[go: up one dir, main page]

WO2011125962A1 - Epoxy resin composition and cured product thereof - Google Patents

Epoxy resin composition and cured product thereof Download PDF

Info

Publication number
WO2011125962A1
WO2011125962A1 PCT/JP2011/058485 JP2011058485W WO2011125962A1 WO 2011125962 A1 WO2011125962 A1 WO 2011125962A1 JP 2011058485 W JP2011058485 W JP 2011058485W WO 2011125962 A1 WO2011125962 A1 WO 2011125962A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
cured product
trimethylolpropane
viscosity
Prior art date
Application number
PCT/JP2011/058485
Other languages
French (fr)
Japanese (ja)
Inventor
一彦 吉田
秀安 朝蔭
亮 平塚
力 三宅
Original Assignee
新日鐵化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵化学株式会社 filed Critical 新日鐵化学株式会社
Priority to JP2012509642A priority Critical patent/JP5744010B2/en
Publication of WO2011125962A1 publication Critical patent/WO2011125962A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4215Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/688Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention is essential for use in glycidyl ethers of trimethylolpropane which are low in viscosity, low in organic chlorine content, and high in heat resistance, which are suitable mainly for the electric sealing materials such as semiconductor encapsulant applications.
  • the present invention relates to a resin composition blended as a component, and a cured product thereof.
  • Epoxy resins There are various epoxy resins from liquid to solid, and since epoxy resins are excellent in reactivity with the curing agent, they are easy to handle, and when crosslinked by the curing agent, they become cured resins having a large crosslinking density, which is excellent. It exhibits heat resistance, moisture resistance, chemical resistance, electrical properties, etc., and is widely used in the electrical and electronic fields. Epoxy resins have been used in a wide range of industrial applications, but their performance requirements have become increasingly sophisticated in recent years. For example, there is a semiconductor sealing material in a representative field of resin compositions containing an epoxy resin as a main ingredient, but in recent years, along with the improvement of the degree of integration of semiconductor elements, the package size tends to be larger and thinner.
  • liquid materials generally have the disadvantage of being less reliable than solid materials used for transfer molding. This is because the liquid material has an upper limit of viscosity, and there are restrictions on the epoxy resin, curing agent, filler, etc. to be used.
  • epoxy resins having an alcohol raw material are mentioned as epoxy resins excellent in low viscosity, epoxy resins having an alcohol raw material generally contain a large amount of chlorine, and the heat resistance and hygroscopicity of cured products are low at present.
  • the epoxy resin of a trimethylol propane is mentioned as an epoxy resin which is excellent in low viscosity and high heat resistance of hardened
  • An object of the present invention is to provide an epoxy resin composition which gives a cured product having a low viscosity and excellent heat resistance and moisture resistance, as well as a cured product thereof.
  • the low viscosity epoxy resin characterized by having a body ratio of 35% or more, a total chlorine content of 0.3% by weight or less, and a viscosity at 25 ° C. of 300 mPa ⁇ s or less is blended as an essential component It is an epoxy resin composition.
  • the present invention is a cured product obtained by curing the epoxy resin composition.
  • the epoxy resin composition using the epoxy resin of the present invention has excellent low viscosity, and a cured product obtained by curing the same has excellent performance in heat resistance and moisture resistance, so a heavy corrosion protection paint is obtained.
  • Paint applications such as powder coatings, PCM coatings and can coatings, civil engineering and construction applications, bonding applications, electrical insulation applications, electric and electronic parts applications such as semiconductor chip tacks, printed wiring boards and carbon fiber reinforced plastics (CFRP In particular, it can be suitably used for printed wiring boards, insulating materials in the field of electricity and electronics such as semiconductor encapsulation, and the like.
  • the ratio of triglycidyl is 35% or more. If the triglycidyl ratio is 35% or less, the physical properties such as Tg of the cured product decrease, and the resin viscosity increases, which is not preferable, and is preferably 50% or more, more preferably 75% or more.
  • the polyglycidyl ether of trimethylolpropane used in the present invention has a total chlorine content of 0.3% by weight or less, preferably 0.2% by weight or less.
  • the polyglycidyl ether of trimethylolpropane used in the present invention has a viscosity of 300 mPa ⁇ s or less at 25 ° C. When the viscosity at 25 ° C. exceeds 300 mPa ⁇ s, the dilution efficiency decreases, which is not preferable.
  • the method of reacting trimethylolpropane with epichlorohydrin can be carried out in the same manner as a conventional epoxidation reaction. For example, after blending and dissolving an excess of epichlorohydrin with respect to the hydroxyl group of trimethylolpropane, a method of reacting in the range of 40 to 120 ° C. for 1 to 10 hours in the presence of an alkali metal hydroxide may be mentioned.
  • the reaction it is preferable to carry out the reaction at 50 to 90 ° C.
  • the alkali metal hydroxide used in the above reaction include lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide and the like, with sodium hydroxide and potassium hydroxide being particularly preferable.
  • the alkali may be an aqueous solution or a solid, but for ease of handling it is preferable to use an aqueous solution.
  • the amount of the alkali metal hydroxide used is usually 0.7 to 3.0 equivalents, preferably 0.8 to 2.0 equivalents, per equivalent of the alcoholic hydroxyl group.
  • the amount of epichlorohydrin used is 1 to 10 equivalents, preferably 2 to 6 equivalents, per equivalent of the hydroxyl group of polyhydric alcohol. When the amount of epichlorohydrin used is less than 1 equivalent, polymerization tends to proceed and the yield of the desired chlorohydrin ether decreases.
  • a quaternary ammonium salt may be added as a catalyst as needed to allow the reaction to proceed simply.
  • examples of quaternary ammonium salts that can be used include tetramethyl ammonium chloride, tetramethyl ammonium bromide, benzyltrimethyl ammonium chloride, benzyltriethyl ammonium chloride and the like.
  • the amount of quaternary ammonium salt used is usually 0.05 to 10% by weight, preferably 0.1 to 1% by weight, based on the amount of polyhydric alcohol used.
  • the reaction can be carried out in a solvent which does not react with the epoxy group.
  • aromatic hydrocarbons such as toluene, xylene and benzene, ketones such as methyl isobutyl ketone, methyl ethyl ketone, cyclohexanone and acetone Alcohols such as propanol and butanol
  • Glycol ethers such as diethylene glycol methyl ether, propylene glycol methyl ether and dipropylene glycol methyl ether
  • Aliphatic ethers such as diethyl ether, dibutyl ether and ethyl propyl ether Dioxane and tetrahydrofuran
  • Alicyclic ethers, dimethyl sulfoxide and the like can be mentioned, and two or more of them can be used in combination.
  • the amount of these solvents used is 200 parts by weight or less, preferably 5 to 150 parts by weight, and more preferably 10 to 100 parts by weight with respect to 100 parts by weight of epihalohydrin.
  • the reaction system water content is preferably 0.1% or more and less than 2.0%. When the water content in the system is lower than 0.1%, the reaction proceeds slowly. When the water content in the system is 2.0% or more, the glycidyl etherification reaction is inhibited by the influence of the water, and the contained chlorine becomes high.
  • organic solvent used herein examples include methyl isobutyl ketone, toluene, xylene, cyclohexanone, methanol, ethanol, propanol, butanol and the like, among which methyl isobutyl ketone, toluene and xylene are preferable, and a mixed solvent thereof is also preferable. good.
  • excess epihalohydrin is distilled off, dissolved in a solvent, filtered, washed with water to remove inorganic salts, and then the solvent is distilled off to obtain trimethylol used in the present invention.
  • the obtained epoxy resin is further added to the amount of remaining hydrolysable halogen from the viewpoint of reducing the amount of hydrolyzable halogen. Then, 1 to 30 times amount of alkali metal hydroxide is added, and purification reaction is carried out at a temperature of 60 to 90 ° C. for 10 minutes to 2 hours, followed by neutralization, washing with water, etc. And by-product salts can be removed, and the solvent can be further distilled off under reduced pressure to obtain further purified polyglycidyl ether of trimethylolpropane used in the present invention.
  • the epoxy resin composition of the present invention is an epoxy resin composition comprising an epoxy resin and a curing agent as essential components, wherein the polyglycidyl ether of trimethylolpropane according to claim 1 is blended as an epoxy resin component as an essential component. It is.
  • any of those generally known as curing agents for epoxy resins can be used. For example, dicyandiamide, polyhydric phenols, acid anhydrides, aromatic and aliphatic amines and the like.
  • polyhydric phenols for example, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4'-biphenol, 2,2'-biphenol, hydroquinone, resorcinol, naphthalenediol, etc.
  • phenols, naphthols, or divalent phenols such as bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4'-biphenol, 2,2'-biphenol, hydroquinone, resorcin, naphthalenediol and the like
  • polyphenolic compounds synthesized from condensing agents such as formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde and p-xylylene glycol.
  • Examples of the acid anhydride include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylhymic anhydride, nadic anhydride, trimellitic anhydride and the like.
  • aromatic amines such as 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenyl sulfone, m-phenylenediamine, p-xylylenediamine, etc., ethylenediamine, There are aliphatic amines such as hexamethylenediamine, diethylenetriamine and triethylenetetramine.
  • the amount of the known conventional curing agent used is preferably 0.4 to 2.0 equivalents of the functional group of the curing agent to 1 equivalent of the epoxy group which is the functional group of the epoxy resin, and 0.5 to 1.5 equivalents of More preferably, particularly preferably 0.5 to 1.0 equivalents. If the amount of the curing agent is less than 0.4 equivalent to 1 equivalent of epoxy group, or if the equivalent is 2.0 equivalents, curing may be incomplete and a good cured product may not be obtained.
  • one or more of these curing agents may be mixed and used.
  • epoxy resin in this case, all common epoxy resins having two or more epoxy groups in the molecule can be used.
  • bifunctional phenols such as bisphenol A, bisphenol S, fluorene bisphenol, 4,4'-biphenol, 2,2'-biphenol, hydroquinone and resorcin, or tris- (4-hydroxydiphenyl) methane
  • Glycidyl derived from trivalent or higher phenols such as 1,1,2,2-tetrakis (4-hydroxydiphenyl) ethane, phenol novolac, o-cresol novolac or halogenated bisphenols such as tetrabromobisphenol A
  • examples thereof include etherified products, polyglycidyl ethers of alcohols such as polyethylene glycol and polypropylene glycol, polyglycidyl amines such as diaminodiphenylmethane, and alicyclic epoxy resins.
  • epoxy resins can be used alone or in combination of two or more.
  • the blending amount of the polyglycidyl ether of trimethylolpropane according to the present invention is preferably in the range of 5 to 100%, preferably 60 to 100% in the entire epoxy resin.
  • an oligomer or polymer compound such as polyester, polyamide, polyimide, polyether, polyurethane, petroleum resin, indencumarone resin, phenoxy resin and the like may be appropriately blended.
  • blend additives such as an inorganic filler, a pigment, a flame retardant, a thixotropy imparting agent, a coupling agent, and a fluidity improver.
  • inorganic filler include spherical or crushed fused silica, silica powder such as crystalline silica, alumina powder, glass powder, mica, talc, calcium carbonate, alumina, hydrated alumina and the like.
  • the pigment include organic or inorganic extender pigments and scale-like pigments.
  • the thixotropic agent include silicones, castor oils, aliphatic amide waxes, polyethylene oxide waxes, organic bentonites, and the like.
  • mold release agents such as carnauba wax and OP wax
  • coupling agents such as ⁇ -glycidoxypropyltrimethoxysilane
  • colorants such as carbon black
  • Flame retardants such as antimony oxide, stress reducing agents such as silicone oil, lubricants such as calcium stearate
  • known curing accelerators can be used in the resin composition of the present invention.
  • imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole, imidazolines such as 2-methylimidazoline, 2-ethyl-4-methylimidazoline, triazine salts of imidazole compounds, cyanoethyl salts, Various salts such as cyanoethyl trimellitic acid salt, metal compounds such as zinc acetate and sodium acetate, quaternary ammonium salts such as tetraethyl ammonium chloride, amide compounds, organic phosphorus compounds such as triphenylphosphine and the like. Can.
  • the compounding ratio of these curing accelerators is 0.01 to 5 parts by weight, more preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the epoxy resin of the present invention.
  • the epoxy resin cured product of the present invention can be obtained by heating the above-mentioned epoxy resin composition.
  • As a method for obtaining a cured product casting, pouring, potting, dipping, drip coating, transfer molding, compression molding, etc. are suitably used, and the temperature at that time is usually in the range of 100 ° C. to 300 ° C. .
  • Equipment Tosoh Corporation GPC8220 Separation column: TSKgel G2000HXL, TSKgel G2000HXL, TSKgel G1000HXL connected in series Column temperature: 40 ° C
  • Eluent Tetrahydrofuran at 1 ml / min flow rate detector: RI detector
  • TMP trimethylolpropane
  • 652 parts of epichlorohydrin 65.2 parts of diethylene glycol dimethyl ether in a 1-L glass flask equipped with a stirrer, thermometer, nitrogen gas introduction device, dropping device, cooling pipe and oil / water separation device 6.5 parts of water was charged and dissolved by heating to 60 ° C.
  • the ratio of diglycidyl body (2GE): triglycidyl body (3GE) was 0:60:40.
  • the properties of the obtained resin are described in Table 1.
  • Example 2 The same operation as in Example 1 was carried out except that the amount of 99% sodium hydroxide was changed from 77.3 parts to 116.0 parts, to obtain 154.5 g of an epoxy resin.
  • the properties of the obtained resin are described in Table 1. Comparative Example 1 The same operation as in Example 1 was carried out except that 6.5 parts of water was changed to 0.65 parts, to obtain 148.2 g of an epoxy resin.
  • the properties of the obtained resin are described in Table 1. Comparative example 2 Tohto Kasei YH-300 (trimethylolpropane glycidyl ether).
  • the properties of the resin are described in Table 1.
  • Example 3 The epoxy resin D (hereinafter referred to as epoxy resin A) obtained in Example 1 is subjected to molecular distillation at a pressure of 0.3 pa and a temperature of 125 to 135 ° C. using a thin film molecular distillation machine KDL-4 manufactured by Fintech Co., Ltd. I got The properties of the obtained resin are described in Table 2.
  • Example 4 The epoxy resin E obtained by avoiding molecular distillation of the epoxy resin obtained in Example 2 (hereinafter, epoxy resin B) as in Example 3 was obtained. The properties of the obtained resin are described in Table 2. Comparative example 3 The epoxy resin F which did not go through molecular distillation similarly to Example 3 with the epoxy resin (following epoxy resin C) obtained in Example 1 was obtained. The properties of the obtained resin are described in Table 2. Comparative example 4 An epoxy resin G not subjected to molecular distillation was obtained in the same manner as in Example 3 for YH-300 manufactured by Tohto Kasei Co., Ltd. The properties of the obtained resin are described in Table 2.
  • RIKACID MH-700 methyl hexahydrophthalic acid anhydride, acid anhydride equivalent 168 g / eq, Shin Nippon Rika Co., Ltd.
  • hysicoline PX-4ET organic phosphonium salt compound, Nippon Chemical Co., Ltd.
  • the epoxy resin composition was obtained by using the composition shown in Table 3. The numerical values in the table indicate parts by weight in the formulation.
  • the resulting epoxy resin composition was molded at 100 ° C. for 2 hours, and post cured at 140 ° C. for 12 hours to obtain a cured test piece, which was then subjected to various physical property measurements. The results are shown in Table 3.
  • test method and evaluation method of hardening physical property are as follows.
  • the cured product Tg was measured at a temperature rising rate of 10 ° C./min using a thermo-mechanical measurement device (manufactured by Seiko Instruments Inc.).
  • the water absorption rate was taken as a weight increase change rate after absorbing moisture for 50 hours under the conditions of 23 ° C. and 100% RH using a circular test piece of 50 mm in diameter and 5 mm in thickness.
  • the amount of ionic impurities was determined by measuring the chloride ion by ion chromatography using the extracted ions after the pressure cooker test at 105 ° C. for 20 hours, and converting it to the solid content.
  • Examples 5 and 6 using the epoxy resins A and B show high cured product Tg and low water absorption. Moreover, compared with the comparative example 6 using YH-300, the amount of PCT chlorine extraction is significantly smaller. Similarly, Examples 7 and 8 in which epoxy resins D and E are used show higher cured product Tg and lower water absorption as compared with Comparative Example 7 in which epoxy resin F is used. Further, compared to Comparative Example 8 in which the epoxy resin G was used, the PCT chlorine extraction amount was significantly smaller.
  • a cured product having a high Tg and an excellent moisture resistance can be obtained while being excellent in low viscosity.
  • Useful resin compositions are obtained, and the technical meaning is significant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A high Tg cured product having a excellent low viscosity and excellent moisture resistance can be obtained by using an epoxy resin composition formed by combining a trimethylolpropane glycidyl ether as an essential component and is characterized in that the ratio of a triglycidyl body in the n = 0 component (a trimethylolpropane glycidyl ether monomer included in a trimethylolpropane polyglycidyl ether) in gas chromatographic analysis is at least 35%, the total amount of chlorine is no more than 0.3%, and the viscosity at 25°C is no more than 300 mPa⋅s. As a result, a cured product can be produced that has excellent heat resistance and moisture resistance sufficient for a normal range of use, and a resin composition is obtained that is useful in the sealing of electric and electronic components such as semiconductor elements, and as a coating material, laminated material, composite material, or the like, which is technically significant.

Description

エポキシ樹脂組成物及びその硬化物Epoxy resin composition and cured product thereof
 本発明は、主として半導体封止材用途をはじめとした電気絶縁材料等の電気電子産業用に好適な、低粘度で、有機塩素量が少なく、耐熱性の高い、トリメチロールプロパンのグリシジルエーテルを必須成分として配合してなる樹脂組成物、ならびにその硬化物に関するものである。 The present invention is essential for use in glycidyl ethers of trimethylolpropane which are low in viscosity, low in organic chlorine content, and high in heat resistance, which are suitable mainly for the electric sealing materials such as semiconductor encapsulant applications. The present invention relates to a resin composition blended as a component, and a cured product thereof.
 エポキシ樹脂は液状から固形まで様々なものがあり、またエポキシ樹脂は硬化剤との反応性に優れていることから取り扱い易く、硬化剤により架橋させた場合に大きな架橋密度を有する硬化樹脂となり、優れた耐熱性、耐湿性、耐薬品性、電気特性等を示すものであり電気・電子分野に多く使用されている。
 エポキシ樹脂は工業的に幅広い用途で使用されてきているが、その要求性能は近年ますます高度化している。例えば、エポキシ樹脂を主剤とする樹脂組成物の代表的分野に半導体封止材料があるが、近年、半導体素子の集積度の向上に伴い、パッケージサイズが大面積化、薄型化に向かうとともに、実装方式も表面実装化への移行が進展しており、より半田耐熱性に優れた材料の開発が望まれている。
 また最近では、高集積化、高密度実装化の技術動向により、従来の金型を利用したトランスファー成形によるパッケージに変わり、ハイブリッドIC、チップオンボード、テープキャリアパッケージ、プラスチックピングリッドアレイ、プラスチックボールグリッドアレイ等、金型を使用しないで液状材料を用いて封止し、実装する方式が増えてきている。しかし、一般に液状材料はトランスファー成形に用いる固形材料に比べて信頼性が低い欠点がある。これは、液状材料に粘度の上限があり、用いるエポキシ樹脂、硬化剤、充填剤等に制約があるからである。
 これらの問題点を克服するため、主剤となるエポキシ樹脂及び硬化剤には、低粘度化、低吸湿化、高耐熱化が望まれている。低粘度エポキシ樹脂としてはビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等が一般に広く知られているが、低粘度性の点で充分ではない。低粘度性に優れるエポキシ樹脂としてアルコール原料のエポキシ樹脂が挙げられるが、一般にアルコール原料のエポキシ樹脂は塩素量が多く、硬化物の耐熱性、吸湿性でも性能が低いのが現状である。そこで低粘度性に優れ、硬化物の耐熱性の高いエポキシ樹脂として、トリメチロールプロパンのエポキシ樹脂が挙げられる。
 トリメチロールプロパンのエポキシ樹脂として東都化成社製YH−300、ナガセケムテック社製デナコールEX−318があるがそれぞれ全塩素量が5%以上と多く、電子材料用途には不向きであった。また末端基純度が低く硬化物のTgが低いという問題点があった。
There are various epoxy resins from liquid to solid, and since epoxy resins are excellent in reactivity with the curing agent, they are easy to handle, and when crosslinked by the curing agent, they become cured resins having a large crosslinking density, which is excellent. It exhibits heat resistance, moisture resistance, chemical resistance, electrical properties, etc., and is widely used in the electrical and electronic fields.
Epoxy resins have been used in a wide range of industrial applications, but their performance requirements have become increasingly sophisticated in recent years. For example, there is a semiconductor sealing material in a representative field of resin compositions containing an epoxy resin as a main ingredient, but in recent years, along with the improvement of the degree of integration of semiconductor elements, the package size tends to be larger and thinner. With regard to the method as well, the transition to surface mounting has progressed, and development of a material having more excellent solder heat resistance is desired.
Recently, with the trend of high integration and high density packaging technology, the package has been changed to transfer molding using conventional mold, hybrid IC, chip on board, tape carrier package, plastic pin grid array, plastic ball grid Methods for sealing and mounting using a liquid material without using a mold, such as an array, are increasing. However, liquid materials generally have the disadvantage of being less reliable than solid materials used for transfer molding. This is because the liquid material has an upper limit of viscosity, and there are restrictions on the epoxy resin, curing agent, filler, etc. to be used.
In order to overcome these problems, it is desired to lower the viscosity, reduce the moisture absorption, and increase the heat resistance of the epoxy resin and the curing agent as main components. As a low viscosity epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, etc. are generally widely known, but they are not sufficient in the point of low viscosity. Although epoxy resins having an alcohol raw material are mentioned as epoxy resins excellent in low viscosity, epoxy resins having an alcohol raw material generally contain a large amount of chlorine, and the heat resistance and hygroscopicity of cured products are low at present. Then, the epoxy resin of a trimethylol propane is mentioned as an epoxy resin which is excellent in low viscosity and high heat resistance of hardened | cured material.
There are YH-300 manufactured by Tohto Kasei Co., Ltd. and Denacol EX-318 manufactured by Nagase Chemtech Co., Ltd. as epoxy resins for trimethylolpropane, but the total chlorine content is as large as 5% or more, respectively, which is unsuitable for electronic material applications. In addition, there is a problem that the terminal group purity is low and the Tg of the cured product is low.
 本発明の目的は、低粘度で、かつ耐熱性、耐湿性に優れた硬化物を与えるエポキシ樹脂組成物、ならびにその硬化物を提供することである。 An object of the present invention is to provide an epoxy resin composition which gives a cured product having a low viscosity and excellent heat resistance and moisture resistance, as well as a cured product thereof.
 すなわち本発明は、トリメチロールプロパンのポリグリシジルエーテルであって、ガスクロマトグラフィー分析におけるn=0成分(トリメチロールプロパンのポリグリシジルエーテルに含有されるトリメチロールプロパングリシジルエーテル単量体)中のトリグリシジル体の比率が35%以上であり、全塩素量が0.3重量%以下、25℃での粘度が300mPa・s以下であることを特徴とする低粘度エポキシ樹脂を必須成分として配合してなるエポキシ樹脂組成物である。
また、本発明は、前記エポキシ樹脂組成物硬化してなる硬化物である。
That is, the present invention is a polyglycidyl ether of trimethylolpropane, which is triglycidyl in n = 0 component (trimethylolpropane glycidyl ether monomer contained in polyglycidyl ether of trimethylolpropane) in gas chromatography analysis. The low viscosity epoxy resin characterized by having a body ratio of 35% or more, a total chlorine content of 0.3% by weight or less, and a viscosity at 25 ° C. of 300 mPa · s or less is blended as an essential component It is an epoxy resin composition.
Further, the present invention is a cured product obtained by curing the epoxy resin composition.
 本発明のエポキシ樹脂を用いたエポキシ樹脂組成物は、優れた低粘度性を有するとともに、これを硬化して得られる硬化物は、耐熱性、耐湿性に優れた性能を有するため、重防食塗料、粉体塗料、PCM塗料、缶塗料等の塗料用途や土木・建設用途、接着用途、電気絶縁用、半導体チップ仮止剤等の電気・電子部品用途及びプリント配線板や炭素繊維強化プラスチック(CFRP)を始めとする各種複合材料用途等に適し、特に、プリント配線板、半導体封止等の電気・電子分野の絶縁材料等に好適に使用することができる。 The epoxy resin composition using the epoxy resin of the present invention has excellent low viscosity, and a cured product obtained by curing the same has excellent performance in heat resistance and moisture resistance, so a heavy corrosion protection paint is obtained. , Paint applications such as powder coatings, PCM coatings and can coatings, civil engineering and construction applications, bonding applications, electrical insulation applications, electric and electronic parts applications such as semiconductor chip tacks, printed wiring boards and carbon fiber reinforced plastics (CFRP In particular, it can be suitably used for printed wiring boards, insulating materials in the field of electricity and electronics such as semiconductor encapsulation, and the like.
 本発明について詳細に述べる。
 本発明に係るトリメチロールプロパングリシジルエーテル(n=0成分)中には通常、モノグリシジル体、ジグリシジル体、トリグリシジル体が存在するが、本発明でトリグリシジル体比率は35%以上である。トリグリシジル体比率が35%以下では硬化物のTg等の物性が低下し、また樹脂粘度が増加する為好ましくない為であり、好ましくは50%以上、更に好ましくは75%以上である。
 本発明で用いるトリメチロールプロパンのポリグリシジルエーテルは全塩素量が0.3重量%以下で、好ましくは0.2重量%以下である。全塩素量が0.3重量%を超えると塩基性の硬化促進剤を用いた組成物の場合、硬化反応が阻害され、その結果硬化物の物性が低下する。また絶縁信頼性の低下が起こり、電気・電子分野での用途に好ましくない。
 本発明で用いるトリメチロールプロパンのポリグリシジルエーテルは25℃での粘度が300mPa・s以下である。25℃での粘度が300mPa・sを超えると希釈効率が低下する為好ましくない。
 本発明で用いるトリメチロールプロパンのポリグリシジルエーテルは、低粘度性の観点から、n=0成分の含有率が50%以上であることが好ましく、より好ましくは70%以上、更に好ましくは90%以上である。
 トリメチロールプロパンをエピクロルヒドリンと反応させる方法は、通常のエポキシ化反応と同様に行うことができる。例えば、トリメチロールプロパンの水酸基に対して過剰のエピクロルヒドリンを配合し溶解した後、アルカリ金属水酸化物の存在下に、40~120℃の範囲で1~10時間反応させる方法が挙げられる。この場合、加水分解性塩素低減の観点からは、50~90℃で反応を行うことが好ましい。
 上記反応において使用されるアルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等が挙げられるが、特に水酸化ナトリウム、水酸化カリウムが好ましい。アルカリ類は水溶液であっても固体であっても構わないが、取り扱いの容易さでは水溶液を用いることが好ましい。アルカリ金属水酸化物の使用量は通常アルコール性水酸基1当量に対して0.7~3.0当量であり、好ましくは0.8~2.0当量である。アルカリ金属水酸化物の使用量が多すぎると重合反応や副反応の促進につながり生産性が悪くなる。また、少なすぎるとトリメチロールプロパンとエピクロルヒドリンとの反応が不十分となりグリシジルエーテル化されないクロルヒドリン体が残存する為末端エポキシ基純度が低下する。
 また上記エピクロルヒドリンの使用量は、多価アルコールの水酸基1当量に対して1~10当量、好ましくは2~6当量がよい。エピクロルヒドリンの使用量が1当量より少ないと高分子化が進みやすくなって目的であるクロルヒドリンエーテルの収量が少なくなる。また10当量より多いと全仕込み量に対する多価アルコール類の割合が少なくなり過ぎて生産性の低下となるため好ましくない。
 前記反応を簡便に進行させるため、必要に応じて第四級アンモニウム塩を触媒として添加してもかまわない。用いることのできる第四級アンモニウム塩としてはテトラメチルアンモニウムクロライド、テトラメチルアンモニウムブロマイド、ベンジルトリメチルアンモニウムクロライド、ベンジルトリエチルアンモニウムクロライド等が挙げられる。第四級アンモニウム塩の使用量としては使用する多価アルコール類の量に対し通常0.05~10重量%であり、好ましくは0.1~1重量%である。
 また、反応に際しては、エポキシ基とは反応しない溶媒中で行う事ができ、具体的にはトルエン、キシレン、ベンゼン等の芳香族炭化水素類、メチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン、アセトン等のケトン類、プロパノール、ブタノール等のアルコール類、ジエチレングリコールメチルエーテル、プロピレングリコールメチルエーテル、ジプロピレングリコールメチルエーテル等のグリコールエーテル類、ジエチルエーテル、ジブチルエーテル、エチルプロピルエーテル等の脂肪族エーテル類、ジオキサン、テトラヒドロフラン等の脂環式エーテル類、ジメチルスルホキシド等が挙げられ、それら2種以上混合して使用することもできる。これら溶媒の使用量は、エピハロヒドリン100重量部に対して、200重量部以下であり、好ましくは5~150重量部の範囲であり、より好ましくは10~100重量部の範囲である。
 反応の系内水分は0.1%以上2.0%未満である事が好ましい。系内の水分が0.1%より低くなると反応の進行が遅くなる。系内の水分が2.0%以上になると水分の影響によりグリシジルエーテル化反応が阻害され、含有塩素が高くなる為である。
 前記反応により生じたグリシジルエーテル類を反応混合物から単離するには、例えば未反応エピクロルヒドリンおよび溶剤を減圧または常圧で留去、有機溶媒に溶解し反応混合物中に副生したアルカリ金属塩および過剰のアルカリ金属水酸化物を水洗、濾過などで分離し、次いで溶解に使用した有機溶媒を回収してグリシジルエーテル類を得る方法などがある。ここで使用する有機溶媒としては、メチルイソブチルケトン、トルエン、キシレン、シクロヘキサノン、メタノール、エタノール、プロパノール、ブタノール等が挙げられるが、なかでもメチルイソブチルケトン、トルエン及びキシレンが好ましく、またこれらの混合溶媒でも良い。
 トリメチロールプロパンとエピクロルヒドリンとの反応終了後、過剰のエピハロヒドリンを留去し、溶剤に溶解し、濾過し、水洗して無機塩を除去し、次いで溶剤を留去することにより本発明で用いるトリメチロールプロパンのポリグリシジルエーテルを得ることができるが、加水分解性ハロゲン量が多すぎる場合は、加水分解性ハロゲン量低減の観点から、得られたエポキシ樹脂を更に、残存する加水分解性ハロゲン量に対して、1~30倍量のアルカリ金属水酸化物を加え、60~90℃の温度で10分~2時間精製反応を行なった後、中和、水洗等の方法で過剰のアルカリ金属水酸化物や副生塩を除去し、さらに溶媒を減圧留去すると、更に精製された本発明で用いるトリメチロールプロパンのポリグリシジルエーテルを得ることができる。また、反応により得られたトリメチロールプロパンのポリグリシジルエーテルを分子蒸留により精製したものを用いることができる。
 本発明のエポキシ樹脂組成物は、エポキシ樹脂及び硬化剤を必須成分としてなるエポキシ樹脂組成物であって、エポキシ樹脂成分として請求項1記載のトリメチロールプロパンのポリグリシジルエーテルを必須成分として配合したものである。
 請求項1記載のトリメチロールプロパンのポリグリシジルエーテルを必須成分とする場合の硬化剤としては、一般にエポキシ樹脂の硬化剤として知られているものはすべて使用できる。例えば、ジシアンジアミド、多価フェノール類、酸無水物類、芳香族及び脂肪族アミン類等がある。
 具体的に例示すれば、多価フェノール類としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4’−ビフェノール、2,2’−ビフェノール、ハイドロキノン、レゾルシン、ナフタレンジオール等の2価のフェノール類、あるいは、トリス−(4−ヒドロキジフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキジフェニル)エタン、フェノールノボラック、o−クレゾールノボラック、ナフトールノボラック、ポリビニルフェノール等に代表される3価以上のフェノール類がある。更には、フェノール類、ナフトール類または、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、4,4’−ビフェノール、2,2’−ビフェノール、ハイドロキノン、レゾルシン、ナフタレンジオール等の2価のフェノール類と、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、p−キシリレングリコール等の縮合剤とから合成される多価フェノール性化合物等がある。
 酸無水物としては、無水フタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチル無水ハイミック酸、無水ナジック酸、無水トリメリット酸等がある。
 アミン類としては、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルスルホン、m−フェニレンジアミン、p−キシリレンジアミン等の芳香族アミン類、エチレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等の脂肪族アミン類がある。
 前記した公知慣用の硬化剤の使用量はエポキシ樹脂の官能基であるエポキシ基1当量に対して硬化剤の官能基0.4~2.0当量が好ましく、0.5~1.5当量がより好ましく、特に好ましくは0.5~1.0当量である。エポキシ基1当量に対して硬化剤が0.4当量に満たない場合、あるいは2.0当量を肥える場合は、硬化が不完全になり良好な硬化物が得られない恐れがある。本発明のエポキシ樹脂組成物には、これら硬化剤の1種または2種以上を混合して用いることができる。
 また、本発明のエポキシ樹脂組成物中には、エポキシ樹脂成分として、本発明に関わるトリメチロールプロパンのポリグリシジルエーテル以外に別種のエポキシ樹脂を配合してもよい。この場合のエポキシ樹脂としては、分子中にエポキシ基を2個以上有する通常のエポキシ樹脂はすべて使用できる。例を挙げれば、ビスフェノールA、ビスフェノールS、フルオレンビスフェノール、4,4’−ビフェノール、2,2’−ビフェノール、ハイドロキノン、レゾルシン等の2価のフェノール類、あるいは、トリス−(4−ヒドロキジフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキジフェニル)エタン、フェノールノボラック、o−クレゾールノボラック等の3価以上のフェノール類、またはテトラブロモビスフェノールA等のハロゲン化ビスフェノール類から誘導されるグリシジルエーテル化物等、ポリエチレングリコールやポリプロピレングリコール等アルコール類のポリグリシジルエーテル類等、ジアミノジフェニルメタン等のポリグリシジルアミン類等、脂環式エポキシ樹脂等がある。これらのエポキシ樹脂は、1種または2種以上を混合して用いることができる。そして、本発明のエポキシ樹脂組成物の場合、本発明に関わるトリメチロールプロパンのポリグリシジルエーテルの配合量はエポキシ樹脂全体中、5~100%、好ましくは60~100%の範囲であることがよい。
 また、本発明のエポキシ樹脂組成物中には、ポリエステル、ポリアミド、ポリイミド、ポリエーテル、ポリウレタン、石油樹脂、インデンクマロン樹脂、フェノキシ樹脂等のオリゴマーまたは高分子化合物を適宜配合してもよいし、無機充填剤、顔料、難燃剤、チクソ性付与剤、カップリング剤、流動性向上剤等の添加剤を配合してもよい。無機充填剤としては、例えば、球状あるいは、破砕状の溶融シリカ、結晶シリカ等のシリカ粉末、アルミナ粉末、ガラス粉末、マイカ、タルク、炭酸カルシウム、アルミナまたは水和アルミナ等が挙げられる。顔料としては、有機系または無機系の体質顔料、鱗片状顔料等がある。チクソ性付与剤としては、シリコン系、ヒマシ油系、脂肪族アマイドワックス、酸化ポリエチレンワックス、有機ベントナイト系等を挙げることができる。また更に必要に応じて、本発明の樹脂組成物には、カルナバワックス、OPワックス等の離型剤、γ−グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラック等の着色剤、三酸化アンチモン等の難燃剤、シリコンオイル等の低応力化剤、ステアリン酸カルシウム等の滑剤等を使用できる。
 更に、必要に応じて本発明の樹脂組成物には、公知の硬化促進剤を用いることができる。例を挙げれば、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール等のイミダゾール類、2−メチルイミダゾリン、2−エチル−4−メチルイミダゾリン等のイミダゾリン類、イミダゾール化合物のトリアジン塩、シアノエチル塩、シアノエチルトリメリット酸塩などの各種塩類、酢酸亜鉛、酢酸ナトリウムなどの金属系化合物類、テトラエチルアンモニウムクロリドなどの第4級アンモニウム塩類、アミド化合物類、トリフェニルホスフィン等の有機リン化合物類などを挙げることができる。これら硬化促進剤の配合割合は、本発明のエポキシ樹脂100質量部に対し、0.01~5重量部、より好ましくは0.1~2重量部である。
 本発明のエポキシ樹脂硬化物は、上記のエポキシ樹脂組成物を加熱することにより得ることができる。硬化物を得るための方法としては注型、注入、ポッティング、ディッピング、ドリップコーティング、トランスファー成形、圧縮成形等が好適に用いられ、その際の温度としては通常、100℃~300℃の範囲である。
The invention will be described in detail.
In the trimethylolpropane glycidyl ether (n = 0 component) according to the present invention, monoglycidyl, diglycidyl and triglycidyl are usually present, but in the present invention, the ratio of triglycidyl is 35% or more. If the triglycidyl ratio is 35% or less, the physical properties such as Tg of the cured product decrease, and the resin viscosity increases, which is not preferable, and is preferably 50% or more, more preferably 75% or more.
The polyglycidyl ether of trimethylolpropane used in the present invention has a total chlorine content of 0.3% by weight or less, preferably 0.2% by weight or less. When the total chlorine content exceeds 0.3% by weight, in the case of a composition using a basic curing accelerator, the curing reaction is inhibited, and as a result, the physical properties of the cured product are degraded. In addition, insulation reliability decreases, which is not preferable for applications in the electric and electronic fields.
The polyglycidyl ether of trimethylolpropane used in the present invention has a viscosity of 300 mPa · s or less at 25 ° C. When the viscosity at 25 ° C. exceeds 300 mPa · s, the dilution efficiency decreases, which is not preferable.
From the viewpoint of low viscosity, the content of the n = 0 component is preferably 50% or more, more preferably 70% or more, and still more preferably 90% or more from the viewpoint of low viscosity. It is.
The method of reacting trimethylolpropane with epichlorohydrin can be carried out in the same manner as a conventional epoxidation reaction. For example, after blending and dissolving an excess of epichlorohydrin with respect to the hydroxyl group of trimethylolpropane, a method of reacting in the range of 40 to 120 ° C. for 1 to 10 hours in the presence of an alkali metal hydroxide may be mentioned. In this case, from the viewpoint of reducing hydrolyzable chlorine, it is preferable to carry out the reaction at 50 to 90 ° C.
Examples of the alkali metal hydroxide used in the above reaction include lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide and the like, with sodium hydroxide and potassium hydroxide being particularly preferable. The alkali may be an aqueous solution or a solid, but for ease of handling it is preferable to use an aqueous solution. The amount of the alkali metal hydroxide used is usually 0.7 to 3.0 equivalents, preferably 0.8 to 2.0 equivalents, per equivalent of the alcoholic hydroxyl group. If the amount of the alkali metal hydroxide used is too large, the polymerization reaction and side reactions will be promoted, resulting in poor productivity. On the other hand, if the amount is too small, the reaction between trimethylolpropane and epichlorohydrin will be insufficient, and the chlorohydrin body which is not glycidyl-etherified will remain, so that the terminal epoxy group purity is lowered.
The amount of epichlorohydrin used is 1 to 10 equivalents, preferably 2 to 6 equivalents, per equivalent of the hydroxyl group of polyhydric alcohol. When the amount of epichlorohydrin used is less than 1 equivalent, polymerization tends to proceed and the yield of the desired chlorohydrin ether decreases. On the other hand, if the amount is more than 10 equivalents, the ratio of polyhydric alcohols to the total amount charged becomes too small, which is not preferable because the productivity is lowered.
A quaternary ammonium salt may be added as a catalyst as needed to allow the reaction to proceed simply. Examples of quaternary ammonium salts that can be used include tetramethyl ammonium chloride, tetramethyl ammonium bromide, benzyltrimethyl ammonium chloride, benzyltriethyl ammonium chloride and the like. The amount of quaternary ammonium salt used is usually 0.05 to 10% by weight, preferably 0.1 to 1% by weight, based on the amount of polyhydric alcohol used.
The reaction can be carried out in a solvent which does not react with the epoxy group. Specifically, aromatic hydrocarbons such as toluene, xylene and benzene, ketones such as methyl isobutyl ketone, methyl ethyl ketone, cyclohexanone and acetone Alcohols such as propanol and butanol, Glycol ethers such as diethylene glycol methyl ether, propylene glycol methyl ether and dipropylene glycol methyl ether Aliphatic ethers such as diethyl ether, dibutyl ether and ethyl propyl ether Dioxane and tetrahydrofuran Alicyclic ethers, dimethyl sulfoxide and the like can be mentioned, and two or more of them can be used in combination. The amount of these solvents used is 200 parts by weight or less, preferably 5 to 150 parts by weight, and more preferably 10 to 100 parts by weight with respect to 100 parts by weight of epihalohydrin.
The reaction system water content is preferably 0.1% or more and less than 2.0%. When the water content in the system is lower than 0.1%, the reaction proceeds slowly. When the water content in the system is 2.0% or more, the glycidyl etherification reaction is inhibited by the influence of the water, and the contained chlorine becomes high.
In order to isolate the glycidyl ethers produced by the above reaction from the reaction mixture, for example, unreacted epichlorohydrin and the solvent are distilled off under reduced pressure or normal pressure, dissolved in an organic solvent and by-produced alkali metal salt and excess in the reaction mixture These alkali metal hydroxides are separated by washing with water, filtration and the like, and then the organic solvent used for dissolution is recovered to obtain glycidyl ethers. Examples of the organic solvent used herein include methyl isobutyl ketone, toluene, xylene, cyclohexanone, methanol, ethanol, propanol, butanol and the like, among which methyl isobutyl ketone, toluene and xylene are preferable, and a mixed solvent thereof is also preferable. good.
After completion of the reaction between trimethylolpropane and epichlorohydrin, excess epihalohydrin is distilled off, dissolved in a solvent, filtered, washed with water to remove inorganic salts, and then the solvent is distilled off to obtain trimethylol used in the present invention. Although a polyglycidyl ether of propane can be obtained, when the amount of hydrolyzable halogen is too large, the obtained epoxy resin is further added to the amount of remaining hydrolysable halogen from the viewpoint of reducing the amount of hydrolyzable halogen. Then, 1 to 30 times amount of alkali metal hydroxide is added, and purification reaction is carried out at a temperature of 60 to 90 ° C. for 10 minutes to 2 hours, followed by neutralization, washing with water, etc. And by-product salts can be removed, and the solvent can be further distilled off under reduced pressure to obtain further purified polyglycidyl ether of trimethylolpropane used in the present invention. Moreover, what refine | purified the polyglycidyl ether of the trimethylol propane obtained by reaction by molecular distillation can be used.
The epoxy resin composition of the present invention is an epoxy resin composition comprising an epoxy resin and a curing agent as essential components, wherein the polyglycidyl ether of trimethylolpropane according to claim 1 is blended as an epoxy resin component as an essential component. It is.
In the case where the polyglycidyl ether of trimethylolpropane according to claim 1 is an essential component, any of those generally known as curing agents for epoxy resins can be used. For example, dicyandiamide, polyhydric phenols, acid anhydrides, aromatic and aliphatic amines and the like.
Specifically, as polyhydric phenols, for example, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4'-biphenol, 2,2'-biphenol, hydroquinone, resorcinol, naphthalenediol, etc. Dihydric phenols, or tris- (4-hydroxydiphenyl) methane, 1,1,2,2-tetrakis (4-hydroxydiphenyl) ethane, phenol novolac, o-cresol novolac, naphthol novolac, polyvinylphenol etc. There are three or more valent phenols represented. Furthermore, phenols, naphthols, or divalent phenols such as bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4'-biphenol, 2,2'-biphenol, hydroquinone, resorcin, naphthalenediol and the like And polyphenolic compounds synthesized from condensing agents such as formaldehyde, acetaldehyde, benzaldehyde, p-hydroxybenzaldehyde and p-xylylene glycol.
Examples of the acid anhydride include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylhymic anhydride, nadic anhydride, trimellitic anhydride and the like.
As amines, aromatic amines such as 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenyl sulfone, m-phenylenediamine, p-xylylenediamine, etc., ethylenediamine, There are aliphatic amines such as hexamethylenediamine, diethylenetriamine and triethylenetetramine.
The amount of the known conventional curing agent used is preferably 0.4 to 2.0 equivalents of the functional group of the curing agent to 1 equivalent of the epoxy group which is the functional group of the epoxy resin, and 0.5 to 1.5 equivalents of More preferably, particularly preferably 0.5 to 1.0 equivalents. If the amount of the curing agent is less than 0.4 equivalent to 1 equivalent of epoxy group, or if the equivalent is 2.0 equivalents, curing may be incomplete and a good cured product may not be obtained. In the epoxy resin composition of the present invention, one or more of these curing agents may be mixed and used.
Moreover, in the epoxy resin composition of this invention, you may mix | blend another kind of epoxy resin as an epoxy resin component other than the polyglycidyl ether of the trimethylol propane which concerns on this invention. As the epoxy resin in this case, all common epoxy resins having two or more epoxy groups in the molecule can be used. For example, bifunctional phenols such as bisphenol A, bisphenol S, fluorene bisphenol, 4,4'-biphenol, 2,2'-biphenol, hydroquinone and resorcin, or tris- (4-hydroxydiphenyl) methane Glycidyl derived from trivalent or higher phenols such as 1,1,2,2-tetrakis (4-hydroxydiphenyl) ethane, phenol novolac, o-cresol novolac or halogenated bisphenols such as tetrabromobisphenol A Examples thereof include etherified products, polyglycidyl ethers of alcohols such as polyethylene glycol and polypropylene glycol, polyglycidyl amines such as diaminodiphenylmethane, and alicyclic epoxy resins. These epoxy resins can be used alone or in combination of two or more. And in the case of the epoxy resin composition of the present invention, the blending amount of the polyglycidyl ether of trimethylolpropane according to the present invention is preferably in the range of 5 to 100%, preferably 60 to 100% in the entire epoxy resin. .
Further, in the epoxy resin composition of the present invention, an oligomer or polymer compound such as polyester, polyamide, polyimide, polyether, polyurethane, petroleum resin, indencumarone resin, phenoxy resin and the like may be appropriately blended. You may mix | blend additives, such as an inorganic filler, a pigment, a flame retardant, a thixotropy imparting agent, a coupling agent, and a fluidity improver. Examples of the inorganic filler include spherical or crushed fused silica, silica powder such as crystalline silica, alumina powder, glass powder, mica, talc, calcium carbonate, alumina, hydrated alumina and the like. Examples of the pigment include organic or inorganic extender pigments and scale-like pigments. Examples of the thixotropic agent include silicones, castor oils, aliphatic amide waxes, polyethylene oxide waxes, organic bentonites, and the like. Furthermore, if necessary, in the resin composition of the present invention, mold release agents such as carnauba wax and OP wax, coupling agents such as γ-glycidoxypropyltrimethoxysilane, colorants such as carbon black, and the like Flame retardants such as antimony oxide, stress reducing agents such as silicone oil, lubricants such as calcium stearate may be used.
Furthermore, if necessary, known curing accelerators can be used in the resin composition of the present invention. For example, imidazoles such as 2-methylimidazole, 2-ethyl-4-methylimidazole, imidazolines such as 2-methylimidazoline, 2-ethyl-4-methylimidazoline, triazine salts of imidazole compounds, cyanoethyl salts, Various salts such as cyanoethyl trimellitic acid salt, metal compounds such as zinc acetate and sodium acetate, quaternary ammonium salts such as tetraethyl ammonium chloride, amide compounds, organic phosphorus compounds such as triphenylphosphine and the like. Can. The compounding ratio of these curing accelerators is 0.01 to 5 parts by weight, more preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the epoxy resin of the present invention.
The epoxy resin cured product of the present invention can be obtained by heating the above-mentioned epoxy resin composition. As a method for obtaining a cured product, casting, pouring, potting, dipping, drip coating, transfer molding, compression molding, etc. are suitably used, and the temperature at that time is usually in the range of 100 ° C. to 300 ° C. .
 以下に本発明の実施例および比較例を挙げ詳細に説明する。本発明はこれらの実施例に限定されるものではない。なお例中の部は質量部、%は質量%を意味する。また、物性値は次の方法により測定した。
 エポキシ当量はJIS K 7236の規定に従い測定した。
 全塩素量はJIS K 7243−3の規定に従い測定した。
 粘度は、JIS K−7233、単一円筒回転粘度計法により測定した。
 ガスクロマトグラフィー測定は、以下の条件で測定した。
モノ、ジ、トリグリシジル体の含有量はそれぞれガスクロマトグラフィー分析の結果得られるピークの面積%を表す。
装置    :島津製作所社製「GC−14B」
カラム   :ガラス製パックドカラム 長さ1.1m、直径3.2mm
充填剤   :silicone OV−17
担体    :chromosorb W  AW−DMCS
フローコントローラー:水素50kPa、空気50kPa、キャリア50kPa、プライマリ400kPa
カラム流量  :50ml/min
INJECTION温度:280℃、FID温度:320℃、カラム温度:160℃×2min、昇温速度:20℃/min、最終カラム温度:300℃×5min
サンプル  :5wt%アセトン溶液
注入量   :2μL
 GPC測定は、以下の条件で測定した。n=0含有量はGPC分析の結果得られるピークの面積%を表す。
機器   :東ソー株式会社GPC8220
分離カラム:TSKgel G2000HXL,TSKgel G2000HXL,TSKgel G1000HXLを直列で連結
カラム温 :40℃
溶離液  :テトラヒドロフランを1ml/minの流速
検出器  :RI検出器
実施例1
 撹拌噐、温度計、窒素ガス導入装置、滴下装置、冷却管及び油水分離装置を備えた内容量1Lのガラスフラスコにトリメチロールプロパン(TMP)90部、エピクロルヒドリン652部、ジエチレングリコールジメチルエーテル65.2部、水6.5部を仕込みを仕込み、窒素ガスを流しながら60℃まで加熱して溶解した。60℃迄昇温後、99%水酸化ナトリウム77.3部を投入し同温度で6時間反応を行った。濾過により生成した塩を除き、エピクロロヒドリンを留去し、トルエン500部に溶解した。80℃迄昇温後、49.1%水酸化ナトリウム水溶液0.32部および温水1.25部を加えて同温度で1時間精製反応を実施した。その後温水25部を加えて攪拌、分液し樹脂溶液を脱水濾過、トルエンを蒸留して除去して、164.2gのエポキシ樹脂を得た。この樹脂のエポキシ当量は128g/eq、粘度150mPa・s/25℃、全塩素0.23%、GPCによるn=0純度は58%、ガスクロマトグラフィーによるn=0成分のモノグリシジル体(1GE):ジグリシジル体(2GE):トリグリシジル体(3GE)比率は0:60:40であった。得られた樹脂の性状を表1に記載した。
実施例2
 99%水酸化ナトリウムを77.3部から116.0部に変更した以外は、実施例1と同様の操作を行い154.5gのエポキシ樹脂を得た。この樹脂のエポキシ当量は125g/eq、全塩素量は0.25%、GPCによるn=0純度は50%、ガスクロマトグラフィーによるn=0成分のモノ:ジ:トリグリシジル体比率は0:38:62であった。得られた樹脂の性状を表1に記載した。
比較例1
 水6.5部を0.65部に変更した以外は、実施例1と同様の操作を行い148.2gのエポキシ樹脂を得た。この樹脂のエポキシ当量は135g/eq、全塩素量は0.25%、GPCによるn=0純度は50%、ガスクロマトグラフィーによるn=0成分のモノ:ジ:トリグリシジル体比率は0:75:25であった。得られた樹脂の性状を表1に記載した。
比較例2
 東都化成社製YH−300(トリメチロールプロパングリシジルエーテル)。YH−300のエポキシ当量は142g/eq、粘度147mPa・s/25℃、全塩素5.0%、GPCによるn=0純度は29%、 ガスクロマトグラフィーによるn=0成分のモノ:ジ:トリグリシジル体比率は0:81:19であった。樹脂の性状を表1に記載した。
Figure JPOXMLDOC01-appb-T000001
実施例3
 実施例1で得られたエポキシ樹脂(以下エポキシ樹脂A)をフィンテック社製 薄膜分子蒸留機KDL−4を使用して、圧力0.3pa、温度125~135℃で分子蒸留を行いエポキシ樹脂Dを得た。得られた樹脂の性状を表2に記載した。
実施例4
 実施例2で得られたエポキシ樹脂(以下エポキシ樹脂B)を実施例3と同様に分子蒸留を行こないエポキシ樹脂Eを得た。得られた樹脂の性状を表2に記載した。
比較例3
 実施例1で得られたエポキシ樹脂(以下エポキシ樹脂C)を実施例3と同様に分子蒸留を行こないエポキシ樹脂Fを得た。得られた樹脂の性状を表2に記載した。
比較例4
 東都化成社製YH−300を実施例3と同様に分子蒸留を行こないエポキシ樹脂Gを得た。得られた樹脂の性状を表2に記載した。
Figure JPOXMLDOC01-appb-T000002
実施例5、6比較例5,6実施例7、8比較例7,8
 エポキシ樹脂成分として、東都化成社製YD−8125を100重量部に対してエポキシ樹脂A~エポキシ樹脂G、YH−300を混合粘度が1000mPa・s/25℃になるような割合で配合した。硬化剤として、リカシッドMH−700(無水メチルヘキサヒドロフタル酸、酸無水物当量168g/eq、新日本理化製)、硬化促進剤として、ヒシコーリンPX−4ET(有機ホスホニウム塩化合物、日本化学製)を用い、表3に示す配合でエポキシ樹脂組成物を得た。なお、表中の数値は配合における重量部を示す。
 このエポキシ樹脂組成物を用いて100℃で2時間かけて成形し、更に140℃にて12時間ポストキュアを行い、硬化物試験片を得た後、各種物性測定に供した。結果を表3に示す。
 なお、硬化物性の試験方法及び評価方法は以下の通りである。
(1)硬化物Tgは、熱機械測定装置(セイコー電子社製)を用いて10℃/分の昇温速度で測定した。
(2)吸水率は、直径50mm、厚さ5mmの円形の試験片を用いて、23℃、100%RHの条件で50時間吸湿させた後の重量増加変化率とした。
(3)イオン性不純物量は、105℃、20時間のプレッシャークッカーテストを行った後の抽出イオン分をイオンクロマトグラフィーにて、塩素イオンを測定し、固形分に換算して求めた。
 エポキシ樹脂A、Bを用いた実施例5、6はエポキシ樹脂Cを用いた比較例5に比較して高い硬化物Tgと低い吸水率を示す。またYH−300を用いた比較例6に比較してPCT塩素抽出量が大幅に少ない。
同様に、エポキシ樹脂D、Eを用いた実施例7、8はエポキシ樹脂Fを用いた比較例7に比較して高い硬化物Tgと低い吸水率を示す。またエポキシ樹脂Gを用いた比較例8に比較してPCT塩素抽出量が大幅に少ない。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-I000004
Hereinafter, Examples and Comparative Examples of the present invention will be described in detail. The present invention is not limited to these examples. In the examples, "part" means "mass part" and "%" means mass%. The physical property values were measured by the following methods.
The epoxy equivalent was measured in accordance with JIS K 7236.
The total chlorine content was measured in accordance with JIS K 7243-3.
The viscosity was measured by a single cylindrical rotational viscometer method according to JIS K-7233.
Gas chromatography was measured under the following conditions.
The contents of mono-, di- and triglycidyl forms each represent the area% of the peak obtained as a result of gas chromatography analysis.
Device: "GC-14B" manufactured by Shimadzu Corporation
Column: Glass packed column 1.1 m in length, 3.2 mm in diameter
Filler: silicone OV-17
Carrier: chromosorb W AW-DMCS
Flow controller: Hydrogen 50kPa, air 50kPa, carrier 50kPa, primary 400kPa
Column flow rate: 50 ml / min
INJECTION temperature: 280 ° C., FID temperature: 320 ° C., column temperature: 160 ° C. × 2 min, temperature rising rate: 20 ° C./min, final column temperature: 300 ° C. × 5 min
Sample: Injection amount of 5wt% acetone solution: 2μL
GPC measurement was performed under the following conditions. n = 0 content represents the area% of the peak obtained as a result of GPC analysis.
Equipment: Tosoh Corporation GPC8220
Separation column: TSKgel G2000HXL, TSKgel G2000HXL, TSKgel G1000HXL connected in series Column temperature: 40 ° C
Eluent: Tetrahydrofuran at 1 ml / min flow rate detector: RI detector Example 1
90 parts of trimethylolpropane (TMP), 652 parts of epichlorohydrin, 65.2 parts of diethylene glycol dimethyl ether in a 1-L glass flask equipped with a stirrer, thermometer, nitrogen gas introduction device, dropping device, cooling pipe and oil / water separation device 6.5 parts of water was charged and dissolved by heating to 60 ° C. while flowing nitrogen gas. After raising the temperature to 60 ° C., 77.3 parts of 99% sodium hydroxide was added, and the reaction was carried out at the same temperature for 6 hours. The salt formed by filtration was removed, and epichlorohydrin was distilled off and dissolved in 500 parts of toluene. After raising the temperature to 80 ° C., 0.32 parts of a 49.1% aqueous sodium hydroxide solution and 1.25 parts of hot water were added, and a purification reaction was carried out at the same temperature for 1 hour. Thereafter, 25 parts of hot water was added, and the mixture was stirred and separated, and the resin solution was subjected to dehydration filtration and toluene removal by distillation to obtain 164.2 g of an epoxy resin. The epoxy equivalent of this resin is 128 g / eq, viscosity 150 mPa · s / 25 ° C, total chlorine 0.23%, n = 0 purity by GPC 58%, n = 0 monoglycidyl form (1 GE) by gas chromatography The ratio of diglycidyl body (2GE): triglycidyl body (3GE) was 0:60:40. The properties of the obtained resin are described in Table 1.
Example 2
The same operation as in Example 1 was carried out except that the amount of 99% sodium hydroxide was changed from 77.3 parts to 116.0 parts, to obtain 154.5 g of an epoxy resin. The epoxy equivalent of this resin is 125 g / eq, the total chlorine content is 0.25%, n = 0 purity by GPC is 50%, the ratio of mono: di: triglycidyl compound of n = 0 component by gas chromatography is 0:38 : 62. The properties of the obtained resin are described in Table 1.
Comparative Example 1
The same operation as in Example 1 was carried out except that 6.5 parts of water was changed to 0.65 parts, to obtain 148.2 g of an epoxy resin. The epoxy equivalent of this resin is 135 g / eq, the total chlorine content is 0.25%, n = 0 purity by GPC is 50%, the ratio of mono: di: triglycidyl compound of n = 0 component by gas chromatography is 0:75 : 25. The properties of the obtained resin are described in Table 1.
Comparative example 2
Tohto Kasei YH-300 (trimethylolpropane glycidyl ether). The epoxy equivalent of YH-300 is 142 g / eq, viscosity 147 mPa · s / 25 ° C, total chlorine 5.0%, n = 0 purity by GPC 29%, n = 0 component by gas chromatography Mono: di: tri: The glycidyl compound ratio was 0:81:19. The properties of the resin are described in Table 1.
Figure JPOXMLDOC01-appb-T000001
Example 3
The epoxy resin D (hereinafter referred to as epoxy resin A) obtained in Example 1 is subjected to molecular distillation at a pressure of 0.3 pa and a temperature of 125 to 135 ° C. using a thin film molecular distillation machine KDL-4 manufactured by Fintech Co., Ltd. I got The properties of the obtained resin are described in Table 2.
Example 4
The epoxy resin E obtained by avoiding molecular distillation of the epoxy resin obtained in Example 2 (hereinafter, epoxy resin B) as in Example 3 was obtained. The properties of the obtained resin are described in Table 2.
Comparative example 3
The epoxy resin F which did not go through molecular distillation similarly to Example 3 with the epoxy resin (following epoxy resin C) obtained in Example 1 was obtained. The properties of the obtained resin are described in Table 2.
Comparative example 4
An epoxy resin G not subjected to molecular distillation was obtained in the same manner as in Example 3 for YH-300 manufactured by Tohto Kasei Co., Ltd. The properties of the obtained resin are described in Table 2.
Figure JPOXMLDOC01-appb-T000002
Examples 5, 6 Comparative Examples 5, 6 Example 7, 8 Comparative Examples 7, 8
Epoxy resin A to epoxy resin G and YH-300 were blended at a mixing viscosity of 1000 mPa · s / 25 ° C. per 100 parts by weight of YD-8125 manufactured by Tohto Kasei Co., Ltd. as an epoxy resin component. RIKACID MH-700 (methyl hexahydrophthalic acid anhydride, acid anhydride equivalent 168 g / eq, Shin Nippon Rika Co., Ltd.) as a curing agent, and hysicoline PX-4ET (organic phosphonium salt compound, Nippon Chemical Co., Ltd.) as a curing accelerator The epoxy resin composition was obtained by using the composition shown in Table 3. The numerical values in the table indicate parts by weight in the formulation.
The resulting epoxy resin composition was molded at 100 ° C. for 2 hours, and post cured at 140 ° C. for 12 hours to obtain a cured test piece, which was then subjected to various physical property measurements. The results are shown in Table 3.
In addition, the test method and evaluation method of hardening physical property are as follows.
(1) The cured product Tg was measured at a temperature rising rate of 10 ° C./min using a thermo-mechanical measurement device (manufactured by Seiko Instruments Inc.).
(2) The water absorption rate was taken as a weight increase change rate after absorbing moisture for 50 hours under the conditions of 23 ° C. and 100% RH using a circular test piece of 50 mm in diameter and 5 mm in thickness.
(3) The amount of ionic impurities was determined by measuring the chloride ion by ion chromatography using the extracted ions after the pressure cooker test at 105 ° C. for 20 hours, and converting it to the solid content.
As compared with Comparative Example 5 in which the epoxy resin C was used, Examples 5 and 6 using the epoxy resins A and B show high cured product Tg and low water absorption. Moreover, compared with the comparative example 6 using YH-300, the amount of PCT chlorine extraction is significantly smaller.
Similarly, Examples 7 and 8 in which epoxy resins D and E are used show higher cured product Tg and lower water absorption as compared with Comparative Example 7 in which epoxy resin F is used. Further, compared to Comparative Example 8 in which the epoxy resin G was used, the PCT chlorine extraction amount was significantly smaller.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-I000004
 本発明によるエポキシ樹脂を用いると、低粘度性に優れるとともに、Tgが高く耐湿性優れた硬化物が得られる。これは、通常の使用範囲において必要十分な耐熱性で湿性優れた硬化物が製造可能になり、半導体素子に代表される電気・電子部品等の封止、コーティング材料、積層材料、複合材料等に有用な樹脂組成物が得られ、その技術上の意味に大きなものがある。 When the epoxy resin according to the present invention is used, a cured product having a high Tg and an excellent moisture resistance can be obtained while being excellent in low viscosity. This makes it possible to produce a cured product with excellent heat resistance and moisture resistance that is necessary and sufficient in the normal use range, and for sealing of electrical and electronic parts represented by semiconductor elements, coating materials, laminate materials, composite materials, etc. Useful resin compositions are obtained, and the technical meaning is significant.

Claims (2)

  1.  ガスクロマトグラフィー分析におけるn=0成分(トリメチロールプロパンのポリグリシジルエーテルに含有されるトリメチロールプロパングリシジルエーテル単量体)中のトリグリシジル体の比率が35%以上であり、全塩素量が0.3%以下、25℃での粘度が300mPa・s以下であることを特徴とするトリメチロールプロパンのポリグリシジルエーテルを必須成分として配合してなるエポキシ樹脂組成物。 The ratio of the triglycidyl compound in the n = 0 component (trimethylolpropane glycidyl ether monomer contained in the polyglycidyl ether of trimethylolpropane) in gas chromatography analysis is 35% or more, and the total chlorine content is 0. An epoxy resin composition comprising, as an essential component, a polyglycidyl ether of trimethylolpropane, which has a viscosity of 3 mPa% or less and 300 mPa · s or less at 25 ° C.
  2.  請求項1記載のエポキシ樹脂組成物を硬化してなる硬化物。 A cured product obtained by curing the epoxy resin composition according to claim 1.
PCT/JP2011/058485 2010-03-31 2011-03-29 Epoxy resin composition and cured product thereof WO2011125962A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012509642A JP5744010B2 (en) 2010-03-31 2011-03-29 Epoxy resin composition and cured product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-83525 2010-03-31
JP2010083525 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011125962A1 true WO2011125962A1 (en) 2011-10-13

Family

ID=44762897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058485 WO2011125962A1 (en) 2010-03-31 2011-03-29 Epoxy resin composition and cured product thereof

Country Status (3)

Country Link
JP (1) JP5744010B2 (en)
TW (1) TWI498349B (en)
WO (1) WO2011125962A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021161242A (en) * 2020-03-31 2021-10-11 日鉄ケミカル&マテリアル株式会社 Curable resin composition, and tow prepreg using the same
CN113651945A (en) * 2021-08-13 2021-11-16 江苏扬农化工集团有限公司 Glycidyl ether epoxy resin and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108383808A (en) * 2018-03-15 2018-08-10 中国林业科学研究院林产化学工业研究所 A kind of preparation method of epoxide diluent

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106766A (en) * 1999-10-08 2001-04-17 Toto Kasei Co Ltd Flame-retarded liquid epoxy resin composition
JP2003246782A (en) * 2001-12-20 2003-09-02 Nippon Steel Chem Co Ltd Liquid epoxy compound
US6677468B1 (en) * 2001-07-24 2004-01-13 Loctite Corporation Methods of reducing chloride content in epoxy compounds
JP2004083711A (en) * 2002-08-26 2004-03-18 Nippon Steel Chem Co Ltd Liquid epoxy resin composition
JP2004231787A (en) * 2003-01-30 2004-08-19 Nippon Steel Chem Co Ltd Epoxy resin diluent, epoxy resin composition and cured epoxy resin
JP2009265450A (en) * 2008-04-26 2009-11-12 Nippon Kayaku Co Ltd Photosensitive resin composition for microelectronic mechanical system (mems) and cured product of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001106766A (en) * 1999-10-08 2001-04-17 Toto Kasei Co Ltd Flame-retarded liquid epoxy resin composition
US6677468B1 (en) * 2001-07-24 2004-01-13 Loctite Corporation Methods of reducing chloride content in epoxy compounds
JP2003246782A (en) * 2001-12-20 2003-09-02 Nippon Steel Chem Co Ltd Liquid epoxy compound
JP2004083711A (en) * 2002-08-26 2004-03-18 Nippon Steel Chem Co Ltd Liquid epoxy resin composition
JP2004231787A (en) * 2003-01-30 2004-08-19 Nippon Steel Chem Co Ltd Epoxy resin diluent, epoxy resin composition and cured epoxy resin
JP2009265450A (en) * 2008-04-26 2009-11-12 Nippon Kayaku Co Ltd Photosensitive resin composition for microelectronic mechanical system (mems) and cured product of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021161242A (en) * 2020-03-31 2021-10-11 日鉄ケミカル&マテリアル株式会社 Curable resin composition, and tow prepreg using the same
JP7512064B2 (en) 2020-03-31 2024-07-08 日鉄ケミカル&マテリアル株式会社 CURABLE RESIN COMPOSITION AND TOW PREPREG USING SAME
CN113651945A (en) * 2021-08-13 2021-11-16 江苏扬农化工集团有限公司 Glycidyl ether epoxy resin and preparation method thereof

Also Published As

Publication number Publication date
TW201141899A (en) 2011-12-01
TWI498349B (en) 2015-09-01
JP5744010B2 (en) 2015-07-01
JPWO2011125962A1 (en) 2013-07-11

Similar Documents

Publication Publication Date Title
KR102466597B1 (en) Tetramethylbiphenol epoxy resin, epoxy resin composition, cured product and semiconductor sealing material
WO2017170703A1 (en) Polyhydroxy resin, method for producing same, epoxy resin, epoxy resin composition and cured product of epoxy resin composition
JP5273762B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
TWI425019B (en) Liquid epoxy resin, epoxy resin composition and hardened product
KR101507933B1 (en) Epoxy resin composition and molded object
WO2004072146A1 (en) Process for producing high-purity epoxy resin and epoxy resin composition
WO2008020594A1 (en) Modified liquid epoxy resin, epoxy resin composition using the same, and cured product thereof
WO2021201046A1 (en) Polyhydric hydroxy resin, epoxy resin, method for producing same, epoxy resin composition using same and cured product
JP5734603B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP2012046616A (en) Phenolic resin, epoxy resin, production method of the same, epoxy resin composition and cured product
JP5135951B2 (en) Epoxy resin composition, cured product thereof, and novel epoxy resin
JP5744010B2 (en) Epoxy resin composition and cured product thereof
JP2008239891A (en) Novel epoxy resin, epoxy resin composition containing the same, and cured matter therefrom
JP5195107B2 (en) Imide skeleton resin, curable resin composition, and cured product thereof
TWI795486B (en) Epoxy resin composition, cured product and electrical and electronic parts
JP5390491B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product
JP2002187933A (en) Modified epoxy resin, epoxy resin composition and cured product thereof
JP5131961B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP6241186B2 (en) Phenol resin, epoxy resin, production method thereof, curable composition, cured product thereof, semiconductor sealing material, and printed wiring board
JP7713318B2 (en) Epoxy resin composition and cured product
JP2010053293A (en) Epoxy resin composition
JP4942384B2 (en) Epoxy resin, curable resin composition, and cured product thereof
JP5979778B2 (en) Epoxy resin curable composition and cured product thereof
JP2022093044A (en) Multivalent hydroxy resin, epoxy resin, their manufacturing method, epoxy resin composition and cured product using them
JP4776446B2 (en) Epoxy resin, epoxy resin composition, and cured product thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765862

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012509642

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765862

Country of ref document: EP

Kind code of ref document: A1