JP6153308B2 - Vibrating parts conveyor - Google Patents
Vibrating parts conveyor Download PDFInfo
- Publication number
- JP6153308B2 JP6153308B2 JP2012225121A JP2012225121A JP6153308B2 JP 6153308 B2 JP6153308 B2 JP 6153308B2 JP 2012225121 A JP2012225121 A JP 2012225121A JP 2012225121 A JP2012225121 A JP 2012225121A JP 6153308 B2 JP6153308 B2 JP 6153308B2
- Authority
- JP
- Japan
- Prior art keywords
- vibration
- component conveying
- base
- elastic member
- horizontal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007246 mechanism Effects 0.000 claims description 28
- 230000005284 excitation Effects 0.000 claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 9
- 238000013459 approach Methods 0.000 claims description 4
- 230000005484 gravity Effects 0.000 description 17
- 238000000034 method Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G27/00—Jigging conveyors
- B65G27/10—Applications of devices for generating or transmitting jigging movements
- B65G27/16—Applications of devices for generating or transmitting jigging movements of vibrators, i.e. devices for producing movements of high frequency and small amplitude
- B65G27/24—Electromagnetic devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G27/00—Jigging conveyors
- B65G27/10—Applications of devices for generating or transmitting jigging movements
- B65G27/32—Applications of devices for generating or transmitting jigging movements with means for controlling direction, frequency or amplitude of vibration or shaking movement
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Jigging Conveyors (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
Description
本発明は、加振機構の駆動により部品搬送部材を振動させて部品を搬送する振動式部品搬送装置に関する。 The present invention relates to a vibration type component conveying apparatus that conveys a component by vibrating a component conveying member by driving an excitation mechanism.
振動式部品搬送装置には、部品搬送部材に対して部品搬送に最適な振動を付与することを目的として、鉛直方向に向けた水平振動用板ばねで床上に設置される基台と中間振動体とを連結し、水平方向に向けた鉛直振動用板ばねで部品搬送部材と中間振動体とを連結して、部品搬送部材の水平方向の振動と鉛直方向の振動をそれぞれ調整できる構成とした複合振動式のものがある。 In the vibration type parts conveying device, a base and an intermediate vibrator installed on the floor with a horizontal vibration leaf spring directed in the vertical direction for the purpose of imparting an optimum vibration to the parts conveying member to the parts conveying And the component conveying member and the intermediate vibrating body are connected by a vertical vibration leaf spring directed in the horizontal direction, so that the horizontal vibration and the vertical vibration of the component conveying member can be adjusted respectively. There is a vibration type.
ところで、このような複合振動式の部品搬送装置では、部品搬送部材(これに取り付けられる上部振動体等も含む)の重心Gまわりの回転運動(以下、「ピッチング運動」と称する。)が生じて部品搬送が不安定になることがあり、このピッチング運動を防止するために、鉛直振動用板ばねを2枚1組とし、部品搬送部材および中間振動体とともにラーメン構造を構成するように配置することが提案されている(特許文献1参照)。 By the way, in such a composite vibration type component transport apparatus, a rotational motion (hereinafter referred to as “pitching motion”) around the center of gravity G of a component transport member (including an upper vibrator attached to the component transport member) occurs. Parts conveyance may become unstable, and in order to prevent this pitching movement, the vertical vibration leaf springs are made into one set, and arranged so as to constitute a ramen structure together with the parts conveying member and the intermediate vibrating body. Has been proposed (see Patent Document 1).
しかしながら、特許文献1で提案された鉛直振動用板ばねの配置をとっても、搬送する部品の性状や部品供給相手の構造等によって部品搬送部材が長くなったり質量が増加したりした場合には、部品搬送部材の重心Gまわりのモーメントが大きくなるため、ピッチング運動が発生することがある。また、部品搬送部材が非対称な形状となり、その重心Gの位置が加振機構を構成する電磁石の吸引位置からずれた場合は、その吸引力が重心Gからずれた位置に作用するため、その吸引力によって重心Gまわりのモーメントが生じ、ピッチング運動が発生する。
However, even if the arrangement of the vertical vibration leaf springs proposed in
これに対し、本出願人は、部品搬送部材のピッチング運動が、部品搬送部材の基台に対する相対的なピッチング運動(以下、単に「相対的ピッチング運動」とも称する。)と、これと逆位相の基台のピッチング運動とを合成したものとなると考えて、基台に錘を設け、基台のピッチング運動の振幅が部品搬送部材の相対的ピッチング運動の振幅に近づくように基台の質量を調整することにより部品搬送部材のピッチング運動を抑制する技術を開発し、これを本願に先立って出願した(特願2011−243393)。 On the other hand, the applicant of the present invention is that the pitching motion of the component transporting member is a relative pitching motion with respect to the base of the component transporting member (hereinafter also simply referred to as “relative pitching motion”), and a phase opposite to this. The weight of the base is adjusted so that the amplitude of the pitching motion of the base approaches the amplitude of the relative pitching motion of the parts conveying member. Thus, a technology for suppressing the pitching motion of the component conveying member was developed, and this was filed prior to this application (Japanese Patent Application No. 2011-243393).
上記先行出願においては、部品搬送部材に作用する慣性モーメントが大きい場合(部品搬送部材が長い場合や質量が大きい場合)には、部品搬送部材の相対的ピッチング運動の振幅が大きくなるため、基台の質量を増やして基台のピッチング運動の振幅を大きくすればよいとしている。ところが、この場合、部品搬送部材だけでなく基台の質量も増加するため、部品搬送方向と同一方向である水平方向の固有振動数が低下する。そして、通常は、大きな振幅が必要な水平方向の振動変位が効率良く得られるように、電磁石に与える電源電圧波形の周波数(駆動周波数)をこの水平方向の固有振動数付近の周波数に設定して共振振動を発生させるので、水平方向の固有振動数が低下すると駆動周波数も低下し、部品搬送速度が遅くなってしまう。 In the above prior application, when the moment of inertia acting on the component conveying member is large (when the component conveying member is long or the mass is large), the amplitude of the relative pitching motion of the component conveying member becomes large. The mass of the base should be increased to increase the amplitude of the pitching motion of the base. However, in this case, not only the component conveying member but also the mass of the base increases, so that the natural frequency in the horizontal direction, which is the same direction as the component conveying direction, decreases. Normally, the frequency (drive frequency) of the power supply voltage waveform applied to the electromagnet is set to a frequency in the vicinity of the natural frequency in the horizontal direction so that a horizontal vibration displacement requiring a large amplitude can be obtained efficiently. Since resonance vibration is generated, if the natural frequency in the horizontal direction is lowered, the drive frequency is also lowered, and the component conveying speed is reduced.
そこで、本発明は、複合振動式の部品搬送装置において、部品搬送速度を維持しながら部品搬送部材のピッチング運動を抑制できるようにすることを課題とする。 In view of the above, an object of the present invention is to make it possible to suppress the pitching motion of the component conveying member while maintaining the component conveying speed in the composite vibration type component conveying apparatus.
上記の課題を解決するため、本発明は、部品搬送路が形成された部品搬送部材と、前記部品搬送部材が取り付けられる上部振動体と、床上に設置される基台と、前記上部振動体と基台との間に設けられる中間振動体と、前記中間振動体と基台とを連結する第1の弾性部材と、前記上部振動体と中間振動体とを連結する第2の弾性部材とを備え、前記第1の弾性部材と第2の弾性部材のうちの一方を水平振動用弾性部材、他方を鉛直振動用弾性部材とし、前記水平振動用弾性部材と第1の加振機構とで部品搬送部材に水平方向の振動を付与し、前記鉛直振動用弾性部材と第2の加振機構とで部品搬送部材に鉛直方向の振動を付与するようにした振動式部品搬送装置において、前記中間振動体および基台に発生する回転振動の固有振動数を、前記部品搬送部材および上部振動体に発生する回転振動の固有振動数よりも大きくした構成を採用した。以下に、本発明がこの構成を採用した理由を説明する。 In order to solve the above problems, the present invention provides a component conveying member in which a component conveying path is formed, an upper vibrating body to which the component conveying member is attached, a base installed on a floor, and the upper vibrating body. An intermediate vibrating body provided between the base, a first elastic member connecting the intermediate vibrating body and the base, and a second elastic member connecting the upper vibrating body and the intermediate vibrating body. One of the first elastic member and the second elastic member is a horizontal vibration elastic member and the other is a vertical vibration elastic member, and the horizontal vibration elastic member and the first vibration mechanism are used as parts. In the vibration-type component conveying apparatus that applies a horizontal vibration to the conveying member and applies a vertical vibration to the component conveying member by the vertical vibration elastic member and the second vibration mechanism. The natural frequency of rotational vibration generated in the body and base Employing the configuration is larger than the natural frequency of the rotational vibration generated in the goods conveying member and the upper vibration member. The reason why the present invention employs this configuration will be described below.
一般的な振動式部品搬送装置においては、並進振動するモードと回転振動するモードの2つが存在する。ピッチング運動の要因となっているのは後者の回転振動モードであり、その固有振動数は並進振動モードの固有振動数近辺にある。そして、複合振動式のものでは、水平方向と鉛直方向に振動可能となっているため、それぞれの振動方向に対し並進振動モードと回転振動モードが存在する。 In a general vibration-type component conveying device, there are two modes, a translational vibration mode and a rotational vibration mode. It is the latter rotational vibration mode that causes the pitching motion, and its natural frequency is in the vicinity of the natural frequency of the translational vibration mode. Since the composite vibration type can vibrate in the horizontal direction and the vertical direction, there is a translational vibration mode and a rotational vibration mode for each vibration direction.
図7は複合振動式の部品搬送装置の簡易モデルを示す。この簡易モデルにおける上部剛体Aは、部品搬送部材(上部振動体を含む)に相当する。また、ばねKaは鉛直振動用弾性部材に、下部剛体Bは中間振動体および基台に、ばねKbは下部剛体Bと床面Fとの間に設けられる防振部材にそれぞれ相当する。そして、重心Gaは上部剛体Aの重心を、重心Gbは下部剛体Bの重心を表している。なお、実際には中間振動体と基台とは水平振動用弾性部材で連結されているが、水平振動用弾性部材は鉛直方向には作用しないため、この簡易モデルでは考慮しない。 FIG. 7 shows a simple model of a composite vibration type component conveying apparatus. The upper rigid body A in this simple model corresponds to a component conveying member (including the upper vibrating body). The spring Ka corresponds to an elastic member for vertical vibration, the lower rigid body B corresponds to an intermediate vibration body and a base, and the spring Kb corresponds to a vibration isolating member provided between the lower rigid body B and the floor surface F. The center of gravity Ga represents the center of gravity of the upper rigid body A, and the center of gravity Gb represents the center of gravity of the lower rigid body B. In practice, the intermediate vibrating body and the base are connected by an elastic member for horizontal vibration, but the horizontal vibration elastic member does not act in the vertical direction and is not considered in this simple model.
上記簡易モデルにおいて、下部剛体Bの重心Gbまわりのピッチング運動が水平方向振動の回転振動モード、上部剛体Aの重心Gaまわりのピッチング運動が鉛直方向振動の回転振動モードとなる。一方、電磁石の駆動周波数は、前述のように、水平方向振動における並進振動モードの固有振動数付近となる。 In the simple model, the pitching motion around the center of gravity Gb of the lower rigid body B is the rotational vibration mode of horizontal vibration, and the pitching motion around the center of gravity Ga of the upper rigid body A is the rotational vibration mode of vertical vibration. On the other hand, as described above, the driving frequency of the electromagnet is near the natural frequency of the translational vibration mode in the horizontal vibration.
水平方向振動の並進振動モードの固有振動数は、下部剛体Bの質量、ばねKbの構成を変えることで調整できる。同様に、鉛直方向振動の並進振動モードの固有振動数も、上部剛体Aの質量、ばねKaの構成を変えることで調整できる。なお、各回転振動モードの固有振動数は、並進振動モードの固有振動数に追従するが、慣性モーメントを変化させることで並進振動モードの固有振動数との関係を調整できる。ただし、慣性モーメントを変化させるには端部の質量を変えることで行うのが一般的であるため、並進振動モードと回転振動モードの固有振動数の差の調整には限界がある。 The natural frequency of the translational vibration mode of the horizontal vibration can be adjusted by changing the mass of the lower rigid body B and the configuration of the spring Kb. Similarly, the natural frequency of the translational vibration mode of the vertical vibration can be adjusted by changing the mass of the upper rigid body A and the configuration of the spring Ka. Note that the natural frequency of each rotational vibration mode follows the natural frequency of the translational vibration mode, but the relationship with the natural frequency of the translational vibration mode can be adjusted by changing the moment of inertia. However, since it is common to change the mass of the end to change the moment of inertia, there is a limit to the adjustment of the difference in natural frequency between the translational vibration mode and the rotational vibration mode.
ここで、水平方向振動の回転振動モード(下部剛体Bに発生する回転振動)の固有振動数を、鉛直方向振動の回転振動モード(上部剛体Aに発生する回転振動)の固有振動数よりも小さくした場合、その振動数と振動レベルおよび位相の関係は図8のようになる。図8中の水平方向振動の回転振動モードの振動レベルは図7における床上から見たB1点のピッチング運動、鉛直方向振動の回転振動モードの振動レベルは図7においてB1点から見たA1点の相対的なピッチング運動をそれぞれ示している。なお、簡略化のため、鉛直方向振動の並進振動モードは図示していない。また、電磁石の駆動周波数は、水平方向振動における並進振動モードの固有振動数付近となるため、水平方向振動の回転振動モードと鉛直方向振動の回転振動モードの振動波形の位相はほぼ同じになる。したがって、部品搬送部材のピッチング運動(床上から見たA1点の絶対的なピッチング運動)は、水平方向振動の回転振動モードの振動レベルと鉛直方向振動の回転振動モードの振動レベルの和となる。 Here, the natural frequency of the rotational vibration mode of horizontal vibration (rotational vibration generated in the lower rigid body B) is smaller than the natural frequency of the rotational vibration mode of vertical vibration (rotational vibration generated in the upper rigid body A). In this case, the relationship between the vibration frequency, vibration level, and phase is as shown in FIG. In FIG. 8, the vibration level of the rotational vibration mode of the horizontal vibration in FIG. 7 is the pitching motion at point B1 as viewed from the floor in FIG. 7, and the vibration level of the rotational vibration mode of the vertical vibration in FIG. Each shows the relative pitching motion. For simplification, the translational vibration mode of the vertical vibration is not shown. Further, since the driving frequency of the electromagnet is in the vicinity of the natural frequency of the translational vibration mode in the horizontal vibration, the phase of the vibration waveform of the rotational vibration mode of the horizontal vibration and the rotational vibration mode of the vertical vibration is substantially the same. Therefore, the pitching motion (absolute pitching motion at point A1 as viewed from the floor) of the component conveying member is the sum of the vibration level of the rotational vibration mode of horizontal vibration and the vibration level of the rotational vibration mode of vertical vibration.
いま、図8中の実線の状態のときに、部品搬送部材のピッチング運動が抑制されているとする。この状態で部品搬送部材を質量および慣性モーメントが大きいものと交換した場合、鉛直方向振動の並進および回転振動モードの固有振動数が低くなる(図8中の破線)。なお、実際には水平方向振動の並進および回転振動モードの固有振動数も低下するが、ここでは無視する。このとき、駆動周波数における鉛直方向振動の回転振動モードの振動レベルが大きくなるため、部品搬送部材のピッチング運動が大きくなる。 Now, it is assumed that the pitching motion of the component conveying member is suppressed in the state of the solid line in FIG. When the component conveying member is replaced with one having a large mass and moment of inertia in this state, the natural frequency of the vertical vibration translation and the rotational vibration mode is reduced (broken line in FIG. 8). In practice, the natural frequency of the horizontal vibration translation and the rotational vibration mode also decreases, but is ignored here. At this time, since the vibration level in the rotational vibration mode of the vertical vibration at the drive frequency is increased, the pitching motion of the component conveying member is increased.
上記のピッチング運動の増幅を抑えるには、水平方向振動の回転振動モードの固有振動数を上げて、駆動周波数における水平方向振動の回転振動モードの振動レベルを低下させるか、あるいは水平方向振動の並進振動モードの固有振動数(電磁石の駆動周波数)を下げて、鉛直方向振動の回転振動モードの振動レベルを低下させることが考えられる。 To suppress the amplification of the pitching motion described above, increase the natural frequency of the rotational vibration mode of the horizontal vibration to reduce the vibration level of the rotational vibration mode of the horizontal vibration at the drive frequency, or translate the horizontal vibration. It is conceivable to reduce the vibration level of the rotational vibration mode of the vertical vibration by lowering the natural frequency of the vibration mode (driving frequency of the electromagnet).
前者の場合は、水平方向振動の回転振動モードの固有振動数を上げるために、下部剛体Bの質量を減らして慣性モーメントを小さくすることになるが、前述のとおり、並進振動モードと回転振動モードの固有振動数を大きく離すことは難しい。したがって、水平方向振動の並進振動モードの固有振動数も上がってしまい、これに伴って電磁石の駆動周波数も上がるので、鉛直方向振動の回転振動モードの振動レベルがさらに大きくなり、ピッチング運動を抑制することは困難である。 In the former case, in order to increase the natural frequency of the rotational vibration mode of horizontal vibration, the mass of the lower rigid body B is reduced to reduce the moment of inertia, but as described above, the translational vibration mode and the rotational vibration mode It is difficult to keep the natural frequency of Therefore, the natural frequency of the translational vibration mode of the horizontal vibration is also increased, and the driving frequency of the electromagnet is also increased accordingly. Therefore, the vibration level of the rotational vibration mode of the vertical vibration is further increased and the pitching motion is suppressed. It is difficult.
一方、後者の場合、水平方向振動の並進振動モードの固有振動数を下げるために、下部剛体Bの質量を増やして慣性モーメントを大きくすることになる。このときには、図9の破線で示すように、水平方向振動の回転振動モードの固有振動数も下がり、その振動レベルはほとんど変わらないが、鉛直方向振動の回転振動モードの振動レベルが低下するため、ピッチング運動の抑制が可能である。ただし、この場合には、電磁石の駆動周波数が低くなるため部品搬送速度が低下してしまう。 On the other hand, in the latter case, in order to reduce the natural frequency of the translational vibration mode of horizontal vibration, the mass of the lower rigid body B is increased to increase the moment of inertia. At this time, as shown by the broken line in FIG. 9, the natural frequency of the rotational vibration mode of the horizontal vibration is also lowered, and the vibration level is almost the same, but the vibration level of the rotational vibration mode of the vertical vibration is lowered. Pitching motion can be suppressed. In this case, however, the drive frequency of the electromagnet is lowered, so that the component conveyance speed is lowered.
次に、水平方向振動の回転振動モードの固有振動数を、鉛直方向振動の回転振動モードの固有振動数よりも大きくした場合について説明する。この場合の振動数と振動レベルおよび位相の関係を図10に示す。このとき、電磁石の駆動周波数における水平方向振動の回転振動モードと鉛直方向振動の回転振動モードの振動波形は逆位相になる。したがって、部品搬送部材のピッチング運動は、水平方向振動の回転振動モードの振動レベルと鉛直方向振動の回転振動モードの振動レベルの差で表されることになる。 Next, the case where the natural frequency of the rotational vibration mode of horizontal vibration is made larger than the natural frequency of the rotational vibration mode of vertical vibration will be described. The relationship between the vibration frequency, vibration level and phase in this case is shown in FIG. At this time, the vibration waveforms of the rotational vibration mode of horizontal vibration and the rotational vibration mode of vertical vibration at the driving frequency of the electromagnet have opposite phases. Accordingly, the pitching motion of the component conveying member is represented by the difference between the vibration level in the horizontal vibration mode and the vertical vibration mode.
図10中の実線の状態では、駆動周波数における水平方向振動の回転振動モードの振動レベルと鉛直方向振動の回転振動モードの振動レベルが同じであるため、部品搬送部材のピッチング運動は発生しない。この状態で部品搬送部材を質量および慣性モーメントが大きいものと交換した場合、鉛直方向振動の並進および回転振動モードの固有振動数が低くなる(図10中の破線)。なお、実際には水平方向振動の並進および回転振動モードの固有振動数も低下するが、ここでは無視する。このとき、駆動周波数における水平方向振動の回転振動モードの振動レベルと鉛直方向振動の回転振動モードの振動レベルに差が生じるため、部品搬送部材のピッチング運動が発生する。 In the state of the solid line in FIG. 10, the vibration level of the rotational vibration mode of horizontal vibration and the vibration level of the rotational vibration mode of vertical vibration at the drive frequency are the same, and therefore no pitching motion of the component conveying member occurs. When the component conveying member is replaced with one having a large mass and moment of inertia in this state, the natural frequency in the translational and rotational vibration modes of the vertical vibration is lowered (broken line in FIG. 10). In practice, the natural frequency of the horizontal vibration translation and the rotational vibration mode also decreases, but is ignored here. At this time, there is a difference between the vibration level of the rotational vibration mode of horizontal vibration and the vibration level of the rotation vibration mode of vertical vibration at the drive frequency, so that a pitching motion of the component conveying member occurs.
上記のピッチング運動を抑制するには、図11中の破線で示すように、水平方向振動の回転振動モードの固有振動数を上げて、電磁石の駆動周波数における水平方向振動の回転振動モードの振動レベルと鉛直方向振動の回転振動モードの振動レベルとを同じレベルにすればよい。このとき、水平方向振動の並進振動モードの固有振動数も上がることになるが、前述のとおり並進振動モードと回転振動モードの固有振動数の関係は多少変えられるので、水平方向振動と鉛直方向振動の回転振動モードの振動レベルを同レベルとして、ピッチング運動を抑制することが可能である。しかも、この場合は、水平方向振動の並進振動モードの固有振動数、つまり電磁石の駆動周波数が低くならないため、部品搬送速度を維持することができる。 In order to suppress the above pitching motion, as shown by a broken line in FIG. 11, the natural frequency of the rotational vibration mode of the horizontal vibration is increased and the vibration level of the rotational vibration mode of the horizontal vibration at the driving frequency of the electromagnet is increased. And the vibration level in the rotational vibration mode of the vertical vibration may be set to the same level. At this time, the natural frequency of the translational vibration mode of the horizontal vibration also increases. However, as described above, the relationship between the natural frequency of the translational vibration mode and the rotational vibration mode can be slightly changed. It is possible to suppress the pitching motion by setting the vibration level in the rotational vibration mode to the same level. In addition, in this case, the natural frequency of the translational vibration mode of the horizontal vibration, that is, the driving frequency of the electromagnet does not decrease, so that the component conveyance speed can be maintained.
以上のことから、本発明では、水平方向振動の回転振動モード(図7における下部剛体Bすなわち中間振動体および基台に発生する回転振動)の固有振動数を、鉛直方向振動の回転振動モード(図7における上部剛体Aすなわち部品搬送部材および上部振動体に発生する回転振動)の固有振動数よりも大きくすることにより、部品搬送速度を維持しながら部品搬送部材のピッチング運動を抑制することを可能としたのである。 From the above, in the present invention, the natural frequency of the rotational vibration mode of horizontal vibration (rotational vibration generated in the lower rigid body B, that is, the intermediate vibration body and the base) in FIG. It is possible to suppress the pitching motion of the component conveying member while maintaining the component conveying speed by making it larger than the natural frequency of the upper rigid body A in FIG. 7, that is, the rotational vibration generated in the component conveying member and the upper vibrating body. It was.
上記の構成においては、前記基台に錘を設けることが望ましい。錘の質量を変えることにより、中間振動体および基台に発生する回転振動の固有振動数の調整を容易に行えるからである。 In the above configuration, it is desirable to provide a weight on the base. This is because the natural frequency of the rotational vibration generated in the intermediate vibrator and the base can be easily adjusted by changing the mass of the weight.
前記基台と床面との間に防振部材を設けている場合は、前記基台のピッチング運動の振幅が前記部品搬送部材の基台に対する相対的なピッチング運動の振幅に近づくように基台の質量を調整すればよい。 When a vibration isolating member is provided between the base and the floor surface, the base is arranged so that the amplitude of the pitching motion of the base approaches the amplitude of the pitching motion relative to the base of the component conveying member. What is necessary is just to adjust the mass of.
ここで、前記錘は、複数の錘片からなり、その錘片の数を増減することにより質量調整が可能なものとするとよく、前記基台の端部に設けることが望ましい。基台の質量を変化させる部位が重心から遠いほど、質量の増減によるピッチング運動の振幅への影響が大きくなり、質量調整が容易になるからである。 Here, the weight is composed of a plurality of weight pieces, and the weight can be adjusted by increasing / decreasing the number of the weight pieces, and is preferably provided at the end of the base. This is because as the portion that changes the mass of the base is farther from the center of gravity, the influence of the increase / decrease in the mass on the amplitude of the pitching motion increases, and the mass adjustment becomes easier.
また、前記錘は複数箇所に設けることが望ましい。基台の1箇所のみ質量を変化させると基台の重心が移動し、ピッチング運動の中心がずれて調整が困難になるが、錘の設置箇所を複数にすれば、基台の重心が移動しないように錘の質量を調整できるからである。逆に、複数箇所に設けた錘の質量を調整して基台の重心の位置を装置中心付近に移動させることにより、搬送挙動の安定化を図ることもできる。また、前記錘の設置位置を鉛直方向に調整可能としても、基台の重心を装置中心付近に移動させて安定した搬送挙動が得られるようにすることができる。 The weight is preferably provided at a plurality of locations. If the mass is changed at only one location on the base, the center of gravity of the base moves, and the center of the pitching movement is shifted, making adjustment difficult. However, if multiple weights are installed, the center of gravity of the base will not move. This is because the mass of the weight can be adjusted. Conversely, by adjusting the mass of the weights provided at a plurality of locations and moving the position of the center of gravity of the base to the vicinity of the center of the apparatus, it is possible to stabilize the transport behavior. Further, even if the installation position of the weight can be adjusted in the vertical direction, the center of gravity of the base can be moved to the vicinity of the center of the apparatus so that a stable transport behavior can be obtained.
前記水平振動用弾性部材は、前記中間振動体への固定位置と前記基台または上部振動体への固定位置が部品搬送方向と直交する同一水平線上に位置するように配置するとよい。このようにすれば、水平振動用弾性部材の水平方向の変形が鉛直方向の変位につながらなくなり、水平方向の振動に起因する鉛直方向の振動の発生が抑えられる。このとき、前記水平振動用弾性部材を、部品搬送方向に複数設け、それぞれの前記中間振動体への固定位置と前記基台または上部振動体への固定位置の位置関係が部品搬送方向で交互に入れ替わるように配置すれば、水平面内で部品搬送方向と直交する方向の振動も抑制できるので、搬送挙動をさらに安定させることができる。 The horizontal vibration elastic member may be arranged such that the fixed position to the intermediate vibrator and the fixed position to the base or upper vibrator are located on the same horizontal line perpendicular to the component conveying direction. In this way, the horizontal deformation of the horizontal vibration elastic member is not connected to the vertical displacement, and the occurrence of vertical vibration due to the horizontal vibration is suppressed. At this time, a plurality of the horizontal vibration elastic members are provided in the component conveying direction, and the positional relationship between the fixed position to the intermediate vibrating body and the fixed position to the base or the upper vibrating body alternately in the component conveying direction. If it arrange | positions so that it may replace | exchange, since the vibration of the direction orthogonal to a components conveyance direction can also be suppressed in a horizontal surface, a conveyance behavior can be stabilized further.
一方、前記鉛直振動用弾性部材は、部品搬送方向と直交する同一水平線上の2箇所の固定位置で固定したり、部品搬送方向と平行な同一水平線上の2箇所の固定位置で固定したりすればよい。 On the other hand, the elastic member for vertical vibration is fixed at two fixed positions on the same horizontal line orthogonal to the component conveying direction, or fixed at two fixed positions on the same horizontal line parallel to the component conveying direction. That's fine.
前記各加振機構を電磁石と可動鉄心とで構成し、そのうちの一方の電磁石への印加電圧設定回路に、印加電圧の基準波形を発生させる基準波形発生手段と、前記基準波形に対して振幅を調整する波形振幅調整手段を設け、他方の電磁石への印加電圧設定回路には、前記基準波形に対して所定の位相差をもつ波形を発生させる位相差調整手段と、位相差調整手段で発生した波形に対して振幅を調整する波形振幅調整手段を設けて、各電磁石への印加電圧の波形、周期、位相差および振幅を自在に制御できるようにすれば、水平方向の振動と鉛直方向の振動を容易に所望の振動に近づけることができる。 Each excitation mechanism is composed of an electromagnet and a movable iron core, a reference waveform generating means for generating a reference waveform of an applied voltage in an applied voltage setting circuit to one of the electromagnets, and an amplitude with respect to the reference waveform Waveform amplitude adjusting means for adjusting is provided, and the applied voltage setting circuit for the other electromagnet is generated by the phase difference adjusting means for generating a waveform having a predetermined phase difference with respect to the reference waveform, and the phase difference adjusting means By providing waveform amplitude adjustment means to adjust the amplitude of the waveform so that the waveform, period, phase difference and amplitude of the voltage applied to each electromagnet can be controlled freely, horizontal vibration and vertical vibration Can be easily brought close to the desired vibration.
また、前記各加振機構の電磁石への印加電圧設定回路に、それぞれの前記波形振幅調整手段で振幅を調整された波形をPWM(Pulse Width Modulation)信号に変換するPWM信号発生手段を設けて、PWM方式で各加振機構を駆動することができる。 In addition, the voltage setting circuit for applying voltage to the electromagnet of each of the vibration mechanisms is provided with PWM signal generating means for converting a waveform whose amplitude is adjusted by the waveform amplitude adjusting means to a PWM (Pulse Width Modulation) signal, Each excitation mechanism can be driven by the PWM method.
本発明の振動式部品搬送装置は、上述したように、中間振動体および基台に発生する回転振動の固有振動数を、部品搬送部材および上部振動体に発生する回転振動の固有振動数よりも大きくしたものであるから、部品搬送速度を維持しながら、床上から見た部品搬送部材のピッチング運動を抑制でき、ひいては部品搬送部材に所望の振動を容易に付与することができ、安定した部品搬送を実現できる。 As described above, the vibration-type component conveying device of the present invention has a natural frequency of the rotational vibration generated in the intermediate vibrating body and the base more than the natural frequency of the rotational vibration generated in the component conveying member and the upper vibrating body. Since it is enlarged, the pitching motion of the component conveying member viewed from the floor can be suppressed while maintaining the component conveying speed, and as a result, desired vibration can be easily applied to the component conveying member and stable component conveying. Can be realized.
以下、図面に基づき、本発明の実施形態を説明する。この振動式部品搬送装置は、図1乃至図3に示すように、直線状の搬送路1aが形成されたトラフ(部品搬送部材)1を上部振動体2の上面に取り付け、上部振動体2と床上に設置される基台3との間に中間振動体4を設け、中間振動体4と基台3とを2つの第1の弾性部材としての板ばね5で連結し、上部振動体2と中間振動体4とを4つの第2の弾性部材としての板ばね6で連結し、中間振動体4と基台3の間に水平方向(部品搬送方向、図中のX方向)の振動を発生させる第1の加振機構7を設け、上部振動体2と基台3の間に鉛直方向(図中のZ方向)の振動を発生させる第2の加振機構8を設けたものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1 to FIG. 3, the vibration type component conveying apparatus has a trough (component conveying member) 1 in which a linear conveying
前記基台3は、矩形状に形成され、その対角の二隅に柱状の板ばね取付部3aが立設されており、床面Fに固定された防振ゴム(防振部材)18に支持されている。なお、防振部材にはコイルばね等を用いてもよい。
The
また、基台3の部品搬送方向の両端には、それぞれ錘19が設けられている。これらの各錘19は、脱着可能な複数の錘片19aからなり、その錘片19aの数を増減することにより質量調整が可能なものとなっている。ここで、図示は省略するが、錘19の基台3への取付方法は、各錘片19aに通し孔を設け、ボルト等でねじ止めする方法とすることができる。このとき、基台3に設けるねじ穴を高さ方向に複数配置して、錘19の基台3への取付位置を鉛直方向に調整可能とすることにより、搬送挙動の安定化を図るために基台3の重心の位置を装置中心付近に移動させたり、錘19と他の機器との干渉を避けたりすることが容易にできるようになる。なお、この実施形態では錘19を複数の錘片19aで構成したが、単体で所望の質量となっている錘を用いてもよい。
Further,
前記中間振動体4は、矩形枠形状に形成され、その対角の二隅が外周側で基台3の板ばね取付部3aの上端部と対向し、内周面が上部振動体2の下部と対向するように配置されている。また、その外周面には、基台3の板ばね取付部3aと対向しない対角の二隅から部品搬送方向(X方向)に突出する板ばね取付部4aが設けられている。
The intermediate vibrating
前記第1の板ばね5は、表裏面を部品搬送方向に向けられ、両端の固定位置が部品搬送方向と直交する同一水平線上に位置するように、一端部を基台3の板ばね取付部3aに他端部を中間振動体4の板ばね取付部4aにそれぞれ固定されて、中間振動体4を水平方向に振動可能に支持する水平振動用板ばね(水平振動用弾性部材)となっている。ここで、基台3の2つの板ばね取付部3aと、中間振動体4の2つの板ばね取付部4aとは、同じ取付部の設置位置どうしを結んだ直線が平面視で交差するように設けられているため、2つの水平振動用板ばね5は、それぞれの2箇所の固定位置の位置関係が部品搬送方向で入れ替わるように配置されることになる。
The
一方、前記第2の板ばね6は、表裏面を鉛直方向に向けられ、両端の固定位置が部品搬送方向と直交する同一水平線上に位置するように、一端部を上部振動体2の下部に他端部を中間振動体4の長手方向縁部にそれぞれ固定されて、上部振動体2を鉛直方向に振動可能に支持する鉛直振動用板ばね(鉛直振動用弾性部材)となっている。
On the other hand, the
また、前記第1の加振機構7は、基台3上に設置される交流電磁石9と、この電磁石9と所定の間隔をおいて対向するように中間振動体4に取り付けられる可動鉄心10とで構成されている。なお、可動鉄心10は、この例では中間振動体4に取り付けたが、上部振動体2に取り付けるようにしてもよい。一方、前記第2の加振機構8は、基台3上に設置される交流電磁石11と、この電磁石11と所定の間隔をおいて対向するように上部振動体2に取り付けられる可動鉄心12とで構成されている。
The first vibrating
第1の加振機構7の電磁石9に通電すると、電磁石9と可動鉄心10との間に断続的な電磁吸引力が作用し、この電磁吸引力と水平振動用板ばね5の復元力により、中間振動体4に水平方向の振動が発生し、この振動が鉛直振動用板ばね6を介して上部振動体2およびトラフ1に伝わる。また、第2の加振機構8の電磁石11に通電すると、電磁石11と可動鉄心12との間に断続的な電磁吸引力が作用し、この電磁吸引力と鉛直振動用板ばね6の復元力により、上部振動体2およびトラフ1に鉛直方向の振動が発生する。そして、この水平方向の振動と鉛直方向の振動により、トラフ1に供給された部品が直線状搬送路1aに沿って搬送される。
When the
したがって、各加振機構7、8の電磁石9、11への印加電圧を別々に設定することにより、トラフ1の水平方向の振動と鉛直方向の振動をそれぞれ調整することができる。
Therefore, the horizontal vibration and the vertical vibration of the
図4は各加振機構7、8の電磁石9、11へ印加電圧を設定する回路を示す。第1の加振機構7の回路には、印加電圧の基準波形を発生させる基準波形発生手段13が設けられている。基準波形発生手段13では、波形の種類(例えば、正弦波)とその波形の周期(周波数)の設定値に応じた基準波形を発生させる。一方、第2の加振機構8の回路には、基準波形発生手段13で発生した基準波形に対して所定の位相差をもつ波形を発生させる位相差調整手段14が設けられている。
FIG. 4 shows a circuit for setting an applied voltage to the
そして、各加振機構7、8の回路において、基準波形発生手段13または位相差調整手段14で発生した波形を、波形振幅調整手段15で所定の振幅に調整して、PWM信号発生手段16でPWM信号に変換した後、電圧増幅手段17で昇圧し、それぞれの電磁石9、11へ印加するようになっている。これにより、各電磁石9、11への印加電圧の波形、周期、位相差および振幅を自在に制御して、水平方向の振動と鉛直方向の振動をそれぞれ調整することができる。なお、PWM方式で各加振機構を駆動しない場合は、PWM信号発生手段16は不要となる。
In each of the
また、装置全体としては、前記中間振動体4および基台3に発生する回転振動(水平方向振動の回転振動モード)の固有振動数が、前記トラフ1および上部振動体2に発生する回転振動(鉛直方向振動の回転振動モード)の固有振動数よりも大きくなるように調整されている。その水平方向振動の回転振動モードの固有振動数は、水平振動用板ばね5の固定長、厚さ、枚数や、基台3および中間振動体4の慣性モーメントを変化させることにより調整する。一方、鉛直方向振動の回転振動モードの固有振動数は、鉛直振動用板ばね6の固定長、厚さ、枚数や、トラフ1および上部振動体2の慣性モーメントを変化させることにより調整する。
Further, as a whole device, the natural frequency of the rotational vibration (horizontal vibration rotational vibration mode) generated in the
なお、実際には、客先でトラフ1が搭載されることが多く、そこで各板ばね5、6の仕様や上部振動体2等の各部材の慣性モーメントを変化させることは困難である。したがって、出荷前に、客先での搭載が想定されるトラフ1の質量および慣性モーメントの範囲において上記の調整を行い、客先では搭載するトラフ1に合わせて基台3に設置する錘19の調整のみでピッチング運動の抑制が可能な状態としておくことが望ましい。
In practice, the
この振動式部品搬送装置は、上記の構成であり、第1の加振機構7の駆動によって中間振動体4に振動が発生するとき、部品搬送方向と直交する同一水平線上の2箇所の固定位置で固定された水平振動用板ばね5は、水平方向にのみ変形して元の状態に戻る動作を繰り返す。これにより、中間振動体4に発生する振動は、鉛直方向の振動をほとんど含まず、ほぼ水平方向のみの振動となる。しかも、2つの水平振動用板ばね5の固定位置の位置関係が部品搬送方向で入れ替わるように配置されているので、水平面内で部品搬送方向と直交する方向(図2、3におけるY方向)の振動も抑制できる。
This vibration type component conveying apparatus has the above-described configuration, and when vibration is generated in the intermediate vibrating
そして、基台3と床面Fとの間に防振ゴム18を設け、基台3に複数の錘片19aからなる錘19を設けるとともに、中間振動体4および基台3に発生する回転振動の固有振動数を、トラフ1および上部振動体2に発生する回転振動の固有振動数よりも大きくしているので、基台3のピッチング運動の振幅がこれと逆位相となるトラフ1の基台3に対する相対的なピッチング運動の振幅に近づくように、錘片19aの数を増減して基台3の質量を調整することにより、床上から見たトラフ1のピッチング運動を確実に抑えることができ、安定した部品搬送を実現することができる。しかも、このようにトラフ1のピッチング運動を抑制するために基台3の質量を調整するときも、部品搬送速度を維持することができる(図11参照)。
Then, a
図5および図6は上述した実施形態の鉛直振動用板ばね6の配置の変形例を示す。この変形例では、鉛直振動用板ばね6を、部品搬送方向(図中のX方向)と平行な同一水平線上の2箇所の固定位置で、上部振動体2と中間振動体4の短手方向縁部に固定している。
5 and 6 show a modification of the arrangement of the vertical
上述した実施形態では、中間振動体と基台とを連結する第1の板ばねを水平振動用板ばねとし、上部振動体と中間振動体とを連結する第2の板ばねを鉛直振動用板ばねとしたが、これとは逆に、第1の板ばねが鉛直振動用板ばね、第2の板ばねが水平振動用板ばねとなるように構成してもよい。また、板ばねは各箇所に1枚ずつ配置したが、2枚以上重ねたものを1つとして使用してもよい。 In the above-described embodiment, the first plate spring that connects the intermediate vibration body and the base is a horizontal vibration plate spring, and the second plate spring that connects the upper vibration body and the intermediate vibration body is the vertical vibration plate. In contrast to this, the first plate spring may be a vertical vibration plate spring, and the second plate spring may be a horizontal vibration plate spring. Further, one leaf spring is arranged at each location, but two or more leaf springs may be used as one.
また、水平振動用板ばねは2箇所に配置したが、3箇所以上で構成してもよく、その場合もそれぞれの中間振動体への固定位置と基台への固定位置との位置関係が部品搬送方向で交互に入れ替わるように配置すればよい。一方、鉛直振動用板ばねは4箇所に配置したが、2箇所以上で構成してもよい。 In addition, although the horizontal vibration leaf springs are arranged in two places, they may be constituted by three or more places. In this case, the positional relationship between the fixed position to each intermediate vibrator and the fixed position to the base is a component. What is necessary is just to arrange | position so that it may alternate by the conveyance direction. On the other hand, the vertical vibration leaf springs are arranged at four locations, but may be configured at two or more locations.
さらに、実施形態では、水平振動用弾性部材および鉛直振動用弾性部材に板ばねを使用しているが、板ばね以外の弾性部材ももちろん用いることができる。また、各加振機構は、電磁石と可動鉄心とからなるものを使用しているが、これに限らず、同様の加振力を発生させることができるアクチュエータであればよい。 Furthermore, in the embodiment, a leaf spring is used for the elastic member for horizontal vibration and the elastic member for vertical vibration, but an elastic member other than the leaf spring can also be used. Moreover, although each vibration mechanism uses what consists of an electromagnet and a movable iron core, it is not restricted to this, What is necessary is just an actuator which can generate | occur | produce the same vibration force.
1 トラフ(部品搬送部材)
2 上部振動体
3 基台
4 中間振動体
5 第1の板ばね(水平振動用板ばね)
6 第2の板ばね(鉛直振動用板ばね)
7 第1の加振機構
8 第2の加振機構
9、11 電磁石
10、12 可動鉄心
18 防振ゴム(防振部材)
19 錘
19a 錘片
1 trough (component conveying member)
2
6 Second leaf spring (plate spring for vertical vibration)
7
19
Claims (9)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012225121A JP6153308B2 (en) | 2012-10-10 | 2012-10-10 | Vibrating parts conveyor |
TW102135588A TWI585018B (en) | 2012-10-10 | 2013-10-01 | Vibrating parts conveyor |
PCT/JP2013/076913 WO2014057857A1 (en) | 2012-10-10 | 2013-10-03 | Vibrating parts transport device |
KR1020157008784A KR20150065707A (en) | 2012-10-10 | 2013-10-03 | Vibrating parts transport device |
CN201380053245.4A CN104736460B (en) | 2012-10-10 | 2013-10-03 | Vibratory parts-feeding apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012225121A JP6153308B2 (en) | 2012-10-10 | 2012-10-10 | Vibrating parts conveyor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014076881A JP2014076881A (en) | 2014-05-01 |
JP6153308B2 true JP6153308B2 (en) | 2017-06-28 |
Family
ID=50477324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012225121A Active JP6153308B2 (en) | 2012-10-10 | 2012-10-10 | Vibrating parts conveyor |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6153308B2 (en) |
KR (1) | KR20150065707A (en) |
CN (1) | CN104736460B (en) |
TW (1) | TWI585018B (en) |
WO (1) | WO2014057857A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105752610A (en) * | 2014-12-15 | 2016-07-13 | 东莞赛立恩自动化科技有限公司 | An automatic precision weighing controller based on the application of vibrating plate |
CN105752641A (en) * | 2014-12-15 | 2016-07-13 | 东莞赛立恩自动化科技有限公司 | A Multi-track Precision Counting Controller Based on Vibration Disk Application |
CN105752616B (en) * | 2014-12-15 | 2019-04-23 | 东莞赛立恩自动化科技有限公司 | A kind of frequency conversion amplitude controlling feeding controller based on vibrating disk application |
JP6718112B2 (en) * | 2016-04-13 | 2020-07-08 | シンフォニアテクノロジー株式会社 | Article carrier |
CN107892139A (en) * | 2017-11-05 | 2018-04-10 | 无锡胜维电气有限公司 | A kind of guide type low-frequency cable component crimping system is shaken disk terminal feed mechanism |
CN107934409A (en) * | 2017-11-05 | 2018-04-20 | 无锡胜维电气有限公司 | A kind of damping vibration formula low-frequency cable component crimps system vibration plate terminal feed mechanism |
JP7071623B2 (en) * | 2018-02-07 | 2022-05-19 | シンフォニアテクノロジー株式会社 | Parts supply equipment |
JP6820484B2 (en) * | 2018-04-19 | 2021-01-27 | シンフォニアテクノロジー株式会社 | Vibration system control device and work transfer device |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5474567A (en) * | 1977-11-26 | 1979-06-14 | Shinko Electric Co Ltd | An elliptical-oscillation type oscillator |
JP3603376B2 (en) * | 1995-03-29 | 2004-12-22 | 神鋼電機株式会社 | Self-excited vibration type vibration device with electromagnet excitation method |
US5804733A (en) * | 1995-03-31 | 1998-09-08 | Shinko Electric Co., Ltd. | Elliptical vibratory apparatus |
JP4604522B2 (en) * | 2004-03-12 | 2011-01-05 | シンフォニアテクノロジー株式会社 | Parts conveying apparatus and article conveying method |
CN101811615A (en) * | 2010-04-20 | 2010-08-25 | 哈尔滨博实自动化设备有限责任公司 | Electromagnetic-driven vibration conveyor |
JP5677784B2 (en) * | 2010-08-16 | 2015-02-25 | Ntn株式会社 | Vibrating parts conveyor |
KR101877578B1 (en) * | 2010-08-16 | 2018-07-12 | 엔티엔 가부시키가이샤 | Vibration-type component conveying device |
CN102530495B (en) * | 2010-09-29 | 2015-10-21 | Ntn株式会社 | Vibrating parts feeder |
JP5718606B2 (en) * | 2010-09-29 | 2015-05-13 | Ntn株式会社 | Vibrating parts conveyor |
JP2012121658A (en) * | 2010-12-07 | 2012-06-28 | Ntn Corp | Vibration bowl feeder |
WO2013069416A1 (en) * | 2011-11-07 | 2013-05-16 | Ntn株式会社 | Vibrating article-conveying apparatus |
-
2012
- 2012-10-10 JP JP2012225121A patent/JP6153308B2/en active Active
-
2013
- 2013-10-01 TW TW102135588A patent/TWI585018B/en active
- 2013-10-03 CN CN201380053245.4A patent/CN104736460B/en not_active Expired - Fee Related
- 2013-10-03 WO PCT/JP2013/076913 patent/WO2014057857A1/en active Application Filing
- 2013-10-03 KR KR1020157008784A patent/KR20150065707A/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
WO2014057857A1 (en) | 2014-04-17 |
JP2014076881A (en) | 2014-05-01 |
TWI585018B (en) | 2017-06-01 |
TW201425181A (en) | 2014-07-01 |
CN104736460A (en) | 2015-06-24 |
KR20150065707A (en) | 2015-06-15 |
CN104736460B (en) | 2016-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6153308B2 (en) | Vibrating parts conveyor | |
JP5677783B2 (en) | Vibrating parts conveyor | |
JP5996895B2 (en) | Vibrating parts conveyor | |
WO2014163105A1 (en) | Vibrating component conveying device | |
WO2013069416A1 (en) | Vibrating article-conveying apparatus | |
JP6041730B2 (en) | Vibrating parts conveyor | |
TWI535644B (en) | Vibrating parts feeder | |
KR101895074B1 (en) | Vibrating parts feeder | |
JP6081695B2 (en) | Vibrating parts conveyor | |
KR102018933B1 (en) | Vibration-type component transport device | |
JP5677784B2 (en) | Vibrating parts conveyor | |
JP5718606B2 (en) | Vibrating parts conveyor | |
JP2013047132A (en) | Vibration feeder, vibration feeder driving device, and method of manufacturing the vibration feeder driving device | |
JP2012121658A (en) | Vibration bowl feeder | |
JP5973254B2 (en) | Vibrating parts conveyor | |
JP2012121649A (en) | Vibrating bowl feeder | |
JP6163343B2 (en) | Vibrating parts conveyor | |
JP2012121660A (en) | Vibration type parts conveying device | |
JP5758616B2 (en) | Vibrating bowl feeder | |
JP2013095596A (en) | Vibrating article-conveying apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150916 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20150916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20161122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170119 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170509 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170530 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6153308 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |