[go: up one dir, main page]

JP6170985B2 - 無機偏光板及びその製造方法 - Google Patents

無機偏光板及びその製造方法 Download PDF

Info

Publication number
JP6170985B2
JP6170985B2 JP2015213344A JP2015213344A JP6170985B2 JP 6170985 B2 JP6170985 B2 JP 6170985B2 JP 2015213344 A JP2015213344 A JP 2015213344A JP 2015213344 A JP2015213344 A JP 2015213344A JP 6170985 B2 JP6170985 B2 JP 6170985B2
Authority
JP
Japan
Prior art keywords
linear
polarizing plate
layer
metal layer
inorganic polarizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015213344A
Other languages
English (en)
Other versions
JP2017102137A (ja
Inventor
高橋 英司
英司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2015213344A priority Critical patent/JP6170985B2/ja
Priority to US15/760,486 priority patent/US10527768B2/en
Priority to PCT/JP2016/079477 priority patent/WO2017073266A1/ja
Publication of JP2017102137A publication Critical patent/JP2017102137A/ja
Application granted granted Critical
Publication of JP6170985B2 publication Critical patent/JP6170985B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)

Description

本発明は、無機偏光板及びその製造方法に関する。
液晶表示装置は、その画像形成原理から液晶パネル表面に偏光板を配置することが必要不可欠である。偏光板の機能は、直交する偏光成分(いわゆるP偏光波、S偏光波)の一方を吸収し、他方を透過させることである。
従来、このような偏光板として、フィルム内にヨウ素系や染料系の高分子有機物を含有させた二色性の偏光板が多く用いられている。これらの一般的な製法として、ポリビニルアルコール系フィルムをヨウ素などの二色性材料で染色した後、架橋剤を用いて架橋を行い、一軸延伸する方法が用いられる。二色性の偏光板は、このように延伸により作製されるため、一般に収縮し易い。また、ポリビニルアルコール系フィルムは、親水性ポリマーを使用していることから、特に加湿条件下においては非常に変形し易い。また、根本的にフィルムを用いるため、デバイスとしての機械的強度が弱く、これを避けるため透明保護フィルムを接着する方法が用いられる。
近年、液晶表示装置は、その用途が拡大し、高機能化している。それに伴い、液晶表示装置を構成する個々のデバイスに対して、高い信頼性、及び耐久性が求められる。例えば、透過型液晶プロジェクターのような光量の大きな光源を使用する液晶表示装置の場合には、偏光板は強い輻射線を受ける。そのため、これらに使用される偏光板には、優れた耐熱性が必要となる。しかしながら、上記のようなフィルムベースの偏光板は、有機物であることから、これらの特性を上げることにはおのずと限界がある。
米国では、コーニング社よりPolarcorという商品名で耐熱性の高い無機偏光板が販売されている。この偏光板は、銀微粒子をガラス内に拡散させた構造をしており、フィルム等の有機物を使用していない。原理は、島状微粒子のプラズマ共鳴を利用するものである。すなわち、貴金属や遷移金属の島状粒子に光が入射した時の表面プラズマ共鳴による光吸収を利用するものであり、吸収波長は、粒子形状、及び周囲の誘電率の影響を受ける。ここで、島状粒子の形状を楕円形にすると、長軸方向と短軸方向との共鳴波長が異なり、これにより偏向特性を得られる。具体的には、長波長側での長軸に平行な偏光成分を吸収し、短軸と平行な偏光成分を透過させるという偏光特性が得られる。しかしながら、Polarcorの場合、偏光特性を得られる波長域は赤外部に近い領域であり、液晶表示装置で求められるような可視光域をカバーしていない。これは、島状粒子に用いられている銀の物理的性質によるものである。
特許文献1には、上記の原理を応用し熱還元によりガラス中に微粒子を析出させることによるUV偏光板が示されており、金属微粒子として銀を用いることが具体例として示されている。この場合、先のPolarcorとは逆に短軸方向での吸収を用いるものと考えられる。Figure1に示されているように400nm付近でも偏光板として機能はしているが消光比が小さくかつ吸収できる帯域が非常に狭いので、仮にPolarcorと特許文献1の技術とを組み合わせたとしても可視光全域をカバーできる偏光板にはならない。
また、非特許文献1には、金属島状微粒子のプラズマ共鳴を使った無機偏光板の理論解析が述べられている。この文献によれば、アルミニウム微粒子は銀微粒子より共鳴波長が200nm程度短く、このためアルミニウム微粒子を用いることで可視光域をカバーする偏光板を製作できる可能性があることが記述されている。
また、特許文献2には、アルミニウム微粒子を使った偏光板の幾つかの作製方法が示されている。その中で、ケイ酸塩をベースとしたガラスでは、アルミニウムとガラスとが反応するので基板としては望ましくなく、カルシウム・アルミノ硼酸塩ガラスが適していると記述されている(段落[0018]、[0019])。しかし、ケイ酸塩を使用したガラスは、光学ガラスとして広く流通しており、信頼性の高い製品を安価に入手でき、これが適さないということは経済的に好ましくない。また、レジストパターンをエッチングすることで島状粒子を形成する方法が述べられている(段落[0037]、[0038])。通常、プロジェクターで使用する偏光板は、数cm程度の大きさが必要でかつ高い消光比が要求される。従って、可視光用偏光板を目的とした場合、レジストパターンサイズは可視光波長より充分に短い、すなわち、数十nmの大きさが必要であり、また、高い消光比を得るためには、パターンを高密度に形成する必要がある。また、プロジェクター用として使用する場合には、大面積のパターンの形成が必要である。しかしながら、記述されているようなリソグラフィにより高密度微細パターン形成を応用する方法では、そのようなパターンを得るために電子ビーム描画などを用いる必要がある。電子ビーム描画は、個々のパターンを電子ビームより描く方法であり生産性が悪く実用的でない。
また、特許文献2には、アルミニウムを塩素プラズマにより除去すると記述されているが、通常そのようにエッチングした場合には、アルミニウムパターンの側壁に塩化物が付着する。市販のウエットエッチング液(例えば、東京応化工業のSST−A2)により塩化物の除去が可能であるが、アルミニウム塩化物に反応するこのような薬液は、アルミニウムにもエッチング速度は遅いながらも反応はするので、述べられているような方法で所望のパターン形状を実現することは難しい。
さらに、特許文献2には、別な方法として、パターン化されたフォトレジスト上に斜め成膜によりアルミニウムを堆積し、フォトレジストを除去する方法が記述されている(段落[0045]、[0047])。しかし、このような方法では、基板とアルミニウムとの密着性を得るために、ある程度基板面にもアルミニウムを堆積する必要があるものと考えられる。しかし、これは堆積したアルミニウム膜の形状が段落[0015]に記述されている適当な形状である扁長の楕円体を含む扁長の球体とは異なることを意味する。また、段落[0047]には、表面に垂直な異方性エッチングにより過沈積分を除去すると記述されている。偏光板として機能させるには、アルミニウムの形状異方性は極めて重要である。従って、レジスト部と基板面とに堆積するアルミニウムの量をエッチングにより所望の形状が得られるように調整する必要があると考えられるが、段落[0047]に記述されているような0.05μmというサブミクロン以下のサイズでこれらを制御することは非常に困難と考えられ、生産性の高い製作方法として適しているか疑問である。また、偏光板の特性として透過軸方向については高い透過率が求められるが、通常、基板にガラスを用いた場合、ガラス界面から数%の反射は避けられず、高い透過率を得ることは難しい。
また、特許文献3には、斜め蒸着による偏光板について記述されている。この方法は、使用帯域の波長に対して透明及び不透明な物質を斜め蒸着により微小柱状構造を製作することで偏光特性を得るものであり、特許文献2と異なり、簡便な方法で微細パターンを得られるため生産性の高い方法と考えられるが、問題点もある。形成される使用帯域に対し不透明な物質の微小柱状構造のアスペクト比、並びに、個々の微小柱状構造の間隔、及び直線性は、良好な偏光特性を得るために重要な要素であり、特性の再現性の観点からも意図的に制御されるべきものである。しかし、この方法では、蒸着粒子の初期堆積層の影となる部分に次に飛来する蒸着粒子が堆積しないことにより柱状構造が得られるという現象を利用しているため、上記の項目を意図的に制御することが難しい。これを改善する方法として、蒸着前にラビング処理により基板に研磨痕を設ける方法が記述されている。しかし、一般的には蒸着膜の粒子径は最大でも数十nm程度の大きさであり、このような粒子の異方性を制御するにはサブミクロン以下のピッチを研磨により意図的に製作する必要がある。しかし、一般の研磨シート等では、サブミクロン程度が限界であり、そのような微細な研磨痕を製作することは容易でない。また、前記のようにAl微粒子の共鳴波長は周りの屈折率に大きく依存し、この場合、透明及び不透明な物質の組み合わせが重要であるが、特許文献3には、可視光域で良好な偏光特性を得るための組み合わせについて記述がされていない。また、特許文献2と同様に、基板にガラスを用いた場合、ガラス界面から数%の反射は避けられない。
また、非特許文献2には、Lamipolと称する赤外通信用の偏光板について記述されている。これは、AlとSiOとの積層構造を有しており、この文献によれば非常に高い消光比を示す。また、非特許文献3には、Lamipolの光吸収を担うAlの代わりにGeを使うことで、波長1μm以下で高い消光比を実現できることが述べられている。また、同資料中のFig3からは、Te(テルル)も高い消光比が得られることが期待できる。このように、Lamipolは、高い消光比が得られる吸収型偏光板であるが、吸光物質と透過性物質との積層厚が受光面の大きさとなるために、数cm角の大きさが必要なプロジェクター用途の偏光板には向かない。
また、特許文献4には、ワイヤーグリッド構造と吸収膜とを組み合わせた偏光板が開示されている。吸収膜に金属や半導体膜を用いる場合、材料の光学特性に強く影響されるため、材料とワイヤーグリッドと吸収膜との間の誘電体膜厚を調整することで、特定域の反射率を軽減することが可能であるが、広波長域でこれを実現することは困難である。
また、吸収性の高いTaやGeなどを使うことで、帯域を広げることが可能であるが、透過軸方向の吸収が同時に大きくなり、偏光板で重要な特性である透過軸方向の透過率が低下してしまう。
したがって、優れた偏光特性を有する無機偏光板、及びその製造方法の提供が求められているのが現状である。
米国特許第6772608号明細書 特開2000−147253号公報 特開2002−372620号公報 特開2008−216957号公報
J.Opt.Soc.Am.A, Vol.8, No.4, 619−624 Applied Optics, Vol.25, No.21986 311−314 J.Lightwave Tec., Vol.15, No.6, 1997, 1042−1050
本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、高い透過率と低い反射率を示す、優れた偏光特性を有する無機偏光板、及びその製造方法を提供することを目的とする。
前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 使用帯域の光に対して透明な基板と、複数の線状金属層と、複数の線状誘電体層と、光吸収作用を有する複数の線状光吸収層とをこの順で有し、
前記複数の線状金属層が、前記光の波長より短い間隔で前記基板上に離間して配列され、
前記複数の線状誘電体層における各々の線状誘電体層が、前記複数の線状金属層の各々の線状金属層上に配され、
前記複数の線状光吸収層における各々の線状光吸収層が、前記複数の線状誘電体層の前記各々の線状誘電体層上に配され、
前記線状金属層は、空洞部を有することを特徴とする無機偏光板である。
<2> 前記線状金属層における粒子の平均粒子径が、60nm以上である前記<1>に記載の無機偏光板である。
<3> 前記線状金属層の平均厚みが、20nm〜400nmである前記<1>から<2>のいずれかに記載の無機偏光板である。
<4> 前記線状金属層の材質が、アルミニウム、及びアルミニウム合金のいずれかである前記<1>から<3>のいずれかに記載の無機偏光板である。
<5> 前記線状誘電体層の材質が、SiOである前記<1>から<4>のいずれかに記載の無機偏光板である。
<6> 前記線状光吸収層の材質が、Si、及びシリサイドのいずれかである前記<1>から<5>のいずれかに記載の無機偏光板である。
<7> 前記シリサイドが、Feを10atm%以下で含有するシリサイドである前記<6>に記載の無機偏光板である。
<8> 前記シリサイドが、Taを40atm%以下で含有するシリサイドである前記<6>に記載の無機偏光板である。
<9> 前記基板の材質が、ガラス、水晶、及びサファイアのいずれかである前記<1>から<8>のいずれかに記載の無機偏光板である。
<10> 前記基板と前記線状金属層との界面に、前記基板より低い屈折率を有する透明膜が少なくとも一層積層されている前記<1>から<9>のいずれかに記載の無機偏光板である。
<11> 前記<1>から<10>のいずれかに記載の無機偏光板の製造方法であって、
基板上に形成された金属層を、Clを含有するエッチングガスを用いてエッチングする金属層エッチング工程を含むことを特徴とする無機偏光板の製造方法である。
<12> 前記エッチングガスが、N及びBClを含有する前記<11>に記載の無機偏光板の製造方法である。
本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、高い透過率と低い反射率を示す、優れた偏光特性を有する無機偏光板、及びその製造方法を提供することができる。
図1Aは、本発明の無機偏光板の積層状態の一例を説明するための概略断面図である。 図1Bは、本発明の無機偏光板の一例の概略断面図である。 図2Aは、本発明の無機偏光板の製造方法の一例を説明するための概略断面図である(その1)。 図2Bは、本発明の無機偏光板の製造方法の一例を説明するための概略断面図である(その2)。 図2Cは、本発明の無機偏光板の製造方法の一例を説明するための概略断面図である(その3)。 図2Dは、本発明の無機偏光板の製造方法の一例を説明するための概略断面図である(その4)。 図2Eは、本発明の無機偏光板の製造方法の一例を説明するための概略断面図である(その5)。 図3は、本発明の無機偏光板の積層状態の他の一例を説明するための概略断面図である。 図4は、本発明の無機偏光板の断面形状を示す一例の走査型電子顕微鏡(SEM)画像である。 図5Aは、本発明で規定する平均粒子径を説明するためのイメージ図である。 図5Bは、本発明で規定する平均粒子径を説明するためのイメージ図である。 図6Aは、試験例2において金属層中の粒子数をカウントする際に使用したAFM(原子間力顕微鏡)画像である。 図6Bは、試験例2において金属層中の粒子数をカウントする際に使用したAFM(原子間力顕微鏡)画像である。 図6Cは、試験例2において金属層中の粒子数をカウントする際に使用したAFM(原子間力顕微鏡)画像である。 図7Aは、試験例2におけるサンプルの無機偏光板の断面画像である。 図7Bは、試験例2におけるサンプルの無機偏光板の断面画像である。 図7Cは、試験例2におけるサンプルの無機偏光板の断面画像である。 図8Aは、試験例3におけるサンプルの無機偏光板の断面画像である。 図8Bは、試験例3におけるサンプルの無機偏光板の断面画像である。 図9は、試験例3におけるサンプルの無機偏光板の断面画像である。
(無機偏光板)
本発明の無機偏光板は、基板と、複数の線状金属層と、複数の線状誘電体層と、複数の線状光吸収層とをこの順で少なくとも有し、更に必要に応じて、その他の部材を有する。
前記無機偏光板は、いわゆるワイヤーグリッド偏光板である。
本発明者は、基板と、複数の線状金属層と、複数の線状誘電体層と、複数の線状光吸収層とをこの順で少なくとも有する無機偏光板が、偏光特性が良好であることを見出した。更に、本発明者は、偏光特性を向上させるべく、鋭意検討を行った結果、基板と、複数の線状金属層と、複数の線状誘電体層と、複数の線状光吸収層とをこの順で少なくとも有する無機偏光板において、前記線状金属層に空洞部を形成させることにより、優れた偏光特性が得られることを見出し、本発明の完成に至った。
<基板>
前記基板としては、使用帯域の光に対して透明であれば、その材質、形状、大きさ、構造は、特に制限はなく、目的に応じて適宜選択することができる。
前記使用帯域の光としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、可視光などが挙げられる。前記可視光としては、例えば、380nm〜810nmの光などが挙げられる。
前記使用帯域の光に対して透明とは、透過率が100%であることを意味するものではなく、無機偏光板としての機能を保持する範囲において透明であればよい。
前記基板の材質としては、例えば、ガラス、水晶、サファイアなどが挙げられる。これらの中でも、コスト及び透過率の点で、ガラスが好ましい。
また、前記基板の材質としては、屈折率が、1.1〜2.2の材料が好ましい。
前記基板の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、300μm〜1,000μmが好ましい。
<複数の線状金属層>
前記複数の線状金属層は、前記無機偏光板において、前記光の波長より短い間隔で前記基板上に離間して配列されている。また、前記線状金属層は、空洞部を有する。
前記線状金属層の長手方向に直交する断面における前記線状金属層の断面形状は、特に制限はなく、目的に応じて適宜選択することができ、例えば、略長方形や台形などが挙げられる。
前記複数の線状金属層は、前記基板に接していてもよいし、前記無機偏光板は、前記複数の線状金属層と前記基板との間に以下で記載するような下地層などを有していてもよい。
前記線状金属層の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、Al、Al合金などが挙げられる。前記Al合金としては、例えば、AlSi合金などが挙げられる。
前記線状金属層としては、Al及びAlSi合金のいずれかを含有することが、偏光特性及びプロセスの容易性の点で好ましい。
前記線状金属層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、偏光特性の点から、20nm〜400nmが好ましい。
ここで、本明細書において、平均厚みとは、前記線状金属層の長手方向に直交する断面における略長方形又は台形の金属層の高さの算術平均値であり、例えば、走査型電子顕微鏡観察、透過型電子顕微鏡観察により求めることができる。例えば、任意の10箇所の前記高さを測定して、その算術平均値から、平均厚みを求める。
前記線状金属層の平均幅としては、特に制限はなく、目的に応じて適宜選択することができるが、偏光特性及びプロセスの安定性の点から、複数の前記線状金属層間の平均間隔の20%〜60%が好ましい。
前記線状金属層の平均幅は、例えば、走査型電子顕微鏡観察、透過型電子顕微鏡観察により求めることができる。例えば、4本の線状金属層について、任意の箇所の幅を測定して、その算術平均値から、平均幅を求める。なお、前記幅は、前記線状金属層の頂部において測定する。
複数の前記線状金属層間の平均間隔としては、特に制限はなく、目的に応じて適宜選択することができるが、作製の容易性、及び安定性の点から、50nm〜200nmが好ましく、80nm〜150nmがより好ましい。
前記平均間隔は、例えば、走査型電子顕微鏡観察、透過型電子顕微鏡観察により求めることができる。例えば、任意の4箇所の線状金属層の間隔(ピッチ)について測定して、その算術平均値から、平均間隔を求める。なお、前記間隔(ピッチ)は、隣接する2つの線状金属層における、一方の線状金属層の頂部における他方の線状金属層側の端部と、他方の線状金属層の頂部における一方の線状金属層側と反対側の端部との距離である。
<<空洞部>>
前記線状金属層は、空洞部を有する。
この空洞部は、例えば、下記製造方法により金属層をエッチングして前記線状金属層を形成させる際、前記線状金属層中に形成させることができる。空洞部を形成させる製造方法についての詳しい説明は後述する。
本発明者は、透過率が高く屈折率が低い材料である、例えば、空気からなる層を無機偏光板の構成に取り入れることで、光学的に構造が最適化され、透過率が高く反射率が低い無機偏光板が得られることを見出した。さらに、本発明者は、その空気層として線状金属層中に形成した空洞部が有効に機能すること、及び、その空洞部を線状金属層中に形成するのに、金属層における粒子の平均粒子径を考慮する等、使用する材料や、あるいはエッチング条件等の製造条件を適宜選択することで、金属層をエッチングする際、線状金属層中に空洞部を形成させることができることを見出した。
前記線状金属層中に空洞部が形成された本発明の無機偏光板は、高い透過率と低い反射率を示す。
前記線状金属層における粒子の平均粒子径は、60nm以上であることが好ましい。
平均粒子径が60nm以上であれば、金属層をエッチングする際、容易に空洞部を形成することができる。
前記平均粒子径は、粒子が、球状で正方状に並んでいると仮定し(図5A参照)、下記測定方法によって得られた測定エリア面積と粒子数から、下記式(1)に従って求める。つまり、図5Bで示す粒子1個分の粒子径(PS)に相当する値である。
平均粒子径=√(測定エリア面積/粒子数) 式(1)
−平均粒子径を求めるための測定方法−
金属層を、AFM(原子間力顕微鏡)を用いて観察する。所望の測定エリア(例えば、図6Aでは、測定エリアの面積は、0.5μm×0.5μmである)に存在する粒子数をカウントする。
図6Aでは、粒子数は、44個である。そこで、上記式(1)に代入すると、平均粒子径75.4nmの値が求められる。
本発明では、前記空洞部は、例えば、図1Bで示す断面図において、前記線状金属層2中に記載されている符号11で示される部分をいう。
この空洞部11は、前記線状金属層2中に点在しており、空洞部が形成されているか否かは、例えば、走査電子顕微鏡(SEM)による断面形状の画像により確認することができる。図9では、高さa、幅bの前記線状金属層2が、奥行きc方向に複数形成されている。図9では、空洞部11が、線状金属層1本中、奥行き635nmの間に2箇所から5箇所形成されている。そこで、本発明では、線状金属層の高さと奥行きの面積に対する空洞部の面積の割合を計算した時、線状金属層2中に占める空洞部11の割合が、0.1%から15%、より好ましくは0.3%から14%、さらに好ましくは0.3%から3.5%であるとよい。
また、前記空洞部は、前記線状金属層2中において、前記誘導体層3との界面付近に形成されていることが好ましい。ここで、界面付近に形成されているとは、前記線状金属層2の奥行きc方向の面内において、前記誘導体層3から、100nm以内の線状金属層2中の領域に空洞部が0.1%以上、形成されている状態であることが望ましい。
本発明でいう空洞部が形成されているとは、1nm程度より大きい空洞が、図9に示すように、縦550nm×横1100nmのSEM画像の領域内に1個以上存在する状態をいう。
前記空洞部には、ガス、例えば、空気やエッチングガスなどが存在しており、中でも空気が存在していることが好ましい。
<複数の線状誘電体層>
前記複数の線状誘電体層において、各々の線状誘電体層は、前記複数の線状金属層の各々の線状金属層上に配されている。
前記線状誘電体層の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、SiO、Al、MgFなどが挙げられる。
前記線状誘電体層の長手方向に直交する断面における前記線状誘電体層の断面形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、略長方形、台形などが挙げられる。
前記線状誘電体層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、1nm〜500nmが好ましく、3nm〜80nmがより好ましい。
前記平均厚みは、前記線状金属層の平均厚みと同様にして求めることができる。
<複数の線状光吸収層>
前記複数の線状光吸収層において、各々の線状光吸収層は、前記複数の線状誘電体層の前記各々の線状誘電体層上に配されている。
前記線状光吸収層は、光吸収作用を有する。
ここで、光吸収作用とは、前記無機偏光板内に形成される格子(グリッド)に平行な電界成分を持つ偏光波(TE波(S波))を減衰させる作用を意味する。なお、前記線状光吸収層は、前記格子に垂直な電界成分を持つ偏光波(TM波(P波))を透過する。
TE波は、前記線状吸収層の光吸収作用によって減衰される。格子状の前記線状金属層はワイヤグリッドとして機能し、前記線状吸収層及び前記誘電体層を通過したTE波を反射する。前記誘電体層の厚さ、屈折率を適宜調整することによって、前記線状金属層で反射したTE波は、前記線状吸収層を通過し透過する際に一部は吸収され、一部は反射し、前記線状金属層に戻る。また、前記線状吸収層を通過した光は、干渉して減衰する。このようにしてTE波の選択的減衰を行うことにより、所望の偏光特性を得ることができる。
前記線状光吸収層としては、光吸収作用を有する限り、その材質は、特に制限はなく、目的に応じて適宜選択することができ、例えば、金属、半導体、金属含有半導体などが挙げられる。前記金属としては、例えば、Al、Au、Ag、Cu、及びそれらの合金などが挙げられる。前記半導体としては、例えば、Si、Ge、Te、ZnOなどが挙げられる。前記金属含有半導体に含有される金属としては、例えば、Ta、Al、Ag、Cu、Au、Mo、Cr、Ti、W、Ni、Fe、Sn、Nbなどが挙げられる。前記金属含有半導体としては、例えば、シリサイドなどが挙げられる。前記シリサイドとしては、例えば、β−FeSi、MgSi、NiSi、BaSi、CrSi、CoSi、TaSi、WSiなどが挙げられる。
これらの中でも、Si、シリサイドが、可視領域に対して高いコントラスト(消光比:透過軸透過率/吸収軸透過率)を備えた無機偏光板が得られる点で好ましい。前記シリサイドとしては、例えば、Feを含有するシリサイド、Taを含有するシリサイドが好ましい。
前記金属含有半導体における金属含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、50atm%(原子パーセント)以下が好ましい。前記金属含有量が、50atm%を超えると、透過率が減少することがある。
前記金属含有半導体としてFeを含有するシリサイドを用いる場合、Fe含有量は、50atm%以下が好ましい。前記Fe含有量が、50atm%を超えると、ガス種を工夫してもエッチングが困難となることがある。さらに、広く半導体エッチングプロセスで用いられているCFでのエッチングに可能とするためには、前記Fe含有量は、10atm%以下であることが好ましい。
前記金属含有半導体としてTaを含有するシリサイドを用いる場合、Ta含有量は、40atm%以下が好ましく、30atm%以下がより好ましい。前記Ta含有量が、40atm%以下の範囲では、反射率はガラス界面レベルと同等の4%以下であり、かつ透過率も高い値であるため、実用上、反射率の低減と高い透過率を保つことができる。
前記線状光吸収層は、単層構造であってもよいし、多層構造であってもよい。例えば、金属含有半導体から形成される単層であってもよいし、金属又は半導体と、金属含有半導体とから形成される2層であってもよい。
前記線状光吸収層が、金属又は半導体と、金属含有半導体とから形成される2層構造であることにより、反射を抑制し、透過率を向上させることができ、コントラストを増大させることができる。
前記線状吸収層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、1nm〜100nmが好ましく、5nm〜80nmがより好ましく、10nm〜40nmが特に好ましい。
前記平均厚みは、前記線状金属層の平均厚みと同様にして求めることができる。
<その他の部材>
前記その他の部材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、下地層、保護層などが挙げられる。
<<下地層>>
前記下地層は、例えば、前記基板と、前記複数の線状金属層との間に配される。前記下地層は、透過率の向上を目的として、前記基板より低い屈折率を有する透明膜であることが好ましい。
さらにまた、前記下地層を形成する材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、SiOやAlなどの誘電材料が挙げられる。中でも、下地層が、SiO層であると、屈折率がガラスに近いこと及びエッチング性がよいことから、透過率を高めやすい点でより好ましい。
前記下地層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、偏光特性の点で、3nm〜80nmが好ましい。
<<保護層>>
前記保護層は、例えば、前記線状光吸収層を覆うように配される。光学特性の変化が応用上影響を与えない範囲で、前記無機偏光板の最上部に耐湿性等の信頼性改善などの目的として配されるとよい。
前記保護層の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、SiOなどが挙げられる。
前記無機偏光板は、前記保護層を有することにより、信頼性を向上させることができる。
前記無機偏光板を製造する方法としては、特に制限はなく、目的に応じて適宜選択することができるが、下記無機偏光板の製造方法が好ましい。
図1Aに、本発明の無機偏光板の積層状態の一例を説明するための概略断面図を示す。図1に示す無機偏光板は、基板1と、線状金属層2と、線状誘電体層3と、線状光吸収層4とを有している。図1においては、基板1上に、線状金属層2と、線状誘電体層3と、線状光吸収層4とがこの順で配されている。
図1に示すPが、2つの線状金属層2間の間隔(ピッチ)に該当し、Wが、線状金属層2の幅に該当する。
本発明の無機偏光板においては、線状光吸収層4側から光が入射される。
図1Bに本発明の無機偏光板の一例の概略断面図を示す。本発明の無機偏光板は、線状金属層2中に線状誘電体層3との界面付近に空洞部11が形成されている。
また、図3に本発明の無機偏光板の積層状態の他の一例を説明するための概略断面図を示す。本発明の無機偏光板は、基板1と線状金属層2との間に、誘電体層からなる下地層5を有しているのが好ましい。
(無機偏光板の製造方法)
本発明の無機偏光板の製造方法は、金属層エッチング工程を少なくとも含み、更に必要に応じて、その他の工程を含む。
<金属層エッチング工程>
前記金属層エッチング工程は、基板上に形成された金属層を、Clを含有するエッチングガスを用いてエッチングする工程である。
前記エッチングにより、前記基板上に、光の波長より短い間隔で離間して配列され複数の線状金属層が形成される。そして、その際に、線状金属層2中に、線状誘電体層3との界面付近に空洞部11が形成される。
前記エッチングガスとしては、Clを含有すれば、特に制限はなく、目的に応じて適宜選択することができるが、N、及びBClを含有することが好ましい。
尚、前記エッチングガスがNを含有することにより、前記線状金属層の側面の粗さを低減することができ、その結果、偏光特性をより向上させることができる。
本発明の無機偏光板の製造方法の一例を図を用いて説明する。
まず、基板1上に、線状金属層の前駆体である金属層2’と、線状誘電体層の前駆体である誘電体層3’と、線状光吸収層の前駆体である光吸収層4’と、第1のマスク層6と、第2のマスク層7と、反射防止層8と、パターン化されたレジスト膜9とがこの順で積層された積層体を用意する(図2A)。
レジスト膜の材質としては、特に制限はなく、目的に応じて適宜選択することができる。
パターン化されたレジスト膜の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ナノインプリント、フォトリソグラフィーなどが挙げられる。
前記金属層、前記誘電体層、前記光吸収層、前記第1のマスク層、前記第2のマスク層、及び前記反射防止層の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、蒸着法、スパッタ法、スピンキャスト法などが挙げられる。
前記第1のマスク層の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、SiOなどが挙げられる。
前記第2のマスク層の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アルミニウムなどが挙げられる。
前記反射防止層の材質としては、特に制限はなく、目的に応じて適宜選択することができる。
続いて、パターン化されたレジスト膜9をマクスとして、反射防止層8、及び第2のマスク層7をエッチングし、更に残ったパターン化されたレジスト膜9及び反射防止層8を除去する(図2B)。
反射防止層8のエッチングは、例えば、Oを用いたドライエッチング(より具体的には、Ar/Oを用いたドライエッチング)で行う。第2のマスク層7のエッチングは、例えば、Clを用いたドライエッチング(より具体的には、Cl/BClを用いたドライエッチング)で行う。残ったパターン化されたレジスト膜9及び反射防止層8の除去方法としては、特に制限はなく、目的に応じて適宜選択することができる。
続いて、パターン化された第2のマスク層7’をマスクとして、第1のマスク層6、光吸収層4’、及び誘電体層3’をエッチングし、更に残ったパターン化された第2のマスク層7’を除去する(図2C)。
この際のエッチングは、例えば、CFを用いたドライエッチング(より具体的には、CF/Arを用いたドライエッチング)で行う。
続いて、パターン化された第1のマスク層6’をマスクとして、金属層2’をエッチングし、線状金属層2を得る(図2D)。
この際のエッチングは、Clを用いたドライエッチング(より具体的には、Cl/BCl/Nを用いたドライエッチング)で行う。尚、エッチングガスにNが含有されていることで、線状金属層の側面の粗さを低減させることができ、より優れた偏光特性を有する無機偏光板を得ることができる。
続いて、パターン化された第1のマスク層6’を除去することで、無機偏光板が得られる(図2E)。
尚、パターン化された第1のマスク層6’(SiOマスク層)は、完全に除去せず、保護層として機能させるため、少し残す態様としてもよい。
上記では、2層のエッチングマスク膜を用いるプロセスとしたが、第1のマスク層(SiO)上にナノインプリント、フォトリソグラフィなどにより格子状のマスクパターンを形成することで、第2のマスク層(Al)を除く製造方法とすることもできる。
金属層にAlやAlSiなどの塩素系ガスでエッチングする材料を用いる場合には、金属層上に形成される誘電体層/吸収層/エッチングマスク層の材料については、フッ素との反応性がよく、塩素との反応性が低いものを選択することが望ましい。そうすることで、エッチングプロセスを簡略化することが可能となり、生産性が向上するとともに、垂直性の高い格子形状を形成しやすくなる。
<<空洞部の形成>>
図2Cから図2Dへ移行する製造工程において、金属層2’をエッチングし線状金属層2を形成するが、その際、Clを含有するエッチングガスを用いることにより、線状金属層2と線状誘電体層3との界面にClガスが侵入し、その侵入したClガスにより、線状金属層の界面付近に空洞部が形成される。
前記金属層を構成する材料組成、及び製膜条件の最適化により、膜中の粒子密度を粗く調整することで、線状金属層2と線状誘電体層3との界面にClガスが侵入しやすくなり空洞部が形成される。
金属層2’のエッチング後に、線状金属層2と線状誘電体層3との界面に空洞部が形成された様子を走査型電子顕微鏡(SEM)による断面形状の画像で示す(図4)。
空洞部を形成するには、金属層における粒子の平均粒子径を考慮することが好ましい。例えば、金属層としてAl又はAl合金を用いる場合、AlにSiを添加する量を変えることで、金属層におけるAlを含む粒子の粒子密度を調整することができる。Al又はAl合金を用いた試験例で確認したところ、空洞部を形成するには、該粒子の粒子密度を粗く(平均粒子径>60nm)することが有効であることがわかった(下記試験例2参照)。
本発明では、金属層における粒子の平均粒子径は、60nm以上であることが好ましい。
また、空洞部を形成するには、ガス流量、ガス圧、パワー、基板の冷却温度などのエッチング条件を考慮することが望ましい。
以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
(試験例1)
Grating Solver Development社のグレーティングシミュレータGsolverを用いたRigorous Coupled Wave Analysis(RCWA)による電磁界シミュレーションを行った。
電磁界シミュレーションでは、図1Aに示す積層構造の無機偏光板において、線状金属層2と線状誘電体層3の界面に空気層(空洞部に空気が存在している)を形成させた場合、該空気層の大きさを変化させた際の偏光特性を評価した。
図1Aの無機偏光板においては、基板1(ガラス)上に、下地層5(SiO:35nm)、線状金属層2(Al:180nm)、線状誘電体層3(SiO:12.5nm)、及び線状光吸収層4(FeSi(Fe5atm%):20nm)がこの順で形成されている。また、格子間の間隔(P:ピッチ)は、150nmとし、幅(W)は、45nmとした。
線状光吸収層4側から光を入射させた際の400nm〜700nmにおける偏光特性を評価した。
条件1として、空気層が形成されていないこの無機偏光板に対する評価結果を表1−1、及び表1−2に示した。
次に、条件1で用いた無機偏光板に対し、線状金属層2と線状誘電体層3の間に空気層(厚み、いわゆる高さ:6.25nm 幅:7.5nm)を配し、さらに線状金属層2の高さ×奥行きの面積に対する空気層の面積の占める割合を0.3%とした以外は、条件1と同様にして偏光特性を評価した(条件2)。この条件2の無機偏光板に対する評価結果を、表1−1、及び表1−2に示した。
次に、条件2で用いた無機偏光板に対し、空気層の厚み、又は空気層の幅を変え、線状金属層2に占める空気層の割合を表1−1に示すように変えた以外は、条件2と同様にして条件3から条件8で示す各無機偏光板を得、該無機偏光板の偏光特性を評価した(条件3から条件8)。
これら条件3から条件8で示す、各無機偏光板に対する評価結果を、表1−2に示した。
本明細書において、各記号は以下のとおりである。
Tp:透過軸透過率
CR:コントラスト(透過軸透過率/吸収軸透過率)
Rp:透過軸反射率
Rs:吸収軸反射率
表1−2から、空気層を形成した方が、透過率を上げ、反射率を下げる効果があることが確認できた。また、空気層の形成面積や厚みの大きさと、透過率・反射率の改善効果は、比例する傾向にあることもわかった。
(試験例2)
金属層の材料として、AlにSiを添加する量を変えることで、金属層におけるAlを含む粒子の粒子密度(粒子の平均粒径)を調整する実験を行った。
作製した金属層を、AFM(原子間力顕微鏡)を用いて観察したところ、図6Aから図6Cに示す結果が得られた。
図6Aは、材料としてAlを用いた。図6Aでは、測定エリア面積0.5μm×0.5μmに対し、粒子数は44個であり、平均粒子径は75.4nmであった。
図6Bは、材料としてAlSi(Si0.5atm%)を用いた。図6Bでは、測定エリア面積0.5μm×0.5μmに対し、粒子数は83個であり、平均粒子径は54.9nmであった。
図6Cは、材料としてAlSi(Si1.0atm%)を用いた。図6Cでは、測定エリア面積0.5μm×0.5μmに対し、粒子数は145個であり、平均粒子径は41.5nmであった。
次に、図6Aから図6Cで示される金属層を用いて、金属層中の粒子密度(粒子の平均粒径)と空洞部の形成の有無との関係を調べるため、上述した製造方法により無機偏光板を製造した。その結果、図6Aの金属層を用いた無機偏光板に空洞部の形成が認められた(図7A参照)。
図7Aから図7Cは、無機偏光板の走査型電子顕微鏡(SEM)による断面形状の画像である。図6Aの金属層を用いた無機偏光板のSEM画像を図7Aに、図6Bの金属層を用いた無機偏光板のSEM画像を図7Bに、図6Cの金属層を用いた無機偏光板のSEM画像を図7Cに示した。
図7Aには空洞部が形成されているが、図7B及び図7Cには、空洞部は形成されなかった。
従って、金属層に空洞部を形成するのに、金属層における粒子の膜密度を粗くすることが有効であること、及び粒子の平均粒子径が60nm以上であると有効であることが確認できた。
(試験例3)
線状金属層中に空洞部を形成させたサンプルを作製し、偏光特性を評価した。
具体的には、図8A〜図8Bに示す断面形状(SEM画像)を有する無機偏光板を作製し、偏光特性を評価した。
上記試験例2の結果から、金属層の材料は、Alと、AlSi(Si0.5atm%)の2種類を用いて実験した。
サンプルは、基板(ガラス)上に、下地層(SiO:35nm)、線状金属層(Al又はAlSi(0.5%):220nm)、線状誘電体層(SiO:10nm)、及び線状光吸収層(FeSi(Fe5atm%):25nm)がこの順で形成された構成である。また、格子間の間隔(ピッチ)は、141nmとした。Cl/BCl/Nエッチングガスを用い、エッチング条件等を適宜調整しながら、上記製造方法により無機偏光板を作製した。
金属層の材料にAlを用いた図8Aには空洞部が形成されたが、金属層の材料にAlSi(Si0.5atm%)を用いた図8Bには空洞部は形成されなかった。
図8Aの無機偏光板における線状金属層に占める空気層の割合を求めたところ3.0%であった。図9で示すように線状金属層6本内に存在する空洞部は、17箇所である。線状金属層6本について、高さ220nm、奥行き635nmの面積に対する空洞部17箇所の面積の総計は、下記表2で示すように25741nmと求められた。従って、図9における線状金属層の占める空気層の割合は、3.0%となった。
尚、表2に記載の空洞部の面積は、線状金属層の高さと奥行きとの面内における空洞部の高さや幅から近似する略半円形に置き換え、該略半円形の面積を概算することにより求めた。
図8A、及び図8Bに示す偏光板に対し、偏光特性を評価した。なお、偏光特性の評価は、透過率については日立ハイテクノロジーズ社製のU−4100を、反射率については日本分光社製のV−570を用いて行った。光は、線状光吸収層側から入射した。結果を表3に示す。
表3から、シミュレーションの結果と同様に、空洞部が形成されたことにより空気層の効果によって、透過率の上昇と反射率の低下が図られていることが確認できた。
本発明の無機偏光板は、偏光特性に優れることから、液晶表示装置に好適に用いることができる。
1 基板
2 線状金属層
2’ 金属層
3 線状誘電体層
3’ 誘電体層
4 線状光吸収層
4’ 光吸収層
5 下地層
6 第1のマスク層
6’ パターン化された第1のマスク層
7 第2のマスク層
7’ パターン化された第2のマスク層
8 反射防止層
9 パターン化されたレジスト膜
11 空洞部

Claims (10)

  1. 使用帯域の光に対して透明な基板と、複数の線状金属層と、複数の線状誘電体層と、光吸収作用を有する複数の線状光吸収層とをこの順で有し、
    前記複数の線状金属層が、前記光の波長より短い間隔で前記基板上に離間して配列され、
    前記複数の線状誘電体層における各々の線状誘電体層が、前記複数の線状金属層の各々の線状金属層上に配され、
    前記複数の線状光吸収層における各々の線状光吸収層が、前記複数の線状誘電体層の前記各々の線状誘電体層上に配され、
    前記複数の線状光吸収層の材質が、Feを10atm%以下で含有するシリサイド、及びTaを40atm%以下で含有するシリサイドのいずれかであり、
    前記線状金属層は、空洞部を有し、
    前記線状金属層の高さと奥行きの面積に対する前記空洞部の面積の割合が、0.1%から15%であることを特徴とする無機偏光板。
  2. 前記線状金属層における粒子の平均粒子径が、60nm以上である請求項1に記載の無機偏光板。
  3. 前記線状金属層の平均厚みが、20nm〜400nmである請求項1から2のいずれかに記載の無機偏光板。
  4. 前記線状金属層の材質が、アルミニウム、及びアルミニウム合金のいずれかである請求項1から3のいずれかに記載の無機偏光板。
  5. 前記線状誘電体層の材質が、SiOである請求項1から4のいずれかに記載の無機偏光板。
  6. 前記線状金属層の高さと奥行きの面積に対する空洞部の面積の割合が、0.3%から14%である請求項1から5のいずれかに記載の無機偏光板。
  7. 前記基板の材質が、ガラス、水晶、及びサファイアのいずれかである請求項1から6のいずれかに記載の無機偏光板。
  8. 前記基板と前記線状金属層との界面に、前記基板より低い屈折率を有する透明膜が少なくとも一層積層されている請求項1から7のいずれかに記載の無機偏光板。
  9. 請求項1から8のいずれかに記載の無機偏光板の製造方法であって、
    基板上に形成された金属層を、Clを含有するエッチングガスを用いてエッチングする金属層エッチング工程を含むことを特徴とする無機偏光板の製造方法。
  10. 前記エッチングガスが、N及びBClを含有する請求項9に記載の無機偏光板の製造方法。
JP2015213344A 2015-10-29 2015-10-29 無機偏光板及びその製造方法 Active JP6170985B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015213344A JP6170985B2 (ja) 2015-10-29 2015-10-29 無機偏光板及びその製造方法
US15/760,486 US10527768B2 (en) 2015-10-29 2016-10-04 Inorganic polarizing plate and method for manufacturing same
PCT/JP2016/079477 WO2017073266A1 (ja) 2015-10-29 2016-10-04 無機偏光板及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015213344A JP6170985B2 (ja) 2015-10-29 2015-10-29 無機偏光板及びその製造方法

Publications (2)

Publication Number Publication Date
JP2017102137A JP2017102137A (ja) 2017-06-08
JP6170985B2 true JP6170985B2 (ja) 2017-07-26

Family

ID=58630293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015213344A Active JP6170985B2 (ja) 2015-10-29 2015-10-29 無機偏光板及びその製造方法

Country Status (3)

Country Link
US (1) US10527768B2 (ja)
JP (1) JP6170985B2 (ja)
WO (1) WO2017073266A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6410906B1 (ja) 2017-09-26 2018-10-24 デクセリアルズ株式会社 偏光素子及び光学機器
JP6826073B2 (ja) * 2018-05-31 2021-02-03 デクセリアルズ株式会社 偏光板及びその製造方法、並びに光学機器
CN111090176B (zh) * 2020-01-08 2021-11-30 上海交通大学 一种反射不对称的金属光栅偏振分束器
JP7219735B2 (ja) * 2020-03-26 2023-02-08 デクセリアルズ株式会社 偏光板及びその製造方法、並びに光学機器
WO2022010808A1 (en) * 2020-07-06 2022-01-13 Vision Ease, Lp Wire grid polarizer reflection control

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6912087B1 (en) * 1998-05-14 2005-06-28 Corning Incorporated Ultra-thin glass polarizers and method of making same
DE19829970C2 (de) 1998-07-04 2000-07-13 F O B Gmbh Verfahren zur Herstellung von UV-Polarisatoren
EP0999459A3 (en) 1998-11-03 2001-12-05 Corning Incorporated UV-visible light polarizer and methods
US6122103A (en) * 1999-06-22 2000-09-19 Moxtech Broadband wire grid polarizer for the visible spectrum
JP2002267842A (ja) * 2001-03-12 2002-09-18 Nippon Sheet Glass Co Ltd 偏光素子及びその製造方法
JP2002372620A (ja) 2001-06-13 2002-12-26 Toyota Central Res & Dev Lab Inc 偏光制御素子及びその製造方法
US6813077B2 (en) * 2001-06-19 2004-11-02 Corning Incorporated Method for fabricating an integrated optical isolator and a novel wire grid structure
US7113335B2 (en) * 2002-12-30 2006-09-26 Sales Tasso R Grid polarizer with suppressed reflectivity
JP4425059B2 (ja) * 2003-06-25 2010-03-03 シャープ株式会社 偏光光学素子、およびそれを用いた表示装置
JP5380796B2 (ja) * 2006-07-07 2014-01-08 ソニー株式会社 偏光素子及び液晶プロジェクター
US20080018657A1 (en) * 2006-07-18 2008-01-24 Bruce Montag System and Method for Managing an Information Handling System Display Presentation
US8143115B2 (en) * 2006-12-05 2012-03-27 Canon Kabushiki Kaisha Method for manufacturing thin film transistor using oxide semiconductor and display apparatus
JP4488033B2 (ja) 2007-02-06 2010-06-23 ソニー株式会社 偏光素子及び液晶プロジェクター
US7957062B2 (en) 2007-02-06 2011-06-07 Sony Corporation Polarizing element and liquid crystal projector
JP5083957B2 (ja) * 2007-09-27 2012-11-28 国立大学法人九州大学 太陽電池の製造方法
US9192733B2 (en) * 2009-03-11 2015-11-24 Terumo Kabushiki Kaisha Puncture needle assembly and medicinal liquid injection device
JP5760388B2 (ja) 2010-11-01 2015-08-12 セイコーエプソン株式会社 偏光素子とその製造方法、プロジェクター、液晶装置、電子機器
JP5682312B2 (ja) * 2011-01-05 2015-03-11 ソニー株式会社 固体撮像装置の製造方法
WO2013175670A1 (ja) * 2012-05-22 2013-11-28 日本電気株式会社 光学素子、照明装置および画像表示装置
US9933553B2 (en) 2012-06-21 2018-04-03 Hitachi Maxell, Ltd. Optical element and optical device
JP2015228388A (ja) * 2012-09-25 2015-12-17 ソニー株式会社 固体撮像装置、電子機器
WO2015005480A1 (ja) * 2013-07-11 2015-01-15 デクセリアルズ株式会社 偏光板、及び偏光板の製造方法、バンドル構造の製造方法
JP2015125252A (ja) * 2013-12-26 2015-07-06 株式会社日立エルジーデータストレージ 偏光板およびそれを用いた液晶プロジェクタ
WO2015146140A1 (ja) * 2014-03-24 2015-10-01 凸版印刷株式会社 Euvマスクの位相欠陥評価方法、euvマスクの製造方法、euvマスクブランク及びeuvマスク
KR102405610B1 (ko) * 2014-04-14 2022-06-07 삼성디스플레이 주식회사 터치 감지 구조물 및 표시 장치

Also Published As

Publication number Publication date
JP2017102137A (ja) 2017-06-08
US20180252854A1 (en) 2018-09-06
WO2017073266A1 (ja) 2017-05-04
US10527768B2 (en) 2020-01-07

Similar Documents

Publication Publication Date Title
JP5996587B2 (ja) 無機偏光板及びその製造方法
JP6580199B2 (ja) バンドル構造の製造方法
KR102364526B1 (ko) 편광판, 및 편광판의 제조 방법
JP6170985B2 (ja) 無機偏光板及びその製造方法
JP6402799B2 (ja) 光吸収型偏光素子、透過型プロジェクター、及び液晶表示装置
JP6100492B2 (ja) 偏光素子、プロジェクター及び偏光素子の製造方法
JP2012181420A (ja) 偏光素子
JP6117828B2 (ja) 無機偏光板
JP6410906B1 (ja) 偏光素子及び光学機器
JP5936727B2 (ja) 偏光素子
WO2019159982A1 (ja) 偏光板及びその製造方法、並びに光学機器
JP6577641B2 (ja) 偏光板及びその製造方法、並びに光学機器
JP6527211B2 (ja) 偏光板、及び偏光板の製造方法
JP2019035802A (ja) 偏光板及び光学機器
JP7333168B2 (ja) 偏光素子、偏光素子の製造方法及び光学機器
JP7075372B2 (ja) 偏光板及びその製造方法、並びに光学機器

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170421

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170703

R150 Certificate of patent or registration of utility model

Ref document number: 6170985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250