[go: up one dir, main page]

JP5772399B2 - Heat exchanger for thermoacoustic engine - Google Patents

Heat exchanger for thermoacoustic engine Download PDF

Info

Publication number
JP5772399B2
JP5772399B2 JP2011188967A JP2011188967A JP5772399B2 JP 5772399 B2 JP5772399 B2 JP 5772399B2 JP 2011188967 A JP2011188967 A JP 2011188967A JP 2011188967 A JP2011188967 A JP 2011188967A JP 5772399 B2 JP5772399 B2 JP 5772399B2
Authority
JP
Japan
Prior art keywords
acoustic cylinder
acoustic
heat exchanger
cylinder
working fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011188967A
Other languages
Japanese (ja)
Other versions
JP2013050087A (en
Inventor
山本 康
康 山本
阿部 誠
阿部  誠
博文 黒澤
博文 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2011188967A priority Critical patent/JP5772399B2/en
Publication of JP2013050087A publication Critical patent/JP2013050087A/en
Application granted granted Critical
Publication of JP5772399B2 publication Critical patent/JP5772399B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、伝熱量が大きくできると共に質量流が抑制できる熱音響機関用熱交換器に関する。   The present invention relates to a heat exchanger for a thermoacoustic engine that can increase heat transfer and suppress mass flow.

外燃機関であるスターリングサイクルを行う熱音響機関では、作動流体が封入された音響筒の長手方向に、外部の高温の熱源との熱交換を行う加熱側熱交換器と、熱サイクルを行った後の廃熱を外部に排出するための冷却側熱交換器とが設けられる。加熱側熱交換器と冷却側熱交換器との間には、温度勾配を保持するための再生器が配置される。   In a thermoacoustic engine that performs a Stirling cycle that is an external combustion engine, a heat-side heat exchanger that performs heat exchange with an external high-temperature heat source and a heat cycle are performed in the longitudinal direction of the acoustic cylinder in which the working fluid is sealed. A cooling side heat exchanger is provided for discharging the waste heat later to the outside. A regenerator for maintaining a temperature gradient is disposed between the heating side heat exchanger and the cooling side heat exchanger.

従来、熱交換器は、銅などの熱伝導率が高い材料を使用して、外部からの熱を熱伝導で音響筒内に取り込むように構成される。熱伝導による伝熱量は、次式で示される。
伝熱量=C1×温度差×伝熱面積/伝熱距離
C1は、材料により決まる定数
Conventionally, a heat exchanger is configured to take heat from outside into an acoustic cylinder by heat conduction using a material having high thermal conductivity such as copper. The amount of heat transfer by heat conduction is expressed by the following equation.
Heat transfer amount = C1 x temperature difference x heat transfer area / heat transfer distance
C1 is a constant determined by the material

熱源を電熱ヒータで構成した熱音響機関の一部を図4に示す。この熱音響機関では、加熱側熱交換器41は、音響筒42の外周に巻き付けられた電熱ヒータ43と、音響筒42の内部に組み込まれた内部フィン44とを有する。冷却側熱交換器45は、音響筒42の外周に沿って冷却水を通過させる冷却筒46と、音響筒42の内部に組み込まれた内部フィン47とを有する。再生器48は、加熱側熱交換器41の内部フィン44と冷却側熱交換器45の内部フィン47との間の音響筒42の内部に複数の金属メッシュ材料を積層してなる蓄熱材49を充填したものである。   FIG. 4 shows a part of a thermoacoustic engine in which the heat source is composed of an electric heater. In this thermoacoustic engine, the heating-side heat exchanger 41 has an electric heater 43 wound around the outer periphery of the acoustic cylinder 42 and internal fins 44 incorporated in the acoustic cylinder 42. The cooling side heat exchanger 45 includes a cooling cylinder 46 that allows cooling water to pass along the outer periphery of the acoustic cylinder 42, and internal fins 47 that are incorporated in the acoustic cylinder 42. The regenerator 48 includes a heat storage material 49 formed by laminating a plurality of metal mesh materials inside the acoustic cylinder 42 between the internal fins 44 of the heating side heat exchanger 41 and the internal fins 47 of the cooling side heat exchanger 45. Filled.

図4の加熱側熱交換器41では、電熱ヒータ43の温度が自在に調節できるので、温度差を大きくすることが容易である。また、この加熱側熱交換器41は、音響筒42の外周に直接、熱源である電熱ヒータ43が巻き付けられているので、伝熱距離が短い。このように、温度差が大きく、しかも伝熱距離が短いので、大きな伝熱量が期待できる。   In the heating-side heat exchanger 41 of FIG. 4, the temperature of the electric heater 43 can be freely adjusted, so that it is easy to increase the temperature difference. In addition, the heating side heat exchanger 41 has a short heat transfer distance because the electric heater 43 as a heat source is directly wound around the outer periphery of the acoustic cylinder 42. Thus, since the temperature difference is large and the heat transfer distance is short, a large amount of heat transfer can be expected.

特開2011−122567号公報JP 2011-122567 A

ところで、熱音響機関は、電熱ヒータのようにエネルギを消費して熱を発生する熱源を使用するのではなく、他のシステムで生じた廃熱を利用することができれば、省エネルギ効果が大きい。   By the way, the thermoacoustic engine does not use a heat source that generates heat by consuming energy like an electric heater, but if the waste heat generated in another system can be used, the energy saving effect is great.

排気を熱源とする熱音響機関の一部を図5に示す。この熱音響機関では、加熱側熱交換器51は、音響筒42の外周に取り付けられた外部フィン52と、音響筒42の内部に組み込まれた内部フィン44とを有する。冷却側熱交換器45と再生器48は、図4のものと同じとする。   A part of a thermoacoustic engine using exhaust as a heat source is shown in FIG. In this thermoacoustic engine, the heating-side heat exchanger 51 has external fins 52 attached to the outer periphery of the acoustic cylinder 42 and internal fins 44 incorporated in the acoustic cylinder 42. The cooling side heat exchanger 45 and the regenerator 48 are the same as those in FIG.

図5の加熱側熱交換器51では、熱源として、内燃機関の排気、ボイラーの排気、焼却炉の排気などが利用できるが、排気の温度は電熱ヒータに比べると低温であるため、大きな温度差は得られない。   In the heating side heat exchanger 51 of FIG. 5, exhaust gas from an internal combustion engine, exhaust from a boiler, exhaust from an incinerator, etc. can be used as a heat source. However, since the temperature of the exhaust is lower than that of an electric heater, a large temperature difference Cannot be obtained.

一方、外部フィン52は、複数の突起53が音響筒42の外周から放射状に伸び、さらに各突起53の表面から複数の枝状突起54が突き出ていることで、排気に対する伝熱面積が大きい。しかし、排気に対する伝熱面積をより大きくするために突起53の長さを長くすると、突起53や枝状突起54の先端から音響筒42の外周までの伝熱距離が長くなる。また、排気に対する伝熱面積をより大きくするために突起53の数を増やすと、突起肉厚(音響筒42の周方向)が薄くなり、突起53の先端から音響筒42の外周に向かう熱流路の伝熱面積が小さくなる。このように、外部フィン52を備えた加熱側熱交換器51には、排気熱をより多く取り入れようと外部フィン52を増大させると、伝熱距離が長くなったり、伝熱面積が小さくなったりするというジレンマがある。   On the other hand, the outer fin 52 has a plurality of protrusions 53 extending radially from the outer periphery of the acoustic cylinder 42, and a plurality of branch protrusions 54 protruding from the surface of each protrusion 53. However, if the length of the protrusion 53 is increased in order to increase the heat transfer area to the exhaust, the heat transfer distance from the tip of the protrusion 53 or the branch-shaped protrusion 54 to the outer periphery of the acoustic cylinder 42 is increased. Further, when the number of the protrusions 53 is increased in order to increase the heat transfer area to the exhaust, the protrusion thickness (circumferential direction of the acoustic cylinder 42) decreases, and the heat flow path from the tip of the protrusion 53 toward the outer periphery of the acoustic cylinder 42 The heat transfer area becomes smaller. As described above, if the external fin 52 is increased in the heating-side heat exchanger 51 provided with the external fin 52 so as to take in more exhaust heat, the heat transfer distance becomes longer or the heat transfer area becomes smaller. There is a dilemma to do.

外部フィン52の代わりにヒートパイプを設けることも考えられる。しかし、ヒートパイプは、内部で熱を搬送する作動流体として水を使用している。このため、使用温度範囲が常温から200℃までに限定される。排気熱の温度は、常温から200℃までのみならず、200℃以上のこともあり、しかも、温度は安定しない。したがって、排気熱を搬送するにはヒートパイプは不向きである。   It is also conceivable to provide a heat pipe instead of the external fin 52. However, the heat pipe uses water as a working fluid for carrying heat inside. For this reason, a use temperature range is limited to normal temperature to 200 degreeC. The temperature of the exhaust heat is not only from room temperature to 200 ° C. but may be 200 ° C. or more, and the temperature is not stable. Therefore, heat pipes are not suitable for conveying exhaust heat.

熱音響機関には、ここまで述べた伝熱量の課題とは別に、次に述べる質量流の課題がある。   The thermoacoustic engine has the following mass flow problem apart from the heat transfer problem described so far.

図6に示されるように、熱音響機関61は、ループ状に閉じた音響筒62に原動機63が設けられる。原動機63は、加熱器64と再生器65と冷却器66とからなる。加熱器64から冷却器66までの温度勾配に起因して音響筒62の軸方向に音響振動が発生する。   As shown in FIG. 6, in the thermoacoustic engine 61, a prime mover 63 is provided in an acoustic cylinder 62 that is closed in a loop shape. The prime mover 63 includes a heater 64, a regenerator 65, and a cooler 66. Acoustic vibration is generated in the axial direction of the acoustic cylinder 62 due to the temperature gradient from the heater 64 to the cooler 66.

このとき、加熱器64では作動流体が加熱によって膨張する。加熱器64の図示右側は空間であるため、抵抗はないが、加熱器64の図示左側は再生器65の蓄熱材が占めているため、抵抗となる。したがって、膨張した作動流体は、蓄熱材の方よりも空間の方へ移動しやすい。加熱器64で膨張した作動流体が空間の方へ移動することが繰り返され、ループ状に閉じた音響筒62全体として、図示のように時計回りに旋回する作動流体の流れが発生する。このような全体的な作動流体の流れを質量流(ストリーミング)という。   At this time, the working fluid expands by heating in the heater 64. Since the right side of the heater 64 is a space, there is no resistance, but the left side of the heater 64 is a resistance because the heat storage material of the regenerator 65 occupies the left side. Therefore, the expanded working fluid is more easily moved toward the space than the heat storage material. The working fluid expanded by the heater 64 is repeatedly moved toward the space, and a flow of the working fluid swirling clockwise as shown in the drawing is generated as the entire acoustic cylinder 62 closed in a loop shape. Such an overall working fluid flow is called mass flow (streaming).

質量流が生じると、加熱された作動流体が加熱器64から離れ、冷却器66で冷却された作動流体が再生器65を経て加熱器64に流れ込むと、原動機63における作動流体が均熱化され、温度勾配が緩くなり、音響振動の発生が妨げられる。質量流は、熱音響機関の出力向上を妨げる大きな要因となる。   When the mass flow occurs, the heated working fluid leaves the heater 64, and when the working fluid cooled by the cooler 66 flows into the heater 64 through the regenerator 65, the working fluid in the prime mover 63 is equalized. The temperature gradient becomes loose and the generation of acoustic vibration is hindered. Mass flow is a major factor that hinders the output improvement of thermoacoustic engines.

熱音響機関61には、質量流を抑制する部材として、原動機63から音響筒62の軸方向に適宜離れた位置にゴム膜67が設置される。ゴム膜67は、音響振動に随伴して軸方向の一方と他方に交互に膨らむ振動をすることにより、音響振動を音響筒62の軸方向に伝達することができると共に、質量流を遮断することができる。   The thermoacoustic engine 61 is provided with a rubber film 67 as a member for suppressing mass flow at a position appropriately separated from the prime mover 63 in the axial direction of the acoustic cylinder 62. The rubber film 67 is capable of transmitting the acoustic vibration in the axial direction of the acoustic cylinder 62 and interrupting the mass flow by vibrating to swell alternately in one and the other in the axial direction accompanying the acoustic vibration. Can do.

図7に示される熱音響機関71では、原動機72の他にジェットノズル(テーパノズル)73が設けられる。すなわち、ループ状に閉じた音響筒74に、加熱器75と再生器76と冷却器77とからなる原動機72が設けられ、原動機72から音響筒62の軸方向に適宜離れた位置にジェットノズル73が設置される。   In the thermoacoustic engine 71 shown in FIG. 7, a jet nozzle (taper nozzle) 73 is provided in addition to the prime mover 72. That is, a prime mover 72 including a heater 75, a regenerator 76, and a cooler 77 is provided in the acoustic cylinder 74 closed in a loop shape, and the jet nozzle 73 is appropriately separated from the prime mover 72 in the axial direction of the acoustic cylinder 62. Is installed.

ジェットノズル73は、音響筒74の軸方向のある位置(一方の位置)の内周から軸方向の別の位置(他方の位置)にかけて音響筒74の径方向内方に傾斜して突き出した整流板が音響筒74の周方向に連続して形成される。ジェットノズル73は、音響筒74の軸方向の一方の位置では大径開口を有し、他方の位置では小径開口を有し、大径開口と小径開口との間は中空となっているテーパ状の部材となる。   The jet nozzle 73 is inclined and protrudes inwardly in the radial direction of the acoustic cylinder 74 from the inner circumference of a certain position (one position) in the axial direction of the acoustic cylinder 74 to another position (the other position) in the axial direction. A plate is formed continuously in the circumferential direction of the acoustic cylinder 74. The jet nozzle 73 has a large-diameter opening at one position in the axial direction of the acoustic cylinder 74, a small-diameter opening at the other position, and a tapered shape in which a space between the large-diameter opening and the small-diameter opening is hollow. It becomes the member of.

ジェットノズル73の働きは、大径開口から小径開口へ向かう質量流を発生させることである。ジェットノズル73は、発生する質量流で作動流体の膨張による質量流を相殺するよう、小径開口を加熱器75に臨ませて設置される。   The action of the jet nozzle 73 is to generate a mass flow from the large diameter opening toward the small diameter opening. The jet nozzle 73 is installed with the small-diameter opening facing the heater 75 so as to cancel out the mass flow due to the expansion of the working fluid by the generated mass flow.

以上のように、熱音響機関61では、ゴム膜67により質量流を遮断し、熱音響機関71では、ジェットノズル73により質量流を相殺する。   As described above, in the thermoacoustic engine 61, the mass flow is blocked by the rubber film 67, and in the thermoacoustic engine 71, the mass flow is canceled by the jet nozzle 73.

しかし、ゴム膜67は、熱音響機関61の中で唯一の可動部材であり、熱音響機関61の耐久性を低下させるので、問題である。ジェットノズル73は、音響振動に損失を生じるので、質量流を相殺しても熱音響機関の出力が向上するとは限らないので、問題である。   However, the rubber film 67 is a problem because it is the only movable member in the thermoacoustic engine 61 and reduces the durability of the thermoacoustic engine 61. Since the jet nozzle 73 causes a loss in the acoustic vibration, the output of the thermoacoustic engine is not always improved even if the mass flow is canceled out, which is a problem.

そこで、本発明の目的は、上記課題を解決し、伝熱量が大きくできると共に質量流が抑制できる熱音響機関用熱交換器を提供することにある。   Then, the objective of this invention is providing the heat exchanger for thermoacoustic engines which can solve the said subject, can enlarge heat transfer, and can suppress mass flow.

上記目的を達成するために本発明の熱音響機関用熱交換器は、音響振動を軸方向に生じる音響筒の外側に取り付けられ、前記音響筒の軸方向の異なる位置に前記音響筒の内側に通じる入口開口と出口開口とが形成された通気管と、前記入口開口の軸方向片側の前記音響筒の内周から前記入口開口の軸方向反対側にかけて前記音響筒の径方向内方に傾斜して突き出した整流板とを有するものである。   In order to achieve the above object, a heat exchanger for a thermoacoustic engine according to the present invention is attached to the outside of an acoustic cylinder that generates acoustic vibration in the axial direction, and is located at a different position in the axial direction of the acoustic cylinder inside the acoustic cylinder. A vent pipe formed with a leading inlet opening and an outlet opening; and a slanting inward in the radial direction of the acoustic cylinder from an inner periphery of the acoustic cylinder on one axial side of the inlet opening to an axially opposite side of the inlet opening. And a rectifying plate protruding.

前記通気管を複数有し、前記複数の通気管は、前記音響筒の軸方向の同じ位置で前記音響筒の周方向に間隔を隔てて配置され、前記整流板は、前記音響筒の周方向に連続して形成されてもよい。   A plurality of the vent pipes are provided, and the plurality of vent pipes are arranged at intervals in the circumferential direction of the acoustic cylinder at the same position in the axial direction of the acoustic cylinder, and the rectifying plate is arranged in the circumferential direction of the acoustic cylinder May be formed continuously.

前記音響筒の内側で前記出口開口に臨む位置に、蓄熱材を有してもよい。   You may have a thermal storage material in the position which faces the said exit opening inside the said acoustic cylinder.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)伝熱量が大きくできる。   (1) The amount of heat transfer can be increased.

(2)質量流が抑制できる。   (2) Mass flow can be suppressed.

本発明の熱音響機関用熱交換器の構成図である。It is a block diagram of the heat exchanger for thermoacoustic engines of this invention. 本発明の原理を説明する図であり、(a)は音響振動の半周期を表し、(b)は音響振動の残りの半周期を表す。It is a figure explaining the principle of this invention, (a) represents the half period of acoustic vibration, (b) represents the remaining half period of acoustic vibration. (a)〜(d)は、本発明の他の実施形態を示す通気管の構成図である。(A)-(d) is a block diagram of the vent pipe which shows other embodiment of this invention. 従来の熱音響機関の部分構成図である。It is a partial block diagram of the conventional thermoacoustic engine. 従来の熱音響機関の部分構成図である。It is a partial block diagram of the conventional thermoacoustic engine. 従来の熱音響機関の構成図である。It is a block diagram of the conventional thermoacoustic engine. 従来の熱音響機関の構成図である。It is a block diagram of the conventional thermoacoustic engine.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に示されるように、本発明に係る熱音響機関用熱交換器(以下、熱交換器)1は、音響振動を軸方向に生じる音響筒2の外側に取り付けられ、音響筒2の軸方向の異なる位置に音響筒2の内側に通じる入口開口3と出口開口4とが形成された通気管5と、入口開口3の軸方向片側の音響筒2の内周から入口開口3の軸方向反対側にかけて音響筒2の径方向内方に傾斜して突き出した整流板6とを有する。   As shown in FIG. 1, a heat exchanger (hereinafter referred to as a heat exchanger) 1 for a thermoacoustic engine according to the present invention is attached to the outside of an acoustic cylinder 2 that generates acoustic vibration in the axial direction. A vent pipe 5 in which an inlet opening 3 and an outlet opening 4 leading to the inside of the acoustic cylinder 2 are formed at different positions, and an axial direction of the inlet opening 3 from the inner periphery of the acoustic cylinder 2 on one axial side of the inlet opening 3 It has the baffle plate 6 which inclines and protruded inward in the radial direction of the acoustic cylinder 2 toward the opposite side.

通気管5の入口開口3と出口開口4は、音響筒2の内周と同一面の位置に形成され、音響筒2の径方向に向いている。通気管5は、音響筒2よりも十分に径が小さい細管からなる。通気管5は、入口開口3から音響筒2を貫通して音響筒2の径方向外方に伸びる往路部7と、音響筒2と平行に伸びるU字部8と、音響筒2の径方向内方に伸びて音響筒2を貫通して出口開口4に至る復路部9とを有する。   The inlet opening 3 and the outlet opening 4 of the ventilation pipe 5 are formed on the same plane as the inner periphery of the acoustic cylinder 2 and are directed in the radial direction of the acoustic cylinder 2. The vent pipe 5 is formed of a thin tube having a diameter sufficiently smaller than that of the acoustic cylinder 2. The vent pipe 5 extends from the inlet opening 3 through the acoustic cylinder 2 and extends outward in the radial direction of the acoustic cylinder 2, a U-shaped part 8 extending in parallel with the acoustic cylinder 2, and the radial direction of the acoustic cylinder 2. A return path portion 9 extending inward and penetrating through the acoustic cylinder 2 to reach the outlet opening 4.

通気管5の往路部7及び復路部9の長さは、例えば、実験により得られた適切な値とされる。U字部8は、U字状あるいはコ字状に屈曲して音響筒2の軸と平行な方向に、所定の長さ伸びる。U字部8の長さは、例えば、実験により得られた適切な値とされる。   The lengths of the forward path portion 7 and the return path portion 9 of the ventilation pipe 5 are set to appropriate values obtained through experiments, for example. The U-shaped portion 8 is bent into a U-shape or a U-shape and extends a predetermined length in a direction parallel to the axis of the acoustic cylinder 2. The length of the U-shaped portion 8 is set to an appropriate value obtained through experiments, for example.

通気管5は、音響筒2の軸方向の同じ位置で音響筒2の周方向に間隔を隔てて複数本配置される。ここでは、12本の通気管5が音響筒2の周方向に等間隔で配置されている。   A plurality of vent pipes 5 are arranged at intervals in the circumferential direction of the acoustic cylinder 2 at the same position in the axial direction of the acoustic cylinder 2. Here, twelve vent pipes 5 are arranged at equal intervals in the circumferential direction of the acoustic cylinder 2.

整流板6は、入口開口3の軸方向片側では音響筒2の内周に接しており、入口開口3の軸方向反対側では音響筒2の内周から離れている。これにより、整流板6は、入口開口3の軸方向反対側に、音響筒2の軸方向に臨む軸向き開口10を形成する。   The rectifying plate 6 is in contact with the inner periphery of the acoustic cylinder 2 on one side of the inlet opening 3 in the axial direction, and is separated from the inner periphery of the acoustic cylinder 2 on the opposite side of the inlet opening 3 in the axial direction. Thus, the rectifying plate 6 forms an axial opening 10 facing the axial direction of the acoustic cylinder 2 on the opposite side of the inlet opening 3 in the axial direction.

整流板6は、音響筒2の周方向に連続して形成される。これにより、整流板6は、各入口開口3を内側から傾斜して覆うテーパ状リングとなる。同時に、このテーパ状リングは、音響筒2の内側で出口開口4に臨む位置に形成される加熱部11に対して小径開口を臨ませ、その反対方向に大径開口を臨ませたジェットノズルに相当する。   The rectifying plate 6 is formed continuously in the circumferential direction of the acoustic cylinder 2. Thereby, the baffle plate 6 becomes a taper-shaped ring which covers each inlet opening 3 inclining from the inner side. At the same time, this tapered ring is a jet nozzle having a small-diameter opening facing the heating unit 11 formed at a position facing the outlet opening 4 inside the acoustic cylinder 2 and a large-diameter opening facing the opposite direction. Equivalent to.

熱交換器1は、音響筒2の内側で出口開口4に臨む位置、すなわち加熱部11に、複数の金属メッシュ材料を積層してなる蓄熱材12が充填される。   The heat exchanger 1 is filled with a heat storage material 12 formed by laminating a plurality of metal mesh materials in a position facing the outlet opening 4 inside the acoustic cylinder 2, that is, the heating unit 11.

本実施形態では、熱交換器1は、加熱側熱交換器を構成するものであり、音響筒2の外側の通気管5は排気の雰囲気中に配置される。排気の流路については、ここでは特に限定しない。冷却側熱交換器45と再生器48は、図4、図5のものと同じとする。   In this embodiment, the heat exchanger 1 constitutes a heating side heat exchanger, and the vent pipe 5 outside the acoustic cylinder 2 is arranged in an exhaust atmosphere. The exhaust passage is not particularly limited here. The cooling side heat exchanger 45 and the regenerator 48 are the same as those shown in FIGS.

図2を用いて本発明の熱交換器1の原理を説明する。   The principle of the heat exchanger 1 of this invention is demonstrated using FIG.

音響筒2では音響振動が軸方向に生じる。音響振動とは、作動流体が繰り返し反転移動することである。図2(a)のように作動流体が音響筒2の軸方向一方向に移動する周期と、図2(b)のように作動流体が音響筒2の軸方向反対方向に移動する周期とが、交互に繰り返される。   In the acoustic cylinder 2, acoustic vibration is generated in the axial direction. Acoustic vibration is that the working fluid repeatedly reverses. The period in which the working fluid moves in one axial direction of the acoustic cylinder 2 as shown in FIG. 2A and the period in which the working fluid moves in the opposite axial direction of the acoustic cylinder 2 as shown in FIG. Are repeated alternately.

図2(a)の状態では、入口開口3の周辺では、軸向き開口10に対向して作動流体が移動しているため、動圧がそのまま軸向き開口10に作用し、軸向き開口10における圧力PAは、
PA=静圧+動圧
となる。出口開口4の周辺では、出口開口4の開口面が作動流体の移動方向に沿っているため、動圧が作用せず、出口開口4における圧力PBは、
PB=静圧
となる。
In the state of FIG. 2A, since the working fluid moves in the vicinity of the inlet opening 3 so as to face the axial opening 10, the dynamic pressure acts on the axial opening 10 as it is. Pressure PA is
PA = static pressure + dynamic pressure. In the vicinity of the outlet opening 4, since the opening surface of the outlet opening 4 is along the moving direction of the working fluid, dynamic pressure does not act, and the pressure PB at the outlet opening 4 is
PB = static pressure.

図2(b)の状態では、入口開口3の周辺では、軸向き開口10の裏側から整流板6に向けて作動流体が移動しているため、軸向き開口10における圧力PAは、
PA=静圧−動圧×C2
C2は、1より小さい正の実数
となる。動圧成分が小さくなるのは、移動している作動流体の一部が軸向き開口10に巻き込まれるからである。出口開口4の周辺では、出口開口4の開口面が作動流体の移動方向に沿っているため、動圧が作用せず、出口開口4における圧力PBは、
PB=静圧
となる。
In the state of FIG. 2B, since the working fluid is moving from the back side of the axial opening 10 toward the rectifying plate 6 around the inlet opening 3, the pressure PA in the axial opening 10 is
PA = static pressure-dynamic pressure x C2
C2 is a positive real number smaller than 1. The reason why the dynamic pressure component is small is that a part of the moving working fluid is caught in the axial opening 10. In the vicinity of the outlet opening 4, since the opening surface of the outlet opening 4 is along the moving direction of the working fluid, dynamic pressure does not act, and the pressure PB at the outlet opening 4 is
PB = static pressure.

軸向き開口10における圧力PAを音響振動の周期より十分に長い時間平均すると、平均圧力MPAは、
MPA=静圧+動圧×(1−C2)/2
となる。C2が1より小さい正の実数であるから、(1−C2)/2は正の実数となり、軸向き開口10における平均圧力MPAは、静圧よりも大きくなる。一方、出口開口4における平均圧力MPBは、静圧に等しいので、軸向き開口10における平均圧力MPAが出口開口4における平均圧力MPBよりも大きくなる。これにより、通気管5においては、軸向き開口10から入口開口3を経由して出口開口4に向かって作動流体が移動することになる。
When the pressure PA in the axial opening 10 is averaged for a time sufficiently longer than the period of the acoustic vibration, the average pressure MPA is
MPA = static pressure + dynamic pressure × (1-C2) / 2
It becomes. Since C2 is a positive real number smaller than 1, (1-C2) / 2 is a positive real number, and the average pressure MPA in the axial opening 10 is larger than the static pressure. On the other hand, since the average pressure MPB at the outlet opening 4 is equal to the static pressure, the average pressure MPA at the axial opening 10 is larger than the average pressure MPB at the outlet opening 4. Thereby, in the vent pipe 5, the working fluid moves from the axial opening 10 to the outlet opening 4 via the inlet opening 3.

図1に戻って熱音響機関の動作を説明する。前述のようにして通気管5を移動する作動流体は、通気管5の管壁を介して外部の排気から熱を受け取り、高温となる。排気から作動流体への伝熱量を考察すると、伝熱面積は通気管5の表面積に相当し、伝熱距離は通気管5の管壁肉厚に相当する。よって、外部の排気から通気管5内の作動流体への伝熱量は十分に大きい。このとき通気管5において作動流体が得た熱量は、作動流体の移動によって音響筒2内に運ばれる。熱音響機関の音響振動においては、作動流体の変位振幅が大きく、また、周波数が高いので、通気管5内での作動流体の移動速度は大きい。このように、本発明の熱交換器1は、図5の加熱側熱交換器51に比べると、外部の排気から通気管5内の作動流体への伝熱量が大きく、通気管5内での作動流体の移動速度が大きいため、外部から音響筒2内への伝熱量が向上する。   Returning to FIG. 1, the operation of the thermoacoustic engine will be described. The working fluid that moves through the vent pipe 5 as described above receives heat from the external exhaust via the pipe wall of the vent pipe 5 and reaches a high temperature. Considering the amount of heat transfer from the exhaust to the working fluid, the heat transfer area corresponds to the surface area of the vent pipe 5, and the heat transfer distance corresponds to the wall thickness of the vent pipe 5. Therefore, the amount of heat transfer from the external exhaust to the working fluid in the vent pipe 5 is sufficiently large. At this time, the amount of heat obtained by the working fluid in the vent pipe 5 is carried into the acoustic cylinder 2 by the movement of the working fluid. In the acoustic vibration of the thermoacoustic engine, the displacement amplitude of the working fluid is large and the frequency is high. Therefore, the moving speed of the working fluid in the vent pipe 5 is large. As described above, the heat exchanger 1 of the present invention has a large amount of heat transfer from the external exhaust to the working fluid in the vent pipe 5 compared to the heating side heat exchanger 51 of FIG. Since the moving speed of the working fluid is high, the amount of heat transferred from the outside into the acoustic cylinder 2 is improved.

通気管5において高温となった作動流体が出口開口4から音響筒2内に戻ると、出口開口4の付近が高温となり、出口開口4の付近が加熱部11として熱音響機関の動作に寄与する。このとき、加熱部11に蓄熱材12が設けられていると、蓄熱材12が作動流体から熱を受け取って高温を保持するので、熱音響機関の動作が安定する。   When the working fluid that has reached a high temperature in the vent pipe 5 returns from the outlet opening 4 into the acoustic cylinder 2, the vicinity of the outlet opening 4 becomes hot, and the vicinity of the outlet opening 4 serves as the heating unit 11 and contributes to the operation of the thermoacoustic engine. . At this time, if the heat storage material 12 is provided in the heating unit 11, the heat storage material 12 receives heat from the working fluid and maintains a high temperature, and thus the operation of the thermoacoustic engine is stabilized.

以上説明したように、本発明の熱交換器1によれば、音響振動を軸方向に生じる音響筒2の外側に取り付けられ、音響筒2の軸方向の異なる位置に音響筒2の内側に通じる入口開口3と出口開口4とが形成された通気管5と、入口開口3の軸方向片側の音響筒2の内周から入口開口3の軸方向反対側にかけて音響筒2の径方向内方に傾斜して突き出した整流板6とを有するので、音響筒2の作動流体が通気管5を移動することで外部の熱が熱音響機関の加熱部11に届けられ、伝熱量が大きくできる。   As described above, according to the heat exchanger 1 of the present invention, it is attached to the outside of the acoustic cylinder 2 that generates acoustic vibration in the axial direction, and leads to the inside of the acoustic cylinder 2 at different positions in the axial direction of the acoustic cylinder 2. A vent pipe 5 in which an inlet opening 3 and an outlet opening 4 are formed, and radially inward of the acoustic cylinder 2 from the inner circumference of the acoustic cylinder 2 on one axial side of the inlet opening 3 to the opposite side of the inlet opening 3 in the axial direction. Since it has the baffle plate 6 which inclines and protruded, the external fluid is delivered to the heating part 11 of a thermoacoustic engine because the working fluid of the acoustic cylinder 2 moves through the ventilation pipe 5, and the amount of heat transfer can be increased.

音響筒2の周方向に連続して形成された整流板6からなるテーパ状リングは、加熱部11に対して小径開口を臨ませ、その反対方向に大径開口を臨ませたジェットノズルに相当する。したがって、図7で説明したものと同様に加熱部11で熱膨張による質量流の抑制効果が得られる。   The tapered ring formed of the rectifying plate 6 continuously formed in the circumferential direction of the acoustic cylinder 2 corresponds to a jet nozzle that faces the heating unit 11 with a small-diameter opening and a large-diameter opening in the opposite direction. To do. Therefore, the mass flow suppression effect due to thermal expansion can be obtained in the heating unit 11 as described in FIG.

図3(a)〜図3(d)に通気管の他の実施形態を示す。   3 (a) to 3 (d) show another embodiment of the vent pipe.

図3(a)に示されるように、通気管31は、音響筒2から放射状に伸びる途中で屈曲し、各通気管31が平行になる。通気管31は、熱交換器1の設置スペースが図の左右に狭いときに有効である。   As shown in FIG. 3A, the vent pipe 31 is bent while extending radially from the acoustic cylinder 2, and the vent pipes 31 become parallel. The vent pipe 31 is effective when the installation space for the heat exchanger 1 is narrow on the left and right in the drawing.

図3(b)に示されるように、通気管32は、音響筒2から放射状に伸びる途中で音響筒2の周方向に繰り返し屈曲してジグザグ状を呈する。通気管32は、直径の小さい設置スペースで伝熱面積を大きくすることができる。   As shown in FIG. 3 (b), the vent pipe 32 is repeatedly bent in the circumferential direction of the acoustic cylinder 2 while extending radially from the acoustic cylinder 2 to have a zigzag shape. The ventilation pipe 32 can increase the heat transfer area in an installation space having a small diameter.

図3(c)に示されるように、通気管33は、音響筒2から放射状に伸びる途中で音響筒2の軸方向に繰り返し屈曲してジグザグ状を呈する。通気管33は、音響筒2の軸方向に伸びた設置スペースに対して有効である。   As shown in FIG. 3 (c), the vent pipe 33 is repeatedly bent in the axial direction of the acoustic cylinder 2 while extending radially from the acoustic cylinder 2 to form a zigzag shape. The ventilation pipe 33 is effective for an installation space extending in the axial direction of the acoustic cylinder 2.

図3(d)に示されるように、通気管34は、音響筒2の軸方向に伸びる途中で音響筒2の径方向に繰り返し屈曲してジグザグ状を呈する。   As shown in FIG. 3 (d), the vent pipe 34 is repeatedly bent in the radial direction of the acoustic cylinder 2 while extending in the axial direction of the acoustic cylinder 2, and exhibits a zigzag shape.

通気管5の形状は、排気の流路の形状に合わせて選択するのが好ましい。   The shape of the vent pipe 5 is preferably selected according to the shape of the exhaust passage.

ここまでの実施形態では、通気管5にはフィンを形成しなかったが、通気管5の外周面や内周面にフィンを形成したり、溝を形成することで表面積を増加させてもよい。   In the embodiments so far, no fins are formed on the vent pipe 5, but the surface area may be increased by forming fins on the outer peripheral surface or inner peripheral surface of the vent pipe 5 or by forming grooves. .

通気管5の入口開口3と出口開口4の距離が長いと、出口開口4の近傍(加熱器11)から入口開口3に作動流体が移動するときに出口開口4から入口開口3までの音響筒2が作動流体の熱を奪って音響筒2の外部(排気流路外)に放出し、通気管5に流れ込む作動流体の温度が低下する。通気管5における排気からの熱量が作動流体の温度低下分を補うのに消費されるので、熱音響機関にとって損失となる。したがって、入口開口3と出口開口4の距離はできるだけ短いのがよい。ただし、出口開口4から音響筒2に流入した高温の作動流体が蓄熱材12に十分に熱を伝導させてから入口開口3に吸い込まれるよう、入口開口3と出口開口4の距離を所定長さ以上に確保するのが好ましい。   If the distance between the inlet opening 3 and the outlet opening 4 of the vent pipe 5 is long, the acoustic cylinder from the outlet opening 4 to the inlet opening 3 is moved when the working fluid moves from the vicinity of the outlet opening 4 (heater 11) to the inlet opening 3. 2 takes the heat of the working fluid and releases it to the outside of the acoustic cylinder 2 (outside the exhaust flow path), and the temperature of the working fluid flowing into the vent pipe 5 decreases. Since the amount of heat from the exhaust in the vent pipe 5 is consumed to compensate for the temperature drop of the working fluid, it is a loss for the thermoacoustic engine. Therefore, the distance between the inlet opening 3 and the outlet opening 4 should be as short as possible. However, the distance between the inlet opening 3 and the outlet opening 4 is set to a predetermined length so that the high-temperature working fluid flowing into the acoustic cylinder 2 from the outlet opening 4 is sufficiently conducted to the heat storage material 12 and then sucked into the inlet opening 3. It is preferable to ensure the above.

通気管5の径について考察すると、
通気管径=音響筒径×π/通気管本数−通気管同士の隙間
となる。
Considering the diameter of the vent pipe 5,
Vent pipe diameter = acoustic cylinder diameter × π / the number of vent pipes−the gap between the vent pipes.

通気管5の設計条件としては、外部から通気管5の管壁を介して入る熱量と通気管5の中を流れる作動流体が獲得する熱量とが等しいことから、
熱抵抗係数×通気管表面積/管壁厚さ×(排気温度−作動流体温度)
=通気管断面積×通気管内流速×作動流体の単位体積当たりの熱容量
×(出口開口温度−入口開口温度)
という関係を満たすことが好ましい。
The design condition of the vent pipe 5 is that the amount of heat entering from the outside through the pipe wall of the vent pipe 5 is equal to the amount of heat acquired by the working fluid flowing in the vent pipe 5.
Thermal resistance coefficient x Vent pipe surface area / pipe wall thickness x (exhaust temperature-working fluid temperature)
= Cross section of vent pipe x Flow velocity in vent pipe x Heat capacity per unit volume of working fluid x (Outlet opening temperature-Inlet opening temperature)
It is preferable to satisfy the relationship.

図1の実施形態では、通気管5の本数を12本としたが、本発明はこれに限定されず、通気管5の本数は1本〜11本でもよく、13本以上でもよい。通気管5の径を一定とした場合、通気管5の本数が多ければ、加熱部11に流れ込む作動流体の量が多くなり、加熱部11への伝熱量が多くなる。また、通気管5での作動流体の移動速度を一定とした場合、通気管5の本数が多ければ、加熱部11に流れ込む作動流体の量が多くなり、加熱部11への伝熱量が多くなる。   In the embodiment of FIG. 1, the number of the vent pipes 5 is 12. However, the present invention is not limited to this, and the number of the vent pipes 5 may be 1 to 11, or 13 or more. When the diameter of the vent pipe 5 is constant, if the number of the vent pipes 5 is large, the amount of working fluid flowing into the heating unit 11 increases, and the amount of heat transfer to the heating unit 11 increases. Further, when the moving speed of the working fluid in the vent pipe 5 is constant, if the number of vent pipes 5 is large, the amount of working fluid flowing into the heating unit 11 increases and the amount of heat transfer to the heating unit 11 increases. .

図1の実施形態では、音響筒2の内側で出口開口4に臨む位置に、蓄熱材12を有するものとしたが、蓄熱材12の代わりに、従来と同様の内部フィンを有してもよい。   In the embodiment of FIG. 1, the heat storage material 12 is provided at the position facing the outlet opening 4 inside the acoustic cylinder 2. However, instead of the heat storage material 12, an internal fin similar to the conventional one may be provided. .

図1の実施形態では、熱交換器1を加熱側熱交換器に用いたが、熱交換器1を冷却側熱交換器45にも用いることができる。この場合、熱交換器1は冷却筒46(図4参照)の内部に設け、冷却水と作動流体との熱交換を行う。   In the embodiment of FIG. 1, the heat exchanger 1 is used as a heating side heat exchanger, but the heat exchanger 1 can also be used as a cooling side heat exchanger 45. In this case, the heat exchanger 1 is provided inside the cooling cylinder 46 (see FIG. 4), and performs heat exchange between the cooling water and the working fluid.

1 熱交換器
2 音響筒
3 入口開口
4 出口開口
5 通気管
6 整流板
12 蓄熱材
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Acoustic cylinder 3 Inlet opening 4 Outlet opening 5 Vent pipe 6 Current plate 12 Heat storage material

Claims (3)

音響振動を軸方向に生じる音響筒の外側に取り付けられ、前記音響筒の軸方向の異なる位置に前記音響筒の内側に通じる入口開口と出口開口とが形成された通気管と、
前記入口開口の軸方向片側の前記音響筒の内周から前記入口開口の軸方向反対側にかけて前記音響筒の径方向内方に傾斜して突き出した整流板とを有することを特徴とする熱音響機関用熱交換器。
A vent pipe attached to the outside of the acoustic cylinder that generates acoustic vibration in the axial direction, and having an inlet opening and an outlet opening leading to the inside of the acoustic cylinder at different positions in the axial direction of the acoustic cylinder;
And a rectifying plate that protrudes from the inner periphery of the acoustic cylinder on one side in the axial direction of the inlet opening to the axially opposite side of the inlet opening to incline radially inward of the acoustic cylinder. Engine heat exchanger.
前記通気管を複数有し、
前記複数の通気管は、前記音響筒の軸方向の同じ位置で前記音響筒の周方向に間隔を隔てて配置され、
前記整流板は、前記音響筒の周方向に連続して形成されることを特徴とする請求項1記載の熱音響機関用熱交換器。
A plurality of the vent pipes;
The plurality of vent pipes are arranged at intervals in the circumferential direction of the acoustic cylinder at the same position in the axial direction of the acoustic cylinder,
The heat exchanger for a thermoacoustic engine according to claim 1, wherein the current plate is formed continuously in a circumferential direction of the acoustic cylinder.
前記音響筒の内側で前記出口開口に臨む位置に、蓄熱材を有することを特徴とする請求項1又は2記載の熱音響機関用熱交換器。   The heat exchanger for a thermoacoustic engine according to claim 1 or 2, further comprising a heat storage material at a position facing the outlet opening inside the acoustic cylinder.
JP2011188967A 2011-08-31 2011-08-31 Heat exchanger for thermoacoustic engine Active JP5772399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011188967A JP5772399B2 (en) 2011-08-31 2011-08-31 Heat exchanger for thermoacoustic engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011188967A JP5772399B2 (en) 2011-08-31 2011-08-31 Heat exchanger for thermoacoustic engine

Publications (2)

Publication Number Publication Date
JP2013050087A JP2013050087A (en) 2013-03-14
JP5772399B2 true JP5772399B2 (en) 2015-09-02

Family

ID=48012310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011188967A Active JP5772399B2 (en) 2011-08-31 2011-08-31 Heat exchanger for thermoacoustic engine

Country Status (1)

Country Link
JP (1) JP5772399B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6179341B2 (en) 2013-10-23 2017-08-16 いすゞ自動車株式会社 Thermoacoustic heater
DE112017007041T5 (en) 2017-02-10 2019-10-24 Ngk Insulators, Ltd. Cold air / warm air generation system
JP2018202985A (en) * 2017-06-02 2018-12-27 株式会社Soken Vehicular temperature control device
JP2019086176A (en) * 2017-11-02 2019-06-06 株式会社Soken Industrial furnace
JP7194402B1 (en) * 2022-10-06 2022-12-22 国立大学法人東京農工大学 Heat transfer device and furnace

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024617A (en) * 1997-08-06 2000-02-15 Smullin Corporation Marine engine silencing apparatus and method
NL1007316C1 (en) * 1997-10-20 1999-04-21 Aster Thermo Akoestische Syste Thermo-acoustic system.
JP2008068687A (en) * 2006-09-13 2008-03-27 Calsonic Kansei Corp Exhaust heat energy recovering system for hybrid vehicle
CN101054960A (en) * 2007-05-15 2007-10-17 浙江大学 Multiple resonance tube thermo-acoustic engine
US8468838B2 (en) * 2008-04-01 2013-06-25 Los Alamos National Security, Llc Thermoacoustic refrigerators and engines comprising cascading stirling thermodynamic units

Also Published As

Publication number Publication date
JP2013050087A (en) 2013-03-14

Similar Documents

Publication Publication Date Title
JP5772399B2 (en) Heat exchanger for thermoacoustic engine
JP6095533B2 (en) Heat exchanger
JP5423531B2 (en) Thermoacoustic engine
JP6725204B2 (en) Exhaust heat recovery device
CN104595056B (en) Cold end heat exchanger of free piston type Stirling engine
US11719489B2 (en) Heat exchanger
US10047955B2 (en) Thermal post-combustion unit
JP4939980B2 (en) EGR cooler
JP5790332B2 (en) Heat exchanger for thermoacoustic engine
JP5768688B2 (en) Thermoacoustic refrigeration equipment
JP2015121361A (en) Stack of thermoacoustic device, and thermoacoustic device
JP2013096691A (en) Heat exchanger for thermoacoustic engine
JP2015102051A (en) EGR cooler
JP2013545938A5 (en)
CN110088554A (en) Heat exchanger and ship
JP5434613B2 (en) Thermoacoustic engine
JP2009092016A (en) Engine exhaust gas heat recovery apparatus and engine driven type heat pump or co-generation using same
JP2017166403A (en) Exhaust heat recovery device
JP4813208B2 (en) Stirling engine
JP2007527480A (en) Collision heat exchanger for Stirling cycle machine
JP2012506025A (en) Heat exchanger for an annealing furnace to exchange heat between two fluids
JP2013117324A (en) Thermoacoustic refrigeration device
JP4524396B2 (en) Waste heat recovery device
CN208579662U (en) A built-in water-cooled heat exchanger for sonic free-piston machines
JP7109488B2 (en) Flow path structure of heat exchanger, and heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R150 Certificate of patent or registration of utility model

Ref document number: 5772399

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150