JP7179170B2 - Self-excited oscillating heat pipe cooling device and railway vehicle equipped with the cooling device - Google Patents
Self-excited oscillating heat pipe cooling device and railway vehicle equipped with the cooling device Download PDFInfo
- Publication number
- JP7179170B2 JP7179170B2 JP2021518312A JP2021518312A JP7179170B2 JP 7179170 B2 JP7179170 B2 JP 7179170B2 JP 2021518312 A JP2021518312 A JP 2021518312A JP 2021518312 A JP2021518312 A JP 2021518312A JP 7179170 B2 JP7179170 B2 JP 7179170B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- heat pipe
- self
- cooling device
- heat receiving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/047—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
- F28F13/10—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by imparting a pulsating motion to the flow, e.g. by sonic vibration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/427—Cooling by change of state, e.g. use of heat pipes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Transportation (AREA)
- Sustainable Energy (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Geometry (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Description
本発明は、自励振動ヒートパイプを利用する冷却装置に関し、鉄道車両に搭載する冷却装置として好適である。 TECHNICAL FIELD The present invention relates to a cooling device using a self-oscillating heat pipe, and is suitable as a cooling device to be mounted on a railway vehicle.
冷却装置に用いる自励振動ヒートパイプについて、非特許文献1には、加熱部と冷却部との間に1本の細い流路を多数回往復させて、この流路を真空に排気して蒸発液体を流路体積の半分程度封入することで、表面張力効果により液スラグと蒸気プラグが形成され、加熱量の増加に伴い液スラグの振動が自励的に発生し、加熱部から冷却部へ熱を輸送することが説明されている。
Regarding the self-excited oscillating heat pipe used in the cooling device, Non-Patent
また、非特許文献2では、内部流動モデルを用いた計算により、初期の気液分布の始動特性への影響を評価している。自励振動ヒートパイプが始動するためには、初期状態において各ターンのボイド率に違いがあること、または、液体スラグが加熱部に存在し沸騰による駆動力を得ること、が必要条件であると述べている。
Also, in
一方、特許文献1には、複数のパワー半導体素子を受熱部材の一方側の面に配置し、受熱部材の他方側の反対面に自励振動ヒートパイプから成る放熱部を設置した構造を持つ自励振動ヒートパイプ冷却器が示されている。
On the other hand, in
非特許文献2に示されている知見は、逆に、例えば各ターンに液体スラグや蒸気プラグが均等に分布している場合、加熱部が加熱されても、液体スラグの両端に働く蒸気プラグの圧力は同じとなり、液体スラグの移動が起こらず、自励振動が発生しないことを表している。
The knowledge shown in Non-Patent
また、特許文献1には、液体スラグや蒸気プラグの初期の分布が均一な場合の自励振動を発生させる構成については開示されていない。
Further,
本発明は、ヒートパイプ内の液体スラグや蒸気プラグの初期分布が均一な場合であっても、自励振動を発生させて始動性に優れた自励振動ヒートパイプ冷却装置を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a self-oscillating heat pipe cooling device that generates self-oscillating vibrations and has excellent startability even when the initial distribution of liquid slag and steam plugs in the heat pipe is uniform. and
本発明に係る自励振動ヒートパイプ冷却装置は、作動流体を封入し密閉される管を厚み方向に矩形波状に連通して波型形状に形成することで構成される受熱部と放熱部とが交互に配置される構造を有するヒートパイプと、受熱部に接合する受熱部材と、受熱部が接合する面と反対側の受熱部材の面に配置される発熱体とを備え、受熱部材における発熱体の配置をヒートパイプの長手方向の中央部に対して非対称にすることで、ヒートパイプの長手方向に対する受熱部の温度分布を当該長手方向の中央部に対して非対称にして自励振動を発生させることを特徴とする。
The self-excited oscillating heat pipe cooling device according to the present invention has a heat receiving part and a heat dissipating part which are formed by forming a wave-shaped pipe in which a working fluid is enclosed and sealed in a rectangular wave shape in the thickness direction. A heat pipe having a structure arranged alternately, a heat receiving member joined to a heat receiving part, and a heat generating element arranged on a surface of the heat receiving member opposite to a surface joined to the heat receiving part, wherein the heat generating element in the heat receiving member By making the arrangement asymmetric with respect to the central part in the longitudinal direction of the heat pipe, the temperature distribution of the heat receiving part in the longitudinal direction of the heat pipe is made asymmetric with respect to the central part in the longitudinal direction to generate self-excited vibration. It is characterized by
本発明によれば、ヒートパイプ内の液体スラグや蒸気プラグの初期分布が均一な場合であっても、自励振動を発生させることができ、始動性の優れた自励振動ヒートパイプ冷却装置を提供することができる。 According to the present invention, even when the initial distribution of liquid slag and steam plugs in the heat pipe is uniform, the self-excited vibration heat pipe cooling device can generate self-excited vibration and has excellent startability. can provide.
以下、本発明を実施するための形態として、実施例1乃至6について、適宜図面を参照しながら説明する。なお、各図において共通する部分には同一の符号を付し、重複する説明を省略する。 Hereinafter, as modes for carrying out the present invention, Examples 1 to 6 will be described with appropriate reference to the drawings. In addition, the same code|symbol is attached|subjected to the part which is common in each figure, and the overlapping description is abbreviate|omitted.
図1は、本発明の実施例1に係る自励振動ヒートパイプ冷却装置100の構造を示す側面図である。
自励振動ヒートパイプ冷却装置100は、自励振動をするヒートパイプ12、受熱部材10および発熱体11から構成される。発熱体11は、このヒートパイプ12の長手方向の中央部に対して非対称に配置されている。また、このヒートパイプ12および受熱部材10の材質としては、熱伝導性の良いアルミニウム合金や銅などの金属を用いる。
A self-oscillating heat
自励振動をするヒートパイプ12は、その長手方向に亘って等間隔に複数回U字状に折り曲げられた形状となっている。ヒートパイプ12の複数のU字状の折り曲げ部分の一方端が、受熱部材10の一面とロウ付け等で接合され、ヒートパイプ12に等間隔に複数の受熱部9を形成している。また、ヒートパイプ12の受熱部9以外の等間隔の複数の部分は、空気101または102(紙面に対して両方向の風を示す)との熱交換を行う放熱部20を形成している。また、折り曲げられたヒートパイプ12どうしの間には、フィン13がロウ付け等により固定され、ヒートパイプ12とともに放熱部を形成している。
The
発熱体11は、ヒートパイプ12の受熱部9が接合する受熱部材10の面とは反対側の面に配置される。発熱体11の配置位置は、ヒートパイプ12の長手方向の中央部に対して非対称の位置として、一方の端部3側寄りである。その位置で発熱体11は、グリース等の部材(図示せず)を介してねじ等(図示せず)により固定されている。ここにおいて、発熱体11は、例えば、IGBTやMOS-FETなどのパワー半導体素子を備えたパワーモジュールである。
The
図2および図3は、本発明が後述する実施例において採用する自励振動ヒートパイプの流路構造の一例を示す図である。また、図4は、図2または図3に示す自励振動ヒートパイプの断面構造として、例えば図2のA-A断面を示す図である。 2 and 3 are diagrams showing an example of the flow path structure of the self-excited oscillating heat pipe employed in the embodiments described later of the present invention. 4 is a view showing, for example, the AA cross section of FIG. 2 as the cross sectional structure of the self-oscillating heat pipe shown in FIG. 2 or FIG.
図2および図3に示す自励振動ヒートパイプ12は、多穴扁平管で構成している。構造としては、例えば、図2に示すように、平行並列に整列し、各列で相互に連通のない複数の流路により構成される場合と、図3に示すように、蛇行流路により構成される場合がある。また、本発明が採用する自励振動ヒートパイプを構成する管は、上記の多穴扁平管に限定されるものではなく、例えば図5に示すように、単一の円管による構成であってもよい。
The self-oscillating
隣り合う流路1の間には、仕切り部2が設けられ、流路径および仕切り部の幅(流路間ピッチ)は、それぞれmmオーダーであって、流路長は、流路径に比べて十分に長い。
A
また、自励振動ヒートパイプ12の厚みは、図4に示すように、熱伝導性や加工容易性からmmオーダー程度に設定される。
密閉された流路1内には、流路体積の半分の量の作動流体(図示せず)が封入されている。
更に、自励振動ヒートパイプを波型に形成するに当たっては、多穴扁平管に対して曲げ工程を用いることなく、同じ長さを持つストレート形状の多穴扁平管を複数本厚み方向に並列に設置することによって構成してもよい。すなわち、複数本厚み方向に並列に設置した多穴扁平管の両端部それぞれを、多穴扁平管側にスリットを備えた端部封止部材のような部材を使用して固定し、このスリットにより多穴扁平管の両端それぞれにおいて隣接する多穴扁平管の端部同士を交互に連通させることにより、作動液の移動を可能にする。このようにして、流路が矩形波状に形成される(多穴扁平管の長手方向に沿って交互に折り返して延在する)密閉流路を持つ自励振動ヒートパイプを形成することができる。As shown in FIG. 4, the thickness of the self-oscillating
A working fluid (not shown) of half the volume of the channel is enclosed in the closed
Furthermore, in forming the self-excited vibration heat pipe into a corrugated shape, a plurality of straight multi-hole flat tubes having the same length are arranged in parallel in the thickness direction without using a bending process for the multi-hole flat tube. You may comprise by installing. That is, each end of a plurality of multi-hole flat tubes installed in parallel in the thickness direction is fixed using a member such as an end sealing member having a slit on the side of the multi-hole flat tube. By alternately communicating the ends of adjacent multi-hole flat tubes at each end of the multi-hole flat tube, movement of the hydraulic fluid is enabled. In this way, it is possible to form a self-excited oscillating heat pipe having a closed flow path in which the flow path is formed in a rectangular wave shape (alternately folded back and extended along the longitudinal direction of the multi-hole flat tube).
次に、本発明に係る自励振動ヒートパイプが自励振動を開始するときの始動のメカニズムについて説明する。
図5乃至図8は、本発明に係る自励振動ヒートパイプの始動性に関係する計算結果を示す図である。ここで、計算に用いた計算モデルは、非特許文献3による。Next, the starting mechanism when the self-oscillating heat pipe according to the present invention starts self-oscillating will be described.
5 to 8 are diagrams showing calculation results related to startability of the self-oscillating heat pipe according to the present invention. Here, the calculation model used for the calculation is according to Non-Patent
図5は、計算に用いた自励振動ヒートパイプの概略図および初期の気液分布を示す図である。ここで、計算に用いた自励振動ヒートパイプは、内径1.0mm、外径1.6mmの銅管で、1ターン長さ(ヒートパイプの隣り合うU字状の折り曲げ部間のヒートパイプ長手方向の距離)が240mm、ターン数が10である。 FIG. 5 is a schematic diagram of the self-excited oscillating heat pipe used in the calculation and a diagram showing the initial gas-liquid distribution. Here, the self-oscillating heat pipe used for the calculation is a copper pipe with an inner diameter of 1.0 mm and an outer diameter of 1.6 mm, and has a length of one turn (the length of the heat pipe between adjacent U-shaped bent portions of the heat pipe). direction distance) is 240 mm, and the number of turns is 10.
1ターン当りについて、受熱部は8mm、放熱部は204mm、その他は断熱部である。また、ヒートパイプ両端には50mm延長した部分を設け、蒸気チャンバ部としている。計算については、片側断熱の無しと有りの両方のケースで行った。片側断熱としては、ヒートパイプの右側端部の冷却部を13mm断熱している(図5で、ハッチングを付した部分)。 Each turn has a heat-receiving portion of 8 mm, a heat-radiating portion of 204 mm, and the rest of the heat-insulating portion. Moreover, a portion extended by 50 mm is provided at both ends of the heat pipe to form a steam chamber portion. Calculations were performed both without and with one-sided insulation. As the one-side heat insulation, the cooling portion on the right end of the heat pipe is heat-insulated by 13 mm (hatched portion in FIG. 5).
ヒートパイプ内に封入する作動流体としては、R1336mzz(Z)を用い、封入率を0.5とした。ここで、R1336mzz(Z)は、規格に基づき、冷媒を示す冷媒番号に相当し、新冷媒の一つである。 As the working fluid enclosed in the heat pipe, R1336mzz (Z) was used, and the enclosure rate was set to 0.5. Here, R1336mzz(Z) corresponds to a refrigerant number indicating a refrigerant based on standards, and is one of the new refrigerants.
上記の計算では、1ターン当り、1個の液体スラグが存在すると仮定し、液体スラグの長さを1ターン長さの半分の120mmとした。初期の液体スラグの分布としては、均等分布を仮定し、各ターンの放熱部側に、1個の液体スラグを対称に分布させた。 The above calculation assumes that there is one liquid slug per turn, and the length of the liquid slug is 120 mm, which is half the length of one turn. A uniform distribution was assumed as the distribution of the initial liquid slag, and one liquid slug was distributed symmetrically on the heat radiation part side of each turn.
受熱部の熱流束としては、1ターン当りのヒータ加熱量3Wに相当する値を与えた。放熱部の冷却温度は20°C、熱伝達率は風速4m/secの管外熱伝達率に相当する値を与えた。また、初期の蒸気プラグには、その周囲全体に厚さ5μmの液膜が存在すると仮定した。ヒートパイプの初期温度は、冷却温度と同じとし、時間0secで加熱を開始した。 As the heat flux of the heat-receiving portion, a value corresponding to 3W of heater heating amount per turn was given. The cooling temperature of the heat radiating part was 20° C., and the heat transfer coefficient was a value corresponding to the heat transfer coefficient outside the tube at a wind speed of 4 m/sec. It was also assumed that the initial steam plug had a 5 μm thick liquid film all around it. The initial temperature of the heat pipe was the same as the cooling temperature, and heating was started at 0 sec.
図6は、(a)に示す片側断熱無しと、(b)に示す片側断熱有りにおける、気液分布の時間変化を示す図である。図の縦軸は、ヒートパイプの原点(蒸気チャンバ部を除いた左側端部)からの距離、図の横軸は、加熱開始後の時間である。図に示す、黒い部分が液体スラグ、白い部分が蒸気プラグ、を表す。加熱開始後、(a)に示す片側断熱無しでは、振動は発生せず、(b)に示す片側断熱有りでは、時間16sec付近で振動が発生している。 FIG. 6 is a graph showing temporal changes in gas-liquid distribution without one-side heat insulation shown in (a) and with one-side heat insulation shown in (b). The vertical axis of the figure is the distance from the origin of the heat pipe (the left end excluding the steam chamber section), and the horizontal axis of the figure is the time after the start of heating. The black part in the figure represents the liquid slag and the white part represents the steam plug. After the start of heating, no vibration occurs in the case of one-side heat insulation shown in (a), and vibration occurs at around 16 seconds in the case of one-side heat insulation shown in (b).
図7は、(a)に示す片側断熱無しと、(b)に示す片側断熱有りにおける、自励振動開始時(16sec付近)での受熱部の温度分布を計算した結果を示す図である。(a)に示す片側断熱無しでは、受熱部の温度分布は均等であるが、(b)に示す片側断熱有りでは、右側端部の受熱部の温度が他の部分の受熱部の温度より高くなっている。 FIG. 7 is a diagram showing the results of calculating the temperature distribution of the heat receiving part at the start of self-excited vibration (around 16 sec) without one-side heat insulation shown in (a) and with one-side heat insulation shown in (b). The temperature distribution of the heat-receiving part is uniform without the one-sided insulation shown in (a), but with the one-sided insulation shown in (b), the temperature of the heat-receiving part at the right end is higher than the temperature of the other heat-receiving parts. It's becoming
図8は、ヒートパイプの中央部の左側から5番目と6番目の液体スラグ変位として、20secまでの時間変化の計算結果を示す図である。 FIG. 8 is a diagram showing the calculation results of the time change up to 20 sec for the fifth and sixth liquid slug displacements from the left side of the central portion of the heat pipe.
(a)に示す片側断熱無しでは、時間9.6sec付近で5番目と6番目の液体スラグの変位は、ほぼ対称に-1mmと+1mmを示し、その後、2mm程度の振幅の微小な振動が見られるが、大きな振動には至っていない。 Without thermal insulation on one side as shown in (a), the displacements of the 5th and 6th liquid slugs showed almost symmetrical −1 mm and +1 mm at around time 9.6 sec, after which minute vibrations with an amplitude of about 2 mm were observed. However, it does not cause large vibrations.
ここで、5番目の液体スラグの変位が-1mm、6番目の液体スラグの変位が+1mmを示していることについて説明する。ヒートパイプ両端には蒸気チャンバ部があり、左端の1番目と右端の11番目の蒸気プラグが他の蒸気プラグと同様に、液膜蒸発によって蒸気プラグの質量が増加しても、元々の体積が他の蒸気プラグより大きい。そのため、圧力上昇が小さく、液体スラグの両端に働く圧力差により、液体スラグがヒートパイプの中央から両端の方向に移動するためである。 Here, it will be explained that the displacement of the fifth liquid slug is −1 mm and the displacement of the sixth liquid slug is +1 mm. There are steam chambers at both ends of the heat pipe, and the 1st and 11th steam plugs on the left end and the 11th steam plug on the right end are similar to the other steam plugs. Larger than other steam plugs. Therefore, the pressure rise is small, and the liquid slug moves from the center of the heat pipe toward both ends due to the pressure difference acting on both ends of the liquid slug.
一方で、(b)に示す片側断熱有りでは、時間10.0sec付近で両方の液体スラグの変位は共に-3mmとなっている。これは、右端の局所的な断熱により、11番目の蒸気プラグの圧力が他より高くなり、液体スラグの両端に働く圧力差により、全ての液体スラグがヒートパイプの右端から左端の方向に移動するためである。 On the other hand, with one-side insulation shown in (b), the displacement of both liquid slugs is -3 mm at around 10.0 sec. This is because the local insulation of the right end causes the pressure of the 11th steam plug to be higher than the others, and the pressure difference acting on both ends of the liquid slug causes all the liquid slugs to move from the right end to the left end of the heat pipe. It's for.
時間10.0secの後、液体スラグは3mm程度の正負の変位を2回繰り返した後、時間12.7secから負の変位で振幅を少しずつ増加しながら振動する。その後、時間15.7sec以降、5mm以上の大きな振幅で振動する。 After a time of 10.0 sec, the liquid slug repeats positive and negative displacements of about 3 mm twice, and then vibrates with a negative displacement from a time of 12.7 sec while gradually increasing the amplitude. After that, after a time of 15.7 seconds, it vibrates with a large amplitude of 5 mm or more.
このように、液体スラグの変位に伴い、蒸気プラグも移動し、蒸気プラグでは、壁温との温度差により液膜において蒸発と凝縮とが行われる。これにより、蒸気プラグの質量が増減し、それに伴い蒸気プラグの圧力の上昇と下降とが起こる。液体スラグの時間15.7sec以降の振動は、液体スラグの両端に働く圧力差の変動が大きくなることにより始まる。 In this way, the steam plug moves along with the displacement of the liquid slug, and evaporation and condensation occur in the liquid film at the steam plug due to the temperature difference from the wall temperature. This causes the mass of the steam plug to increase or decrease, causing the steam plug pressure to rise and fall accordingly. Vibration of the liquid slug after time 15.7 sec begins due to an increase in the fluctuation of the pressure difference acting on both ends of the liquid slug.
以上により、片側断熱による自励振動の始動のメカニズムについてまとめる。
ヒートパイプの片側端部を断熱することにより、加熱後、液体スラグが同一方向に移動し、液体スラグの変位が一方向に揃っている状態となる。この液体スラグの移動により、蒸気プラグでは、管壁との温度差により、液膜において蒸発と凝縮が行われる。これによって、蒸気プラグの質量が増減し、それに伴い圧力の上昇と下降とが起こる。従って、液体スラグの両端に働く圧力差が変動し微小な振動が発生する。From the above, the mechanism of starting self-excited vibration by one-sided insulation is summarized.
By insulating one end of the heat pipe, the liquid slug moves in the same direction after heating, and the displacement of the liquid slug is aligned in one direction. Due to the movement of this liquid slag, evaporation and condensation occur in the liquid film in the steam plug due to the temperature difference with the pipe wall. This causes the mass of the steam plug to increase or decrease and the pressure to rise and fall accordingly. Therefore, the pressure difference acting on both ends of the liquid slug fluctuates, generating minute vibrations.
この時、片側断熱有りでは、液体スラグの変位が一方向に揃っているため、各液体スラグの運動を打ち消し合うことなく、大きな振動に発展する。一方、片側断熱無しでは、振動しやすいヒートパイプの中央部で、液体スラグの変位が小さく、向きも逆向きのため、発生した微小な振動は打ち消し合い、大きな振動に発展しない。 At this time, with one-sided insulation, the displacement of the liquid slugs is aligned in one direction, so that the motions of the liquid slugs do not cancel each other out and develop into large vibrations. On the other hand, without insulation on one side, the displacement of the liquid slug is small at the central part of the heat pipe, which tends to vibrate, and the direction is also reversed, so the generated minute vibrations cancel each other out and do not develop into large vibrations.
本発明は、上記の計算結果を応用したものである。すなわち、本発明に係る自励振動ヒートパイプ冷却装置は、図7の(b)に示すように、ヒートパイプの長手方向に対する受熱部の温度分布が、片側端部で他に比べて高くなる。すなわち、ヒートパイプの長手方向の中央部に対して非対称となる特性を有することで、優れた始動性を示すことになる。 The present invention applies the above calculation results. That is, in the self-oscillating heat pipe cooling device according to the present invention, as shown in FIG. 7B, the temperature distribution of the heat receiving portion in the longitudinal direction of the heat pipe is higher at one end than at the other. That is, by having asymmetrical characteristics with respect to the central portion in the longitudinal direction of the heat pipe, excellent startability is exhibited.
本実施例1は、ヒートパイプの長手方向に対する受熱部の温度分布がヒートパイプ12の長手方向の中央部に対して非対称となる特性を持たせるために、発熱体11をヒートパイプ12の長手方向の中央部に対して非対称に配置している。
In the first embodiment, the
図5乃至図8に示したとおり、計算では、ヒートパイプとして単一の円管の1つの流路を用いたが、図2に示す多穴扁平管の複数の流路でも同じ効果が得られる。 As shown in FIGS. 5 to 8, in the calculation, one channel of a single circular tube was used as the heat pipe, but the same effect can be obtained with a plurality of channels of the multi-hole flat tube shown in FIG. .
一方、図3に示す蛇行流路では、扁平管端部におけるターン部の流動抵抗が大きく、扁平管の端部で作動流体が動作しづらいため、液体スラグの振動は、扁平管端部のターン部を除いた部分で主に発生する。 On the other hand, in the meandering flow path shown in FIG. 3, the flow resistance at the turn portion at the end of the flat tube is large, and the working fluid is difficult to move at the end of the flat tube. Occurs mainly in parts other than the part.
したがって、本実施例1は、円管や複数流路と同様に、ヒートパイプの長手方向に対する受熱部の温度分布が、ヒートパイプの長手方向の中央部に対して非対称となる特性を持たせる。これにより、加熱開始後、液体スラグが一方向に移動し、振動しやすい管中央部で液体スラグの変位が一方向に揃い、各液体スラグの運動を打ち消し合うことなく、発生した小さな振動が大きな振動に発展して自励振動が発生する。 Therefore, in the first embodiment, the temperature distribution of the heat receiving portion in the longitudinal direction of the heat pipe is asymmetrical with respect to the central portion in the longitudinal direction of the heat pipe, as in the case of circular pipes and multiple flow paths. As a result, after the start of heating, the liquid slugs move in one direction, and the displacement of the liquid slugs aligns in one direction at the central part of the pipe, which is prone to vibration. It develops into vibration and generates self-excited vibration.
次に、本発明の実施例2~5の構成および効果等について示す。その際に、実施例2~5においては、実施例1と異なる部分を説明し、実施例1と重複する部分の説明を省略する。 Next, the configurations and effects of Examples 2 to 5 of the present invention will be described. At that time, in Examples 2 to 5, the portions different from Example 1 will be explained, and the explanation of the portions overlapping with Example 1 will be omitted.
図9は、本発明の実施例2に係る自励振動ヒートパイプ冷却装置100aの構造を示す側面図である。
実施例2に係る自励振動ヒートパイプ冷却装置100aは、複数個の発熱体11aをヒートパイプ12の長手方向の中央部に対して非対称に配置するものである。図9では、2個の発熱体11aを配置した場合を示している。FIG. 9 is a side view showing the structure of a self-oscillating heat
A self-excited oscillating heat
このように、実施例2においても、先の実施例1と同様に、ヒートパイプの長手方向に対する受熱部9の温度分布が、片側端部で高く、ヒートパイプ12の長手方向の中央部に対して非対称となる特性を持つため、自励振動が発生し始動性に優れる。
As described above, in the second embodiment, as in the first embodiment, the temperature distribution of the
図10は、本発明の実施例3に係る自励振動ヒートパイプ冷却装置100bの構造を示す側面図である。
実施例3に係る自励振動ヒートパイプ冷却装置100bは、ヒートパイプ12の長手方向の一方の端部3に最も近いフィン13aの枚数を他より少なくしたものである。これにより、片側端部での放熱が抑えられ片側端部の温度が高くなる。FIG. 10 is a side view showing the structure of a self-oscillating heat
In the self-oscillating heat
このように、実施例3においても、ヒートパイプの長手方向に対する受熱部9の温度分布が、ヒートパイプ12の長手方向の中央部に対して非対称となる特性を持つため、自励振動が発生し始動性に優れる。
As described above, in Example 3 as well, the temperature distribution of the
図11は、本発明の実施例4に係る自励振動ヒートパイプ冷却装置100cの構造を示す側面図である。
実施例4に係る自励振動ヒートパイプ冷却装置100cは、ヒートパイプ12の長手方向の一方の端部3に最も近いヒートパプ12の放熱部20の一部に断熱部材14を設けたものである。これにより、片側端部での放熱が抑えられ片側端部の温度が高くなる。FIG. 11 is a side view showing the structure of a self-oscillating heat
A self-oscillating heat
ここで、放熱部20の一部に断熱部材14を設けるための手法は、限定されるものではない。例えば、図11では、断熱部材14を放熱部20の一部に貼り付ける手法を用いたものである。
このように、実施例4においても、ヒートパイプの長手方向に対する受熱部9の温度分布が、ヒートパイプ12の長手方向の中央部に対して非対称となる特性を持つため、自励振動が発生し始動性に優れる。Here, the method for providing the
As described above, in the fourth embodiment as well, the temperature distribution of the
図12は、本発明の実施例5に係る自励振動ヒートパイプ冷却装置100dの構造を示す側面図である。
実施例5に係る自励振動ヒートパイプ冷却装置100dは、ヒートパイプ12の一方の端部3側の受熱部材10aの端部の長さを短くして、ヒートパイプ12の長手方向の両端部それぞれに対応する受熱部材10aの両端部それぞれの長さが異なるものである。これにより、片側端部での熱抵抗が増加し片側端部の温度が高くなる。FIG. 12 is a side view showing the structure of a self-oscillating heat
In the self-oscillating heat
このように、実施例5においても、ヒートパイプの長手方向に対する受熱部9の温度分布が、ヒートパイプ12の長手方向の中央部に対して非対称となる特性を持つため、自励振動が発生し始動性に優れる。
As described above, in Example 5 as well, the temperature distribution of the
図13は、本発明の実施例6に係る自励振動ヒートパイプ冷却装置100eの構造を示す側面図である。
実施例6に係る自励振動ヒートパイプ冷却装置100eは、ヒートパイプ12の長手方向の一方の端部3に位置する受熱部の面積を、他の受熱部より広くしたものである。これにより、片側端部での受熱量が増加し温度が高くなる。FIG. 13 is a side view showing the structure of a self-oscillating heat
In the self-excited oscillating heat
ここで、上記した受熱部の面積を広くするための手法は、限定されるものではない。例えば、図13では、ヒートパイプ12の長手方向の一方の端部3の受熱部9bに、受熱部材10に設けた突起部10bをロウ付け等で接合することにより、一方の端部3の受熱面積を増加させている。
Here, the method for increasing the area of the heat receiving portion described above is not limited. For example, in FIG. 13, the
このように、実施例5においても、ヒートパイプの長手方向に対する受熱部9の温度分布が、ヒートパイプ12の長手方向の中央部に対して非対称となる特性を持つため、自励振動が発生し始動性に優れる。
As described above, in Example 5 as well, the temperature distribution of the
さらに、実施例1~6として説明した自励振動ヒートパイプ冷却装置100、100a、100b、100c、100dおよび100eは、鉄道車両が搭載する駆動用のパワーモジュール(IGBTやMOS-FETなどのパワー半導体素子を備えたパワーモジュール)の冷却用として好適である。
Furthermore, the self-excited oscillating heat
例えば、このパワーモジュールを発熱体11として受熱部材10に実装した自励振動ヒートパイプ冷却装置100、100a~100eを、鉄道車両の床下に搭載する。これにより、多種類の機器を搭載する鉄道車両の床下にあっても、パワーモジュール用の冷却装置としてコンパクトに装備することが可能となる。
For example, the self-excited vibration heat
1 密閉流路、2 仕切り部、3 ヒートパイプの一方の端部、
9,9b 受熱部、10 受熱部材、10b 突起、
11,11a 発熱体、12 自励振動ヒートパイプ、
13,13a フィン、14 断熱部材、20 放熱部、
100,100a~100e 自励振動ヒートパイプ冷却装置1 closed flow path, 2 partition, 3 one end of heat pipe,
9, 9b heat receiving portion, 10 heat receiving member, 10b projection,
11, 11a heating element, 12 self-oscillating heat pipe,
13, 13a fins, 14 heat insulating member, 20 heat radiating part,
100, 100a-100e Self-oscillating heat pipe cooling device
Claims (11)
前記受熱部に接合する受熱部材と、
前記受熱部が接合する面と反対側の前記受熱部材の面に配置される発熱体と
を備え、
前記受熱部材における前記発熱体の配置を前記ヒートパイプの長手方向の中央部に対して非対称にすることで、前記ヒートパイプの長手方向に対する前記受熱部の温度分布を当該長手方向の中央部に対して非対称にして自励振動を発生させる
ことを特徴とする自励振動ヒートパイプ冷却装置。 a heat pipe having a structure in which a heat receiving portion and a heat radiating portion are alternately arranged, which is formed by forming a wavy shape by connecting a tube in which a working fluid is enclosed and sealed in a rectangular wave shape in the thickness direction;
a heat receiving member joined to the heat receiving part;
a heating element arranged on the surface of the heat receiving member opposite to the surface to which the heat receiving part is bonded,
By arranging the heat generating element in the heat receiving member asymmetrically with respect to the central portion in the longitudinal direction of the heat pipe, the temperature distribution of the heat receiving portion in the longitudinal direction of the heat pipe is changed with respect to the central portion in the longitudinal direction. to generate self-excited oscillation
A self-oscillating heat pipe cooling device characterized by:
複数の前記発熱体による前記配置が、前記非対称である
ことを特徴とする自励振動ヒートパイプ冷却装置。 The self-oscillating heat pipe cooling device of claim 1, comprising:
said arrangement of a plurality of said heating elements is said asymmetrical
A self-oscillating heat pipe cooling device characterized by:
前記受熱部に接合する受熱部材と、
前記受熱部が接合する面と反対側の前記受熱部材の面に配置される発熱体と
を備え、
全ての前記放熱部は、隣り合う前記放熱部の間に設置されるフィンを有し、
前記ヒートパイプの長手方向の一方の端部に最も近い位置に設置される前記フィンの枚数を他の位置に設置される前記フィンの枚数より少なくすることで、前記ヒートパイプの長手方向に対する前記受熱部の温度分布を当該長手方向の中央部に対して非対称にして自励振動を発生させる
ことを特徴とする自励振動ヒートパイプ冷却装置。 a heat pipe having a structure in which a heat receiving portion and a heat radiating portion are alternately arranged, which is formed by forming a wavy shape by connecting a tube in which a working fluid is enclosed and sealed in a rectangular wave shape in the thickness direction;
a heat receiving member joined to the heat receiving part;
a heating element arranged on the surface of the heat receiving member opposite to the surface to which the heat receiving part is bonded;
with
all the heat radiating parts have fins installed between the adjacent heat radiating parts,
By making the number of the fins installed at a position closest to one end in the longitudinal direction of the heat pipe smaller than the number of the fins installed at other positions, the heat reception in the longitudinal direction of the heat pipe A self-excited oscillating heat pipe cooling device, characterized in that self-excited oscillation is generated by making the temperature distribution of a portion asymmetric with respect to the central portion in the longitudinal direction .
前記受熱部に接合する受熱部材と、
前記受熱部が接合する面と反対側の前記受熱部材の面に配置される発熱体と
を備え、
前記ヒートパイプの長手方向の一方の端部に最も近い前記放熱部に断熱部材を設けることで、前記ヒートパイプの長手方向に対する前記受熱部の温度分布を当該長手方向の中央部に対して非対称にして自励振動を発生させる
ことを特徴とする自励振動ヒートパイプ冷却装置。 a heat pipe having a structure in which a heat receiving portion and a heat radiating portion are alternately arranged, which is formed by forming a wavy shape by connecting a tube in which a working fluid is enclosed and sealed in a rectangular wave shape in the thickness direction;
a heat receiving member joined to the heat receiving part;
a heating element arranged on the surface of the heat receiving member opposite to the surface to which the heat receiving part is bonded;
with
By providing a heat insulating member in the heat radiating portion closest to one end in the longitudinal direction of the heat pipe, the temperature distribution of the heat receiving portion in the longitudinal direction of the heat pipe is made asymmetric with respect to the central portion in the longitudinal direction. A self-excited oscillating heat pipe cooling device, characterized in that self-excited oscillation is generated by a heat pipe.
前記受熱部に接合する受熱部材と、
前記受熱部が接合する面と反対側の前記受熱部材の面に配置される発熱体と
を備え、
前記ヒートパイプの長手方向の両端部それぞれに対応する前記受熱部材の両端部それぞれの長さを異ならせることで、前記ヒートパイプの長手方向に対する前記受熱部の温度分布を当該長手方向の中央部に対して非対称にして自励振動を発生させる
ことを特徴とする自励振動ヒートパイプ冷却装置。 a heat pipe having a structure in which a heat receiving portion and a heat radiating portion are alternately arranged, which is formed by forming a wavy shape by connecting a tube in which a working fluid is enclosed and sealed in a rectangular wave shape in the thickness direction;
a heat receiving member joined to the heat receiving part;
a heating element arranged on the surface of the heat receiving member opposite to the surface to which the heat receiving part is bonded;
with
By varying the lengths of both ends of the heat receiving member corresponding to both ends of the heat pipe in the longitudinal direction, the temperature distribution of the heat receiving portion in the longitudinal direction of the heat pipe is centered in the longitudinal direction. A self-excited oscillating heat pipe cooling device characterized by generating self-excited oscillation in an asymmetrical manner .
前記受熱部に接合する受熱部材と、
前記受熱部が接合する面と反対側の前記受熱部材の面に配置される発熱体と
を備え、
前記ヒートパイプの長手方向の一方の端部に最も近い前記受熱部の面積を他の前記受熱部の面積より広くすることで、前記ヒートパイプの長手方向に対する前記受熱部の温度分布を当該長手方向の中央部に対して非対称にして自励振動を発生させる
ことを特徴とする自励振動ヒートパイプ冷却装置。 a heat pipe having a structure in which a heat receiving portion and a heat radiating portion are alternately arranged, which is formed by forming a wavy shape by connecting a tube in which a working fluid is enclosed and sealed in a rectangular wave shape in the thickness direction;
a heat receiving member joined to the heat receiving part;
a heating element arranged on the surface of the heat receiving member opposite to the surface to which the heat receiving part is bonded;
with
By making the area of the heat receiving portion closest to one end of the heat pipe in the longitudinal direction larger than the area of the other heat receiving portions, the temperature distribution of the heat receiving portion in the longitudinal direction of the heat pipe is changed. A self-excited oscillating heat pipe cooling device, wherein self -excited oscillation is generated asymmetrically with respect to the center of the heat pipe.
前記ヒートパイプの前記波型形状は、前記管を自らの長手方向に前記矩形波状に複数回曲げることで形成される
ことを特徴とする自励振動ヒートパイプ冷却装置。 The self-excited oscillating heat pipe cooling device according to any one of claims 1 to 6 ,
The wavy shape of the heat pipe is formed by bending the tube in its own longitudinal direction into the rectangular wavy shape a plurality of times.
A self-oscillating heat pipe cooling device characterized by:
前記ヒートパイプの前記波型形状は、前記管を複数本厚み方向に並列に設置し当該管の隣接する両端部それぞれを交互に前記矩形波状に連通することで形成される
ことを特徴とする自励振動ヒートパイプ冷却装置。 In the self-excited oscillating heat pipe cooling device according to any one of claims 1 to 6 ,
The wavy shape of the heat pipe is formed by arranging a plurality of the pipes in parallel in the thickness direction and alternately communicating adjacent ends of the pipes in the rectangular wave shape.
A self-oscillating heat pipe cooling device characterized by:
前記管は多穴扁平管である
ことを特徴とする自励振動ヒートパイプ冷却装置。 The self-excited oscillating heat pipe cooling device according to any one of claims 1 to 8 ,
Said tube is a multi-hole flat tube
A self-oscillating heat pipe cooling device characterized by:
前記発熱体は、パワー半導体素子を備えたパワーモジュールである
ことを特徴とする自励振動ヒートパイプ冷却装置。 The self-excited oscillating heat pipe cooling device according to any one of claims 1 to 9,
The heating element is a power module having a power semiconductor element
A self-oscillating heat pipe cooling device characterized by:
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019088067 | 2019-05-08 | ||
JP2019088067 | 2019-05-08 | ||
PCT/JP2020/011670 WO2020225981A1 (en) | 2019-05-08 | 2020-03-17 | Self-excited vibration heat pipe cooling device, and railway vehicle on which cooling device is mounted |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2020225981A1 JPWO2020225981A1 (en) | 2020-11-12 |
JP7179170B2 true JP7179170B2 (en) | 2022-11-28 |
Family
ID=73050596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021518312A Active JP7179170B2 (en) | 2019-05-08 | 2020-03-17 | Self-excited oscillating heat pipe cooling device and railway vehicle equipped with the cooling device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7179170B2 (en) |
CN (1) | CN113710982B (en) |
WO (1) | WO2020225981A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114760803A (en) * | 2021-01-08 | 2022-07-15 | 华为技术有限公司 | Radiator and communication equipment |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012220160A (en) | 2011-04-13 | 2012-11-12 | Toyota Central R&D Labs Inc | Channel structure of self-excited vibration heat pipe |
JP2013088051A (en) | 2011-10-19 | 2013-05-13 | Taiyo Denshi Kk | Self-excited vibration heat pipe |
JP2013160420A (en) | 2012-02-03 | 2013-08-19 | Toyota Central R&D Labs Inc | Self-excited vibration heat pipe |
JP2014055698A (en) | 2012-09-12 | 2014-03-27 | Railway Technical Research Institute | Self-pumping heat exchanger |
JP2014157007A (en) | 2013-01-15 | 2014-08-28 | Toyota Motor Corp | Self-excited vibration type heat pipe |
US20150060019A1 (en) | 2013-09-02 | 2015-03-05 | Industrial Technology Research Institute | Pulsating multi-pipe heat pipe |
JP2018088744A (en) | 2016-11-28 | 2018-06-07 | 株式会社日立製作所 | Electric power conversion apparatus of railway vehicle |
US20190051809A1 (en) | 2016-02-12 | 2019-02-14 | University Of Bath | Apparatus and method for generating electrical energy |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101424491A (en) * | 2008-12-15 | 2009-05-06 | 华北电力大学 | Pulsating heat pipe with stable one-way circulation flow |
JP2014185801A (en) * | 2013-03-22 | 2014-10-02 | Toyota Motor Corp | Self-excited oscillation heat pipe |
JP6097648B2 (en) * | 2013-07-10 | 2017-03-15 | 株式会社日立製作所 | Power conversion device and railway vehicle equipped with the same |
JPWO2016035436A1 (en) * | 2014-09-04 | 2017-05-25 | 富士通株式会社 | Heat transport device and electronic equipment |
RU2675977C1 (en) * | 2017-12-18 | 2018-12-25 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный технологический институт (технический университет)" | Method of transmitting heat and heat transferring device for its implementation |
-
2020
- 2020-03-17 JP JP2021518312A patent/JP7179170B2/en active Active
- 2020-03-17 CN CN202080029866.9A patent/CN113710982B/en active Active
- 2020-03-17 WO PCT/JP2020/011670 patent/WO2020225981A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012220160A (en) | 2011-04-13 | 2012-11-12 | Toyota Central R&D Labs Inc | Channel structure of self-excited vibration heat pipe |
JP2013088051A (en) | 2011-10-19 | 2013-05-13 | Taiyo Denshi Kk | Self-excited vibration heat pipe |
JP2013160420A (en) | 2012-02-03 | 2013-08-19 | Toyota Central R&D Labs Inc | Self-excited vibration heat pipe |
JP2014055698A (en) | 2012-09-12 | 2014-03-27 | Railway Technical Research Institute | Self-pumping heat exchanger |
JP2014157007A (en) | 2013-01-15 | 2014-08-28 | Toyota Motor Corp | Self-excited vibration type heat pipe |
US20150060019A1 (en) | 2013-09-02 | 2015-03-05 | Industrial Technology Research Institute | Pulsating multi-pipe heat pipe |
US20190051809A1 (en) | 2016-02-12 | 2019-02-14 | University Of Bath | Apparatus and method for generating electrical energy |
JP2018088744A (en) | 2016-11-28 | 2018-06-07 | 株式会社日立製作所 | Electric power conversion apparatus of railway vehicle |
Also Published As
Publication number | Publication date |
---|---|
CN113710982B (en) | 2023-05-30 |
JPWO2020225981A1 (en) | 2020-11-12 |
CN113710982A (en) | 2021-11-26 |
WO2020225981A1 (en) | 2020-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5131323B2 (en) | Heat pipe type cooling device and vehicle control device using the same | |
JP3451737B2 (en) | Boiling cooling device | |
JP2001223308A (en) | Heat sink | |
JP5423531B2 (en) | Thermoacoustic engine | |
JP6260368B2 (en) | Self-excited vibration heat pipe | |
JP7179170B2 (en) | Self-excited oscillating heat pipe cooling device and railway vehicle equipped with the cooling device | |
JP7133044B2 (en) | Self-oscillating heat pipe cooler | |
JP5849883B2 (en) | Cold storage heat exchanger | |
JP5882666B2 (en) | Self-excited vibration heat pipe | |
JP5673589B2 (en) | Heat engine | |
KR100971356B1 (en) | Automotive oil cooler and manufacturing method | |
JP5862250B2 (en) | Thermoacoustic refrigeration equipment | |
JP2016205745A (en) | Heat pipe type heat sink | |
JP4128935B2 (en) | Water-cooled heat sink | |
WO2013094038A1 (en) | Cooler and method of manufacturing same | |
JP6236597B2 (en) | Air conditioner | |
JP2011149563A (en) | Heat pipe and heat sink with heat pipe | |
JP2020034257A (en) | Self-excited vibration heat pipe cooling device and railway vehicle mounted with self-excited vibration heat pipe cooling device | |
JP5768687B2 (en) | Thermoacoustic refrigeration equipment | |
JP6156219B2 (en) | Self-excited vibration heat pipe | |
JP2006234267A (en) | Ebullient cooling device | |
JP2012013277A (en) | Heat sink | |
WO2015079915A1 (en) | Heat exchange module for thermoacoustic engine and thermoacoustic engine | |
TW202443093A (en) | Heat sink | |
JP6390566B2 (en) | Cooler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20211026 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220830 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221006 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20221108 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20221115 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7179170 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |