[go: up one dir, main page]

JP5790332B2 - Heat exchanger for thermoacoustic engine - Google Patents

Heat exchanger for thermoacoustic engine Download PDF

Info

Publication number
JP5790332B2
JP5790332B2 JP2011188966A JP2011188966A JP5790332B2 JP 5790332 B2 JP5790332 B2 JP 5790332B2 JP 2011188966 A JP2011188966 A JP 2011188966A JP 2011188966 A JP2011188966 A JP 2011188966A JP 5790332 B2 JP5790332 B2 JP 5790332B2
Authority
JP
Japan
Prior art keywords
acoustic cylinder
acoustic
heat exchanger
heat
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011188966A
Other languages
Japanese (ja)
Other versions
JP2013050086A (en
Inventor
山本 康
康 山本
阿部 誠
阿部  誠
博文 黒澤
博文 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2011188966A priority Critical patent/JP5790332B2/en
Priority to PCT/JP2012/071319 priority patent/WO2013031639A1/en
Publication of JP2013050086A publication Critical patent/JP2013050086A/en
Application granted granted Critical
Publication of JP5790332B2 publication Critical patent/JP5790332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
    • F28D17/02Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles using rigid bodies, e.g. of porous material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • F02G2243/30Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders
    • F02G2243/50Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes
    • F02G2243/54Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes having their pistons and displacers each in separate cylinders having resonance tubes thermo-acoustic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2255/00Heater tubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Exhaust Silencers (AREA)

Description

本発明は、伝熱量が大きくできる熱音響機関用熱交換器に関する。   The present invention relates to a heat exchanger for a thermoacoustic engine that can increase heat transfer.

外燃機関であるスターリングサイクルを行う熱音響機関では、作動流体が封入された音響筒の長手方向に、外部の高温の熱源との熱交換を行う加熱側熱交換器と、熱サイクルを行った後の廃熱を外部に排出するための冷却側熱交換器とが設けられる。加熱側熱交換器と冷却側熱交換器との間には、温度勾配を保持するための再生器が配置される。   In a thermoacoustic engine that performs a Stirling cycle that is an external combustion engine, a heat-side heat exchanger that performs heat exchange with an external high-temperature heat source and a heat cycle are performed in the longitudinal direction of the acoustic cylinder in which the working fluid is sealed. A cooling side heat exchanger is provided for discharging the waste heat later to the outside. A regenerator for maintaining a temperature gradient is disposed between the heating side heat exchanger and the cooling side heat exchanger.

従来、熱交換器は、銅などの熱伝導率が高い材料を使用して、外部からの熱を熱伝導で音響筒内に取り込むように構成される。熱伝導による伝熱量は、次式で示される。
伝熱量=C1×温度差×伝熱面積/伝熱距離
C1は、材料により決まる定数
Conventionally, a heat exchanger is configured to take heat from outside into an acoustic cylinder by heat conduction using a material having high thermal conductivity such as copper. The amount of heat transfer by heat conduction is expressed by the following equation.
Heat transfer amount = C1 x temperature difference x heat transfer area / heat transfer distance
C1 is a constant determined by the material

熱源を電熱ヒータで構成した熱音響機関の一部を図4に示す。この熱音響機関では、加熱側熱交換器41は、音響筒42の外周に巻き付けられた電熱ヒータ43と、音響筒42の内部に組み込まれた内部フィン44とを有する。冷却側熱交換器45は、音響筒42の外周に沿って冷却水を通過させる冷却筒46と、音響筒42の内部に組み込まれた内部フィン47とを有する。再生器48は、加熱側熱交換器41の内部フィン44と冷却側熱交換器45の内部フィン47との間の音響筒42の内部に複数の金属メッシュ材料を積層してなる蓄熱材49を充填したものである。   FIG. 4 shows a part of a thermoacoustic engine in which the heat source is composed of an electric heater. In this thermoacoustic engine, the heating-side heat exchanger 41 has an electric heater 43 wound around the outer periphery of the acoustic cylinder 42 and internal fins 44 incorporated in the acoustic cylinder 42. The cooling side heat exchanger 45 includes a cooling cylinder 46 that allows cooling water to pass along the outer periphery of the acoustic cylinder 42, and internal fins 47 that are incorporated in the acoustic cylinder 42. The regenerator 48 includes a heat storage material 49 formed by laminating a plurality of metal mesh materials inside the acoustic cylinder 42 between the internal fins 44 of the heating side heat exchanger 41 and the internal fins 47 of the cooling side heat exchanger 45. Filled.

図4の加熱側熱交換器41では、電熱ヒータ43の温度が自在に調節できるので、温度差を大きくすることが容易である。また、この加熱側熱交換器41は、音響筒42の外周に直接、熱源である電熱ヒータ43が巻き付けられているので、伝熱距離が短い。このように、温度差が大きく、しかも伝熱距離が短いので、大きな伝熱量が期待できる。   In the heating-side heat exchanger 41 of FIG. 4, the temperature of the electric heater 43 can be freely adjusted, so that it is easy to increase the temperature difference. In addition, the heating side heat exchanger 41 has a short heat transfer distance because the electric heater 43 as a heat source is directly wound around the outer periphery of the acoustic cylinder 42. Thus, since the temperature difference is large and the heat transfer distance is short, a large amount of heat transfer can be expected.

特開2011−122567号公報JP 2011-122567 A

ところで、熱音響機関は、電熱ヒータのようにエネルギを消費して熱を発生する熱源を使用するのではなく、他のシステムで生じた廃熱を利用することができれば、省エネルギ効果が大きい。   By the way, the thermoacoustic engine does not use a heat source that generates heat by consuming energy like an electric heater, but if the waste heat generated in another system can be used, the energy saving effect is great.

排気を熱源とする熱音響機関の一部を図5に示す。この熱音響機関では、加熱側熱交換器51は、音響筒42の外周に取り付けられた外部フィン52と、音響筒42の内部に組み込まれた内部フィン44とを有する。冷却側熱交換器45と再生器48は、図4のものと同じとする。   A part of a thermoacoustic engine using exhaust as a heat source is shown in FIG. In this thermoacoustic engine, the heating-side heat exchanger 51 has external fins 52 attached to the outer periphery of the acoustic cylinder 42 and internal fins 44 incorporated in the acoustic cylinder 42. The cooling side heat exchanger 45 and the regenerator 48 are the same as those in FIG.

図5の加熱側熱交換器51では、熱源として、内燃機関の排気、ボイラーの排気、焼却炉の排気などが利用できるが、排気の温度は電熱ヒータに比べると低温であるため、大きな温度差は得られない。   In the heating side heat exchanger 51 of FIG. 5, exhaust gas from an internal combustion engine, exhaust from a boiler, exhaust from an incinerator, etc. can be used as a heat source. However, since the temperature of the exhaust is lower than that of an electric heater, a large temperature difference Cannot be obtained.

一方、外部フィン52は、複数の突起53が音響筒42の外周から放射状に伸び、さらに各突起53の表面から複数の枝状突起54が突き出ていることで、排気に対する伝熱面積が大きい。しかし、排気に対する伝熱面積をより大きくするために突起53の長さを長くすると、突起53や枝状突起54の先端から音響筒42の外周までの伝熱距離が長くなる。また、排気に対する伝熱面積をより大きくするために突起53の数を増やすと、突起肉厚(音響筒42の周方向)が薄くなり、突起53の先端から音響筒42の外周に向かう熱流路の伝熱面積が小さくなる。このように、外部フィン52を備えた加熱側熱交換器51には、排気熱をより多く取り入れようと外部フィン52を増大させると、伝熱距離が長くなったり、伝熱面積が小さくなったりするというジレンマがある。   On the other hand, the outer fin 52 has a plurality of protrusions 53 extending radially from the outer periphery of the acoustic cylinder 42, and a plurality of branch protrusions 54 protruding from the surface of each protrusion 53. However, if the length of the protrusion 53 is increased in order to increase the heat transfer area to the exhaust, the heat transfer distance from the tip of the protrusion 53 or the branch-shaped protrusion 54 to the outer periphery of the acoustic cylinder 42 is increased. Further, when the number of the protrusions 53 is increased in order to increase the heat transfer area to the exhaust, the protrusion thickness (circumferential direction of the acoustic cylinder 42) decreases, and the heat flow path from the tip of the protrusion 53 toward the outer periphery of the acoustic cylinder 42 The heat transfer area becomes smaller. As described above, if the external fin 52 is increased in the heating-side heat exchanger 51 provided with the external fin 52 so as to take in more exhaust heat, the heat transfer distance becomes longer or the heat transfer area becomes smaller. There is a dilemma to do.

外部フィン52の代わりにヒートパイプを設けることも考えられる。しかし、ヒートパイプは、内部で熱を搬送する作動流体として水を使用している。このため、使用温度範囲が常温から200℃までに限定される。排気熱の温度は、常温から200℃までのみならず、200℃以上のこともあり、しかも、温度は安定しない。したがって、排気熱を搬送するにはヒートパイプは不向きである。   It is also conceivable to provide a heat pipe instead of the external fin 52. However, the heat pipe uses water as a working fluid for carrying heat inside. For this reason, a use temperature range is limited to normal temperature to 200 degreeC. The temperature of the exhaust heat is not only from room temperature to 200 ° C. but may be 200 ° C. or more, and the temperature is not stable. Therefore, heat pipes are not suitable for conveying exhaust heat.

そこで、本発明の目的は、上記課題を解決し、伝熱量が大きくできる熱音響機関用熱交換器を提供することにある。   Then, the objective of this invention is providing the heat exchanger for thermoacoustic engines which can solve the said subject and can enlarge heat transfer.

上記目的を達成するために本発明の熱音響機関用熱交換器は、音響振動を軸方向に生じる音響筒に取り付けられ、前記音響筒の内側から外側へ抜けて軸方向の異なる位置で再び内側へ戻る通気管を有し、前記通気管は、前記音響筒の内側で前記音響筒の軸方向に向いた入口開口と、前記音響筒の内側で前記音響筒の径方向に向いた出口開口とを有するものである。   In order to achieve the above object, the heat exchanger for a thermoacoustic engine of the present invention is attached to an acoustic cylinder that generates acoustic vibrations in the axial direction, passes through the acoustic cylinder from the inside to the outside, and then returns to the inside at a different position in the axial direction. A vent pipe that returns to the inner side of the acoustic cylinder; and an outlet opening that faces the axial direction of the acoustic cylinder inside the acoustic cylinder; and an outlet opening that faces the radial direction of the acoustic cylinder inside the acoustic cylinder; It is what has.

前記通気管を複数有し、前記複数の通気管は、前記音響筒の軸方向の同じ位置で前記音響筒の周方向に間隔を隔てて配置されてもよい。   A plurality of the vent pipes may be provided, and the plurality of vent pipes may be arranged at intervals in the circumferential direction of the acoustic cylinder at the same position in the axial direction of the acoustic cylinder.

前記音響筒の内側で前記出口開口に臨む位置に、蓄熱材を有してもよい。   You may have a thermal storage material in the position which faces the said exit opening inside the said acoustic cylinder.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)伝熱量が大きくできる。   (1) The amount of heat transfer can be increased.

本発明の熱音響機関用熱交換器の構成図である。It is a block diagram of the heat exchanger for thermoacoustic engines of this invention. 本発明の原理を説明する図であり、(a)は音響振動の半周期を表し、(b)は音響振動の残りの半周期を表す。It is a figure explaining the principle of this invention, (a) represents the half period of acoustic vibration, (b) represents the remaining half period of acoustic vibration. (a)〜(d)は、本発明の他の実施形態を示す通気管の構成図である。(A)-(d) is a block diagram of the vent pipe which shows other embodiment of this invention. 従来の熱音響機関の部分構成図である。It is a partial block diagram of the conventional thermoacoustic engine. 従来の熱音響機関の部分構成図である。It is a partial block diagram of the conventional thermoacoustic engine.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に示されるように、本発明に係る熱音響機関用熱交換器(以下、熱交換器)1は、音響振動を軸方向に生じる音響筒2に取り付けられ、音響筒2の内側から外側へ抜けて軸方向の異なる位置で再び内側へ戻る通気管3を有する。   As shown in FIG. 1, a heat exchanger (hereinafter referred to as a heat exchanger) 1 for a thermoacoustic engine according to the present invention is attached to an acoustic cylinder 2 that generates acoustic vibrations in the axial direction, and from the inside to the outside of the acoustic cylinder 2. There is a vent pipe 3 that passes through and returns to the inside again at a different position in the axial direction.

通気管3は、音響筒2の内側で音響筒2の軸方向に向いた入口開口4と、音響筒2の内側で音響筒2の径方向に向いた出口開口5とを有する。通気管3は、音響筒2よりも十分に径が小さい細管からなる。通気管3は、入口開口4から音響筒2の内周に至るエルボ部6と、音響筒2を内側から外側へ貫通して音響筒2の径方向外方に伸びる往路部7と、音響筒2と平行に伸びるU字部8と、音響筒2の径方向内方に伸びて音響筒2を外側から内側へ貫通して出口開口5に至る復路部9とを有する。   The ventilation pipe 3 has an inlet opening 4 facing the axial direction of the acoustic cylinder 2 inside the acoustic cylinder 2 and an outlet opening 5 facing the radial direction of the acoustic cylinder 2 inside the acoustic cylinder 2. The ventilation tube 3 is a thin tube having a diameter sufficiently smaller than that of the acoustic cylinder 2. The vent pipe 3 includes an elbow 6 extending from the inlet opening 4 to the inner periphery of the acoustic cylinder 2, an outward path 7 extending through the acoustic cylinder 2 from the inside to the outside and extending radially outward of the acoustic cylinder 2, and the acoustic cylinder 2 and a U-shaped part 8 extending in parallel with the acoustic cylinder 2 and a return path part 9 extending inward in the radial direction of the acoustic cylinder 2 and penetrating the acoustic cylinder 2 from the outside to the inside to reach the outlet opening 5.

エルボ部6は、音響筒2の軸方向に向いた入口開口4から音響筒2の内周までの90度の角度を曲線的に屈曲する。往路部7の長さは、例えば、実験により得られた適切な値とされる。U字部8は、U字状あるいはコ字状に屈曲して音響筒2の軸と平行な方向に、所定の長さ伸びる。U字部8の長さは、例えば、実験により得られた適切な値とされる。復路部9は、音響筒2の内周より内側には突き出ておらず、出口開口5は音響筒2の内周と同一面の位置に形成される。   The elbow portion 6 bends an angle of 90 degrees from the inlet opening 4 facing the axial direction of the acoustic cylinder 2 to the inner periphery of the acoustic cylinder 2 in a curved manner. The length of the forward path part 7 is set to an appropriate value obtained by experiment, for example. The U-shaped portion 8 is bent into a U-shape or a U-shape and extends a predetermined length in a direction parallel to the axis of the acoustic cylinder 2. The length of the U-shaped portion 8 is set to an appropriate value obtained through experiments, for example. The return path portion 9 does not protrude inward from the inner periphery of the acoustic cylinder 2, and the outlet opening 5 is formed on the same plane as the inner periphery of the acoustic cylinder 2.

通気管3は、音響筒2の軸方向の同じ位置で音響筒2の周方向に間隔を隔てて複数個配置される。ここでは、12個の通気管3が音響筒2の周方向に等間隔で配置されている。   A plurality of vent pipes 3 are arranged at intervals in the circumferential direction of the acoustic cylinder 2 at the same position in the axial direction of the acoustic cylinder 2. Here, twelve vent pipes 3 are arranged at equal intervals in the circumferential direction of the acoustic cylinder 2.

熱交換器1は、音響筒2の内側で出口開口5に臨む位置(加熱部に相当する)に、複数の金属メッシュ材料を積層してなる蓄熱材10が充填される。   The heat exchanger 1 is filled with a heat storage material 10 formed by laminating a plurality of metal mesh materials at a position facing the outlet opening 5 inside the acoustic cylinder 2 (corresponding to a heating unit).

本実施形態では、熱交換器1は、加熱側熱交換器を構成するものであり、音響筒2の外側の通気管3は排気の雰囲気中に配置される。排気の流路については、ここでは特に限定しない。冷却側熱交換器45と再生器48は、図4、図5のものと同じとする。   In this embodiment, the heat exchanger 1 constitutes a heating side heat exchanger, and the vent pipe 3 outside the acoustic cylinder 2 is arranged in an exhaust atmosphere. The exhaust passage is not particularly limited here. The cooling side heat exchanger 45 and the regenerator 48 are the same as those shown in FIGS.

図2を用いて本発明の熱交換器1の原理を説明する。   The principle of the heat exchanger 1 of this invention is demonstrated using FIG.

音響筒2では音響振動が軸方向に生じる。音響振動とは、作動流体が繰り返し反転移動することである。図2(a)のように作動流体が音響筒2の軸方向一方向に移動する周期と、図2(b)のように作動流体が音響筒2の軸方向反対方向に移動する周期とが、交互に繰り返される。   In the acoustic cylinder 2, acoustic vibration is generated in the axial direction. Acoustic vibration is that the working fluid repeatedly reverses. The period in which the working fluid moves in one axial direction of the acoustic cylinder 2 as shown in FIG. 2A and the period in which the working fluid moves in the opposite axial direction of the acoustic cylinder 2 as shown in FIG. Are repeated alternately.

図2(a)の状態では、入口開口4の周辺では、入口開口4に対向して作動流体が移動しているため、動圧がそのまま入口開口4に作用し、入口開口4における圧力PAは、
PA=静圧+動圧
となる。出口開口5の周辺では、出口開口5の開口面が作動流体の移動方向に沿っているため、動圧が作用せず、出口開口5における圧力PBは、
PB=静圧
となる。
In the state of FIG. 2A, since the working fluid is moving in the vicinity of the inlet opening 4 so as to face the inlet opening 4, the dynamic pressure acts on the inlet opening 4 as it is, and the pressure PA in the inlet opening 4 is ,
PA = static pressure + dynamic pressure. In the vicinity of the outlet opening 5, since the opening surface of the outlet opening 5 is along the moving direction of the working fluid, dynamic pressure does not act, and the pressure PB at the outlet opening 5 is
PB = static pressure.

図2(b)の状態では、入口開口4の周辺では、入口開口4の裏側から作動流体が移動しているため、入口開口4における圧力PAは、
PA=静圧−動圧×C2
C2は、1より小さい正の実数
となる。動圧成分が小さくなるのは、移動している作動流体の一部が入口開口4に巻き込まれるからである。出口開口5の周辺では、出口開口5の開口面が作動流体の移動方向に沿っているため、動圧が作用せず、出口開口5における圧力PBは、
PB=静圧
となる。
In the state of FIG. 2B, since the working fluid is moving from the back side of the inlet opening 4 around the inlet opening 4, the pressure PA at the inlet opening 4 is
PA = static pressure-dynamic pressure x C2
C2 is a positive real number smaller than 1. The reason why the dynamic pressure component becomes small is that a part of the moving working fluid is caught in the inlet opening 4. In the vicinity of the outlet opening 5, since the opening surface of the outlet opening 5 is along the moving direction of the working fluid, dynamic pressure does not act, and the pressure PB at the outlet opening 5 is
PB = static pressure.

入口開口4における圧力PAを音響振動の周期より十分に長い時間平均すると、平均圧力MPAは、
MPA=静圧+動圧×(1−C2)/2
となる。C2が1より小さい正の実数であるから、(1−C2)/2は正の実数となり、入口開口4における平均圧力MPAは、静圧よりも大きくなる。一方、出口開口5における平均圧力MPBは、静圧に等しいので、入口開口4における平均圧力MPAが出口開口5における平均圧力MPBよりも大きくなる。これにより、通気管3においては、入口開口4から出口開口5に向かって作動流体が移動することになる。
When the pressure PA at the inlet opening 4 is averaged for a time sufficiently longer than the period of the acoustic vibration, the average pressure MPA is
MPA = static pressure + dynamic pressure × (1-C2) / 2
It becomes. Since C2 is a positive real number smaller than 1, (1-C2) / 2 is a positive real number, and the average pressure MPA at the inlet opening 4 is larger than the static pressure. On the other hand, since the average pressure MPB at the outlet opening 5 is equal to the static pressure, the average pressure MPA at the inlet opening 4 is larger than the average pressure MPB at the outlet opening 5. As a result, the working fluid moves from the inlet opening 4 toward the outlet opening 5 in the vent pipe 3.

図1に戻って熱音響機関の動作を説明する。前述のようにして通気管3を移動する作動流体は、通気管3の管壁を介して外部の排気から熱を受け取り、高温となる。外部の排気から作動流体への伝熱量を考察すると、伝熱面積は通気管3の表面積に相当し、伝熱距離は通気管3の管壁肉厚に相当する。よって、外部の排気から通気管3内の作動流体への伝熱量は十分に大きい。このとき通気管3において作動流体が得た熱量は、作動流体の移動によって音響筒2内に運ばれる。熱音響機関の音響振動においては、作動流体の変位振幅が大きく、また、周波数が高いので、通気管3内での作動流体の移動速度は大きい。このように、本発明の熱交換器1は、図5の加熱側熱交換器51に比べると、外部の排気から通気管3内の作動流体への伝熱量が大きく、通気管3内での作動流体の移動速度が大きいため、外部から音響筒2内への伝熱量が向上する。   Returning to FIG. 1, the operation of the thermoacoustic engine will be described. The working fluid moving through the vent pipe 3 as described above receives heat from the external exhaust via the pipe wall of the vent pipe 3 and becomes high temperature. Considering the amount of heat transfer from the external exhaust to the working fluid, the heat transfer area corresponds to the surface area of the vent pipe 3, and the heat transfer distance corresponds to the wall thickness of the vent pipe 3. Therefore, the amount of heat transferred from the external exhaust to the working fluid in the vent pipe 3 is sufficiently large. At this time, the amount of heat obtained by the working fluid in the vent pipe 3 is carried into the acoustic cylinder 2 by the movement of the working fluid. In the acoustic vibration of the thermoacoustic engine, the displacement amplitude of the working fluid is large and the frequency is high, so that the moving speed of the working fluid in the vent pipe 3 is large. Thus, the heat exchanger 1 of the present invention has a larger amount of heat transfer from the external exhaust to the working fluid in the vent pipe 3 than the heating side heat exchanger 51 of FIG. Since the moving speed of the working fluid is high, the amount of heat transferred from the outside into the acoustic cylinder 2 is improved.

通気管3において高温となった作動流体が出口開口5から音響筒2内に戻ると、出口開口5の付近が高温となり、出口開口5の付近が加熱器として熱音響機関の動作に寄与する。このとき、出口開口5に臨ませて蓄熱材10が設けられていると、蓄熱材10が作動流体から熱を受け取って高温を保持するので、熱音響機関の動作が安定する。   When the working fluid having a high temperature in the vent pipe 3 returns from the outlet opening 5 into the acoustic cylinder 2, the vicinity of the outlet opening 5 becomes high temperature, and the vicinity of the outlet opening 5 serves as a heater and contributes to the operation of the thermoacoustic engine. At this time, if the heat storage material 10 is provided so as to face the outlet opening 5, the heat storage material 10 receives heat from the working fluid and maintains a high temperature, so that the operation of the thermoacoustic engine is stabilized.

以上説明したように、本発明の熱交換器1によれば、音響筒2の内側から外側へ抜けて軸方向の異なる位置で再び内側へ戻る通気管3を有し、通気管3は、音響筒2の内側で音響筒2の軸方向に向いた入口開口4と、音響筒2の内側で音響筒2の径方向に向いた出口開口5とを有するので、音響筒2の作動流体が通気管3を移動することで外部の熱が熱音響機関の加熱器に届けられ、伝熱量が大きくできる。   As described above, according to the heat exchanger 1 of the present invention, the heat exchanger 1 has the vent pipe 3 that passes from the inner side to the outer side of the acoustic cylinder 2 and returns to the inner side at different positions in the axial direction. Since it has the inlet opening 4 facing the axial direction of the acoustic cylinder 2 inside the cylinder 2 and the outlet opening 5 facing the radial direction of the acoustic cylinder 2 inside the acoustic cylinder 2, the working fluid of the acoustic cylinder 2 passes therethrough. By moving the trachea 3, external heat is delivered to the heater of the thermoacoustic engine, and the amount of heat transfer can be increased.

図3(a)〜図3(d)に通気管3の他の実施形態を示す。   3 (a) to 3 (d) show another embodiment of the vent pipe 3. FIG.

図3(a)に示されるように、通気管31は、音響筒2から放射状に伸びる途中で屈曲し、各通気管31が平行になる。通気管31は、熱交換器1の設置スペースが図の左右に狭いときに有効である。   As shown in FIG. 3A, the vent pipe 31 is bent while extending radially from the acoustic cylinder 2, and the vent pipes 31 become parallel. The vent pipe 31 is effective when the installation space for the heat exchanger 1 is narrow on the left and right in the drawing.

図3(b)に示されるように、通気管32は、音響筒2から放射状に伸びる途中で音響筒2の周方向に繰り返し屈曲してジグザグ状を呈する。通気管32は、直径の小さい設置スペースで伝熱面積を大きくすることができる。   As shown in FIG. 3 (b), the vent pipe 32 is repeatedly bent in the circumferential direction of the acoustic cylinder 2 while extending radially from the acoustic cylinder 2 to have a zigzag shape. The ventilation pipe 32 can increase the heat transfer area in an installation space having a small diameter.

図3(c)に示されるように、通気管33は、音響筒2から放射状に伸びる途中で音響筒2の軸方向に繰り返し屈曲してジグザグ状を呈する。通気管33は、音響筒2の軸方向に伸びた設置スペースに対して有効である。   As shown in FIG. 3 (c), the vent pipe 33 is repeatedly bent in the axial direction of the acoustic cylinder 2 while extending radially from the acoustic cylinder 2 to form a zigzag shape. The ventilation pipe 33 is effective for an installation space extending in the axial direction of the acoustic cylinder 2.

図3(d)に示されるように、通気管34は、音響筒2の軸方向に伸びる途中で音響筒2の径方向に繰り返し屈曲してジグザグ状を呈する。   As shown in FIG. 3 (d), the vent pipe 34 is repeatedly bent in the radial direction of the acoustic cylinder 2 while extending in the axial direction of the acoustic cylinder 2, and exhibits a zigzag shape.

通気管3の形状は、排気の流路の形状に合わせて選択するのが好ましい。   The shape of the vent pipe 3 is preferably selected according to the shape of the exhaust passage.

ここまでの実施形態では、通気管3にはフィンを形成しなかったが、通気管3の外周面や内周面にフィンを形成したり、溝を形成することで表面積を増加させてもよい。   In the embodiments so far, no fins are formed on the vent pipe 3, but the surface area may be increased by forming fins on the outer peripheral surface or inner peripheral surface of the vent pipe 3 or by forming grooves. .

通気管3の入口開口4と出口開口5の距離が長いと、出口開口5の近傍(熱音響機関の加熱器)から入口開口4に作動流体が移動するときに出口開口5から入口開口4までの音響筒2が作動流体の熱を奪って音響筒2の外部(排気流路外)に放出し、通気管3に流れ込む作動流体の温度が低下する。通気管3における排気からの熱量が作動流体の温度低下分を補うのに消費されるので、熱音響機関にとって損失となる。したがって、入口開口4と出口開口5の距離はできるだけ短いのがよい。ただし、出口開口5から音響筒2に流入した高温の作動流体が蓄熱材10に十分に熱を伝導させてから入口開口4に吸い込まれるよう、入口開口4と出口開口5の距離を所定長さ以上に確保するのが好ましい。   If the distance between the inlet opening 4 and the outlet opening 5 of the vent pipe 3 is long, the working fluid moves from the vicinity of the outlet opening 5 (heater of the thermoacoustic engine) to the inlet opening 4 from the outlet opening 5 to the inlet opening 4. The acoustic cylinder 2 takes the heat of the working fluid and releases it to the outside of the acoustic cylinder 2 (outside the exhaust passage), and the temperature of the working fluid flowing into the vent pipe 3 is lowered. Since the amount of heat from the exhaust in the vent pipe 3 is consumed to compensate for the temperature drop of the working fluid, it is a loss for the thermoacoustic engine. Therefore, the distance between the inlet opening 4 and the outlet opening 5 should be as short as possible. However, the distance between the inlet opening 4 and the outlet opening 5 is set to a predetermined length so that the high-temperature working fluid flowing into the acoustic cylinder 2 from the outlet opening 5 sufficiently conducts heat to the heat storage material 10 and is sucked into the inlet opening 4. It is preferable to ensure the above.

通気管3の径について考察すると、
通気管径=音響筒径×π/通気管本数−通気管同士の隙間
となる。通気管3は、入口開口4の部分が最も密に集まるので、通気管3同士が互いに干渉しないように隙間を設定するとよい。
Considering the diameter of the vent pipe 3,
Vent pipe diameter = acoustic cylinder diameter × π / the number of vent pipes−the gap between the vent pipes. Since the portion of the inlet opening 4 gathers most densely in the vent pipe 3, it is preferable to set a gap so that the vent pipes 3 do not interfere with each other.

通気管3の設計条件としては、外部から通気管3の管壁を介して入る熱量と通気管3の中を流れる作動流体が獲得する熱量とが等しいことから、
熱抵抗係数×通気管表面積/管壁厚さ×(排気温度−作動流体温度)
=通気管断面積×通気管内流速×作動流体の単位体積当たりの熱容量
×(出口開口温度−入口開口温度)
という関係を満たすことが好ましい。
As the design condition of the vent pipe 3, the amount of heat that enters from the outside through the pipe wall of the vent pipe 3 is equal to the amount of heat that the working fluid flowing in the vent pipe 3 acquires.
Thermal resistance coefficient x Vent pipe surface area / pipe wall thickness x (exhaust temperature-working fluid temperature)
= Cross section of vent pipe x Flow velocity in vent pipe x Heat capacity per unit volume of working fluid x (Outlet opening temperature-Inlet opening temperature)
It is preferable to satisfy the relationship.

図1の実施形態では、通気管3の本数を12本としたが、本発明はこれに限定されず、通気管3の本数は1本〜11本でもよく、13本以上でもよい。通気管3の径を一定とした場合、通気管3の本数が多ければ、熱音響機関の加熱部に流れ込む作動流体の量が多くなり、加熱部への伝熱量が多くなる。また、通気管3での作動流体の移動速度を一定とした場合、通気管3の本数が多ければ、加熱部に流れ込む作動流体の量が多くなり、加熱部への伝熱量が多くなる。   In the embodiment of FIG. 1, the number of the vent pipes 3 is 12. However, the present invention is not limited to this, and the number of the vent pipes 3 may be 1 to 11, or 13 or more. When the diameter of the ventilation pipe 3 is constant, if the number of the ventilation pipes 3 is large, the amount of working fluid flowing into the heating unit of the thermoacoustic engine increases, and the amount of heat transfer to the heating unit increases. Further, when the moving speed of the working fluid in the vent pipe 3 is constant, if the number of vent pipes 3 is large, the amount of working fluid flowing into the heating section increases, and the amount of heat transfer to the heating section increases.

図1の実施形態では、音響筒2の内側で出口開口5に臨む位置に、蓄熱材10を有するものとしたが、蓄熱材10の代わりに、従来と同様の内部フィンを有してもよい。   In the embodiment of FIG. 1, the heat storage material 10 is provided at a position facing the outlet opening 5 inside the acoustic cylinder 2, but instead of the heat storage material 10, an internal fin similar to the conventional one may be provided. .

図1の実施形態では、熱交換器1を加熱側熱交換器に用いたが、熱交換器1を冷却側熱交換器45にも用いることができる。この場合、熱交換器1は冷却筒46(図4参照)の内部に設け、冷却水と作動流体との熱交換を行う。   In the embodiment of FIG. 1, the heat exchanger 1 is used as a heating side heat exchanger, but the heat exchanger 1 can also be used as a cooling side heat exchanger 45. In this case, the heat exchanger 1 is provided inside the cooling cylinder 46 (see FIG. 4), and performs heat exchange between the cooling water and the working fluid.

1 熱交換器
2 音響筒
3 通気管
4 入口開口
5 出口開口
10 蓄熱材
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Acoustic cylinder 3 Vent pipe 4 Inlet opening 5 Outlet opening 10 Heat storage material

Claims (3)

音響振動を軸方向に生じる音響筒に取り付けられ、前記音響筒の内側から外側へ抜けて軸方向の異なる位置で再び内側へ戻る通気管を有し、
前記通気管は、
前記音響筒の内側で前記音響筒の軸方向に向いた入口開口と、
前記音響筒の内側で前記音響筒の径方向に向いた出口開口とを有することを特徴とする熱音響機関用熱交換器。
It is attached to an acoustic cylinder that generates acoustic vibration in the axial direction, and has a vent pipe that passes from the inside of the acoustic cylinder to the outside and returns to the inside again at a different position in the axial direction.
The vent pipe is
An inlet opening facing the axial direction of the acoustic cylinder inside the acoustic cylinder;
A heat exchanger for a thermoacoustic engine having an outlet opening facing the radial direction of the acoustic cylinder inside the acoustic cylinder.
前記通気管を複数有し、
前記複数の通気管は、前記音響筒の軸方向の同じ位置で前記音響筒の周方向に間隔を隔てて配置されることを特徴とする請求項1記載の熱音響機関用熱交換器。
A plurality of the vent pipes;
2. The heat exchanger for a thermoacoustic engine according to claim 1, wherein the plurality of vent pipes are arranged at intervals in the circumferential direction of the acoustic cylinder at the same position in the axial direction of the acoustic cylinder.
前記音響筒の内側で前記出口開口に臨む位置に、蓄熱材を有することを特徴とする請求項1又は2記載の熱音響機関用熱交換器。   The heat exchanger for a thermoacoustic engine according to claim 1 or 2, further comprising a heat storage material at a position facing the outlet opening inside the acoustic cylinder.
JP2011188966A 2011-08-31 2011-08-31 Heat exchanger for thermoacoustic engine Active JP5790332B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011188966A JP5790332B2 (en) 2011-08-31 2011-08-31 Heat exchanger for thermoacoustic engine
PCT/JP2012/071319 WO2013031639A1 (en) 2011-08-31 2012-08-23 Heat exchanger for thermoacoustic engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011188966A JP5790332B2 (en) 2011-08-31 2011-08-31 Heat exchanger for thermoacoustic engine

Publications (2)

Publication Number Publication Date
JP2013050086A JP2013050086A (en) 2013-03-14
JP5790332B2 true JP5790332B2 (en) 2015-10-07

Family

ID=47756129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011188966A Active JP5790332B2 (en) 2011-08-31 2011-08-31 Heat exchanger for thermoacoustic engine

Country Status (2)

Country Link
JP (1) JP5790332B2 (en)
WO (1) WO2013031639A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019200015A (en) * 2018-05-18 2019-11-21 株式会社Soken Thermoacoustic device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1007316C1 (en) * 1997-10-20 1999-04-21 Aster Thermo Akoestische Syste Thermo-acoustic system.
CN100402844C (en) * 2004-02-26 2008-07-16 浙江大学 Double feedback loop hybrid traveling wave thermoacoustic engine with bypass structure
JP2007155167A (en) * 2005-12-01 2007-06-21 Toyota Motor Corp Thermoacoustic cooling device
JP2007211734A (en) * 2006-02-13 2007-08-23 Honda Motor Co Ltd Exhaust muffling device
CN101275541B (en) * 2007-03-27 2011-08-31 中国科学院理化技术研究所 Thermoacoustic traveling wave engine and application thereof

Also Published As

Publication number Publication date
WO2013031639A1 (en) 2013-03-07
JP2013050086A (en) 2013-03-14

Similar Documents

Publication Publication Date Title
JP5772399B2 (en) Heat exchanger for thermoacoustic engine
JP5423531B2 (en) Thermoacoustic engine
Hatami et al. CFD simulation and optimization of ICEs exhaust heat recovery using different coolants and fin dimensions in heat exchanger
Gheith et al. Experimental investigations of a gamma Stirling engine
UA97357C2 (en) Dual-flow turbomachine
CN104595056B (en) Cold end heat exchanger of free piston type Stirling engine
JP2011106782A (en) Heat exchanger structure for water heater
CA2954533A1 (en) Heat exchanger
JP5790332B2 (en) Heat exchanger for thermoacoustic engine
JP2015121361A (en) Stack of thermoacoustic device, and thermoacoustic device
CN105659048A (en) Heat exchanger
JP2013096691A (en) Heat exchanger for thermoacoustic engine
Chaturvedi et al. Heat transfer enhancement using delta and circular winglets on a double pipe heat exchanger
JP5768688B2 (en) Thermoacoustic refrigeration equipment
CN110088554A (en) Heat exchanger and ship
JP2013545938A5 (en)
CN108387117A (en) Double convection current pipe heat exchangers inside and outside one kind
JP2015102051A (en) EGR cooler
JP2009092016A (en) Engine exhaust gas heat recovery apparatus and engine driven type heat pump or co-generation using same
JP5434613B2 (en) Thermoacoustic engine
JP2019078419A5 (en)
JP7179170B2 (en) Self-excited oscillating heat pipe cooling device and railway vehicle equipped with the cooling device
JP2010127170A (en) Egr cooler
JP2013117324A (en) Thermoacoustic refrigeration device
WO2015072190A1 (en) Heat transfer pipe support structure and waste heat recovery boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150720

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5790332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150