Dr. Rainer Schneider, 12165 Berlin; Arno Mecklenburg, 10999 Berlin) | Wendeschneidplatte und Verfahren zu deren Herstellung |
JP2012152878A (ja) * | 2011-01-28 | 2012-08-16 | Hitachi Tool Engineering Ltd | 耐摩耗性と摺動特性に優れる被覆工具およびその製造方法 |
JP5590331B2 (ja) * | 2011-02-14 | 2014-09-17 | 三菱マテリアル株式会社 | 耐摩耗性と切屑排出性に優れた表面被覆ドリル |
JP6037113B2 (ja) | 2012-11-13 | 2016-11-30 | 三菱マテリアル株式会社 | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
-
2014
- 2014-03-31 JP JP2014070927A patent/JP6268530B2/ja active Active
- 2014-04-01 US US14/781,522 patent/US9797040B2/en active Active
- 2014-04-01 WO PCT/JP2014/059648 patent/WO2014163081A1/ja active Application Filing
- 2014-04-01 EP EP14778479.7A patent/EP2982466B1/en active Active
- 2014-04-01 CN CN201480019230.0A patent/CN105073313B/zh active Active
- 2014-04-01 KR KR1020157029409A patent/KR20150138246A/ko not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
CN105073313A (zh) | 2015-11-18 |
KR20150138246A (ko) | 2015-12-09 |
US20160040285A1 (en) | 2016-02-11 |
EP2982466B1 (en) | 2019-08-28 |
WO2014163081A1 (ja) | 2014-10-09 |
EP2982466A1 (en) | 2016-02-10 |
EP2982466A4 (en) | 2016-11-30 |
CN105073313B (zh) | 2017-06-09 |
US9797040B2 (en) | 2017-10-24 |
JP2014210333A (ja) | 2014-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6268530B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP5924507B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6417959B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6478100B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6402662B2 (ja) | 表面被覆切削工具及びその製造方法 | |
JP6090063B2 (ja) | 表面被覆切削工具 | |
JP6394898B2 (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP5939508B2 (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6284034B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6296294B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6548071B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6037113B2 (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6150109B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6391045B2 (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6548073B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP5939509B2 (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6296298B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6171638B2 (ja) | 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6726403B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6171800B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
WO2017038840A1 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 | |
JP6270131B2 (ja) | 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160929 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170906 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171019 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171213 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6268530 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |