[go: up one dir, main page]

JP5744010B2 - Epoxy resin composition and cured product thereof - Google Patents

Epoxy resin composition and cured product thereof Download PDF

Info

Publication number
JP5744010B2
JP5744010B2 JP2012509642A JP2012509642A JP5744010B2 JP 5744010 B2 JP5744010 B2 JP 5744010B2 JP 2012509642 A JP2012509642 A JP 2012509642A JP 2012509642 A JP2012509642 A JP 2012509642A JP 5744010 B2 JP5744010 B2 JP 5744010B2
Authority
JP
Japan
Prior art keywords
epoxy resin
trimethylolpropane
resin composition
ether
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012509642A
Other languages
Japanese (ja)
Other versions
JPWO2011125962A1 (en
Inventor
吉田 一彦
一彦 吉田
秀安 朝蔭
秀安 朝蔭
亮 平塚
亮 平塚
力 三宅
力 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2012509642A priority Critical patent/JP5744010B2/en
Publication of JPWO2011125962A1 publication Critical patent/JPWO2011125962A1/en
Application granted granted Critical
Publication of JP5744010B2 publication Critical patent/JP5744010B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4215Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/688Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、主として半導体封止材用途をはじめとした電気絶縁材料等の電気電子産業用に好適な、低粘度で、有機塩素量及の少なく、耐熱性の高い、トリメチロールプロパンのグリシジルエーテルを必須成分として配合してなる樹脂組成物、ならびにその硬化物に関するものである。   The present invention is a glycidyl ether of trimethylolpropane, which is suitable for the electrical and electronic industries such as electrical insulating materials mainly for semiconductor encapsulating materials, has low viscosity, has a small amount of organic chlorine, and has high heat resistance. The present invention relates to a resin composition blended as an essential component and a cured product thereof.

エポキシ樹脂は液状から固形まで様々なものがあり、またエポキシ樹脂は硬化剤との反応性に優れていることから取り扱い易く、硬化剤により架橋させた場合に大きな架橋密度を有する硬化樹脂となり、優れた耐熱性、耐湿性、耐薬品性、電気特性等を示すものであり電気・電子分野に多く使用されている。 There are various types of epoxy resins from liquid to solid, and epoxy resins are easy to handle because they are excellent in reactivity with curing agents, and when cured with curing agents, they become cured resins having a large crosslinking density and are excellent. It exhibits high heat resistance, moisture resistance, chemical resistance, electrical properties, etc., and is widely used in the electrical and electronic fields.

エポキシ樹脂は工業的に幅広い用途で使用されてきているが、その要求性能は近年ますます高度化している。例えば、エポキシ樹脂を主剤とする樹脂組成物の代表的分野に半導体封止材料があるが、近年、半導体素子の集積度の向上に伴い、パッケージサイズが大面積化、薄型化に向かうとともに、実装方式も表面実装化への移行が進展しており、より半田耐熱性に優れた材料の開発が望まれている。 Epoxy resins have been used in a wide range of industrial applications, but their required performance has become increasingly sophisticated in recent years. For example, there is a semiconductor sealing material in a typical field of a resin composition mainly composed of an epoxy resin, but in recent years, as the integration degree of semiconductor elements has improved, the package size has become larger and thinner, and mounting The system is also shifting to surface mounting, and the development of materials with higher solder heat resistance is desired.

また最近では、高集積化、高密度実装化の技術動向により、従来の金型を利用したトランスファー成形によるパッケージに変わり、ハイブリッドIC、チップオンボード、テープキャリアパッケージ、プラスチックピングリッドアレイ、プラスチックボールグリッドアレイ等、金型を使用しないで液状材料を用いて封止し、実装する方式が増えてきている。しかし、一般に液状材料はトランスファー成形に用いる固形材料に比べて信頼性が低い欠点がある。これは、液状材料に粘度の上限があり、用いるエポキシ樹脂、硬化剤、充填剤等に制約があるからである。 Recently, due to technological trends of high integration and high density mounting, it has been changed to a package by transfer molding using a conventional mold, hybrid IC, chip on board, tape carrier package, plastic pin grid array, plastic ball grid. A method of sealing and mounting using a liquid material without using a mold such as an array is increasing. However, in general, liquid materials have a drawback that they are less reliable than solid materials used for transfer molding. This is because the liquid material has an upper limit of viscosity, and there are restrictions on the epoxy resin, curing agent, filler, and the like to be used.

これらの問題点を克服するため、主剤となるエポキシ樹脂及び硬化剤には、低粘度化、低吸湿化、高耐熱化が望まれている。低粘度エポキシ樹脂としてはビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等が一般に広く知られているが、低粘度性の点で充分ではない。低粘度性に優れるエポキシ樹脂としてアルコール原料のエポキシ樹脂が挙げられるが、一般にアルコール原料のエポキシ樹脂は塩素量が多く、硬化物の耐熱性、吸湿性でも性能が低いのが現状である。そこで低粘度性に優れ、硬化物の耐熱性の高いエポキシ樹脂として、トリメチロールプロパンのエポキシ樹脂が挙げられる。
トリメチロールプロパンのエポキシ樹脂として東都化成社製YH−300、ナガセケムテック社製デナコールEX−318があるがそれぞれ全塩素量が5%以上と多く、電子材料用途には不向きであった。また末端基純度が低く硬化物のTgが低いという問題点があった。
In order to overcome these problems, lowering of viscosity, lowering of moisture absorption, and higher heat resistance are desired for the epoxy resin and the curing agent as the main agent. As the low viscosity epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin and the like are generally widely known, but are not sufficient in terms of low viscosity. As an epoxy resin excellent in low viscosity, an epoxy resin of an alcohol raw material can be mentioned. Generally, an epoxy resin of an alcohol raw material has a large amount of chlorine, and the performance is low in terms of heat resistance and moisture absorption of a cured product. Therefore, an epoxy resin of trimethylolpropane is exemplified as an epoxy resin having excellent low viscosity and high heat resistance of the cured product.
Although there are YH-300 manufactured by Tohto Kasei Co., Ltd. and Denacol EX-318 manufactured by Nagase Chemtech Co., Ltd. as trimethylolpropane epoxy resins, the total amount of chlorine is as high as 5% or more, respectively. Moreover, there was a problem that the terminal group purity was low and the Tg of the cured product was low.

本発明の目的は、低粘度で、かつ耐熱性、耐湿性に優れた硬化物を与えるエポキシ樹脂組成物、ならびにその硬化物を提供することである。   The objective of this invention is providing the epoxy resin composition which gives the hardened | cured material which is low viscosity and excellent in heat resistance and moisture resistance, and its hardened | cured material.

すなわち本発明は、トリメチロールプロパンとエピクロルヒドリンとを反応させて得られるトリメチロールプロパンのポリグリシジルエーテルを必須成分として含むエポキシ樹脂組成物であって、該トリメチロールプロパンのポリグリシジルエーテルが、ガスクロマトグラフィー分析におけるn=0成分(トリメチロールプロパンモノグリシジルエーテル(モノグリシジル体)、トリメチロールプロパンジグリシジルエーテル(ジグリシジル体)及びトリメチロールプロパントリグリシジルエーテル(トリグリシジル体)の混合物)中のトリメチロールプロパントリグリシジルエーテルの比率が35%以上62%以下であり、ゲル浸透クロマトグラフィー分析におけるn=0の含有量が50%以上98%以下であり、全塩素量が0.3%以下、25℃での粘度が300mPa・s以下であることを特徴とするトリメチロールプロパンのポリグリシジルエーテルを必須成分として含むエポキシ樹脂組成物である。
また、本発明は、前記エポキシ樹脂組成物硬化してなる硬化物である。
That is, the present invention relates to an epoxy resin composition containing, as an essential component, a polyglycidyl ether of trimethylolpropane obtained by reacting trimethylolpropane and epichlorohydrin, and the polyglycidyl ether of trimethylolpropane is obtained by gas chromatography. n = 0 component in the analysis trimethylolpropane tri in (trimethylolpropane monoglycidyl ether (monoglycidyl body), trimethylolpropane diglycidyl ether (diglycidyl thereof) and mixtures of trimethylolpropane triglycidyl ether (triglycidyl member)) The ratio of glycidyl ether is 35% or more and 62% or less , the content of n = 0 in the gel permeation chromatography analysis is 50% or more and 98% or less, and the total chlorine content is 0.3% or less. An epoxy resin composition comprising, as an essential component, a polyglycidyl ether of trimethylolpropane having a viscosity at 25 ° C. of 300 mPa · s or less.
Moreover, this invention is the hardened | cured material formed by hardening | curing the said epoxy resin composition.

本発明のエポキシ樹脂を用いたエポキシ樹脂組成物は、優れた低粘度性を有するとともに、これを硬化して得られる硬化物は、耐熱性、耐湿性に優れた性能を有するため、重防食塗料、粉体塗料、PCM塗料、缶塗料等の塗料用途や土木・建設用途、接着用途、電気絶縁用、半導体チップ仮止剤等の電気・電子部品用途及びプリント配線板や炭素繊維強化プラスチック(CFRP)を始めとする各種複合材料用途等に適し、特に、プリント配線板、半導体封止等の電気・電子分野の絶縁材料等に好適に使用することができる。   The epoxy resin composition using the epoxy resin of the present invention has excellent low viscosity, and a cured product obtained by curing the epoxy resin composition has excellent performance in heat resistance and moisture resistance. , Powder coating, PCM coating, can coating, etc., civil engineering / construction, bonding, electrical insulation, electrical and electronic parts such as semiconductor chip temporary fixer, printed wiring board and carbon fiber reinforced plastic (CFRP) ) And various other composite materials, and in particular, it can be suitably used for insulating materials in the electric and electronic fields such as printed wiring boards and semiconductor encapsulation.

本発明について詳細に述べる。
本発明に係るトリメチロールプロパングリシジルエーテル(n=0成分)中には通常、モノグリシジル体、ジグリシジル体、トリグリシジル体が存在するが、本発明でトリグリシジル体比率は35%以上である。トリグリシジル体比率が35%以下では硬化物のTg等の物性が低下し、また樹脂粘度が増加する為好ましくない為であり、好ましくは50%以上、更に好ましくは75%以上である。
The present invention will be described in detail.
In the trimethylolpropane glycidyl ether (n = 0 component) according to the present invention, there are usually a monoglycidyl body, a diglycidyl body and a triglycidyl body. In the present invention, the triglycidyl body ratio is 35% or more. When the triglycidyl body ratio is 35% or less, the physical properties such as Tg of the cured product are lowered and the resin viscosity is increased, which is not preferable, preferably 50% or more, and more preferably 75% or more.

本発明で用いるトリメチロールプロパングリシジルエーテルは全塩素量が0.3重量%以下で、好ましくは0.2重量%以下である。全塩素量が0.3重量%を超えると塩基性の硬化促進剤を用いた組成物の場合、硬化反応が阻害され、その結果硬化物の物性が低下する。また絶縁信頼性の低下が起こり、電気・電子分野での用途に好ましくない。 The trimethylolpropane glycidyl ether used in the present invention has a total chlorine content of 0.3% by weight or less, preferably 0.2% by weight or less. When the total chlorine amount exceeds 0.3% by weight, in the case of a composition using a basic curing accelerator, the curing reaction is inhibited, and as a result, the physical properties of the cured product are lowered. In addition, the insulation reliability is lowered, which is not preferable for applications in the electric / electronic field.

本発明で用いるトリメチロールプロパンのポリグリシジルエーテルは25℃での粘度が300mPa・s以下である。25℃での粘度が300mPa・sを超えると希釈効率が低下する為好ましくない。 The polyglycidyl ether of trimethylolpropane used in the present invention has a viscosity at 25 ° C. of 300 mPa · s or less. If the viscosity at 25 ° C. exceeds 300 mPa · s, the dilution efficiency decreases, which is not preferable.

本発明で用いるトリメチロールプロパンのポリグリシジルエーテルは、低粘度性の観点から、n=0成分の含有率が50%以上であることが好ましく、より好ましくは70%以上、更に好ましくは90%以上である。   From the viewpoint of low viscosity, the polyglycidyl ether of trimethylolpropane used in the present invention preferably has a content of n = 0 component of 50% or more, more preferably 70% or more, still more preferably 90% or more. It is.

トリメチロールプロパンをエピクロルヒドリンと反応させる反応は、通常のエポキシ化反応と同様に行うことができる。例えば、トリメチロールプロパンの水酸基に対して過剰のエピクロルヒドリンを配合し溶解した後、アルカリ金属水酸化物の存在下に、40〜120℃の範囲で1〜10時間反応させる方法が挙げられる。この場合、加水分解性塩素低減の観点からは、50〜90℃で反応を行うことが好ましい。 The reaction of reacting trimethylolpropane with epichlorohydrin can be carried out in the same manner as a normal epoxidation reaction. For example, after mixing and dissolving an excess epichlorohydrin with respect to the hydroxyl group of trimethylolpropane, a method of reacting in the range of 40 to 120 ° C. for 1 to 10 hours in the presence of an alkali metal hydroxide can be mentioned. In this case, it is preferable to perform the reaction at 50 to 90 ° C. from the viewpoint of reducing hydrolyzable chlorine.

上記反応において使用されるアルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等が挙げられるが、特に水酸化ナトリウム、水酸化カリウムが好ましい。アルカリ類は水溶液であっても固体であっても構わないが、取り扱いの容易さでは水溶液を用いることが好ましい。アルカリ金属水酸化物の使用量は通常アルコール性水酸基1当量に対して0.7〜3.0当量であり、好ましくは0.8〜2.0当量である。アルカリ金属水酸化物の使用量が多すぎると重合反応や副反応の促進につながり生産性が悪くなる。また、少なすぎるとトリメチロールプロパンとエピクロルヒドリンとの反応が不十分となりグリシジルエーテル化されないクロルヒドリン体が残存する為末端エポキシ基純度が低下する。 Examples of the alkali metal hydroxide used in the above reaction include lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide and the like, and sodium hydroxide and potassium hydroxide are particularly preferable. The alkali may be an aqueous solution or a solid, but it is preferable to use an aqueous solution for ease of handling. The usage-amount of an alkali metal hydroxide is 0.7-3.0 equivalent normally with respect to 1 equivalent of alcoholic hydroxyl groups, Preferably it is 0.8-2.0 equivalent. If the amount of the alkali metal hydroxide used is too large, the polymerization reaction and side reaction are promoted, resulting in poor productivity. On the other hand, if the amount is too small, the reaction between trimethylolpropane and epichlorohydrin becomes insufficient, and a chlorohydrin which is not glycidyl ether remains, so that the purity of the terminal epoxy group is lowered.

また上記エピクロルヒドリンの使用量は、多価アルコールの水酸基1当量に対して1〜10当量、好ましくは2〜6当量がよい。エピクロルヒドリンの使用量が1当量より少ないと高分子化が進みやすくなって目的であるクロルヒドリンエーテルの収量が少なくなる。また10当量より多いと全仕込み量に対する多価アルコール類の割合が少なくなり過ぎて生産性の低下となるため好ましくない。 Moreover, the usage-amount of the said epichlorohydrin is 1-10 equivalent with respect to 1 equivalent of hydroxyl groups of a polyhydric alcohol, Preferably 2-6 equivalent is good. When the amount of epichlorohydrin used is less than 1 equivalent, the polymerization tends to proceed and the yield of the desired chlorohydrin ether decreases. On the other hand, when the amount is more than 10 equivalents, the ratio of polyhydric alcohols to the total charged amount becomes too small and productivity is lowered, which is not preferable.

前記反応を簡便に進行させるため、必要に応じて第四級アンモニウム塩を触媒として添加してもかまわない。用いることのできる第四級アンモニウム塩としてはテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、ベンジルトリメチルアンモニウムクロライド、ベンジルトリエチルアンモニウムクロライド等が挙げられる。第四級アンモニウム塩の使用量としては使用する多価アルコール類の量に対し通常0.05〜10重量%であり、好ましくは0.1〜1重量%である。 In order to make the reaction proceed easily, a quaternary ammonium salt may be added as a catalyst if necessary. Examples of quaternary ammonium salts that can be used include tetramethylammonium chloride, tetramethylammonium bromide, benzyltrimethylammonium chloride, and benzyltriethylammonium chloride. The amount of the quaternary ammonium salt used is usually 0.05 to 10% by weight, preferably 0.1 to 1% by weight, based on the amount of polyhydric alcohol used.

また、反応に際しては、エポキシ基とは反応しない溶媒中で行う事ができ、具体的にはトルエン、キシレン、ベンゼン等の芳香族炭化水素類、メチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン、アセトン等のケトン類、プロパノール、ブタノール等のアルコール類、ジエチレングリコールメチルエーテル、プロピレングリコールメチルエーテル、ジプロピレングリコールメチルエーテル等のグリコールエーテル類、ジエチルエーテル、ジブチルエーテル、エチルプロピルエーテル等の脂肪族エーテル類、ジオキサン、テトラヒドロフラン等の脂環式エーテル類、ジメチルスルホキシド等が挙げられ、それら2種以上混合して使用することもできる。これら溶媒の使用量は、エピハロヒドリン100重量部に対して、200重量部以下であり、好ましくは5〜150重量部の範囲であり、より好ましくは10〜100重量部の範囲である。   The reaction can be carried out in a solvent that does not react with the epoxy group. Specifically, aromatic hydrocarbons such as toluene, xylene, and benzene, and ketones such as methyl isobutyl ketone, methyl ethyl ketone, cyclohexanone, and acetone. Alcohols such as propanol and butanol, glycol ethers such as diethylene glycol methyl ether, propylene glycol methyl ether and dipropylene glycol methyl ether, aliphatic ethers such as diethyl ether, dibutyl ether and ethylpropyl ether, dioxane, tetrahydrofuran and the like Examples thereof include alicyclic ethers, dimethyl sulfoxide, and the like, and two or more kinds thereof can be mixed and used. The amount of these solvents used is 200 parts by weight or less, preferably 5 to 150 parts by weight, and more preferably 10 to 100 parts by weight with respect to 100 parts by weight of epihalohydrin.

反応の系内水分は0.1%以上2.0%未満である事が好ましい。系内の水分が0.1%より低くなると反応の進行が遅くなる。系内の水分が2.0%以上になると水分の影響によりグリシジルエーテル化反応が阻害され、含有塩素が高くなる為である。 The water content in the reaction system is preferably 0.1% or more and less than 2.0%. When the water content in the system is lower than 0.1%, the reaction proceeds slowly. This is because when the water content in the system is 2.0% or more, the glycidyl etherification reaction is inhibited by the influence of the water, and the chlorine content increases.

前記方法により生じたグリシジルエーテル類を反応混合物から単離するには、例えば未反応エピクロルヒドリンおよび溶剤を減圧または常圧で留去、有機溶媒に溶解し反応混合物中に副生したアルカリ金属塩および過剰のアルカリ金属水酸化物を水洗、濾過などで分離し、次いで溶解に使用した有機溶媒を回収してグリシジルエーテル類を得る方法などがある。ここで使用する有機溶媒としては、メチルイソブチルケトン、トルエン、キシレン、シクロヘキサノン、メタノール、エタノール、プロパノール、ブタノール等が挙げられるが、なかでもメチルイソブチルケトン、トルエン及びキシレンが好ましく、またこれらの混合溶媒でも良い。 In order to isolate the glycidyl ethers produced by the above method from the reaction mixture, for example, unreacted epichlorohydrin and the solvent are distilled off under reduced pressure or atmospheric pressure, dissolved in an organic solvent and by-produced alkali metal salt and excess There is a method in which the alkali metal hydroxide is separated by washing, filtration, etc., and then the organic solvent used for dissolution is recovered to obtain glycidyl ethers. Examples of the organic solvent used here include methyl isobutyl ketone, toluene, xylene, cyclohexanone, methanol, ethanol, propanol, butanol, etc. Among them, methyl isobutyl ketone, toluene and xylene are preferable, and these mixed solvents are also used. good.

トリメチロールプロパンとエピクロルヒドリンとの反応終了後、過剰のエピハロヒドリンを留去し、溶剤に溶解し、濾過し、水洗して無機塩を除去し、次いで溶剤を留去することにより本発明で用いるトリメチロールプロパンのポリグリシジルエーテルを得ることができるが、加水分解性ハロゲン量が多すぎる場合は、加水分解性ハロゲン量低減の観点から、得られたエポキシ樹脂を更に、残存する加水分解性ハロゲン量に対して、1〜30倍量のアルカリ金属水酸化物を加え、60〜90℃の温度で10分〜2時間精製反応を行なった後、中和、水洗等の方法で過剰のアルカリ金属水酸化物や副生塩を除去し、さらに溶媒を減圧留去すると、更に精製された本発明で用いるトリメチロールプロパンのポリグリシジルエーテルを得ることができる。また、反応により得られたトリメチロールプロパンのポリグリシジルエーテルを分子蒸留により精製したものを用いることができる。 After completion of the reaction between trimethylolpropane and epichlorohydrin, excess epihalohydrin is distilled off, dissolved in a solvent, filtered, washed with water to remove inorganic salts, and then the trimethylol used in the present invention is distilled off. Polyglycidyl ether of propane can be obtained, but if the amount of hydrolyzable halogen is too large, from the viewpoint of reducing the amount of hydrolyzable halogen, the obtained epoxy resin is further added to the remaining amount of hydrolyzable halogen. After adding 1 to 30 times the amount of alkali metal hydroxide and carrying out a purification reaction at a temperature of 60 to 90 ° C. for 10 minutes to 2 hours, excess alkali metal hydroxide is obtained by a method such as neutralization or washing with water. And by-product salts are removed, and the solvent is distilled off under reduced pressure to obtain a further purified polyglycidyl ether of trimethylolpropane used in the present invention. Moreover, what refine | purified by molecular distillation the polyglycidyl ether of the trimethylol propane obtained by reaction can be used.

本発明のエポキシ樹脂組成物は、エポキシ樹脂及び硬化剤を必須成分としてなるエポキシ樹脂組成物であって、エポキシ樹脂成分として請求項1記載のトリメチロールプロパンのポリグリシジルエーテルを必須成分として配合したものである。    The epoxy resin composition of the present invention is an epoxy resin composition comprising an epoxy resin and a curing agent as essential components, wherein the polyglycidyl ether of trimethylolpropane according to claim 1 is blended as an essential component as an epoxy resin component. It is.

請求項1記載のトリメチロールプロパンのポリグリシジルエーテルを必須成分とする場合の硬化剤としては、一般にエポキシ樹脂の硬化剤として知られているものはすべて使用できる。例えば、ジシアンジアミド、多価フェノール類、酸無水物類、芳香族及び脂肪族アミン類等がある。   As the curing agent when the polyglycidyl ether of trimethylolpropane according to claim 1 is an essential component, any of those generally known as curing agents for epoxy resins can be used. Examples include dicyandiamide, polyhydric phenols, acid anhydrides, aromatic and aliphatic amines.

具体的に例示すれば、多価フェノール類としては、例えば、ビスフェノールA、ビスフェノ−ルF、ビフェノールS、フルオレンビスフェノール、4,4’−ビフェノール、2,2’−ビフェノール、ハイドロキノン、レゾルシン、ナフタレンジオール等の2価のフェノール類、あるいは、トリス−(4−ヒドロキジフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキジフェニル)エタン、フェノールノボラック、o−クレゾールノボラック、ナフトールノボラック、ポリビニルフェノール等に代表される3価以上のフェノール類がある。更には、フェノール類、ナフトール類または、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4’−ビフェノール、2,2’−ビフェノール、ハイドロキノン、レゾルシン、ナフタレンジオール等の2価のフェノール類と、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、p−キシリレングリコール等の縮合剤とから合成される多価フェノール性化合物等がある。   Specifically, as polyhydric phenols, for example, bisphenol A, bisphenol F, biphenol S, fluorene bisphenol, 4,4′-biphenol, 2,2′-biphenol, hydroquinone, resorcin, naphthalenediol Divalent phenols such as tris- (4-hydroxydiphenyl) methane, 1,1,2,2-tetrakis (4-hydroxydiphenyl) ethane, phenol novolak, o-cresol novolak, naphthol novolak, polyvinylphenol Trivalent or higher phenols represented by Further, phenols, naphthols or divalent phenols such as bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4′-biphenol, 2,2′-biphenol, hydroquinone, resorcin, naphthalenediol And polyhydric phenolic compounds synthesized from condensing agents such as formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde, and p-xylylene glycol.

酸無水物としては、無水フタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチル無水ハイミック酸、無水ナジック酸、無水トリメリット酸等がある。   Examples of the acid anhydride include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyl hymic anhydride, nadic anhydride, and trimellitic anhydride.

アミン類としては、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルスルホン、m−フェニレンジアミン、p−キシリレンジアミン等の芳香族アミン類、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等の脂肪族アミン類がある。
前記した公知慣用の硬化剤の使用量はエポキシ樹脂の官能基であるエポキシ基1当量に対して硬化剤の官能基0.4〜2.0当量が好ましく、0.5〜1.5当量がより好ましく、特に好ましくは0.5〜1.0当量である。エポキシ基1当量に対して硬化剤が0.4当量に満たない場合、或いは2.0当量をえる場合は、硬化が不完全になり良好な硬化物が得られない恐れがある。本発明のエポキシ樹脂組成物には、これら硬化剤の1種または2種以上を混合して用いることができる。
Examples of amines include aromatic amines such as 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenylsulfone, m-phenylenediamine, and p-xylylenediamine, ethylenediamine, There are aliphatic amines such as hexamethylenediamine, diethylenetriamine, and triethylenetetramine.
The amount of the above-mentioned known and commonly used curing agent is preferably 0.4 to 2.0 equivalent of the functional group of the curing agent, and 0.5 to 1.5 equivalent of 1 equivalent of the epoxy group which is the functional group of the epoxy resin. More preferably, it is particularly preferably 0.5 to 1.0 equivalent. If the curing agent relative to the epoxy group 1 equivalent is less than 0.4 equivalent, or 2.0 if the equivalent Eru Yue, curing may not satisfactory cured product obtained become incomplete. In the epoxy resin composition of the present invention, one or two or more of these curing agents can be mixed and used.

また、本発明のエポキシ樹脂組成物中には、エポキシ樹脂成分として、本発明に関わるトリメチロールプロパンのポリグリシジルエーテル以外に別種のエポキシ樹脂を配合してもよい。この場合のエポキシ樹脂としては、分子中にエポキシ基を2個以上有する通常のエポキシ樹脂はすべて使用できる。例を挙げれば、ビスフェノールA、ビスフェノールS、フルオレンビスフェノール、4,4’−ビフェノール、2,2’−ビフェノール、ハイドロキノン、レゾルシン等の2価のフェノール類、あるいは、トリス−(4−ヒドロキジフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキジフェニル)エタン、フェノールノボラック、o−クレゾールノボラック等の3価以上のフェノール類、またはテトラブロモビスフェノールA等のハロゲン化ビスフェノール類から誘導されるグリシジルエーテル化物等、ポリエチレングリコールやポリプロピレングリコール等アルコール類のポリグリシジルエーテル類等、ジアミノジフェニルメタン等のポリグリシジルアミン類等、脂環式エポキシ樹脂等がある。これらのエポキシ樹脂は、1種または2種以上を混合して用いることができる。そして、本発明のエポキシ樹脂組成物の場合、本発明に関わるトリメチロールプロパンのポリグリシジルエーテルの配合量はエポキシ樹脂全体中、5〜100%、好ましくは60〜100%の範囲であることがよい。   Moreover, you may mix | blend another kind of epoxy resin other than the polyglycidyl ether of the trimethylol propane in connection with this invention as an epoxy resin component in the epoxy resin composition of this invention. As the epoxy resin in this case, all ordinary epoxy resins having two or more epoxy groups in the molecule can be used. Examples include divalent phenols such as bisphenol A, bisphenol S, fluorene bisphenol, 4,4′-biphenol, 2,2′-biphenol, hydroquinone, resorcin, or tris- (4-hydroxydiphenyl) methane. Glycidyl derived from trivalent or higher phenols such as 1,1,2,2-tetrakis (4-hydroxydiphenyl) ethane, phenol novolak, o-cresol novolak, or halogenated bisphenols such as tetrabromobisphenol A Examples include etherified products, polyglycidyl ethers of alcohols such as polyethylene glycol and polypropylene glycol, polyglycidyl amines such as diaminodiphenylmethane, and alicyclic epoxy resins. These epoxy resins can be used alone or in combination of two or more. And in the case of the epoxy resin composition of the present invention, the blending amount of the polyglycidyl ether of trimethylolpropane related to the present invention should be in the range of 5 to 100%, preferably 60 to 100% in the whole epoxy resin. .

また、本発明のエポキシ樹脂組成物中には、ポリエステル、ポリアミド、ポリイミド、ポリエーテル、ポリウレタン、石油樹脂、インデンクマロン樹脂、フェノキシ樹脂等のオリゴマーまたは高分子化合物を適宜配合してもよいし、無機充填剤、顔料、難燃剤、チクソ性付与剤、カップリング剤、流動性向上剤等の添加剤を配合してもよい。無機充填剤としては、例えば、球状あるいは、破砕状の溶融シリカ、結晶シリカ等のシリカ粉末、アルミナ粉末、ガラス粉末、マイカ、タルク、炭酸カルシウム、アルミナまたは水和アルミナ等が挙げられる。顔料としては、有機系または無機系の体質顔料、鱗片状顔料等がある。チクソ性付与剤としては、シリコン系、ヒマシ油系、脂肪族アマイドワックス、酸化ポリエチレンワックス、有機ベントナイト系等を挙げることができる。また更に必要に応じて、本発明の樹脂組成物には、カルナバワックス、OPワックス等の離型剤、γ−グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック等の着色剤、三酸化アンチモン等の難燃剤、シリコンオイル等の低応力化剤、ステアリン酸カルシウム等の滑剤等を使用できる。   Further, in the epoxy resin composition of the present invention, an oligomer or a polymer compound such as polyester, polyamide, polyimide, polyether, polyurethane, petroleum resin, indene coumarone resin, phenoxy resin may be appropriately blended, You may mix | blend additives, such as an inorganic filler, a pigment, a flame retardant, a thixotropy imparting agent, a coupling agent, and a fluidity improver. Examples of the inorganic filler include silica powder such as spherical or crushed fused silica and crystalline silica, alumina powder, glass powder, mica, talc, calcium carbonate, alumina, and hydrated alumina. Examples of the pigment include organic or inorganic extender pigments and scaly pigments. Examples of the thixotropic agent include silicon-based, castor oil-based, aliphatic amide wax, oxidized polyethylene wax, and organic bentonite-based. Further, if necessary, the resin composition of the present invention includes a release agent such as carnauba wax and OP wax, a coupling agent such as γ-glycidoxypropyltrimethoxysilane, a colorant such as carbon black, three A flame retardant such as antimony oxide, a low stress agent such as silicon oil, a lubricant such as calcium stearate, and the like can be used.

更に、必要に応じて本発明の樹脂組成物には、公知の硬化促進剤を用いることができる。例を挙げれば、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール等のイミダゾール類、2−メチルイミダゾリン、2−エチル−4−メチルイミダゾリン等のイミダゾリン類、イミダゾール化合物のトリアジン塩、シアノエチル塩、シアノエチルトリメリット酸塩などの各種塩類、酢酸亜鉛、酢酸ナトリウムなどの金属系化合物類、テトラエチルアンモニウムクロリドなどの第4級アンモニウム塩類、アミド化合物類、トリフェニルホスフィン等の有機リン化合物類などを挙げることができる。これら硬化促進剤の配合割合は、本発明のエポキシ樹脂100質量部に対し、0.01〜5量部、より好ましくは0.1〜2量部である。 Furthermore, a known curing accelerator can be used in the resin composition of the present invention as necessary. Examples include imidazoles such as 2-methylimidazole and 2-ethyl-4-methylimidazole, imidazolines such as 2-methylimidazoline and 2-ethyl-4-methylimidazoline, triazine salts of imidazole compounds, cyanoethyl salts, List various salts such as cyanoethyl trimellitic acid salt, metal compounds such as zinc acetate and sodium acetate, quaternary ammonium salts such as tetraethylammonium chloride, amide compounds, and organophosphorus compounds such as triphenylphosphine. Can do. The mixing ratio of the curing accelerator, relative to the epoxy resin 100 parts by weight of the present invention, 0.01 to 5 mass parts, more preferably 0.1 to 2 mass parts.

本発明のエポキシ樹脂硬化物は、上記のエポキシ樹脂組成物を加熱することにより得ることができる。硬化物を得るための方法としては注型、注入、ポッティング、ディッピング、ドリップコーティング、トランスファー成形、圧縮成形等が好適に用いられ、その際の温度としては通常、100℃〜300℃の範囲である。   The cured epoxy resin of the present invention can be obtained by heating the above epoxy resin composition. Casting, pouring, potting, dipping, drip coating, transfer molding, compression molding and the like are suitably used as methods for obtaining a cured product, and the temperature at that time is usually in the range of 100 ° C to 300 ° C. .

以下に本発明の実施例および比較例を挙げ詳細に説明する。本発明はこれらの実施例に限定されるものではない。なお例中の部は質量部、%は質量%を意味する。また、物性値は次の方法により測定した。
エポキシ当量はJIS K 7236の規定に従い測定した。
全塩素量はJIS K 7243−3の規定に従い測定した。
粘度は、JIS K-7233、単一円筒回転粘度計法により測定した。
ガスクロマトグラフィー測定は、以下の条件で測定した。
モノ、ジ、トリグリシジル体の含有量はそれぞれガスクロマトグラフィー分析の結果得られる
ピークの面積%を表す。
装置 :島津製作所社製「GC−14B」
カラム :ガラス製パックドカラム 長さ1.1m、直径3.2mm
充填剤 :silicone OV−17
担体 :chromosorb W AW−DMCS
フローコントローラー:水素50kPa、空気50kPa、キャリア50kPa、プライマリ400kPa
カラム流量 :50ml/min
INJECTION温度 :280℃、FID温度:320℃、カラム温度:160℃×2min、昇温速度:20℃/min、最終カラム温度:300℃×5min
サンプル :5wt%アセトン溶液
注入量 :2μL
Hereinafter, examples and comparative examples of the present invention will be described in detail. The present invention is not limited to these examples. In addition, the part in an example means a mass part and% means the mass%. The physical property values were measured by the following methods.
The epoxy equivalent was measured in accordance with JIS K 7236.
The total chlorine amount was measured in accordance with JIS K 7243-3.
The viscosity was measured by JIS K-7233, single cylinder rotational viscometer method.
The gas chromatography measurement was performed under the following conditions.
The mono, di, and triglycidyl content represents the area% of the peak obtained as a result of gas chromatography analysis.
Apparatus: “GC-14B” manufactured by Shimadzu Corporation
Column: Glass packed column 1.1 m in length and 3.2 mm in diameter
Filler: silicone OV-17
Carrier: chromosorb W AW-DMCS
Flow controller: hydrogen 50kPa, air 50kPa, carrier 50kPa, primary 400kPa
Column flow rate: 50 ml / min
INJECTION temperature: 280 ° C., FID temperature: 320 ° C., column temperature: 160 ° C. × 2 min, heating rate: 20 ° C./min, final column temperature: 300 ° C. × 5 min
Sample: 5 wt% acetone solution injection amount: 2 μL

GPC測定は、以下の条件で測定した。n=0含有量はGPC分析の結果得られるピークの面積%を表す。
機器:東ソー株式会社GPC8220
分離カラム:TSKgel G2000HXL、TSKgel G2000HXL
TSKgel:G10000HXLを直列で連結
カラム温 :40℃
溶離液:テトラヒドロフランを1ml/minの流速
検出器:RI検出器

実施例1
GPC measurement was performed under the following conditions. The content of n = 0 represents the peak area% obtained as a result of the GPC analysis.
Equipment: Tosoh Corporation GPC8220
Separation column: TSKgel G2000HXL, TSKgel G2000HXL
TSKgel: G10000HXL connecting column temperature at series: 40 ° C.
Eluent: Tetrahydrofuran at 1 ml / min Flow rate detector: RI detector

Example 1

撹拌噐、温度計、窒素ガス導入装置、滴下装置、冷却管及び油水分離装置を備えた内容量1Lのガラスフラスコにトリメチロールプロパン(TMP)90部、エピクロルヒドリン652部、ジエチレングリコールジメチルエーテル65.2部、水6.5部を仕込みを仕込み、窒素ガスを流しながら60℃まで加熱して溶解した。60℃迄昇温後、99%水酸化ナトリウム77.3部を投入し同温度で6時間反応を行った。濾過により生成した塩を除き、エピクロロヒドリンを留去し、トルエン500部に溶解した。80℃迄昇温後、49.1%水酸化ナトリウム水溶液0.32部および温水1.25部を加えて同温度で1時間精製反応を実施した。その後温水25部を加えて攪拌、分液し樹脂溶液を脱水濾過、トルエンを蒸留して除去して、164.2gのエポキシ樹脂を得た。この樹脂のエポキシ当量は128g/eq、粘度150mPa・s/25℃、全塩素0.23%、GPCによるn=0純度は58%、ガスクロマトグラフィーによるn=0成分のモノ:ジ:トリグリシジル体比率は0:60:40であった。得られた樹脂の性状を表1に記載した。
実施例2
In a 1 L glass flask equipped with a stirrer, thermometer, nitrogen gas introducing device, dropping device, cooling pipe and oil / water separator, 90 parts of trimethylolpropane (TMP), 652 parts of epichlorohydrin, 65.2 parts of diethylene glycol dimethyl ether, 6.5 parts of water was charged, and dissolved by heating to 60 ° C. while flowing nitrogen gas. After the temperature was raised to 60 ° C., 77.3 parts of 99% sodium hydroxide was added and the reaction was carried out at the same temperature for 6 hours. Except for the salt produced by filtration, epichlorohydrin was distilled off and dissolved in 500 parts of toluene. After the temperature was raised to 80 ° C., 0.32 parts of 49.1% aqueous sodium hydroxide solution and 1.25 parts of warm water were added and a purification reaction was carried out at the same temperature for 1 hour. Thereafter, 25 parts of warm water was added, stirred and separated, the resin solution was dehydrated and filtered, and toluene was distilled off to obtain 164.2 g of an epoxy resin. Epoxy equivalent of this resin is 128 g / eq, viscosity is 150 mPa · s / 25 ° C., total chlorine is 0.23%, n = 0 purity by GPC is 58%, and n = 0 component mono: di: triglycidyl by gas chromatography The body ratio was 0:60:40. Properties of the obtained resin are shown in Table 1.
Example 2

99%水酸化ナトリウムを77.3部から116.0部に変更した以外は、実施例1と同様の操作を行い154.5gのエポキシ樹脂を得た。この樹脂のエポキシ当量は125g/eq、全塩素量は0.25%、GPCによるn=0純度は50%、ガスクロマトグラフィーによるn=0成分のモノ:ジ:トリグリシジル体比率は0:38:62であった。得られた樹脂の性状を表1に記載した。
比較例1
154.5 g of epoxy resin was obtained in the same manner as in Example 1 except that 99% sodium hydroxide was changed from 77.3 parts to 116.0 parts. The epoxy equivalent of this resin is 125 g / eq, the total chlorine content is 0.25%, the purity of n = 0 by GPC is 50%, and the ratio of mono: di: triglycidyl of n = 0 component by gas chromatography is 0:38. : 62. Properties of the obtained resin are shown in Table 1.
Comparative Example 1

水6.5部を0.65部に変更した以外は、実施例1と同様の操作を行い148.2gのエポキシ樹脂を得た。この樹脂のエポキシ当量は135g/eq、全塩素量は0.25%、GPCによるn=0純度は50%、ガスクロマトグラフィーによるn=0成分のモノ:ジ:トリグリシジル体比率は0:75:25であった。得られた樹脂の性状を表1に記載した。
比較例2
Except for changing 6.5 parts of water to 0.65 parts, the same operation as in Example 1 was performed to obtain 148.2 g of an epoxy resin. This resin has an epoxy equivalent of 135 g / eq, a total chlorine content of 0.25%, a GPC n = 0 purity of 50%, and a gas chromatography n = 0 component mono: di: triglycidyl ratio of 0:75. : 25. Properties of the obtained resin are shown in Table 1.
Comparative Example 2

東都化成社製YH−300(トリメチロールプロパングリシジルエーテル)。YH−300のエポキシ当量は142g/eq、粘度147mPa・s/25℃、全塩素5.0%、GPCによるn=0純度は29%、 ガスクロマトグラフィーによるn=0成分のモノ:ジ:トリグリシジル体比率は0:81:19であった。樹脂の性状を表1に記載した。   YH-300 (trimethylolpropane glycidyl ether) manufactured by Tohto Kasei Co., Ltd. The epoxy equivalent of YH-300 is 142 g / eq, viscosity is 147 mPa · s / 25 ° C., total chlorine is 5.0%, n = 0 purity by GPC is 29%, and n = 0 component mono: di: tri by gas chromatography. The glycidyl body ratio was 0:81:19. The properties of the resin are shown in Table 1.

Figure 0005744010
実施例3
Figure 0005744010
Example 3

実施例1で得られたエポキシ樹脂(以下エポキシ樹脂A)をフィンテック社製 薄膜分子蒸留機KDL−4を使用して、圧力0.3pa、温度125〜135℃で分子蒸留を行いエポキシ樹脂Dを得た。得られた樹脂の性状を表2に記載した。
実施例4
The epoxy resin obtained in Example 1 (hereinafter referred to as epoxy resin A) was subjected to molecular distillation at a pressure of 0.3 pa and a temperature of 125 to 135 ° C. using a thin film molecular distillation machine KDL-4 manufactured by Fintech Co., Ltd. Got. The properties of the obtained resin are shown in Table 2.
Example 4

実施例2で得られたエポキシ樹脂(以下エポキシ樹脂B)を実施例3と同様に分子蒸留を行こないエポキシ樹脂Eを得た。得られた樹脂の性状を表2に記載した。
比較例3
The epoxy resin (hereinafter referred to as epoxy resin B) obtained in Example 2 was subjected to molecular distillation in the same manner as in Example 3 to obtain Epoxy Resin E. The properties of the obtained resin are shown in Table 2.
Comparative Example 3

実施例1で得られたエポキシ樹脂(以下エポキシ樹脂C)を実施例3と同様に分子蒸留を行こないエポキシ樹脂Fを得た。得られた樹脂の性状を表2に記載した。
比較例4
The epoxy resin (hereinafter referred to as epoxy resin C) obtained in Example 1 was subjected to molecular distillation in the same manner as in Example 3 to obtain an epoxy resin F. The properties of the obtained resin are shown in Table 2.
Comparative Example 4

東都化成社製YH−300を実施例3と同様に分子蒸留を行こないエポキシ樹脂Gを得た。得られた樹脂の性状を表2に記載した。 YH-300 manufactured by Tohto Kasei Co., Ltd. was subjected to molecular distillation in the same manner as in Example 3 to obtain an epoxy resin G. The properties of the obtained resin are shown in Table 2.

Figure 0005744010
実施例5、6比較例5,6実施例7、8比較例7,8
Figure 0005744010
Examples 5 and 6 Comparative Examples 5 and 6 Examples 7 and 8 Comparative Examples 7 and 8

エポキシ樹脂成分として、東都化成社製YD−8125を100重量部に対してエポキシ樹脂A〜エポキシ樹脂G、YH−300を混合粘度が1000mPa・s/25℃になるような割合で配合した。硬化剤として、リカシッドMH-700(無水メチルヘキサヒドロフタル酸、酸無水物当量168g/eq、新日本理化製)、硬化促進剤として、ヒシコーリンPX-4ET(有機ホスホニウム塩化合物、日本化学製)を用い、表3に示す配合でエポキシ樹脂組成物を得た。なお、表中の数値は配合における重量部を示す。  As an epoxy resin component, YD-8125 manufactured by Tohto Kasei Co., Ltd. was blended with 100 parts by weight of Epoxy Resin A to Epoxy Resin G and YH-300 at a ratio such that the mixed viscosity was 1000 mPa · s / 25 ° C. Ricacid MH-700 (Methylhexahydrophthalic anhydride, acid anhydride equivalent 168g / eq, manufactured by Shin Nippon Chemical Co., Ltd.) as a curing agent, and Hishicolin PX-4ET (organic phosphonium salt compound, manufactured by Nippon Kagaku) as a curing accelerator An epoxy resin composition was obtained using the composition shown in Table 3. In addition, the numerical value in a table | surface shows the weight part in mixing | blending.

このエポキシ樹脂組成物を用いて100℃で2時間かけて成形し、更に140℃にて12時間ポストキュアを行い、硬化物試験片を得た後、各種物性測定に供した。結果を表3に示す。
なお、硬化物性の試験方法及び評価方法は以下の通りである。
(1)硬化物Tgは、熱機械測定装置(セイコー電子社製)を用いて10℃/分の昇温速度で測定した。
(2)吸水率は、直径50 mm、厚さ5 mmの円形の試験片を用いて、23℃、100% RHの条件で50時間吸湿させた後の重量増加変化率とした。
(3)イオン性不純物量は、105℃、20時間のプレッシャークッカーテストを行った後の抽出イオン分をイオンクロマトグラフィーにて、塩素イオンを測定し、固形分に換算して求めた。
The epoxy resin composition was molded at 100 ° C. for 2 hours, and further post-cured at 140 ° C. for 12 hours to obtain a cured product test piece, which was then subjected to various physical property measurements. The results are shown in Table 3.
In addition, the test method and evaluation method of hardened | cured material property are as follows.
(1) The cured product Tg was measured at a rate of temperature increase of 10 ° C./min using a thermomechanical measuring device (manufactured by Seiko Denshi).
(2) The water absorption was defined as the rate of change in weight increase after absorbing moisture for 50 hours at 23 ° C. and 100% RH using a circular test piece having a diameter of 50 mm and a thickness of 5 mm.
(3) The amount of ionic impurities was determined by measuring the chloride ion of the extracted ion content after performing a pressure cooker test at 105 ° C. for 20 hours and converting the extracted ion content into a solid content.

エポキシ樹脂A、Bを用いた実施例5、6はエポキシ樹脂Cを用いた比較例5に比較して高い硬化物Tgと低い吸水率を示す。またYH−300を用いた比較例6に比較してPCT塩素抽出量が大幅に少ない。
同様に、エポキシ樹脂D、Eを用いた実施例7、8はエポキシ樹脂Fを用いた比較例7に比較して高い硬化物Tgと低い吸水率を示す。またエポキシ樹脂Gを用いた比較例8に比較してPCT塩素抽出量が大幅に少ない。
Examples 5 and 6 using epoxy resins A and B show a high cured product Tg and a low water absorption rate as compared with Comparative Example 5 using epoxy resin C. Moreover, the amount of PCT chlorine extraction is significantly smaller than that of Comparative Example 6 using YH-300.
Similarly, Examples 7 and 8 using epoxy resins D and E show a high cured product Tg and a low water absorption rate as compared with Comparative Example 7 using epoxy resin F. Further, the amount of PCT chlorine extraction is significantly smaller than that of Comparative Example 8 using epoxy resin G.

Figure 0005744010
Figure 0005744010

本発明によるエポキシ樹脂を用いると、低粘度性に優れるとともに、Tgが高く耐湿性優れた硬化物が得られる。これは、通常の使用範囲において必要十分な耐熱性で湿性優れた硬化物が製造可能になり、半導体素子に代表される電気・電子部品等の封止、コーティング材料、積層材料、複合材料等に有用な樹脂組成物が得られ、その技術上の意味に大きなものがある。   When the epoxy resin according to the present invention is used, a cured product having excellent low viscosity and high Tg and excellent moisture resistance can be obtained. This makes it possible to produce hardened materials with sufficient heat resistance and excellent moisture resistance in the normal use range, for sealing electrical and electronic parts such as semiconductor elements, coating materials, laminated materials, composite materials, etc. Useful resin compositions can be obtained, and the technical meaning is significant.

Claims (2)

トリメチロールプロパンとエピクロルヒドリンとを反応させて得られるトリメチロールプロパンのポリグリシジルエーテルを必須成分として含むエポキシ樹脂組成物であって、該トリメチロールプロパンのポリグリシジルエーテルが、ガスクロマトグラフィー分析におけるn=0成分(トリメチロールプロパンモノグリシジルエーテル、トリメチロールプロパンジグリシジルエーテル及びトリメチロールプロパントリグリシジルエーテルの混合物)中のトリメチロールプロパントリグリシジルエーテルの比率が35%以上62%以下であり、ゲル浸透クロマトグラフィー分析におけるn=0の含有量が50%以上98%以下であり、全塩素量が0.3%以下、25℃での粘度が300mPa・s以下であることを特徴とするトリメチロールプロパンのポリグリシジルエーテルを必須成分として含むエポキシ樹脂組成物。 An epoxy resin composition comprising a polyglycidyl ether of trimethylolpropane obtained by reacting trimethylol propane and epichlorohydrin as essential components, polyglycidyl ethers of the trimethylol propane, n = 0 in the gas chromatography analysis The ratio of trimethylolpropane triglycidyl ether in the components ( a mixture of trimethylolpropane monoglycidyl ether, trimethylolpropane diglycidyl ether and trimethylolpropane triglycidyl ether ) is 35% or more and 62% or less , and gel permeation chromatography analysis In which n = 0 content is 50% or more and 98% or less, the total chlorine content is 0.3% or less, and the viscosity at 25 ° C. is 300 mPa · s or less. An epoxy resin composition comprising polyglycidyl ether of bread as an essential component. 請求項1記載のエポキシ樹脂組成物を硬化してなる硬化物。   Hardened | cured material formed by hardening | curing the epoxy resin composition of Claim 1.
JP2012509642A 2010-03-31 2011-03-29 Epoxy resin composition and cured product thereof Active JP5744010B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012509642A JP5744010B2 (en) 2010-03-31 2011-03-29 Epoxy resin composition and cured product thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010083525 2010-03-31
JP2010083525 2010-03-31
JP2012509642A JP5744010B2 (en) 2010-03-31 2011-03-29 Epoxy resin composition and cured product thereof
PCT/JP2011/058485 WO2011125962A1 (en) 2010-03-31 2011-03-29 Epoxy resin composition and cured product thereof

Publications (2)

Publication Number Publication Date
JPWO2011125962A1 JPWO2011125962A1 (en) 2013-07-11
JP5744010B2 true JP5744010B2 (en) 2015-07-01

Family

ID=44762897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012509642A Active JP5744010B2 (en) 2010-03-31 2011-03-29 Epoxy resin composition and cured product thereof

Country Status (3)

Country Link
JP (1) JP5744010B2 (en)
TW (1) TWI498349B (en)
WO (1) WO2011125962A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108383808A (en) * 2018-03-15 2018-08-10 中国林业科学研究院林产化学工业研究所 A kind of preparation method of epoxide diluent
JP7512064B2 (en) 2020-03-31 2024-07-08 日鉄ケミカル&マテリアル株式会社 CURABLE RESIN COMPOSITION AND TOW PREPREG USING SAME
CN113651945A (en) * 2021-08-13 2021-11-16 江苏扬农化工集团有限公司 Glycidyl ether epoxy resin and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106766A (en) * 1999-10-08 2001-04-17 Toto Kasei Co Ltd Flame-retarded liquid epoxy resin composition
JP2003246782A (en) * 2001-12-20 2003-09-02 Nippon Steel Chem Co Ltd Liquid epoxy compound
US6677468B1 (en) * 2001-07-24 2004-01-13 Loctite Corporation Methods of reducing chloride content in epoxy compounds
JP2004083711A (en) * 2002-08-26 2004-03-18 Nippon Steel Chem Co Ltd Liquid epoxy resin composition
JP2004231787A (en) * 2003-01-30 2004-08-19 Nippon Steel Chem Co Ltd Epoxy resin diluent, epoxy resin composition and epoxy resin cured product
JP2009265450A (en) * 2008-04-26 2009-11-12 Nippon Kayaku Co Ltd Photosensitive resin composition for microelectronic mechanical system (mems) and cured product of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106766A (en) * 1999-10-08 2001-04-17 Toto Kasei Co Ltd Flame-retarded liquid epoxy resin composition
US6677468B1 (en) * 2001-07-24 2004-01-13 Loctite Corporation Methods of reducing chloride content in epoxy compounds
JP2003246782A (en) * 2001-12-20 2003-09-02 Nippon Steel Chem Co Ltd Liquid epoxy compound
JP2004083711A (en) * 2002-08-26 2004-03-18 Nippon Steel Chem Co Ltd Liquid epoxy resin composition
JP2004231787A (en) * 2003-01-30 2004-08-19 Nippon Steel Chem Co Ltd Epoxy resin diluent, epoxy resin composition and epoxy resin cured product
JP2009265450A (en) * 2008-04-26 2009-11-12 Nippon Kayaku Co Ltd Photosensitive resin composition for microelectronic mechanical system (mems) and cured product of the same

Also Published As

Publication number Publication date
JPWO2011125962A1 (en) 2013-07-11
TWI498349B (en) 2015-09-01
TW201141899A (en) 2011-12-01
WO2011125962A1 (en) 2011-10-13

Similar Documents

Publication Publication Date Title
JP5273762B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
TWI425019B (en) Liquid epoxy resin, epoxy resin composition and hardened product
JP5457304B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
WO2008020594A1 (en) Modified liquid epoxy resin, epoxy resin composition using the same, and cured product thereof
JP5734603B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP5744010B2 (en) Epoxy resin composition and cured product thereof
JP5153000B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product
JP2008239891A (en) Novel epoxy resin, epoxy resin composition containing the same, and cured matter therefrom
JP7515316B2 (en) Epoxy resin composition and its cured product
WO2021201046A1 (en) Polyhydric hydroxy resin, epoxy resin, method for producing same, epoxy resin composition using same and cured product
JP2010235823A (en) Epoxy resin, epoxy resin composition and cured product of the same
JP4268829B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product
JP5390491B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product
JP5579300B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP5131961B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP2008231071A (en) New polyvalent hydroxy compound, and epoxy resin composition and its cured product
JP5979778B2 (en) Epoxy resin curable composition and cured product thereof
JP2001114865A (en) Epoxy resin composition and epoxy resin composition for semiconductor sealing
JP4813201B2 (en) Indole skeleton-containing epoxy resin, epoxy resin composition and cured product thereof
JP2022093044A (en) Multivalent hydroxy resin, epoxy resin, their manufacturing method, epoxy resin composition and cured product using them
JP4776446B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP2013129782A (en) Epoxy resin composition and cured product of the same
JP3978094B2 (en) Hydroxy compound, epoxy resin, production method thereof, epoxy resin composition and cured product
WO2006043524A1 (en) Resin containing indole skeleton, epoxy resin containing indole skeleton, epoxy resin composition and cured product therefrom
JP2004010724A (en) Epoxy resin, method for producing the same, epoxy resin composition and cured product of the composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141031

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20150206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150428

R150 Certificate of patent or registration of utility model

Ref document number: 5744010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250