[go: up one dir, main page]

WO2006043524A1 - Resin containing indole skeleton, epoxy resin containing indole skeleton, epoxy resin composition and cured product therefrom - Google Patents

Resin containing indole skeleton, epoxy resin containing indole skeleton, epoxy resin composition and cured product therefrom Download PDF

Info

Publication number
WO2006043524A1
WO2006043524A1 PCT/JP2005/019079 JP2005019079W WO2006043524A1 WO 2006043524 A1 WO2006043524 A1 WO 2006043524A1 JP 2005019079 W JP2005019079 W JP 2005019079W WO 2006043524 A1 WO2006043524 A1 WO 2006043524A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
epoxy resin
formula
carbon atoms
represented
Prior art date
Application number
PCT/JP2005/019079
Other languages
French (fr)
Japanese (ja)
Inventor
Hisashi Yamada
Masashi Kaji
Original Assignee
Nippon Steel Chemical Co., Ltd.
Tohto Kasei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004306972A external-priority patent/JP2006117790A/en
Application filed by Nippon Steel Chemical Co., Ltd., Tohto Kasei Co., Ltd. filed Critical Nippon Steel Chemical Co., Ltd.
Publication of WO2006043524A1 publication Critical patent/WO2006043524A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring

Definitions

  • the present invention relates to an indole skeleton-containing resin useful as an intermediate of epoxy resin, a curing agent, etc., an indole skeleton-containing epoxy resin, an epoxy resin composition using these, and a cured product thereof. It is preferably used as an insulating material in the electric and electronic fields such as printed wiring boards and semiconductor encapsulation. Background art
  • Epoxy resin has been used in a wide range of industrial applications, but its required performance has become increasingly sophisticated in recent years.
  • a semiconductor encapsulating material in a typical field of a resin composition mainly composed of epoxy resin, but as the integration degree of semiconductor elements increases, the package size is becoming larger and thinner.
  • the mounting method is also shifting to surface mounting, and the development of materials with excellent solder heat resistance is desired. Therefore, as a sealing material, in addition to reducing moisture absorption, improvement in adhesion and adhesion at the interface between different materials such as lead frames and chips is strongly demanded.
  • Patent Document 1 JP-A-5-1099345
  • Patent Document 2 JP-A-11-140166
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-46522
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2004-59792
  • Patent Document 5 Japanese Patent Laid-Open No. 4-173831
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2000-129092
  • Patent Document 7 Japanese Patent Laid-Open No. 3-90075
  • Patent Document 8 JP-A-3-281623
  • Patent Document 1 shows the application of naphthol aralkyl resin to semiconductor encapsulants.
  • naphthol aralkyl rosin is excellent in low hygroscopicity, low thermal expansion, etc., it has a disadvantage of poor curability.
  • Patent Document 2 proposes a curing agent having a biphenyl structure and describes that it is effective for improving flame retardancy, but has a drawback of being inferior in curability.
  • Patent Document 3 describes indole oligomers copolymerized with aromatic olefins.
  • an epoxy resin that satisfies these requirements has not been known yet.
  • the well-known bisphenol type epoxy resin is widely used because it is liquid at room temperature and has excellent workability and is easy to mix with curing agents and additives.
  • resistance and moisture resistance There is a problem in terms of resistance and moisture resistance.
  • novolac type epoxy resin is known as an improved heat resistance, but there are problems in moisture resistance, adhesion and the like.
  • conventional epoxy resins whose main skeleton is composed only of hydrocarbons have no flame retardancy.
  • Patent Documents 2, 5, and 6 disclose examples in which aralkyl epoxy resin having a biphenyl structure is applied to a semiconductor encapsulant as a material that improves flame retardancy without containing phosphorus atoms or halogen atoms. ing.
  • Patent Document 4 discloses an example in which an aralkyl type epoxy resin having a naphthalene structure is used. However, these epoxy resins have insufficient performance in any of flame retardancy, moisture resistance, and heat resistance.
  • Patents References 7 and 8 disclose naphthol-based aralkyl-type epoxy resins and semiconductor encapsulating materials containing them, but nothing focuses on flame retardancy.
  • An object of the present invention is to contain an indole skeleton useful for an intermediate of epoxy resin, a curing agent, etc.
  • Another object of the present invention is to provide an epoxy resin composition useful for circuit board materials and the like, and to provide a cured product thereof.
  • the indole skeleton-containing coffin of the present invention is represented by the following general formula (1).
  • R is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 8 carbon atoms, a halogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and A is a group having 1 carbon atom. Even if the alkyl group or hydroxyl group of ⁇ 8 is substituted, it represents a group having a benzene ring or naphthalene ring force, and the abundance ratio (molar ratio) of the groups represented by the formulas (2) and (3) is 1: 9-9: 1, where X is the following (a) or formula (b) R, R, R, R, R, R, R
  • B represents a group having a benzene ring, biphenyl ring or naphthalene ring force
  • n 1 to: the number of LOs.
  • This indole skeleton-containing rosin has a molar ratio of indole represented by the following formula (4) and phenol represented by the following formula (5) in the range of 1: 9 to 9: 1. It is obtained by reacting 10 to 90 mol of a crosslinking agent represented by the following formula (6), (7), (8) or (9) with respect to 100 mol.
  • R represents a hydrogen atom, a hydroxyl group, an alkoxy group having 8 carbon atoms, a halogen atom or a hydrocarbon group having 8 to 8 carbon atoms,
  • A represents an alkyl group having 1 to 8 carbon atoms or a group having a benzene ring or naphthalene ring which may be substituted by a hydroxyl group,
  • R, R, R and R independently represent a hydrogen atom or a hydrocarbon group having a carbon number]
  • B represents a group having a benzene ring, biphenyl ring or naphthalene ring,
  • Z and Z independently represent OH, alkoxy or halogen.
  • the indole skeleton-containing epoxy resin of the present invention is represented by the following general formula (10).
  • L is the following formula (11) or formula (12)
  • the ratio of the groups represented by the formulas (11) and (12) (molar ratio) is in the range of 1: 9 to 9: 1,
  • Y represents a hydrogen atom, a hydrocarbon group having 1 to 8 carbon atoms or a glycidyl group
  • G represents a glycidyl group
  • n 1 to: the number of L0.
  • This indole skeleton-containing epoxy resin can be advantageously obtained by reacting the indole skeleton-containing resin represented by the general formula (1) with epichlorohydrin.
  • the phenolic resin composition of the present invention is obtained by blending 2 to 200 parts by weight of an indole skeleton-containing resin with 100 parts by weight of a polyhydric phenolic compound.
  • the epoxy resin composition comprising the epoxy resin and the curing agent of the present invention comprises 2 to 200 parts by weight of an Indian skeleton-containing resin as part or all of the curing agent with respect to 100 parts by weight of the epoxy resin.
  • the indole skeleton-containing epoxy resin is blended as a part of or the entire power of the epoxy resin.
  • the epoxy resin cured product of the present invention can be obtained by hardening this phenol resin composition.
  • the indole skeleton-containing rosin (hereinafter also referred to as ISR) of the present invention is represented by the general formula (1).
  • the indole skeleton-containing epoxy resin (hereinafter also referred to as ISE) of the present invention has the general formula (10) It is represented by Since ISE can be obtained by epoxidizing ISR, ISR is also an intermediate of ISE.
  • L is a group selected from the basic forces represented by the formulas (2) and (3), and the abundance ratio thereof is 1: 9 to 9: 1, preferably 3: 7-7: 3.
  • X is a group represented by formula (a) or formula (b), and n is a number from 1 to 10.
  • n + 1 L and n X in the formula (1) may be the same or different from each other, but L is the above-mentioned abundance ratio in the fat and oil in the formula (2) and the formula There is a group represented by (3).
  • rosin is a mixture, it only needs to exist as an average.
  • n since rosin is a mixture, its average (number average) is preferably in the above range.
  • R is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 8 carbon atoms, preferably an alkoxy group having 1 to 6 carbon atoms, a halogen atom, or a carbon atom having 1 to 8, preferably 1 to 7
  • A may be substituted with an alkyl group or a hydroxyl group having 1 to 8 carbon atoms, preferably 1 to 6 carbon atoms, or from phenols (may be polyhydric or polycyclic aromatic funols). The resulting group is indicated.
  • X is a bridging group represented by formula (a) or formula (b). Forces R, R, R and R are independently water
  • An elementary atom or a hydrocarbon group having 1 to 6 carbon atoms and B represents a group consisting of a benzene ring, biphenyl ring or naphthalene ring.
  • these rings constituting B may be substituted with a hydrocarbon group having 1 to 6 carbon atoms.
  • X bridges L, but the substitution position of X with respect to the groups represented by formulas (2) and (3) constituting L is not particularly limited.
  • the 1-position force of the indole ring is also 7-position.
  • a structure in which a hydrogen atom is substituted with a bridging group and linked can be taken, but it is preferable that the hydrogen atom at the 1-position of the indole ring in formula (2) remains.
  • the indole skeleton-containing resin of the present invention functions as a curing agent. Is not fully expressed.
  • the softening point of the ISR is preferably 40 to 200 ° C, more preferably 50 to 160 ° C, and more preferably 60 to 120 ° C.
  • the softening point refers to the softening point measured based on the ring and ball method of JISK-6911. If it is lower than this, the heat resistance of the cured product is lowered when it is added to the epoxy resin, and if it is higher than this, the fluidity during molding is lowered.
  • the ISR of the present invention can itself be a component of a phenol resin composition or an epoxy resin composition, but in some cases, a halogen-alkyl compound, an alkenyl halide is added to an indole skeleton-containing resin.
  • the ISR of the present invention includes an indole represented by the formula (4) and a phenol represented by the formula (5), a formula (6), a formula (7), (8) or (9). It can be synthesized by reacting the represented crosslinking agent.
  • the amount of the crosslinking agent used is in the range of 0.1 to 0.9 mol, preferably in the range of 0.2 to 0.8 mol, with respect to 1 mol of the total of indoles and phenols. is there. If it is smaller than this, the amount of unreacted indoles and phenols will increase during the synthesis, resulting in lower ISR productivity and lower soft point of the synthesized ISR, which was used as an epoxy resin curing agent.
  • the acid catalyst can be appropriately selected from known inorganic acids and organic acids.
  • mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid, organic acids such as formic acid, oxalic acid, trifluoroacetic acid, P-toluenesulfonic acid, dimethyl sulfuric acid, jetyl sulfuric acid, zinc chloride, aluminum chloride, iron chloride,
  • Lewis acids such as boron fluoride, or solid acids such as ion-exchange resin, activated clay, silica-alumina, and zeolite.
  • This reaction is usually performed at 10 to 250 ° C for 1 to 20 hours. Furthermore, during the reaction, alcohols such as methanol, ethanol, propanol, butanol, ethylene glycolol, methinoreserosolve, ethyl acetate, etc., ketones such as acetone, methylethyl ketone, methylisobutylketone, dimethyl ether, jetyl Ethers such as ether, diisopropyl ether, tetrahydrofuran and dioxane, and aromatic compounds such as benzene, toluene, chlorobenzene and dichlorobenzene can be used as the solvent.
  • alcohols such as methanol, ethanol, propanol, butanol, ethylene glycolol, methinoreserosolve, ethyl acetate, etc.
  • ketones such as acetone, methylethyl ketone, methylisobutylketone,
  • Examples of indoles used as a raw material include indoles substituted with a hydroxyl group, an alkoxy group, a halogen atom or a hydrocarbon group as a substituent, in addition to indoles.
  • the halogen atom includes a fluorine atom, a chlorine atom, a bromine atom, and the like
  • the alkoxy group includes a methoxy group, an ethoxy group, a vinyl ether group, an isopropoxy group, a allyloxy group, a propargyl ether group, a butoxy group, and a phenoxy group. It is done.
  • hydrocarbon group various substituted indoles having a methyl group, an ethyl group, a vinyl group, an ethyne group, an isopropyl group, an aryl group, a propargyl group, a butyl group, an amyl group, a fullyl group, a benzyl group, etc.
  • the power that can be used is preferably indole.
  • the phenols include, in addition to phenols, alkylphenols such as talesols and xylenols, polyhydric phenols such as hydroquinone, polycyclic phenols such as naphthols and naphthalenediols, bisphenol A and bisphenols. Examples thereof include bisphenols such as F, and polyfunctional phenolic compounds such as phenol novolak and phenol aralkyl resin. These monomers can be used singly or in combination of two or more. However, from the viewpoint of the physical properties of the cured product obtained by containing ISR, the content of the indole skeleton is high. There are no particular restrictions.
  • the cross-linking agent is preferably a formaldehyde represented by formula (6) such as aldehydes such as formaldehyde, acetoaldehyde, propyl aldehyde, butyraldehyde, amyl aldehyde, and benzaldehyde.
  • Preferred formaldehyde raw materials used in the reaction include an aqueous formalin solution, paraformaldehyde, trioxane and the like.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and acetophenone represented by the formula (7) can also be used as a crosslinking agent.
  • the cross-linking agent represented by the formula (8) includes P-xylylenedaricol, P-xylylene glycol dimethyl ether, ⁇ -xylylene dichloride, 4, 4, -dimethoxymethyl biphenyl. 4,4'-dichloromethylbiphenyl, dimethoxymethylnaphthalene, dichloromethylnaphthalene.
  • dibutenebenzenes, dibibiphenols, divinylnaphthalenes and the like represented by the formula (9) can also be used as a crosslinking agent.
  • the obtained ISR contains unreacted indole and phenol. Ru remains. Unreacted remaining indoles and phenols are usually removed out of the system by methods such as distillation under reduced pressure or solvent separation. It is desirable that the amount of unreacted indole and phenols remaining in the ISR be small, usually 5% or less, preferably 3% or less, more preferably 1% or less. If the amount of the remaining indoles and phenols is large, they volatilize during the production of the molded product, which may reduce the molding workability and cause voids in the molded product. In addition, the flame retardancy of the molded product is also reduced.
  • the phenolic resin composition of the present invention comprises the above ISR in a polyhydric phenolic compound.
  • the content of ISR is 2 to 200 parts by weight, preferably 5 to: LOO parts by weight, and more preferably 10 to 80 parts by weight with respect to 100 parts by weight of the polyvalent phenolic compound. If it is less than this, the effects of modification such as low hygroscopicity, heat resistance, adhesion and flame retardancy will be small in winter, and the viscosity will increase and the moldability will decrease.
  • the polyhydric phenol compound referred to here refers to any compound having two or more phenolic hydroxyl groups in one molecule, for example, bisphenol A, bisphenol F, bisphenol S, fluorene bis.
  • Divalent phenols such as phenol, 4, 4, -biphenol, 2, 2, -biphenol, hydrin quinone, resorcin, naphthalenediol, or tris- (4-hydroxyphenol) methane, 1, 1 , 2,2-tetrakis (4-hydroxyphenol) ethane, phenol novolak, o-cresol novolak, naphthol novolak, polyvinyl phenol and the like.
  • divalent phenols such as phenols, naphthols, bisphenolanol A, bisphenolanol F, bisphenolanol S, fluorenebisphenol, 4,4, -biphenol, 2,2, biphenol, hydroquinone, resorcinol, naphthalenediol, etc.
  • the softening point of the polyhydric phenolic compound is usually in the range of 40 to 200 ° C, preferably 60 to 150 ° C. Lower than this, the cure obtained using epoxy hardener as a curing agent The heat resistance of the object decreases. In addition, the mixing property between ISR and higher is lowered.
  • the phenolic resin composition of the present invention includes a melt mixing method in which mixing is performed by stirring, kneading, and the like at a temperature equal to or higher than the softening point of either the polyhydric phenolic compound or the ISR, It can be obtained by a method such as a solution mixing method in which both are dissolved in a solvent that dissolves each and mixed uniformly by stirring, kneading or the like.
  • Solvents used in the solution mixing method include, for example, alcohols such as methanolol, ethanol, propanol, butanol, ethylene glycolol, methinoresellosonol, ethyl acetate sorb, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc. Ketones, dimethyl ether, jetyl ether, diisopropyl ether, tetrahydrofuran, dioxane, and other ethers, and aromatic solvents such as benzene, toluene, xylene, black benzene, and dichlorobenzene.
  • epoxy resin, inorganic filler, other phenolic compounds, and other additives can be blended.
  • the phenol resin composition of the present invention can be made into a phenol resin composition by using in combination with a curing agent generally used for phenol resin compositions such as hexamethyltetramine.
  • L is a group selected by the basic force represented by the formula (11) or the formula (12), and the abundance ratio thereof is 1: 9 to 9: 1, preferably 3: 7 to 7 : 3
  • X is a group represented by the formula (a) or (b), and n is a number from 1 to 10.
  • L and X may be the same or different, but L is the formula (11) and (12 ) Is present. However, since rosin is a mixture, it should be present as an average.
  • R is a hydrogen atom having 1 to 8 carbon atoms, preferably 1
  • the alkoxy group include a methoxy group, an ethoxy group, a butyl ether group, an isopropoxy group, a allyloxy group, a propargyl ether group, a putoxy group, a phenoxy group, and a benzyloxy group
  • the halogen atom includes a fluorine atom and a chlorine atom. Examples thereof include a child and a bromine atom.
  • Hydrocarbon groups include methyl, ethyl, and biphenyl.
  • A is a group formed by epoxy-forming phenols (which may be polyhydric or polycyclic aromatic funols) and has 1 to 8 carbon atoms, preferably 1 to 6 carbon atoms.
  • X and n have the same meaning as X and n in formula (1). That is, X is a bridging group represented by formula (a) or formula (b). n is a number from 1 to 10. In addition, rosin is a mixture, but its average (number average) n is preferably in the above range.
  • the ISE of the present invention is advantageously produced by reacting ISR represented by the general formula (1) with epichlorohydrin, but is not limited to this reaction.
  • the ISR represented by the above general formula (1) is a resin that is at least partly, preferably all of which is H or OH, that is epoxyd with epichlorohydrin. In the formulas (10) to (12), this corresponds to a compound in which the glycidyl ether group is OH and the glycidyl group is H.
  • the epoxy resin composition of the present invention contains at least an epoxy resin and a curing agent, and there are the following three types.
  • composition containing the ISR as a part or all of the curing agent 1) A composition containing the ISR as a part or all of the curing agent.
  • the amount of ISR is usually in the range of 2 to 200 parts by weight, preferably 5 to 80 parts by weight, with respect to 100 parts by weight of the epoxy resin. If it is less than this, the effect of improving the low hygroscopicity, adhesion and flame retardancy is small. If it is more than this, there is a problem that the moldability and the strength of the cured product are lowered.
  • the amount of ISR is usually determined in consideration of the equivalent balance of -NH- groups and -OH groups of ISR and epoxy groups in the epoxy resin. Mix.
  • the equivalent ratio of epoxy resin and curing agent (epoxy group Z (NH group + OH group) molar ratio) is usually in the range of 0.2 force to 5.0, preferably ⁇ or 0.5 force. The range is 0. If it is larger or smaller than this, the curability of the epoxy resin composition is lowered, and the heat resistance, mechanical strength, etc. of the cured product are lowered.
  • a curing agent other than the ISR of the present invention can be used in combination.
  • the amount of the other curing agent is determined within a range in which the range of the ISR is usually within the range of 2 to 200 parts by weight, preferably 5 to 80 parts by weight with respect to 100 parts by weight of the epoxy resin. . If the amount of ISR is less than this, the effect of improving low moisture absorption, adhesion and flame retardancy is small. If it is more than this, there is a problem that the moldability and the strength of the cured product are lowered.
  • curing agents other than ISR all those generally known as epoxy resin hardeners can be used, such as dicyandiamide, acid anhydrides, polyhydric phenols, aromatic and aliphatic amines. Etc.
  • polyhydric phenols are preferably used as curing agents in fields where high electrical insulation properties such as semiconductor encapsulants are required.
  • the following are specific examples of curing agents.
  • Examples of the acid anhydride hardener include phthalic anhydride, tetrahydrophthalic anhydride, and methyl.
  • Examples include tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyl hymic anhydride, dodecyl succinic anhydride, nadic anhydride, and trimellitic anhydride.
  • polyhydric phenols examples include bisphenol A, bisphenol F, bisphenol 3, fluorene bisphenol, 4, 4, -biphenol, 2, 2, -biphenol, hydroquinone, resorcin, naphthalenediol
  • Divalent phenols such as tris- (4-hydroxyphenol) methane, 1,1,2,2-tetrakis (4-hydroxyphenol) ethane, phenol novolak, o-cresol novolak
  • trivalent or higher phenols such as naphthol novolac and polyvinyl phenol are available.
  • divalent compounds such as phenols, naphthols, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4, 4, -biphenol, 2, 2, -biphenol, hydroquinone, resorcin, naphthalene diol, etc.
  • polyhydric phenolic compounds synthesized by a condensing agent such as formaldehyde, acetoaldehyde, benzaldehyde, P-hydroxybenzaldehyde, P-xylylene diol and the like.
  • the above-described phenolic resin composition of the present invention can be blended.
  • amines examples include 4,4, -diaminodiphenylmethane, 4,4, -diaminodiphenylpropan, 4,4, -diaminodiphenylsulfone, m-phenylenediamine, and p-xylylenediamine.
  • aromatic amines such as amine
  • aliphatic amines such as ethylenediamine, hexamethylenediamine, diethylenetriamine, and triethylenetetramine.
  • One or more of these curing agents can be mixed and used in the composition.
  • the epoxy resin used in the yarn and composite is selected from those having two or more epoxy groups in one molecule.
  • divalent phenols such as bisphenol A, bisphenol F, bisphenol 3, fluorene bisphenol, 4, 4, -biphenol, 2, 2, -biphenol, tetrabromobisphenol A, hydroquinone, resorcin, etc.
  • tris- (4-hydroxyphenol) methane, 1,1,2,2-tetrakis (4-hydroxyphenol) ethane, novolac sesame such as phenol, cresol, naphthol, phenol, sauce
  • glycidyl ethers of phenolic compounds having a valence of 3 or more such as aralkyl resins such as sol and naphthol.
  • These epoxy resins can be used alone or in combination of two or more. It is possible to be.
  • any one generally known as a curing agent for epoxy resin can be used.
  • examples include dicyandiamide, polyvalent phenols, acid anhydrides, aromatic and aliphatic amines described above.
  • an ISR represented by the general formula (1) is also preferably exemplified.
  • One or more of these hardeners can be mixed and used in the resin composition.
  • epoxy resin in addition to the ISE represented by the general formula (10), another type of epoxy resin may be blended in the epoxy resin composition as an epoxy resin component.
  • the epoxy resin in this case, all normal epoxy resins having two or more epoxy groups in the molecule can be used.
  • divalent phenols such as bisphenol A, bisphenol S, fluorene bisphenol, 4, 4, 1 biphenol, 2, 2, 1 biphenol, hydroquinone, resorcin, or tris mono (4- Hydroxyphenol) methane, 1,1,2,2-tetrakis (4-hydroxyphenol) ethane, phenol novolak, o-cresol novolak and other trivalent phenols, phenolic aralkyl fats
  • naphthol-based aralkyl resins or darcidyl ether derivatives that are derived from halogen-bisphenols such as tetrabromobisphenol A.
  • epoxy resins can be used alone or in combination of two or more.
  • the amount of ISE represented by the general formula (1) is 5 to: L00 wt%, preferably 60 to 100 wt% in the entire epoxy resin. It should be in the range!
  • ISR and ISE are used as part or all of the epoxy resin and curing agent, but the preferred amount of ISR and ISE when used as a part is as described above.
  • the same epoxy resin or curing agent when other epoxy resin and curing agent are used the same epoxy resin or curing agent as described in the composition can be used.
  • an oligomer or a polymer compound such as polyester, polyamide, polyimide, polyether, polyurethane, petroleum resin, inden resin, inden'coumarone resin, phenoxy resin, etc. May be appropriately blended as other modifiers.
  • the amount added is usually in the range of 2 to 30 parts by weight per 100 parts by weight of the epoxy resin.
  • the epoxy resin composition of the present invention may contain additives such as inorganic fillers, pigments, retardants, thixotropic agents, coupling agents, fluidity improvers and the like.
  • inorganic fillers examples include silica powder such as spherical or crushed fused silica and crystalline silica, alumina powder, glass powder, or my strength, talc, calcium carbonate, alumina, hydrated alumina, and the like.
  • a preferable blending amount when used for a semiconductor encapsulant is 70 wt% or more, and more preferably 80 wt% or more.
  • Examples of the pigment include organic or inorganic extender pigments, scaly pigments, and the like.
  • examples of the thixotropic agent include silicon-based, castor oil-based, aliphatic amide wax, acid-polyethylene nitrate, and organic bentonite-based.
  • a curing accelerator can be used in the epoxy resin composition of the present invention as needed.
  • examples include amines, imidazoles, organic phosphines, Lewis acids, etc., specifically 1,8-diazabicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethyl.
  • Tertiary amines such as amine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, 2-methylimidazole, 2-phenolimidazole, 2-ethyl-4-methylimidazole, 2-phenol -Ru 4-methylimidazole, imidazoles such as 2-heptadecylimidazole, organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylenophosphine, and phenylophosphine, tetraphenylphosphonium 'Tetraphenolate, tetraphenylphospho-um ⁇ Ethyl trifluorate, tetrabutyl phosphorum ⁇ Tetra-substituted phosphomumes such as tetrabutyl borate, tetra-substituted borate, 2-ethyl 4-methylimidazole
  • the resin composition of the present invention includes a release agent such as carnauba wax and OP wax, a coupling agent such as y-glycidoxypropyltrimethoxysilane, carbon black and the like. Colorants, flame retardants such as antimony trioxide, anti-stress agents such as silicone oil, and lubricants such as calcium stearate.
  • the epoxy resin composition of the present invention is made into a varnish in which an organic solvent is dissolved, After impregnating fibrous materials such as glass cloth, aramid nonwoven fabric, and polyester nonwoven fabric such as liquid crystal polymer, the solvent can be removed to prepare a pre-preda. Moreover, it can be set as a laminated body by apply
  • the epoxy resin composition of the present invention is cured by heating, an epoxy resin composition can be obtained.
  • This cured product has low moisture absorption, high heat resistance, adhesion, flame retardancy, and the like. Excellent in terms.
  • This cured product can be obtained by molding the epoxy resin composition by casting, compression molding, transfer molding or the like. The temperature at this time is usually in the range of 120 to 220 ° C.
  • the viscosity was measured by a ring-and-ball method using a B-type viscometer according to the softening point ⁇ and IS K-6911.
  • the GPC measurement conditions were as follows: apparatus; HLC-82A (manufactured by Tosohichi Co., Ltd.), column; Tetrahydrofuran, flow rate; lml / miiu temperature; 38 ° C, detector; RI, polystyrene standard solution was used for the calibration curve.
  • Fig. 1 shows the NMR ⁇ vector
  • Fig. 2 shows the infrared absorption spectrum
  • Fig. 3 shows the GPC chart.
  • 0-cresol novolak type epoxy resin (OCNE; epoxy equivalent 200, softening point 70 ° C) as epoxy resin component, ISR-A, ISR-B obtained in Examples 1 and 2 as curing agent, Example 3 Phenol resin composition (resin composition A), phenol novolac (curing agent A; OH equivalent 103, soft soft point 82 ° C), phenol aralkyl resin (curing agent B; Mitsui) Glossary, XL 225-LL, OH equivalent 172, softening point 74 ° C), silica (average particle size 2 2 m) as filler, and 2-ethyl-4-methylimidazole as curing accelerator in Table 1.
  • the resulting mixture was kneaded to obtain an epoxy resin composition.
  • This epoxy resin composition was used and molded at 175 ° C., and post-cured at 175 ° C. for 12 hours to obtain a cured product test piece, which was then subjected to various physical property measurements.
  • the glass transition point (Tg) and the coefficient of linear expansion (CTE) were measured at a rate of temperature increase of 10 ° CZ using a thermomechanical measurement device.
  • the water absorption rate is the rate of change in weight after forming a disk with a diameter of 50 mm and a thickness of 3 mm using an epoxy resin thread and post-curing, and absorbing moisture at 133 ° C, 3 atm for 96 hours. did.
  • Table 4 a round test with a diameter of 50 mm and a thickness of 3 mm was used. Using the specimen, the rate of change in weight after absorbing moisture for 100 hours under the conditions of 85 ° C. and 85% RH was used.
  • the adhesive strength was 175 ° C, formed on a copper foil with a compression molding machine using an epoxy resin composition. After post-curing at C for 12 hours, the tensile shear strength was determined and evaluated. However, in Table 4, the adhesive strength is 25 mm X 12.5 mm X O. 5 mm molded product between two copper plates at 175 ° C with a compression molding machine and post-cured at 180 ° C for 12 hours. Then, the tensile shear strength was evaluated. Flame retardancy was measured by the UL94V-0 standard after molding a 1Z16 inch thick test piece and expressed as the total burn time for five test pieces. The results are summarized in Table 2.
  • Example 10 100 g of ISR-A obtained in Example 1 was dissolved in 178 g of epichlorohydrin and 36 g of diethylene glycol dimethyl ether. Thereafter, 33.7 g of 96% potassium potassium hydroxide was added over 3 hours at 50 ° C. with stirring, and the reaction was continued for another hour after the addition was completed. After completion of the reaction, the salt produced by filtration was removed, and after further washing with water, epiclorhydrin was distilled off to obtain 110 g of epoxy resin (ISE-A). The obtained epoxy resin had a soft soft point of 78 ° C, a melt viscosity of 0.28 Pa's, and an epoxy equivalent of 278 g / eq. The results of NMR, IR and GPC measurements on ISE-A are shown in FIGS.
  • epoxy resin component As the epoxy resin component, ISE-A, 0-cresol novolac type epoxy resin synthesized in Example 10 (epoxy resin B: Nippon Kayaku Co., Ltd., EOCN-1020-65; epoxy equivalent 200, hydrolyzable Chlorine 400ppm, softening point 65 ° C), biphenyl type epoxy resin (Epoxy resin C: made by Japan Epoxy Resin, YX4000HK; epoxy equivalent 195, hydrolyzable chlorine 450ppm, melting point 105 ° C)
  • agent component As an agent component, IS R-A synthesized in Example 1, phenol novolak (curing agent A: manufactured by Gunei Chemical Co., Ltd., PSM-4261; OH equivalent 103, softening point 80 ° C), 1-naphthol aralkyl-type soot Fat (curing agent B: manufactured by Nippon Steel Engineering Co., Ltd., SN-4 75; OH equivalent 210, softening point 77 ° C.)
  • an epoxy resin composition was obtained with the formulation shown in Table 3, using spherical silica (average particle size 18 m) as a filler and triphenylphosphine as a curing accelerator.
  • surface shows the weight part in a mixing
  • the ISR of the present invention is useful as an epoxy resin intermediate, an epoxy resin curing agent, and a modifier.
  • the ISR When applied to an epoxy resin composition, the ISR has excellent high heat resistance and moisture resistance. It gives a cured product with excellent flame retardancy and high adhesion to different materials, and can be suitably used for applications such as sealing of electronic components and circuit board materials.
  • an epoxy resin composition containing ISR or ISE of the present invention is cured by heating, an epoxy resin is obtained. It is possible to make a cured oil, and this cured product is excellent in terms of flame retardancy, low moisture absorption, high heat resistance, adhesion, etc., and is suitable for applications such as sealing electrical and electronic parts, circuit board materials, etc. It can be used for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)

Abstract

The present invention relates to an epoxy resin providing a cured product being excellent in high heat resistance, moisture resistance and flame resistance, and in the adhesion with a different type of material, and also to a resin containing an indole skeleton used as an intermediate for the epoxy resin. The above resin containing an indole skeleton is prepared by reacting 100 moles in total of an indole and a phenol with 10 to 90 moles of a crosslinking agent such as an aldehyde and a xylylene glycol. The above epoxy resin containing an indole skeleton is prepared by the epoxidation of the above resin containing an indole skeleton with epichlorohydrin. The resin containing an indole skeleton can be represented by the following general formula (1): H-L-(X-L)n-H (1) wherein L is a divalent group formed from an indole or a phenol, the presence ratio (mole ratio) of an indole-derived group and a phenol-derived group is in the range of 1:9 to 9:1, X is a divalent group formed from a crosslinking agent such as an aldehyde, a ketone, xylylene glycol or divinyl benzene, and n represents a number of 1 to 10.

Description

明 細 書  Specification
インドール骨格含有樹脂、インドール骨格含有エポキシ樹脂、エポキシ樹 脂組成物及びその硬化物  Indole skeleton-containing resin, indole skeleton-containing epoxy resin, epoxy resin composition and cured product thereof
技術分野  Technical field
[0001] 本発明は、エポキシ榭脂の中間体、硬化剤等として有用なインドール骨格含有榭 脂、インドール骨格含有エポキシ榭脂、これら用いたエポキシ榭脂組成物並びにそ の硬化物に関するものであり、プリント配線板、半導体封止等の電気電子分野の絶 縁材料等に好適に使用される。 背景技術  The present invention relates to an indole skeleton-containing resin useful as an intermediate of epoxy resin, a curing agent, etc., an indole skeleton-containing epoxy resin, an epoxy resin composition using these, and a cured product thereof. It is preferably used as an insulating material in the electric and electronic fields such as printed wiring boards and semiconductor encapsulation. Background art
[0002] エポキシ榭脂は工業的に幅広い用途で使用されてきているが、その要求性能は近 年ますます高度化している。例えば、エポキシ榭脂を主剤とする榭脂組成物の代表 的分野に半導体封止材料があるが、半導体素子の集積度の向上に伴い、パッケ一 ジサイズは大面積化、薄型化に向かうとともに、実装方式も表面実装化への移行が 進展しており、半田耐熱性に優れた材料の開発が望まれている。従って、封止材料 としては、低吸湿化に加え、リードフレーム、チップ等の異種材料界面での接着性 · 密着性の向上が強く求められている。回路基板材料においても同様に、半田耐熱性 向上の観点力 低吸湿性、高耐熱性、高密着性の向上に加え、誘電損失低減の観 点から低誘電性に優れた材料の開発が望まれて ヽる。これらの要求に対応するため 、様々な新規構造のエポキシ榭脂及び硬化剤が検討されている。更に最近では、環 境負荷低減の観点から、ハロゲン系難燃剤排除の動きがあり、より難燃性に優れた エポキシ榭脂及び硬化剤が求められて 、る。  [0002] Epoxy resin has been used in a wide range of industrial applications, but its required performance has become increasingly sophisticated in recent years. For example, there is a semiconductor encapsulating material in a typical field of a resin composition mainly composed of epoxy resin, but as the integration degree of semiconductor elements increases, the package size is becoming larger and thinner. The mounting method is also shifting to surface mounting, and the development of materials with excellent solder heat resistance is desired. Therefore, as a sealing material, in addition to reducing moisture absorption, improvement in adhesion and adhesion at the interface between different materials such as lead frames and chips is strongly demanded. Similarly, for circuit board materials, the viewpoint power of improving solder heat resistance In addition to the improvement of low moisture absorption, high heat resistance, and high adhesion, development of materials with excellent low dielectric properties is desired from the viewpoint of reducing dielectric loss. Speak. In order to meet these demands, various new structures of epoxy resins and curing agents have been studied. More recently, from the viewpoint of reducing the environmental load, there has been a movement to eliminate halogen-based flame retardants, and there has been a demand for epoxy resins and hardeners with better flame retardancy.
[0003] 本発明に関連する先行技術として次の文献がある。  [0003] There are the following documents as prior art related to the present invention.
特許文献 1 :特開平 5— 1099345号公報  Patent Document 1: JP-A-5-1099345
特許文献 2 :特開平 11— 140166号公報  Patent Document 2: JP-A-11-140166
特許文献 3 :特開 2004— 46522号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2004-46522
特許文献 4:特開 2004— 59792号公報  Patent Document 4: Japanese Patent Application Laid-Open No. 2004-59792
特許文献 5:特開平 4 - 173831号公報 特許文献 6:特開 2000— 129092号公報 Patent Document 5: Japanese Patent Laid-Open No. 4-173831 Patent Document 6: Japanese Unexamined Patent Publication No. 2000-129092
特許文献 7:特開平 3 - 90075号公報  Patent Document 7: Japanese Patent Laid-Open No. 3-90075
特許文献 8:特開平 3— 281623号公報  Patent Document 8: JP-A-3-281623
[0004] 従って、上記背景力 種々のエポキシ榭脂及びエポキシ榭脂硬化剤が検討されて いる。エポキシ榭脂硬化剤の一例として、ナフタレン系榭脂が知られており、特許文 献 1にはナフトールァラルキル榭脂を半導体封止材へ応用することが示されて 、る。 但し、ナフトールァラルキル榭脂は、低吸湿性、低熱膨張性等に優れるものの、硬化 性に劣る欠点があった。また、特許文献 2にはビフエ-ル構造を有する硬化剤が提案 され、難燃性向上に有効であることが記載されているが、硬化性に劣る欠点があった 。更に、ナフタレン系榭脂、ビフエ-ル系榭脂ともに、炭化水素のみで構成される主 骨格を有することから、難燃性の発現に十分ではな力つた。また、特許文献 3には芳 香族ォレフインと共重合したインドール系オリゴマーが記載されている。  [0004] Accordingly, various epoxy resins and epoxy resin curing agents with the above background power have been studied. As an example of an epoxy resin hardener, naphthalene-based resin is known, and Patent Document 1 shows the application of naphthol aralkyl resin to semiconductor encapsulants. However, although naphthol aralkyl rosin is excellent in low hygroscopicity, low thermal expansion, etc., it has a disadvantage of poor curability. Further, Patent Document 2 proposes a curing agent having a biphenyl structure and describes that it is effective for improving flame retardancy, but has a drawback of being inferior in curability. Furthermore, both naphthalene-based and biphenyl-based resins have a main skeleton composed only of hydrocarbons, so they were not sufficient for the development of flame retardancy. Patent Document 3 describes indole oligomers copolymerized with aromatic olefins.
[0005] 一方、エポキシ榭脂についても、これらの要求を満足するものは未だ知られていな い。例えば、周知のビスフエノール型エポキシ榭脂は、常温で液状であり、作業性に 優れていることや、硬化剤、添加剤等との混合が容易であることから広く使用されて いるが、耐熱性、耐湿性の点で問題がある。また、耐熱性を改良したものとして、ノボ ラック型エポキシ榭脂が知られているが、耐湿性、接着性等に問題がある。更には、 主骨格が炭化水素のみで構成される従来のエポキシ榭脂では、難燃性を全くもたな い。  [0005] On the other hand, an epoxy resin that satisfies these requirements has not been known yet. For example, the well-known bisphenol type epoxy resin is widely used because it is liquid at room temperature and has excellent workability and is easy to mix with curing agents and additives. There is a problem in terms of resistance and moisture resistance. Further, novolac type epoxy resin is known as an improved heat resistance, but there are problems in moisture resistance, adhesion and the like. Furthermore, conventional epoxy resins whose main skeleton is composed only of hydrocarbons have no flame retardancy.
[0006] ノ、ロゲン系難燃剤を用いることなく難燃性を向上させるための方策として、リン酸ェ ステル系の難燃剤を添加する方法が知られている。しかし、リン酸エステル系の難燃 剤を用いる方法では、耐湿性が十分ではない。また、高温、多湿な環境下ではリン酸 エステルが加水分解を起こし、絶縁材料としての信頼性を低下させる問題があった。  [0006] As a measure for improving flame retardancy without using a rogen-based flame retardant, a method of adding a phosphate-based flame retardant is known. However, the method using a phosphate ester flame retardant does not have sufficient moisture resistance. In addition, the phosphoric acid ester is hydrolyzed under high temperature and humidity, and there is a problem that the reliability as an insulating material is lowered.
[0007] リン原子やハロゲン原子を含むことなぐ難燃性を向上させるものとして、特許文献 2、 5、 6ではビフエニル構造を有するァラルキル型エポキシ榭脂を半導体封止材へ 応用した例が開示されている。特許文献 4には、ナフタレン構造を有するァラルキル 型エポキシ榭脂を使用する例が開示されている。しかしながら、これらのエポキシ榭 脂は難燃性や、耐湿性、耐熱性のいずれかにおいて性能が十分でない。なお、特許 文献 7及び 8にはナフトール系ァラルキル型エポキシ榭脂及びこれを含有する半導 体封止材料が開示されているが、難燃性に着目したものはない。 [0007] Patent Documents 2, 5, and 6 disclose examples in which aralkyl epoxy resin having a biphenyl structure is applied to a semiconductor encapsulant as a material that improves flame retardancy without containing phosphorus atoms or halogen atoms. ing. Patent Document 4 discloses an example in which an aralkyl type epoxy resin having a naphthalene structure is used. However, these epoxy resins have insufficient performance in any of flame retardancy, moisture resistance, and heat resistance. Patents References 7 and 8 disclose naphthol-based aralkyl-type epoxy resins and semiconductor encapsulating materials containing them, but nothing focuses on flame retardancy.
発明の開示  Disclosure of the invention
発明が解決 OAしI ょうとする課題  Problems solved by the invention
H  H
[0008] 本発明の目的は、エポキシ榭脂の中間体、硬化剤等に有用なインドール骨格含有[0008] An object of the present invention is to contain an indole skeleton useful for an intermediate of epoxy resin, a curing agent, etc.
H N  H N
榭脂を提供すること、難燃性に優れるとともに、耐湿性、耐熱性、金属基材との接着 性等にも優れた性能を有し、積層、成形、注型、接着等の用途に有用なインドール 骨格含有エポキシ榭脂を提供すること、優れた成形性を有するとともに、低吸湿性、 耐熱性、密着性、及び難燃性等に優れた硬化物を与える電気'電子部品類の封止、 回路基板材料等に有用なエポキシ榭脂組成物を提供すること、及びその硬化物を 提供することにある。  Providing grease, excellent flame retardancy, and excellent performance in moisture resistance, heat resistance, adhesion to metal substrate, etc., useful for applications such as lamination, molding, casting and adhesion Providing a new indole skeleton-containing epoxy resin, having excellent moldability, and providing electrical and electronic parts that provide cured products with excellent moisture absorption, heat resistance, adhesion, and flame retardancy Another object of the present invention is to provide an epoxy resin composition useful for circuit board materials and the like, and to provide a cured product thereof.
課題を解決するための手段  Means for solving the problem
[0009] 本発明のインドール骨格含有榭脂は、下記一般式(1)で表される。 [0009] The indole skeleton-containing coffin of the present invention is represented by the following general formula (1).
H-L-(X-L) -H (1)  H-L- (X-L) -H (1)
ここで、  here,
Lは下記式(2)及び式(3)  L is the following formula (2) and formula (3)
Ri Ri
( 2 ) (2)
( 3 ) で表される基のいずれかであり、 Rは水素原子、水酸基、炭素数 1〜8のアルコキシ 基、ハロゲン原子又は炭素数 1〜8の炭化水素基を示し、 Aは炭素数 1〜8のアルキ ル基若しくは水酸基が置換してもよ 、ベンゼン環又はナフタレン環力 なる基を示し 、式(2)と式(3)で表される基の存在割合 (モル比)が 1: 9〜9: 1の範囲であり、 Xは下記 (a)又は式 (b)
Figure imgf000005_0001
で表される架橋基であり、 R、 R、 R
(3) R is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 8 carbon atoms, a halogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and A is a group having 1 carbon atom. Even if the alkyl group or hydroxyl group of ˜8 is substituted, it represents a group having a benzene ring or naphthalene ring force, and the abundance ratio (molar ratio) of the groups represented by the formulas (2) and (3) is 1: 9-9: 1, where X is the following (a) or formula (b)
Figure imgf000005_0001
R, R, R
2 3 4及び R  2 3 4 and R
5は独立に、水素原子又は炭素数 1〜6 の炭化水素基を示し、 Bはベンゼン環、ビフヱ-ル環又はナフタレン環力 なる基を 示し、  5 independently represents a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms, B represents a group having a benzene ring, biphenyl ring or naphthalene ring force,
nは 1〜: LOの数を示す。  n represents 1 to: the number of LOs.
このインドール骨格含有榭脂は、下記式 (4)で表されるインドール類と下記式(5) で表されるフエノール類のモル比が 1 : 9〜9: 1の範囲であり、両者の合計 100モル 対し、下記式 (6)、 (7)、 (8)又は(9)で表される架橋剤 10〜90モルとを反応させる: とにより得ることができる。  This indole skeleton-containing rosin has a molar ratio of indole represented by the following formula (4) and phenol represented by the following formula (5) in the range of 1: 9 to 9: 1. It is obtained by reacting 10 to 90 mol of a crosslinking agent represented by the following formula (6), (7), (8) or (9) with respect to 100 mol.
Figure imgf000005_0002
Figure imgf000005_0002
( 7 ) (7)
Figure imgf000006_0001
但し、
Figure imgf000006_0001
However,
Rは水素原子、水酸基、炭素数] 8のアルコキシ基、ハロゲン原子又は炭素数] 〜8の炭化水素基を示し、  R represents a hydrogen atom, a hydroxyl group, an alkoxy group having 8 carbon atoms, a halogen atom or a hydrocarbon group having 8 to 8 carbon atoms,
Aは炭素数 1〜8のアルキル基若しくは水酸基が置換してもよいベンゼン環又はナ フタレン環力 なる基を示し、  A represents an alkyl group having 1 to 8 carbon atoms or a group having a benzene ring or naphthalene ring which may be substituted by a hydroxyl group,
R、 R、 R及び Rは独立に、水素原子又は炭素数] の炭化水基を示し、 Bはベンゼン環、ビフエ-ル環又はナフタレン環力 なる基を示し、  R, R, R and R independently represent a hydrogen atom or a hydrocarbon group having a carbon number], B represents a group having a benzene ring, biphenyl ring or naphthalene ring,
Z及び Zは独立に OH、アルコキシ又はハロゲンを示す。  Z and Z independently represent OH, alkoxy or halogen.
1 2  1 2
本発明のインドール骨格含有エポキシ榭脂は、下記一般式(10)で表される。  The indole skeleton-containing epoxy resin of the present invention is represented by the following general formula (10).
H-L -(X-L ) -H (10)  H-L-(X-L) -H (10)
1 1 n  1 1 n
二こで、  Niko,
Lは下記式(11)又は式(12)
Figure imgf000007_0001
L is the following formula (11) or formula (12)
Figure imgf000007_0001
A OI ¾一  A OI ¾ 一
( 1 2 ) で表される基のいずれかであり、 Rは水素原子、グリシジルォキシ基、炭素数 1〜8の Any one of the groups represented by (1 2), wherein R is a hydrogen atom, a glycidyloxy group, having 1 to 8 carbon atoms.
6  6
アルコキシ基、ハロゲン原子又は炭素数 1〜8の炭化水素基を示し、 Aは炭素数 1〜 8のアルキル基若しくはグリシジルォキシ基が置換してもよ 、ベンゼン環又はナフタレ ン環力 なる基を示し、式( 11)と式( 12)で表される基の存在割合 (モル比)が 1: 9〜 9 : 1の範囲であり、  An alkoxy group, a halogen atom, or a hydrocarbon group having 1 to 8 carbon atoms, and A represents a group having a benzene ring or naphthalene ring force, which may be substituted by an alkyl group or glycidyloxy group having 1 to 8 carbon atoms. The ratio of the groups represented by the formulas (11) and (12) (molar ratio) is in the range of 1: 9 to 9: 1,
Yは水素原子、炭素数 1〜8の炭化水素基又はグリシジル基を示し、 Gはグリシジル 基を示し、  Y represents a hydrogen atom, a hydrocarbon group having 1 to 8 carbon atoms or a glycidyl group, G represents a glycidyl group,
Xは一般式(1)と同じ意味を有し、  X has the same meaning as in general formula (1),
nは 1〜: L0の数を示す。  n represents 1 to: the number of L0.
[0012] このインドール骨格含有エポキシ榭脂は、一般式(1)で表されるインドール骨格含 有榭脂と、ェピクロルヒドリンを反応させることにより有利に得ることができる。  [0012] This indole skeleton-containing epoxy resin can be advantageously obtained by reacting the indole skeleton-containing resin represented by the general formula (1) with epichlorohydrin.
[0013] 本発明のフエノール榭脂組成物は、多価フエノール性ィ匕合物 100重量部に対して 、インドール骨格含有榭脂を 2から 200重量部配合してなる。本発明のエポキシ榭脂 及び硬化剤よりなるエポキシ榭脂組成物は、硬化剤の一部又は全部としてインドー ル骨格含有榭脂を、エポキシ榭脂 100重量部に対して 2から 200重量部配合してな る力、又はエポキシ榭脂の一部又は全部として前記インドール骨格含有エポキシ榭 脂を配合してなる。本発明のエポキシ榭脂硬化物は、このフエノール榭脂組成物を 硬ィ匕させること〖こより得られる。  [0013] The phenolic resin composition of the present invention is obtained by blending 2 to 200 parts by weight of an indole skeleton-containing resin with 100 parts by weight of a polyhydric phenolic compound. The epoxy resin composition comprising the epoxy resin and the curing agent of the present invention comprises 2 to 200 parts by weight of an Indian skeleton-containing resin as part or all of the curing agent with respect to 100 parts by weight of the epoxy resin. The indole skeleton-containing epoxy resin is blended as a part of or the entire power of the epoxy resin. The epoxy resin cured product of the present invention can be obtained by hardening this phenol resin composition.
[0014] 本発明のインドール骨格含有榭脂 (以下、 ISRともいう)は一般式(1)で表される。ま た、本発明のインドール骨格含有エポキシ榭脂(以下、 ISEともいう)は一般式(10) で表される。 ISEは、 ISRをエポキシ化することにより得ることができるので、 ISRは IS Eの中間体でもある。 [0014] The indole skeleton-containing rosin (hereinafter also referred to as ISR) of the present invention is represented by the general formula (1). The indole skeleton-containing epoxy resin (hereinafter also referred to as ISE) of the present invention has the general formula (10) It is represented by Since ISE can be obtained by epoxidizing ISR, ISR is also an intermediate of ISE.
[0015] 一般式(1)において、 Lは式(2)及び式(3)で表される基力 選ばれる基であり、そ の存在割合は 1: 9〜9: 1、好ましくは 3: 7〜7: 3である。また、 Xは式(a)又は式 (b)で 表される基であり、 nは 1〜10の数である。ここで、式(1)中の n+ 1個の L及び n個の Xは、それぞれ同一であっても異なっていてもよいが、 Lは榭脂中に上記存在割合で 式 (2)及び式 (3)で表される基が存在する。しかし、榭脂は混合物であるため、平均 として存在すればよい。なお、 nについても、榭脂は混合物であるので、その平均 (数 平均)は上記範囲にあることがよい。  [0015] In the general formula (1), L is a group selected from the basic forces represented by the formulas (2) and (3), and the abundance ratio thereof is 1: 9 to 9: 1, preferably 3: 7-7: 3. X is a group represented by formula (a) or formula (b), and n is a number from 1 to 10. Here, n + 1 L and n X in the formula (1) may be the same or different from each other, but L is the above-mentioned abundance ratio in the fat and oil in the formula (2) and the formula There is a group represented by (3). However, since rosin is a mixture, it only needs to exist as an average. As for n, since rosin is a mixture, its average (number average) is preferably in the above range.
[0016] 式(2)及び式(3)において、 Rは水素原子、水酸基、炭素数 1〜8、好ましくは 1〜 6のアルコキシ基、ハロゲン原子又は炭素数 1〜8、好ましくは 1〜7の炭化水素基を 示す。 Aは炭素数 1〜8、好ましくは 1〜6のアルキル基若しくは水酸基が置換しても よ 、フ ノール類(多価フ ノール類や多環芳香族フ ノール類であってもよ 、)から 生じる基を示す。  In the formulas (2) and (3), R is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 8 carbon atoms, preferably an alkoxy group having 1 to 6 carbon atoms, a halogen atom, or a carbon atom having 1 to 8, preferably 1 to 7 Represents a hydrocarbon group. A may be substituted with an alkyl group or a hydroxyl group having 1 to 8 carbon atoms, preferably 1 to 6 carbon atoms, or from phenols (may be polyhydric or polycyclic aromatic funols). The resulting group is indicated.
[0017] Xは式(a)又は式 (b)で表される架橋基である力 R、 R、 R及び Rは独立に、水  [0017] X is a bridging group represented by formula (a) or formula (b). Forces R, R, R and R are independently water
2 3 4 5  2 3 4 5
素原子又は炭素数 1〜6の炭化水素基を示し、 Bはベンゼン環、ビフヱ-ル環又はナ フタレン環力 なる基を示す。なお、 Bを構成するこれらの環は、炭素数 1〜6の炭化 水素基で置換されていてもよい。 Xは Lを架橋するが、 Lを構成する式 (2)及び式 (3) で表される基に対する Xの置換位置は、特に限定するものではなぐ例えばインドー ル環の 1位力も 7位の水素原子が架橋基で置換されて連結した構造をとり得るが、式 (2)においてインドール環の 1位の水素原子が残存していることが好ましい。すべて のインドール環の 1位の水素原子が残存している必要はないが、すべてのインドール 環の 1位の水素原子が置換されていると、本発明のインドール骨格含有樹脂の硬化 剤としての機能が十分に発現されな 、。  An elementary atom or a hydrocarbon group having 1 to 6 carbon atoms, and B represents a group consisting of a benzene ring, biphenyl ring or naphthalene ring. In addition, these rings constituting B may be substituted with a hydrocarbon group having 1 to 6 carbon atoms. X bridges L, but the substitution position of X with respect to the groups represented by formulas (2) and (3) constituting L is not particularly limited. For example, the 1-position force of the indole ring is also 7-position. A structure in which a hydrogen atom is substituted with a bridging group and linked can be taken, but it is preferable that the hydrogen atom at the 1-position of the indole ring in formula (2) remains. It is not necessary that the 1-position hydrogen atom of all indole rings remain, but if the 1-position hydrogen atom of all indole rings is substituted, the indole skeleton-containing resin of the present invention functions as a curing agent. Is not fully expressed.
[0018] ISRの軟化点は 40〜200°Cであることがよぐ好ましくは 50〜160°C、より好ましく は 60〜120°Cの範囲である。ここで、軟化点は、 JISK— 6911の環球法に基づき測 定される軟化点を指す。これより低いと、これをエポキシ榭脂に配合したとき、硬化物 の耐熱性が低下し、これより高いと成形時の流動性が低下する。 [0019] 本発明の ISRは、それ自体をフエノール榭脂組成物又はエポキシ榭脂組成物の一 成分とすることができるが、場合により、インドール骨格含有樹脂にハロゲンィ匕アルキ ル化合物、ハロゲン化アルケニル化合物、ェピノヽロヒドリンィ匕合物等を反応させること により、インドール骨格含有榭脂中の- NH-及び- OHの水素原子の一部又は全部を アルキル基、ァルケ-ル基、グリシジル基等に置換することができる。 [0018] The softening point of the ISR is preferably 40 to 200 ° C, more preferably 50 to 160 ° C, and more preferably 60 to 120 ° C. Here, the softening point refers to the softening point measured based on the ring and ball method of JISK-6911. If it is lower than this, the heat resistance of the cured product is lowered when it is added to the epoxy resin, and if it is higher than this, the fluidity during molding is lowered. [0019] The ISR of the present invention can itself be a component of a phenol resin composition or an epoxy resin composition, but in some cases, a halogen-alkyl compound, an alkenyl halide is added to an indole skeleton-containing resin. By reacting compounds, epino-hydrohydrin compounds, etc., some or all of the -NH- and -OH hydrogen atoms in the indole skeleton-containing resin are replaced with alkyl groups, alkenyl groups, glycidyl groups, etc. can do.
[0020] 本発明の ISRは、式 (4)で表されるインドール類及び式(5)で表されるフエノール類 と、式 (6)、式(7)、 (8)又は(9)で表される架橋剤を反応させることにより合成するこ とができる。この場合の架橋剤の使用量は、インドール類及びフエノール類の合計 1 モルに対して、 0. 1〜0. 9モルの範囲であるが、好ましくは 0. 2〜0. 8モルの範囲で ある。これより小さいと合成の際、未反応のインドール類及びフエノール類が多くなり、 ISRの生産性が低下するとともに、合成された ISRの軟ィ匕点が低くなり、エポキシ榭 脂硬化剤として使用した場合の硬化物の耐熱性が低下する。また、これより大きいと I SRの軟化点が高くなり、場合により合成の際に ISRがゲルィ匕することがある。なお、ィ ンドール類及びフ ノール類の使用割合は前記割合となるように調整されるが、イン ドール類の方が架橋剤との反応性が高 、ので、フエノール類を理論量より 、くらか多 めとすることがょ 、場合がある。  [0020] The ISR of the present invention includes an indole represented by the formula (4) and a phenol represented by the formula (5), a formula (6), a formula (7), (8) or (9). It can be synthesized by reacting the represented crosslinking agent. In this case, the amount of the crosslinking agent used is in the range of 0.1 to 0.9 mol, preferably in the range of 0.2 to 0.8 mol, with respect to 1 mol of the total of indoles and phenols. is there. If it is smaller than this, the amount of unreacted indoles and phenols will increase during the synthesis, resulting in lower ISR productivity and lower soft point of the synthesized ISR, which was used as an epoxy resin curing agent. In this case, the heat resistance of the cured product is lowered. On the other hand, if it is larger than this, the softening point of ISR becomes high, and in some cases, ISR may be gelled during synthesis. The proportions of indoles and phenols are adjusted so that they are the above-mentioned proportions. However, since indoles are more reactive with the crosslinking agent, phenols are somewhat less than the theoretical amount. There are cases where there are many cases.
[0021] この反応は無触媒又は酸触媒の存在下に行うことができる。この酸触媒としては、 周知の無機酸、有機酸より適宜選択することができる。例えば、塩酸、硫酸、燐酸等 の鉱酸や、ギ酸、シユウ酸、トリフルォロ酢酸、 P-トルエンスルホン酸、ジメチル硫酸、 ジェチル硫酸等の有機酸や、塩化亜鉛、塩ィ匕アルミニウム、塩化鉄、三フッ化ホウ素 等のルイス酸あるいは、イオン交換榭脂、活性白土、シリカ-アルミナ、ゼォライト等の 固体酸等が挙げられる。 [0021] This reaction can be carried out without a catalyst or in the presence of an acid catalyst. The acid catalyst can be appropriately selected from known inorganic acids and organic acids. For example, mineral acids such as hydrochloric acid, sulfuric acid, phosphoric acid, organic acids such as formic acid, oxalic acid, trifluoroacetic acid, P-toluenesulfonic acid, dimethyl sulfuric acid, jetyl sulfuric acid, zinc chloride, aluminum chloride, iron chloride, Examples include Lewis acids such as boron fluoride, or solid acids such as ion-exchange resin, activated clay, silica-alumina, and zeolite.
[0022] また、この反応は通常、 10〜250°Cで 1〜20時間行われる。更に、反応の際には、 メタノーノレ、エタノーノレ、プロパノーノレ、ブタノーノレ、エチレングリコーノレ、メチノレセロソ ルブ、ェチルセ口ソルブ等のアルコール類や、アセトン、メチルェチルケトン、メチルイ ソブチルケトン等のケトン類、ジメチルエーテル、ジェチルエーテル、ジイソプロピル エーテル、テトラヒドロフラン、ジォキサン等のエーテル類、ベンゼン、トルエン、クロ口 ベンゼン、ジクロロベンゼン等の芳香族化合物等を溶媒として使用することができる。 [0023] 原料として使用するインドール類としては、インドール以外に、置換基として水酸基 、アルコキシ基、ハロゲン原子又は炭化水素基が置換したインドールがある。例えば 、ハロゲン原子としてはフッ素原子、塩素原子、臭素原子等があり、アルコキシ基とし てはメトキシ基、エトキシ基、ビニルエーテル基、イソプロポキシ基、ァリルォキシ基、 プロパルギルエーテル基、ブトキシ基、フエノキシ基が挙げられる。また、炭化水素基 としてはメチル基、ェチル基、ビニル基、ェチン基、イソプロピル基、ァリル基、プロパ ルギル基、ブチル基、アミル基、フ -ル基、ベンジル基等を有する種々の置換イン ドール類を用いることができる力 好ましくはインドールである。 [0022] This reaction is usually performed at 10 to 250 ° C for 1 to 20 hours. Furthermore, during the reaction, alcohols such as methanol, ethanol, propanol, butanol, ethylene glycolol, methinoreserosolve, ethyl acetate, etc., ketones such as acetone, methylethyl ketone, methylisobutylketone, dimethyl ether, jetyl Ethers such as ether, diisopropyl ether, tetrahydrofuran and dioxane, and aromatic compounds such as benzene, toluene, chlorobenzene and dichlorobenzene can be used as the solvent. [0023] Examples of indoles used as a raw material include indoles substituted with a hydroxyl group, an alkoxy group, a halogen atom or a hydrocarbon group as a substituent, in addition to indoles. For example, the halogen atom includes a fluorine atom, a chlorine atom, a bromine atom, and the like, and the alkoxy group includes a methoxy group, an ethoxy group, a vinyl ether group, an isopropoxy group, a allyloxy group, a propargyl ether group, a butoxy group, and a phenoxy group. It is done. In addition, as the hydrocarbon group, various substituted indoles having a methyl group, an ethyl group, a vinyl group, an ethyne group, an isopropyl group, an aryl group, a propargyl group, a butyl group, an amyl group, a fullyl group, a benzyl group, etc. The power that can be used is preferably indole.
[0024] フエノール類としては、フエノールの他、タレゾール類、キシレノール類等のアルキ ルフエノール類、ヒドロキノン等の多価フエノール類、ナフトール類、ナフタレンジォー ル類等の多環フエノール類、ビスフエノール A、ビスフエノール F等のビスフエノール 類、あるいはフエノールノボラック、フエノールァラルキル榭脂等の多官能性フエノー ルイ匕合物が例示される。これらのモノマー類は、 1種又は 2種以上を混合して用いる ことができるが、 ISRを含有して得られる硬化物の物性面からは、インドール類骨格の 含有率が高 、ほどよ 、が特に制約はな 、。  [0024] The phenols include, in addition to phenols, alkylphenols such as talesols and xylenols, polyhydric phenols such as hydroquinone, polycyclic phenols such as naphthols and naphthalenediols, bisphenol A and bisphenols. Examples thereof include bisphenols such as F, and polyfunctional phenolic compounds such as phenol novolak and phenol aralkyl resin. These monomers can be used singly or in combination of two or more. However, from the viewpoint of the physical properties of the cured product obtained by containing ISR, the content of the indole skeleton is high. There are no particular restrictions.
[0025] 架橋剤としては、式(6)で表されるホルムアルデヒド、ァセトアルデヒド、プロピルァ ルデヒド、ブチルアルデヒド、ァミルアルデヒド、ベンズアルデヒド等のアルデヒド類が 挙げられる力 ホルムアルデヒドが好ましい。反応に用いる際の好ましいホルムアル デヒドの原料形態としては、ホルマリン水溶液、パラホルムアルデヒド、トリオキサン等 が挙げられる。また、式(7)で表されるアセトン、メチルェチルケトン、メチルイソブチ ルケトン、ァセトフエノン等のケトン類も架橋剤として使用できる。  [0025] The cross-linking agent is preferably a formaldehyde represented by formula (6) such as aldehydes such as formaldehyde, acetoaldehyde, propyl aldehyde, butyraldehyde, amyl aldehyde, and benzaldehyde. Preferred formaldehyde raw materials used in the reaction include an aqueous formalin solution, paraformaldehyde, trioxane and the like. Further, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and acetophenone represented by the formula (7) can also be used as a crosslinking agent.
[0026] 更に、式 (8)で表される架橋剤としては、 P-キシリレンダリコール、 P-キシリレングリコ ールジメチルエーテル、 ρ-キシリレンジクロライド、 4, 4,-ジメトキシメチルビフエ-ル 、 4, 4' -ジクロロメチルビフエニル、ジメトキシメチルナフタレン類、ジクロロメチルナフ タレン類が挙げられる。  [0026] Further, the cross-linking agent represented by the formula (8) includes P-xylylenedaricol, P-xylylene glycol dimethyl ether, ρ-xylylene dichloride, 4, 4, -dimethoxymethyl biphenyl. 4,4'-dichloromethylbiphenyl, dimethoxymethylnaphthalene, dichloromethylnaphthalene.
また、式(9)で表されるジビュルベンゼン類、ジビ-ルビフエ-ル類、ジビニルナフ タレン類等も架橋剤として使用できる。  In addition, dibutenebenzenes, dibibiphenols, divinylnaphthalenes and the like represented by the formula (9) can also be used as a crosslinking agent.
[0027] 反応終了後、場合により、得られた ISRには、未反応のインドール類及びフエノー ル類が残存する。未反応の残存したインドール類及びフエノール類は、通常、減圧 蒸留あるいは溶剤分割等の方法により系外に除去される。 ISRに残存する未反応の インドーノレ類及びフエノーノレ類の量は少ないことが望ましぐ通常は、 5重量%以下で あり、好ましくは 3重量%以下、更に好ましくは 1重量%以下である。残存するインドー ル類及びフエノール類の量が多いと、成形物を作成する際に揮発し、成形作業性を 低下させるとともに成形物のボイドの原因になることがある。また、成形物の難燃性も 低下する。 [0027] After completion of the reaction, in some cases, the obtained ISR contains unreacted indole and phenol. Ru remains. Unreacted remaining indoles and phenols are usually removed out of the system by methods such as distillation under reduced pressure or solvent separation. It is desirable that the amount of unreacted indole and phenols remaining in the ISR be small, usually 5% or less, preferably 3% or less, more preferably 1% or less. If the amount of the remaining indoles and phenols is large, they volatilize during the production of the molded product, which may reduce the molding workability and cause voids in the molded product. In addition, the flame retardancy of the molded product is also reduced.
[0028] 本発明のフエノール榭脂組成物は、多価フエノール性ィ匕合物中に上記 ISRを含有 してなる。 ISRの含有率は、多価フエノール性化合物 100重量部に対し、 2〜200重 量部、好ましくは 5〜: LOO重量部、更に好ましくは 10〜80重量部の範囲である。これ より少ないと低吸湿性、耐熱性、密着性及び難燃性等の改質効果が小さぐこれより 冬、、と粘度が高くなり成形性が低下する。  [0028] The phenolic resin composition of the present invention comprises the above ISR in a polyhydric phenolic compound. The content of ISR is 2 to 200 parts by weight, preferably 5 to: LOO parts by weight, and more preferably 10 to 80 parts by weight with respect to 100 parts by weight of the polyvalent phenolic compound. If it is less than this, the effects of modification such as low hygroscopicity, heat resistance, adhesion and flame retardancy will be small in winter, and the viscosity will increase and the moldability will decrease.
[0029] ここで言う多価フエノール性ィ匕合物とは、 1分子中にフエノール性水酸基を 2個以上 有するもの全てを指し、例えば、ビスフエノール A、ビスフエノール F、ビスフエノール S 、フルオレンビスフエノール、 4, 4,-ビフエノール、 2, 2,-ビフエノール、ハイド口キノ ン、レゾルシン、ナフタレンジオール等の 2価のフエノール類、あるいは、トリス-(4-ヒ ドロキシフエ-ル)メタン、 1, 1, 2, 2-テトラキス(4-ヒドロキシフエ-ル)ェタン、フエノ 一ルノボラック、 o-クレゾ一ルノボラック、ナフトールノボラック、ポリビニルフエノール 等に代表される 3価以上のフエノール類がある。更には、フエノール類、ナフトール類 、ビスフエノーノレ A、ビスフエノーノレ F、ビスフエノーノレ S、フルオレンビスフエノール、 4 , 4,-ビフエノール、 2, 2,-ビフエノール、ハイドロキノン、レゾルシン、ナフタレンジォ ール等の 2価のフエノール類と、ホルムアルデヒド、ァセトアルデヒド、ベンズアルデヒ ド、 p-ヒドロキシベンズアルデヒド、 p-キシリレングリコール、 p-キシリレングリコールジ メチルエーテル、 4, 4,-ジメトキシメチルビフエニル、 4, 4,-ジメトキシメチルジフエ二 ルエーテル、ジビニルベンゼン類、ジビ-ルビフエ-ル類、ジビュルナフタレン類等 の架橋剤との反応により合成される多価フエノール性ィ匕合物等がある。  [0029] The polyhydric phenol compound referred to here refers to any compound having two or more phenolic hydroxyl groups in one molecule, for example, bisphenol A, bisphenol F, bisphenol S, fluorene bis. Divalent phenols such as phenol, 4, 4, -biphenol, 2, 2, -biphenol, hydrin quinone, resorcin, naphthalenediol, or tris- (4-hydroxyphenol) methane, 1, 1 , 2,2-tetrakis (4-hydroxyphenol) ethane, phenol novolak, o-cresol novolak, naphthol novolak, polyvinyl phenol and the like. Furthermore, divalent phenols such as phenols, naphthols, bisphenolanol A, bisphenolanol F, bisphenolanol S, fluorenebisphenol, 4,4, -biphenol, 2,2, biphenol, hydroquinone, resorcinol, naphthalenediol, etc. And formaldehyde, acetoaldehyde, benzaldehyde, p-hydroxybenzaldehyde, p-xylylene glycol, p-xylylene glycol dimethyl ether, 4,4, -dimethoxymethylbiphenyl, 4,4, -dimethoxymethyldiphenyl There are polyhydric phenolic compounds synthesized by reaction with cross-linking agents such as diethers, divinylbenzenes, dibibiphenols, dibutanaphthalenes.
[0030] 多価フエノール性化合物の軟化点は、通常、 40〜200°C、好ましくは 60〜150°C の範囲である。これより低いと、エポキシ榭脂の硬化剤として使用して得られた硬化 物の耐熱性が低下する。またこれより高 、と ISRとの混合性が低下する。 [0030] The softening point of the polyhydric phenolic compound is usually in the range of 40 to 200 ° C, preferably 60 to 150 ° C. Lower than this, the cure obtained using epoxy hardener as a curing agent The heat resistance of the object decreases. In addition, the mixing property between ISR and higher is lowered.
[0031] 本発明のフ ノール榭脂組成物は、多価フ ノール性化合物又は ISRのいずれか 一方の軟化点以上の温度で、撹袢、混練等により均一に混合する溶融混合法と、そ れぞれを溶解する溶媒に両者を溶解させて、撹袢、混練等により均一に混合する溶 液混合法等の方法で得ることができる。溶液混合法に用いる溶媒としては、例えばメ タノ一ノレ、エタノーノレ、プロパノーノレ、ブタノーノレ、エチレングリコーノレ、メチノレセロソノレ ブ、ェチルセ口ソルブ等のアルコール類、アセトン、メチルェチルケトン、メチルイソブ チルケトン等のケトン類、ジメチルエーテル、ジェチルエーテル、ジイソプロピルエー テル、テトラヒドロフラン、ジォキサン等のエーテル類、ベンゼン、トルエン、キシレン、 クロ口ベンゼン、ジクロロベンゼン等の芳香族系溶媒などを挙げることができる。なお 、この組成物を得る際に、エポキシ榭脂、無機充填材、他のフエノール性化合物、そ の他の添加剤を配合することもできる。 [0031] The phenolic resin composition of the present invention includes a melt mixing method in which mixing is performed by stirring, kneading, and the like at a temperature equal to or higher than the softening point of either the polyhydric phenolic compound or the ISR, It can be obtained by a method such as a solution mixing method in which both are dissolved in a solvent that dissolves each and mixed uniformly by stirring, kneading or the like. Solvents used in the solution mixing method include, for example, alcohols such as methanolol, ethanol, propanol, butanol, ethylene glycolol, methinoresellosonol, ethyl acetate sorb, acetone, methyl ethyl ketone, methyl isobutyl ketone, etc. Ketones, dimethyl ether, jetyl ether, diisopropyl ether, tetrahydrofuran, dioxane, and other ethers, and aromatic solvents such as benzene, toluene, xylene, black benzene, and dichlorobenzene. In obtaining this composition, epoxy resin, inorganic filler, other phenolic compounds, and other additives can be blended.
[0032] 本発明のフエノール榭脂組成物は、へキサメチルテトラミン等のフエノール榭脂成 形材料に一般的に用いる硬化剤と併用することにより、フエノール榭脂硬化物とする ことができる。 [0032] The phenol resin composition of the present invention can be made into a phenol resin composition by using in combination with a curing agent generally used for phenol resin compositions such as hexamethyltetramine.
[0033] 次に、一般式(10)で表される本発明の ISEについて述べる。  Next, the ISE of the present invention represented by the general formula (10) will be described.
上記一般式(10)において、 Lは式(11)又は式(12)で表される基力 選ばれる基 であり、その存在割合は 1: 9〜9: 1、好ましくは 3 : 7〜7: 3である。また、 Xは式(a)又 は式 (b)で表される基であり、 nは 1〜10の数である。ここで、 L及び Xが式(10)中に 複数ある場合は、それらは同一であっても異なっていてもよいが、 Lは榭脂中に上記 存在割合で式(11)及び式(12)で表される基が存在する。しかし、榭脂は混合物で あるため、平均として存在すればよい。  In the general formula (10), L is a group selected by the basic force represented by the formula (11) or the formula (12), and the abundance ratio thereof is 1: 9 to 9: 1, preferably 3: 7 to 7 : 3 X is a group represented by the formula (a) or (b), and n is a number from 1 to 10. Here, when there are a plurality of L and X in the formula (10), they may be the same or different, but L is the formula (11) and (12 ) Is present. However, since rosin is a mixture, it should be present as an average.
[0034] 式(11)及び式(12)において、 Rは水素原子、炭素数 1〜8、好ましくは 1  [0034] In the formulas (11) and (12), R is a hydrogen atom having 1 to 8 carbon atoms, preferably 1
6 〜6のァ ルコキシ基、グリシジルォキシ基、ハロゲン原子又は炭素数 1〜8、好ましくは 1〜7の 炭化水素基を示す。ここで、アルコキシ基としてはメトキシ基、エトキシ基、ビュルエー テル基、イソプロポキシ基、ァリルォキシ基、プロパルギルエーテル基、プトキシ基、フ エノキシ基、ベンジルォキシ基が挙げられ、ハロゲン原子としてはフッ素原子、塩素原 子、臭素原子等が例示される。また、炭化水素基としてはメチル基、ェチル基、ビ- ル基、ェチン基、 n—プロピル基、イソプロピル基、ァリル基、プロパルギル基、 n—ブ チル基、 sec—ブチル基、 tert—ブチル基、 n—アミル基、 sec—アミル基、 tert—アミ ル基、シクロへキシル基、フエ-ル基、ベンジル基等が挙げられる。また、 Aはフエノ ール類(多価フ ノール類や多環芳香族フ ノール類であってもよ 、)をエポキシィ匕 して生じる基であり、炭素数 1〜8、好ましくは 1〜6のアルキル基若しくはグリシジル ォキシ基が置換してもよいベンゼン環又はナフタレン環力もなる基を示す。 It represents a 6 to 6 alkoxy group, a glycidyloxy group, a halogen atom or a hydrocarbon group having 1 to 8, preferably 1 to 7 carbon atoms. Here, examples of the alkoxy group include a methoxy group, an ethoxy group, a butyl ether group, an isopropoxy group, a allyloxy group, a propargyl ether group, a putoxy group, a phenoxy group, and a benzyloxy group, and the halogen atom includes a fluorine atom and a chlorine atom. Examples thereof include a child and a bromine atom. Hydrocarbon groups include methyl, ethyl, and biphenyl. Group, ethyne group, n-propyl group, isopropyl group, aryl group, propargyl group, n-butyl group, sec-butyl group, tert-butyl group, n-amyl group, sec-amyl group, tert-amyl group Group, cyclohexyl group, phenol group, benzyl group and the like. A is a group formed by epoxy-forming phenols (which may be polyhydric or polycyclic aromatic funols) and has 1 to 8 carbon atoms, preferably 1 to 6 carbon atoms. A group having a benzene ring or naphthalene ring force that may be substituted by the alkyl group or glycidyloxy group.
[0035] X及び nは一般式(1)の X及び nと同じ意味を有する。すなわち、 Xは式 (a)又は式( b)で表される架橋基である。 nは 1〜10の数である。なお、榭脂は混合物であるが、 その平均 (数平均)の nも上記範囲にあることがよい。  [0035] X and n have the same meaning as X and n in formula (1). That is, X is a bridging group represented by formula (a) or formula (b). n is a number from 1 to 10. In addition, rosin is a mixture, but its average (number average) n is preferably in the above range.
[0036] 本発明の ISEは、上記一般式(1)で表される ISRと、ェピクロルヒドリンを反応させる ことより製造することが有利であるが、この反応に限らない。なお、上記一般式(1)で 表される ISRは、ェピクロルヒドリンでエポキシィ匕される部位の少なくとも一部、好まし くは全部は H又は OHとなっている榭脂であり、上記式(10)〜(12)において、グリシ ジルエーテル基となって 、る部位が OHであり、グリシジル基となって 、る部位が Hで ある化合物に該当する。なお、一般式(10)において、 Yの一部が Hであり、一部がォ キシグリシジル基であるようにエポキシィ匕することは難燃性の点で有利である。  [0036] The ISE of the present invention is advantageously produced by reacting ISR represented by the general formula (1) with epichlorohydrin, but is not limited to this reaction. The ISR represented by the above general formula (1) is a resin that is at least partly, preferably all of which is H or OH, that is epoxyd with epichlorohydrin. In the formulas (10) to (12), this corresponds to a compound in which the glycidyl ether group is OH and the glycidyl group is H. In general formula (10), it is advantageous in terms of flame retardancy to epoxidize such that Y is partly H and part is an oxyglycidyl group.
[0037] ISRをェピクロルヒドリンと反応させる反応の他、 ISRとハロゲン化ァリルを反応させ 、ァリルエーテルィ匕合物とした後、過酸ィ匕物と反応させる方法をとることもできる。上 記 ISRをェピクロルヒドリンと反応させる反応は、通常のエポキシィ匕反応と同様に行う ことができる。  [0037] In addition to the reaction of reacting ISR with epichlorohydrin, a method of reacting ISR with a allylic halide to form a allylic ether compound and then reacting with a peracid hydrate can also be used. The reaction of reacting the ISR with epichlorohydrin can be carried out in the same manner as a normal epoxy reaction.
[0038] 例えば、上記 ISRを過剰のェピクロルヒドリンに溶解した後、水酸化ナトリウム、水酸 化カリウム等のアルカリ金属水酸化物の存在下に、 20〜150°C、好ましくは、 30〜8 0°Cの範囲で 1〜: L0時間反応させる方法が挙げられる。この際のアルカリ金属水酸 化物の使用量は、 ISRの水酸基 1モルに対して、 0. 8〜1. 5モル、好ましくは、 0. 9 〜1. 2モルの範囲である。また、ェピクロルヒドリンは ISR中の水酸基 1モルに対して 過剰に用いられる力 通常、 ISR中の水酸基 1モルに対して、 1. 5〜30モル、好まし くは、 2〜15モルの範囲である。反応終了後、過剰のェピクロルヒドリンを留去し、残 留物をトルエン、メチルイソプチルケトン等の溶剤に溶解し、濾過し、水洗して無機塩 を除去し、次いで溶剤を留去することにより目的のエポキシ榭脂を得ることができる。 [0038] For example, after dissolving the ISR in an excess of epichlorohydrin, in the presence of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, 20 to 150 ° C, preferably 30 In the range of ˜80 ° C., 1˜: a method of reacting for L0 hours is mentioned. The amount of alkali metal hydroxide used in this case is in the range of 0.8 to 1.5 mol, preferably 0.9 to 1.2 mol, per 1 mol of the hydroxyl group of ISR. In addition, epichlorohydrin is used in excess of 1 mol of hydroxyl group in ISR. Usually, 1.5 to 30 mol, preferably 2 to 15 mol, per 1 mol of hydroxyl group in ISR. Range. After completion of the reaction, excess epichlorohydrin is distilled off, and the residue is dissolved in a solvent such as toluene or methylisobutyl ketone, filtered, washed with water and washed with an inorganic salt. The desired epoxy resin can be obtained by removing the solvent and then distilling off the solvent.
[0039] 本発明のエポキシ榭脂組成物は、少なくともエポキシ榭脂及び硬化剤を含むもの であるが、次の 3種類がある。  [0039] The epoxy resin composition of the present invention contains at least an epoxy resin and a curing agent, and there are the following three types.
1)硬化剤の一部又は全部として前記 ISRを配合した組成物。  1) A composition containing the ISR as a part or all of the curing agent.
2)エポキシ榭脂の一部又は全部として前記 ISEを配合した組成物。  2) The composition which mix | blended the said ISE as some or all of epoxy resin.
3)エポキシ榭脂及び硬化剤の一部又は全部として前記 ISRと ISEを配合した組成物  3) Composition containing ISR and ISE as part or all of epoxy resin and curing agent
[0040] 上記 1)の組成物の場合、 ISRの配合量は、通常、エポキシ榭脂 100重量部に対し て 2〜200重量部、好ましくは 5〜80重量部の範囲である。これより少ないと低吸湿 性、密着性及び難燃性向上の効果が小さぐこれより多いと成形性及び硬化物の強 度が低下する問題がある。 [0040] In the case of the composition 1), the amount of ISR is usually in the range of 2 to 200 parts by weight, preferably 5 to 80 parts by weight, with respect to 100 parts by weight of the epoxy resin. If it is less than this, the effect of improving the low hygroscopicity, adhesion and flame retardancy is small. If it is more than this, there is a problem that the moldability and the strength of the cured product are lowered.
[0041] 硬ィ匕剤の全量として本発明の ISRを用いる場合、通常、 ISRの配合量は、 ISRの- NH-基及び- OH基とエポキシ榭脂中のエポキシ基の当量バランスを考慮して配合 する。エポキシ榭脂及び硬化剤の当量比(エポキシ基 Z(NH基 +OH基)モル比)は、 通常、 0. 2力ら 5. 0の範囲であり、好ましく ίま 0. 5力ら 2. 0の範囲である。これより大 きくても小さくても、エポキシ榭脂組成物の硬化性が低下するとともに、硬化物の耐熱 性、力学強度等が低下する。  [0041] When the ISR of the present invention is used as the total amount of hardener, the amount of ISR is usually determined in consideration of the equivalent balance of -NH- groups and -OH groups of ISR and epoxy groups in the epoxy resin. Mix. The equivalent ratio of epoxy resin and curing agent (epoxy group Z (NH group + OH group) molar ratio) is usually in the range of 0.2 force to 5.0, preferably ί or 0.5 force. The range is 0. If it is larger or smaller than this, the curability of the epoxy resin composition is lowered, and the heat resistance, mechanical strength, etc. of the cured product are lowered.
[0042] 硬化剤として本発明の ISR以外の硬化剤を併用することができる。その他の硬化剤 の配合量は、 ISRの配合量力 通常、エポキシ榭脂 100重量部に対して 2〜200重 量部、好ましくは 5〜80重量部の範囲が保たれる範囲内で決定される。 ISRの配合 量がこれより少ないと低吸湿性、密着性及び難燃性向上の効果が小さぐこれより多 いと成形性及び硬化物の強度が低下する問題がある。  [0042] As the curing agent, a curing agent other than the ISR of the present invention can be used in combination. The amount of the other curing agent is determined within a range in which the range of the ISR is usually within the range of 2 to 200 parts by weight, preferably 5 to 80 parts by weight with respect to 100 parts by weight of the epoxy resin. . If the amount of ISR is less than this, the effect of improving low moisture absorption, adhesion and flame retardancy is small. If it is more than this, there is a problem that the moldability and the strength of the cured product are lowered.
[0043] ISR以外の硬化剤としては、一般にエポキシ榭脂の硬ィ匕剤として知られているもの はすべて使用でき、ジシアンジアミド、酸無水物類、多価フエノール類、芳香族及び 脂肪族ァミン類等がある。これらの中でも、半導体封止材等の高い電気絶縁性が要 求される分野においては、多価フエノール類を硬化剤として用いることが好ましい。以 下に、硬化剤の具体例を示す。  [0043] As curing agents other than ISR, all those generally known as epoxy resin hardeners can be used, such as dicyandiamide, acid anhydrides, polyhydric phenols, aromatic and aliphatic amines. Etc. Among these, polyhydric phenols are preferably used as curing agents in fields where high electrical insulation properties such as semiconductor encapsulants are required. The following are specific examples of curing agents.
[0044] 酸無水物硬ィ匕剤としては、例えば、無水フタル酸、テトラヒドロ無水フタル酸、メチル テトラヒドロ無水フタル酸、へキサヒドロ無水フタル酸、メチルへキサヒドロ無水フタル 酸、メチル無水ハイミック酸、無水ドデシ-ルコハク酸、無水ナジック酸、無水トリメリツ ト酸等がある。 [0044] Examples of the acid anhydride hardener include phthalic anhydride, tetrahydrophthalic anhydride, and methyl. Examples include tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyl hymic anhydride, dodecyl succinic anhydride, nadic anhydride, and trimellitic anhydride.
[0045] 多価フエノール類としては、例えば、ビスフエノール A、ビスフエノール F、ビスフエノ 一ル3、フルオレンビスフエノール、 4, 4,-ビフエノール、 2, 2,-ビフエノール、ハイド ロキノン、レゾルシン、ナフタレンジオール等の 2価のフエノール類、あるいは、トリス- ( 4-ヒドロキシフエ-ル)メタン、 1, 1, 2, 2-テトラキス(4-ヒドロキシフエ-ル)ェタン、フ エノールノボラック、 o-クレゾ一ルノボラック、ナフトールノボラック、ポリビニルフエノー ル等に代表される 3価以上のフエノール類がある。更には、フエノール類、ナフトール 類、ビスフエノール A、ビスフエノール F、ビスフエノール S、フルオレンビスフエノール、 4, 4,-ビフエノール、 2, 2,-ビフエノール、ハイドロキノン、レゾルシン、ナフタレンジ オール等の 2価のフエノール類と、ホルムアルデヒド、ァセトアルデヒド、ベンズアルデ ヒド、 P-ヒドロキシベンズアルデヒド、 P-キシリレンダリコール等の縮合剤により合成さ れる多価フエノール性ィ匕合物等がある。また、前記の本発明のフエノール榭脂組成 物を配合することもできる。  [0045] Examples of polyhydric phenols include bisphenol A, bisphenol F, bisphenol 3, fluorene bisphenol, 4, 4, -biphenol, 2, 2, -biphenol, hydroquinone, resorcin, naphthalenediol Divalent phenols such as tris- (4-hydroxyphenol) methane, 1,1,2,2-tetrakis (4-hydroxyphenol) ethane, phenol novolak, o-cresol novolak In addition, trivalent or higher phenols such as naphthol novolac and polyvinyl phenol are available. Furthermore, divalent compounds such as phenols, naphthols, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4, 4, -biphenol, 2, 2, -biphenol, hydroquinone, resorcin, naphthalene diol, etc. And polyhydric phenolic compounds synthesized by a condensing agent such as formaldehyde, acetoaldehyde, benzaldehyde, P-hydroxybenzaldehyde, P-xylylene diol and the like. Further, the above-described phenolic resin composition of the present invention can be blended.
[0046] アミン類としては、 4, 4,-ジアミノジフエ-ルメタン、 4, 4,-ジアミノジフエ-ルプロパ ン、 4, 4,-ジァミノジフエニルスルホン、 m-フエ二レンジァミン、 p-キシリレンジァミン 等の芳香族ァミン類、エチレンジァミン、へキサメチレンジァミン、ジエチレントリァミン 、トリエチレンテトラミン等の脂肪族ァミン類がある。  [0046] Examples of amines include 4,4, -diaminodiphenylmethane, 4,4, -diaminodiphenylpropan, 4,4, -diaminodiphenylsulfone, m-phenylenediamine, and p-xylylenediamine. There are aromatic amines such as amine, and aliphatic amines such as ethylenediamine, hexamethylenediamine, diethylenetriamine, and triethylenetetramine.
[0047] 上記組成物には、これら硬化剤の 1種又は 2種以上を混合して用いることができる。  [0047] One or more of these curing agents can be mixed and used in the composition.
[0048] 上記糸且成物に使用されるエポキシ榭脂としては、 1分子中にエポキシ基を 2個以上 有するもの中から選択される。例えば、ビスフエノール A、ビスフエノール F、ビスフエノ 一ル3、フルオレンビスフエノール、 4, 4,-ビフエノール、 2, 2,-ビフエノール、テトラ ブロモビスフエノール A、ハイドロキノン、レゾルシン等の 2価のフエノール類、あるい は、トリス-(4-ヒドロキシフエ-ル)メタン、 1, 1, 2, 2-テトラキス(4-ヒドロキシフエ-ル )ェタンや、フエノール、クレゾール、ナフトール等のノボラック榭脂、フエノール、タレ ゾール、ナフトール等のァラルキル榭脂等の 3価以上のフエノール性化合物のグルシ ジルエーテルィ匕物等がある。これらのエポキシ榭脂は 1種又は 2種以上を混合して用 いることがでさる。 [0048] The epoxy resin used in the yarn and composite is selected from those having two or more epoxy groups in one molecule. For example, divalent phenols such as bisphenol A, bisphenol F, bisphenol 3, fluorene bisphenol, 4, 4, -biphenol, 2, 2, -biphenol, tetrabromobisphenol A, hydroquinone, resorcin, etc. Or, tris- (4-hydroxyphenol) methane, 1,1,2,2-tetrakis (4-hydroxyphenol) ethane, novolac sesame such as phenol, cresol, naphthol, phenol, sauce There are glycidyl ethers of phenolic compounds having a valence of 3 or more, such as aralkyl resins such as sol and naphthol. These epoxy resins can be used alone or in combination of two or more. It is possible to be.
[0049] 上記 2)の組成物の場合、硬化剤としては、一般にエポキシ榭脂の硬化剤として知ら れているものはすべて使用できる。例えば、前記したジシアンジアミド、多価フエノー ル類、酸無水物類、芳香族及び脂肪族ァミン類等がある。また、上記一般式 (1)で表 される ISRも好ましく例示される。この榭脂組成物には、これら硬化剤の 1種又は 2種 以上を混合して用いることができる。  [0049] In the case of the above composition 2), as the curing agent, any one generally known as a curing agent for epoxy resin can be used. Examples include dicyandiamide, polyvalent phenols, acid anhydrides, aromatic and aliphatic amines described above. In addition, an ISR represented by the general formula (1) is also preferably exemplified. One or more of these hardeners can be mixed and used in the resin composition.
[0050] また、このエポキシ榭脂組成物中には、エポキシ榭脂成分として、一般式(10)で表 される ISE以外に別種のエポキシ榭脂を配合してもよ ヽ。この場合のエポキシ榭脂と しては、分子中にエポキシ基を 2個以上有する通常のエポキシ榭脂はすべて使用で きる。例を挙げれば、ビスフエノール A、ビスフエノール S、フルオレンビスフエノール、 4, 4,一ビフエノール、 2, 2,一ビフエノール、ハイドロキノン、レゾルシン等の 2価のフ ェノール類、あるいは、トリス一(4—ヒドロキシフエ-ル)メタン、 1, 1, 2, 2—テトラキス (4—ヒドロキシフエ-ル)ェタン、フエノールノボラック、 o—クレゾ一ルノボラック等の 3 価以上のフエノール類、フエノール系ァラルキル榭脂類、ナフトール系ァラルキル榭 脂類、又はテトラブロモビスフエノール A等のハロゲンィ匕ビスフエノール類力 誘導さ れるダルシジルエーテルィ匕物等がある。これらのエポキシ榭脂は、 1種又は 2種以上 を混合して用いることができる。そして、本発明の ISEを必須成分とする組成物の場 合、一般式(1)で表される ISEの配合量はエポキシ榭脂全体中、 5〜: L00wt%、好ま しくは 60〜100wt%の範囲であることがよ!、。  [0050] In addition to the ISE represented by the general formula (10), another type of epoxy resin may be blended in the epoxy resin composition as an epoxy resin component. As the epoxy resin in this case, all normal epoxy resins having two or more epoxy groups in the molecule can be used. For example, divalent phenols such as bisphenol A, bisphenol S, fluorene bisphenol, 4, 4, 1 biphenol, 2, 2, 1 biphenol, hydroquinone, resorcin, or tris mono (4- Hydroxyphenol) methane, 1,1,2,2-tetrakis (4-hydroxyphenol) ethane, phenol novolak, o-cresol novolak and other trivalent phenols, phenolic aralkyl fats, Examples include naphthol-based aralkyl resins, or darcidyl ether derivatives that are derived from halogen-bisphenols such as tetrabromobisphenol A. These epoxy resins can be used alone or in combination of two or more. In the case of a composition containing ISE of the present invention as an essential component, the amount of ISE represented by the general formula (1) is 5 to: L00 wt%, preferably 60 to 100 wt% in the entire epoxy resin. It should be in the range!
[0051] 上記 3)の組成物の場合、エポキシ榭脂及び硬化剤の一部又は全部として ISR及び ISEを使用するが、一部として使用する場合の ISR及び ISEの好ま ヽ配合量は前 記 1)又は 2)の組成物の場合と同様である。また、他のエポキシ榭脂及び硬化剤を使 用する場合の他のエポキシ榭脂又は硬化剤としては、前記組成物で説明したと同様 なものが挙げられる。  [0051] In the case of the above composition 3), ISR and ISE are used as part or all of the epoxy resin and curing agent, but the preferred amount of ISR and ISE when used as a part is as described above. The same as in the case of the composition of 1) or 2). As other epoxy resin or curing agent when other epoxy resin and curing agent are used, the same epoxy resin or curing agent as described in the composition can be used.
[0052] 本発明のエポキシ榭脂組成物中には、ポリエステル、ポリアミド、ポリイミド、ポリエー テル、ポリウレタン、石油榭脂、インデン榭脂、インデン'クマロン榭脂、フエノキシ榭 脂等のオリゴマー又は高分子化合物を他の改質剤等として適宜配合してもよ 、。添 加量は、通常、エポキシ榭脂 100重量部に対して、 2から 30重量部の範囲である。 [0053] また、本発明のエポキシ榭脂組成物には、無機充填剤、顔料、難然剤、揺変性付 与剤、カップリング剤、流動性向上剤等の添加剤を配合できる。無機充填剤としては 、例えば、球状あるいは、破砕状の溶融シリカ、結晶シリカ等のシリカ粉末、アルミナ 粉末、ガラス粉末、又はマイ力、タルク、炭酸カルシウム、アルミナ、水和アルミナ、等 が挙げられ、半導体封止材に用いる場合の好ましい配合量は 70wt%以上であり、更 に好ましくは 80wt%以上である。 [0052] In the epoxy resin composition of the present invention, an oligomer or a polymer compound such as polyester, polyamide, polyimide, polyether, polyurethane, petroleum resin, inden resin, inden'coumarone resin, phenoxy resin, etc. May be appropriately blended as other modifiers. The amount added is usually in the range of 2 to 30 parts by weight per 100 parts by weight of the epoxy resin. [0053] The epoxy resin composition of the present invention may contain additives such as inorganic fillers, pigments, retardants, thixotropic agents, coupling agents, fluidity improvers and the like. Examples of inorganic fillers include silica powder such as spherical or crushed fused silica and crystalline silica, alumina powder, glass powder, or my strength, talc, calcium carbonate, alumina, hydrated alumina, and the like. A preferable blending amount when used for a semiconductor encapsulant is 70 wt% or more, and more preferably 80 wt% or more.
[0054] 顔料としては、有機系又は、無機系の体質顔料、鱗片状顔料等がある。揺変性付 与剤としては、シリコン系、ヒマシ油系、脂肪族アマイドワックス、酸ィ匕ポリエチレンヮッ タス、有機ベントナイト系等を挙げることができる。  [0054] Examples of the pigment include organic or inorganic extender pigments, scaly pigments, and the like. Examples of the thixotropic agent include silicon-based, castor oil-based, aliphatic amide wax, acid-polyethylene nitrate, and organic bentonite-based.
[0055] 更に、本発明のエポキシ榭脂組成物には必要に応じて硬化促進剤を用いることが できる。例を挙げれば、アミン類、イミダゾール類、有機ホスフィン類、ルイス酸等があ り、具体的には、 1, 8—ジァザビシクロ(5, 4, 0)ゥンデセンー7、トリエチレンジァミン 、ベンジルジメチルァミン、トリエタノールァミン、ジメチルァミノエタノール、トリス(ジメ チルアミノメチル)フエノールなどの三級ァミン、 2—メチルイミダゾール、 2—フエ-ル イミダゾール、 2—ェチルー 4ーメチルイミダゾール、 2—フエ-ルー 4ーメチルイミダゾ ール、 2—へプタデシルイミダゾールなどのイミダゾール類、トリブチルホスフィン、メ チルジフエニルホスフィン、トリフエニルホスフィン、ジフエ二ノレホスフィン、フエニノレホ スフインなどの有機ホスフィン類、テトラフエ-ルホスホ-ゥム'テトラフエ-ルポレート、 テトラフエ-ルホスホ -ゥム ·ェチルトリフエ-ルポレート、テトラブチルホスホ-ゥム ·テ トラブチルポレートなどのテトラ置換ホスホ-ゥム'テトラ置換ボレート、 2—ェチルー 4 ーメチルイミダゾール 'テトラフエ-ルポレート、 N—メチルモルホリン 'テトラフエ-ル ボレートなどのテトラフヱニルボロン塩などがある。添加量としては、通常、エポキシ榭 脂 100重量部に対して、 0. 2から 5重量部の範囲である。  [0055] Furthermore, a curing accelerator can be used in the epoxy resin composition of the present invention as needed. Examples include amines, imidazoles, organic phosphines, Lewis acids, etc., specifically 1,8-diazabicyclo (5,4,0) undecene-7, triethylenediamine, benzyldimethyl. Tertiary amines such as amine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol, 2-methylimidazole, 2-phenolimidazole, 2-ethyl-4-methylimidazole, 2-phenol -Ru 4-methylimidazole, imidazoles such as 2-heptadecylimidazole, organic phosphines such as tributylphosphine, methyldiphenylphosphine, triphenylphosphine, diphenylenophosphine, and phenylophosphine, tetraphenylphosphonium 'Tetraphenolate, tetraphenylphospho-um・ Ethyl trifluorate, tetrabutyl phosphorum ・ Tetra-substituted phosphomumes such as tetrabutyl borate, tetra-substituted borate, 2-ethyl 4-methylimidazole “tetraphenol porate, N-methylmorpholine” tetraphenyl borate And tetraphenylboron salts. The addition amount is usually in the range of 0.2 to 5 parts by weight with respect to 100 parts by weight of the epoxy resin.
[0056] 更に必要に応じて、本発明の榭脂組成物には、カルナバワックス、 OPワックス等の 離型剤、 y -グリシドキシプロピルトリメトキシシラン等のカップリング剤、カーボンブラ ック等の着色剤、三酸ィ匕アンチモン等の難燃剤、シリコンオイル等の低応力ィヒ剤、ス テアリン酸カルシウム等の滑剤等を使用できる。  [0056] Further, if necessary, the resin composition of the present invention includes a release agent such as carnauba wax and OP wax, a coupling agent such as y-glycidoxypropyltrimethoxysilane, carbon black and the like. Colorants, flame retardants such as antimony trioxide, anti-stress agents such as silicone oil, and lubricants such as calcium stearate.
[0057] 本発明のエポキシ榭脂組成物は、有機溶剤の溶解させたワニス状態とした後に、 ガラスクロス、ァラミド不織布、液晶ポリマー等のポリエステル不織布等の繊維状物に 含浸させた後に溶剤除去を行い、プリプレダとすることができる。また、場合により銅 箔、ステンレス箔、ポリイミドフィルム、ポリエステルフィルム等のシート状物上に塗布 すること〖こより積層物とすることができる。 [0057] The epoxy resin composition of the present invention is made into a varnish in which an organic solvent is dissolved, After impregnating fibrous materials such as glass cloth, aramid nonwoven fabric, and polyester nonwoven fabric such as liquid crystal polymer, the solvent can be removed to prepare a pre-preda. Moreover, it can be set as a laminated body by apply | coating on sheet-like materials, such as copper foil, stainless steel foil, a polyimide film, and a polyester film depending on the case.
[0058] 本発明のエポキシ榭脂組成物を加熱硬化させれば、エポキシ榭脂硬化物とするこ とができ、この硬化物は低吸湿性、高耐熱性、密着性、難燃性等の点で優れたものと なる。この硬化物は、エポキシ榭脂組成物を注型、圧縮成形、トランスファー成形等 の方法により、成形カ卩ェして得ることができる。この際の温度は通常、 120〜220°C の範囲である。  [0058] If the epoxy resin composition of the present invention is cured by heating, an epoxy resin composition can be obtained. This cured product has low moisture absorption, high heat resistance, adhesion, flame retardancy, and the like. Excellent in terms. This cured product can be obtained by molding the epoxy resin composition by casting, compression molding, transfer molding or the like. The temperature at this time is usually in the range of 120 to 220 ° C.
図面の簡単な説明  Brief Description of Drawings
[0059] [図 1]ISR— Aの1 H— NMR ^ベクトル [0059] [Fig.1] 1 H—NMR ^ vector of ISR—A
[図 2]ISR— Aの赤外吸収スペクトル  [Figure 2] Infrared absorption spectrum of ISR-A
[図 3]ISR— Aの GPCチャート  [Figure 3] GSR chart of ISR—A
[図 4]ISE— Aの1 H— NMRスペクトル [Fig.4] 1 H-NMR spectrum of ISE—A
[図 5]ISE— Aの赤外吸収スペクトル  [Figure 5] Infrared absorption spectrum of ISE—A
[図 6]ISE—Aの GPCチャート  [Fig.6] GPC chart of ISE—A
実施例  Example
[0060] 以下、実施例により本発明を更に具体的に説明する。  [0060] Hereinafter, the present invention will be described more specifically with reference to Examples.
ここで、粘度は B型粘度計を用い、軟化点 ίお IS K— 6911に従い環球法で測定し た。また、 GPC測定条件は、装置; HLC— 82A (東ソ一 (株)製)、カラム; TSK— GE L2000 X 3本及び TSK— GEL4000 X 1本( 、ずれも東ソー(株)製)、溶媒;テトラヒ ドロフラン、流量; lml/miiu温度; 38°C、検出器; RIであり、検量線にはポリスチレン 標準液を使用した。  Here, the viscosity was measured by a ring-and-ball method using a B-type viscometer according to the softening point ί and IS K-6911. The GPC measurement conditions were as follows: apparatus; HLC-82A (manufactured by Tosohichi Co., Ltd.), column; Tetrahydrofuran, flow rate; lml / miiu temperature; 38 ° C, detector; RI, polystyrene standard solution was used for the calibration curve.
[0061] 実施例 1  [0061] Example 1
撹拌機、冷却管、窒素導入管のついた 500mL、 3ロセパラブルフラスコに、インド 一ノレ 72. 5g、フエノーノレ 233. lg、 920/0ノラホノレムァノレデヒド 27. 9g、を仕込み、窒 素を導入しながら 90°Cに加熱し溶解させた。その後、撹拌しながら 130°Cに昇温し 3 時間反応させた。この間、反応により生成する水は系外に除いた。その後、減圧下、 180°Cに昇温し、縮合水及び未反応フエノール、インドールを除去し、榭脂 (ISR— A ) 150gを得た。得られた榭脂 (ISR— A)の軟ィ匕点は 83°C、 150°Cにおける溶融粘度 は 0. 12Pa' sであった。 GPC測定により求めた残存モノマー量は 0. 5wt%であった 。ェ!! NMR ^ベクトルを図 1、赤外吸収スペクトルを図 2、 GPCチャート図 3に示す。 Stirrer, a cooling tube, in marked with 500mL, 3 b separable flask with a nitrogen inlet tube was charged India one Norre 72. 5g, Fuenonore 233. lg, 92 0/0 Nora phosphono REM § Norre dehydrogenase 27. 9g, the, While introducing nitrogen, it was heated to 90 ° C to dissolve. Then, the temperature was raised to 130 ° C with stirring and the reaction was allowed to proceed for 3 hours. During this time, water produced by the reaction was removed from the system. Then under reduced pressure, The temperature was raised to 180 ° C., and condensed water, unreacted phenol and indole were removed to obtain 150 g of rosin (ISR-A). The softening point of the obtained resin (ISR-A) was 83 ° C, and the melt viscosity at 150 ° C was 0.12 Pa's. The residual monomer amount determined by GPC measurement was 0.5 wt%. Yeah! Fig. 1 shows the NMR ^ vector, Fig. 2 shows the infrared absorption spectrum, and Fig. 3 shows the GPC chart.
[0062] 実施例 2 [0062] Example 2
インドーノレ 106. 3g、フエノーノレ 199. 2g、 920/0ノラホノレムァノレデヒド 27. 2gを用!ヽ て実施例 1と同様に反応を行い、榭脂 (ISR— B) 130gを得た。得られた榭脂 (ISR— B)の軟ィ匕点は 135°C、 180°Cにおける溶融粘度は 0. 58Pa' sであった。 GPC測定 により求めた残存モノマー量は 0. 4wt%であった。 Indonore 106. 3 g, the reaction was carried out in the same manner as Fuenonore 199. 2g, 92 0/0 Nora phosphono REM § Honoré dehydropeptidase 27. Example 1 2g of Te use!ヽto give榭脂(ISR- B) 130g. The resulting resin (ISR-B) had a soft melting point of 135 ° C and a melt viscosity at 180 ° C of 0.58 Pa's. The residual monomer amount determined by GPC measurement was 0.4 wt%.
[0063] 実施例 3 [0063] Example 3
150°Cに溶融させた lOOgのフエノールノボラック(軟化点 82°C、 OH当量 103)中 に、実施例 1で得た ISR— AlOOgを加え、均一に溶融させてフエノール榭脂組成物 200gを得た (榭脂組成物 A)。得られたフエノール榭脂組成物の軟ィ匕点は 82°C、 15 0°Cでの溶融粘度は 0. 18Pa' sであった。  In lOOg phenol novolak (softening point 82 ° C, OH equivalent 103) melted at 150 ° C, add ISR-AlOOg obtained in Example 1 and melt uniformly to obtain 200 g of phenolic resin composition. (Coffin composition A). The resulting phenolic resin composition had a softening point of 82 ° C and a melt viscosity at 150 ° C of 0.18 Pa's.
[0064] 実施例 4〜9及び比較例 1〜2 [0064] Examples 4 to 9 and Comparative Examples 1 to 2
エポキシ榭脂成分として 0-クレゾ一ルノボラック型エポキシ榭脂(OCNE;エポキシ 当量 200、軟化点 70°C)、硬化剤として実施例 1、 2で得た ISR— A、 ISR— B、実施 例 3で得たフエノール榭脂組成物 (榭脂組成物 A)、フエノールノボラック (硬化剤 A; OH当量 103、軟ィ匕点 82°C)、フエノールァラルキル榭脂 (硬化剤 B ;三井ィ匕学製、 X L 225— LL、 OH当量 172、軟化点 74°C)を用い、充填剤としてシリカ(平均粒径 2 2 m)、硬化促進剤として 2-ェチル -4-メチルイミダゾールを表 1に示す配合で混練 しエポキシ榭脂組成物を得た。このエポキシ榭脂組成物を用 ヽて 175°Cにて成形し 、 175°Cにて 12時間ポストキュアを行い、硬化物試験片を得た後、各種物性測定に 供した。  0-cresol novolak type epoxy resin (OCNE; epoxy equivalent 200, softening point 70 ° C) as epoxy resin component, ISR-A, ISR-B obtained in Examples 1 and 2 as curing agent, Example 3 Phenol resin composition (resin composition A), phenol novolac (curing agent A; OH equivalent 103, soft soft point 82 ° C), phenol aralkyl resin (curing agent B; Mitsui) Glossary, XL 225-LL, OH equivalent 172, softening point 74 ° C), silica (average particle size 2 2 m) as filler, and 2-ethyl-4-methylimidazole as curing accelerator in Table 1. The resulting mixture was kneaded to obtain an epoxy resin composition. This epoxy resin composition was used and molded at 175 ° C., and post-cured at 175 ° C. for 12 hours to obtain a cured product test piece, which was then subjected to various physical property measurements.
[0065] ガラス転移点 (Tg)及び線膨張係数 (CTE)の測定は、熱機械測定装置を用いて 1 0°CZ分の昇温速度で求めた。また、吸水率は、エポキシ榭脂糸且成物を用いて、直 径 50mm、厚さ 3mmの円盤を成形し、ポストキュア後 133°C、 3atm、 96時間吸湿させ た後の重量変化率とした。但し、表 4においては、直径 50mm、厚さ 3mmの円形の試 験片を用いて、 85°C、 85%RHの条件で 100時間吸湿させた後の重量変化率とした 。接着強度は、エポキシ榭脂組成物を用いて、銅箔上に圧縮成形機により 175°Cで 成形し、 175。Cにて 12時間ポストキュアを行った後、引張剪断強度を求めることによ り評価した。但し、表 4においては、接着強度は、銅板 2枚の間に 25mm X 12. 5mm X O. 5mmの成形物を圧縮成形機により 175°Cで成形し、 180°Cにて 12時間ポストキ ユアを行った後、引張剪断強度を求めることにより評価した。難燃性は、厚さ 1Z16ィ ンチの試験片を成形し、 UL94V-0規格によって評価し、 5本の試験片での合計の 燃焼時間で表した。結果をまとめて表 2に示す。 [0065] The glass transition point (Tg) and the coefficient of linear expansion (CTE) were measured at a rate of temperature increase of 10 ° CZ using a thermomechanical measurement device. Also, the water absorption rate is the rate of change in weight after forming a disk with a diameter of 50 mm and a thickness of 3 mm using an epoxy resin thread and post-curing, and absorbing moisture at 133 ° C, 3 atm for 96 hours. did. However, in Table 4, a round test with a diameter of 50 mm and a thickness of 3 mm was used. Using the specimen, the rate of change in weight after absorbing moisture for 100 hours under the conditions of 85 ° C. and 85% RH was used. The adhesive strength was 175 ° C, formed on a copper foil with a compression molding machine using an epoxy resin composition. After post-curing at C for 12 hours, the tensile shear strength was determined and evaluated. However, in Table 4, the adhesive strength is 25 mm X 12.5 mm X O. 5 mm molded product between two copper plates at 175 ° C with a compression molding machine and post-cured at 180 ° C for 12 hours. Then, the tensile shear strength was evaluated. Flame retardancy was measured by the UL94V-0 standard after molding a 1Z16 inch thick test piece and expressed as the total burn time for five test pieces. The results are summarized in Table 2.
[0066] [表 1] [0066] [Table 1]
Figure imgf000020_0001
Figure imgf000020_0001
[0067] [表 2] [0067] [Table 2]
Figure imgf000020_0002
Figure imgf000020_0002
[0068] 実施例 10 実施例 1で得た ISR—A100gをェピクロルヒドリン 178g、ジエチレングリコールジメ チルエーテル 36gに溶解した。その後、撹拌しながら 50°Cにて 96%水酸ィ匕カリウム 3 3. 7gを 3時間かけて添加し、添加終了後更に 1時間反応を継続した。反応終了後、 濾過により生成した塩を除き、更に水洗したのちェピクロルヒドリンを留去し、エポキシ 榭脂 (ISE— A)110gを得た。得られたエポキシ榭脂の軟ィ匕点は 78°C、溶融粘度は 0 . 28Pa' s、エポキシ当量は 278g/eq.であった。 ISE— Aについて NMR、 IR及び GPC測定した結果を図 4、 5及び 6に示す。 [0068] Example 10 100 g of ISR-A obtained in Example 1 was dissolved in 178 g of epichlorohydrin and 36 g of diethylene glycol dimethyl ether. Thereafter, 33.7 g of 96% potassium potassium hydroxide was added over 3 hours at 50 ° C. with stirring, and the reaction was continued for another hour after the addition was completed. After completion of the reaction, the salt produced by filtration was removed, and after further washing with water, epiclorhydrin was distilled off to obtain 110 g of epoxy resin (ISE-A). The obtained epoxy resin had a soft soft point of 78 ° C, a melt viscosity of 0.28 Pa's, and an epoxy equivalent of 278 g / eq. The results of NMR, IR and GPC measurements on ISE-A are shown in FIGS.
[0069] 実施例 11〜14及び比較例 3〜5  [0069] Examples 11 to 14 and Comparative Examples 3 to 5
エポキシ榭脂成分として、実施例 10で合成した ISE— A、 0-クレゾ一ルノボラック型 エポキシ榭脂(エポキシ榭脂 B:日本化薬製、 EOCN— 1020— 65 ;エポキシ当量 2 00、加水分解性塩素 400ppm、軟化点 65°C)、ビフエ-ル型エポキシ榭脂(ェポキ シ榭脂 C :ジャパンエポキシレジン製、 YX4000HK;エポキシ当量 195、加水分解 性塩素 450ppm、融点 105°C)を用い、硬化剤成分として、実施例 1で合成した IS R—A、フエノールノボラック(硬化剤 A:群栄化学製、 PSM— 4261 ;OH当量 103、 軟化点 80°C)、 1—ナフトールァラルキル型榭脂 (硬化剤 B:新日鐡ィ匕学製、 SN-4 75 ;OH当量 210、軟化点 77°C)を用いた。更に、充填剤として球状シリカ(平均粒 径 18 m)、硬化促進剤としてトリフエ-ルホスフィンを用い、表 3に示す配合でェポ キシ榭脂組成物を得た。表中の数値は配合における重量部を示す。  As the epoxy resin component, ISE-A, 0-cresol novolac type epoxy resin synthesized in Example 10 (epoxy resin B: Nippon Kayaku Co., Ltd., EOCN-1020-65; epoxy equivalent 200, hydrolyzable Chlorine 400ppm, softening point 65 ° C), biphenyl type epoxy resin (Epoxy resin C: made by Japan Epoxy Resin, YX4000HK; epoxy equivalent 195, hydrolyzable chlorine 450ppm, melting point 105 ° C) As an agent component, IS R-A synthesized in Example 1, phenol novolak (curing agent A: manufactured by Gunei Chemical Co., Ltd., PSM-4261; OH equivalent 103, softening point 80 ° C), 1-naphthol aralkyl-type soot Fat (curing agent B: manufactured by Nippon Steel Engineering Co., Ltd., SN-4 75; OH equivalent 210, softening point 77 ° C.) was used. Further, an epoxy resin composition was obtained with the formulation shown in Table 3, using spherical silica (average particle size 18 m) as a filler and triphenylphosphine as a curing accelerator. The numerical value in a table | surface shows the weight part in a mixing | blending.
[0070] このエポキシ榭脂組成物を用いて 175°Cで成形し、更に 180°Cにて 12時間ポスト キュアを行い、硬化物試験片を得た後、各種物性測定に供した。結果を表 4に示す。  [0070] Using this epoxy resin composition, it was molded at 175 ° C and further post-cured at 180 ° C for 12 hours to obtain a cured specimen, which was then subjected to various physical property measurements. The results are shown in Table 4.
[0071] [表 3] [0071] [Table 3]
Figure imgf000022_0001
表 4]
Figure imgf000022_0001
Table 4]
Figure imgf000022_0002
Figure imgf000022_0002
*1) すべての試験片において自消せずに炎が試験片上端まで到達  * 1) The flame reaches the upper end of the test piece without extinguishing itself.
産業上の利用可能性 Industrial applicability
本発明の ISRは、エポキシ樹脂中間体、エポキシ樹脂の硬化剤、及び改質剤とし て有用であり、エポキシ榭脂組成物に応用した場合、優れた高耐熱性、耐湿性を有 するとともに、難燃性及び異種材料との高密着性に優れた硬化物を与え、電気'電 子部品類の封止、回路基板材料等の用途に好適に使用することが可能である。本発 明の ISR又は ISEを配合したエポキシ榭脂組成物を加熱硬化させれば、エポキシ樹 脂硬化物とすることができ、この硬化物は難燃性、低吸湿性、高耐熱性、密着性等の 点で優れ、電気'電子部品類の封止、回路基板材料等の用途に好適に使用すること が可能である。 The ISR of the present invention is useful as an epoxy resin intermediate, an epoxy resin curing agent, and a modifier. When applied to an epoxy resin composition, the ISR has excellent high heat resistance and moisture resistance. It gives a cured product with excellent flame retardancy and high adhesion to different materials, and can be suitably used for applications such as sealing of electronic components and circuit board materials. If an epoxy resin composition containing ISR or ISE of the present invention is cured by heating, an epoxy resin is obtained. It is possible to make a cured oil, and this cured product is excellent in terms of flame retardancy, low moisture absorption, high heat resistance, adhesion, etc., and is suitable for applications such as sealing electrical and electronic parts, circuit board materials, etc. It can be used for

Claims

下記一般式 (1) The following general formula (1)
H-L-(X-L) -H (1)  H-L- (X-L) -H (1)
ここで、 here,
Lは下記式(2)及び式(3)  L is the following formula (2) and formula (3)
Figure imgf000024_0001
で表される基のいずれかであり、 Rは水素原子、水酸基、炭素数 1〜8のアルコキシ 基、ハロゲン原子又は炭素数 1〜8の炭化水素基を示し、 Aは炭素数 1〜8のアルキ ル基若しくは水酸基が置換してもよ 、ベンゼン環又はナフタレン環力 なる基を示し 、式(2)と式(3)で表される基の存在割合 (モル比)が 1: 9〜9: 1の範囲であり、 Xは下記 (a)又は式 (b)
Figure imgf000024_0001
R represents a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 8 carbon atoms, a halogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and A represents a carbon group having 1 to 8 carbon atoms. Even if an alkyl group or a hydroxyl group is substituted, it indicates a group having a benzene ring or naphthalene ring force, and the abundance ratio (molar ratio) of the groups represented by formula (2) and formula (3) is 1: 9-9 : Range of 1, X is the following (a) or formula (b)
Figure imgf000024_0002
で表される架橋基であり、 R、 R、 R及び Rは独立に、水素原子又は炭素数 1〜6 の炭化水素基を示し、 Bはベンゼン環、ビフヱ-ル環又はナフタレン環力 なる基を 示し、
Figure imgf000024_0002
R, R, R and R are independently a hydrogen atom or a carbon number of 1-6. B represents a group having a benzene ring, biphenyl ring or naphthalene ring,
nは 1〜: LOの数を示す;  n represents 1 to: the number of LOs;
で表されるインドール骨格含有榭脂。  An indole skeleton-containing rosin represented by:
[2] 軟ィ匕点が 40°Cから 200°Cである請求項 1に記載のインドール骨格含有榭脂。 [2] The indole skeleton-containing resin according to claim 1, wherein the soft anchor point is 40 ° C to 200 ° C.
[3] 下記式 (4)で表されるインドール類と下記式(5)で表されるフ ノール類のモル比 力^ : 9〜9 : 1の範囲であり、両者の合計 100モルに対し、下記式(6)、(7)、(8)又は[3] Molar specific force between the indole represented by the following formula (4) and the phenol represented by the following formula (5) ^: 9 to 9: 1 range, , The following formula (6), (7), (8) or
(9)で表される架橋剤 10〜90モルとを反応させることを特徴とするインドール骨格含 有樹脂の製造方法。 A method for producing an indole skeleton-containing resin, comprising reacting 10 to 90 mol of the crosslinking agent represented by (9).
Figure imgf000025_0001
Figure imgf000025_0002
Figure imgf000025_0001
Figure imgf000025_0002
Rは水素原子、水酸基、炭素数 1〜8のアルコキシ基、ハロゲン原子又は炭素数] 〜8の炭化水素基を示し、 R is a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 8 carbon atoms, a halogen atom or a carbon number] Represents ~ 8 hydrocarbon groups,
Aは炭素数 1〜8のアルキル基若しくは水酸基が置換してもよいベンゼン環又はナ フタレン環力 なる基を示し、  A represents an alkyl group having 1 to 8 carbon atoms or a group having a benzene ring or naphthalene ring which may be substituted by a hydroxyl group,
R、 R、 R及び Rは独立に、水素原子又は炭素数 1〜6の炭化水素基を示し、 R, R, R and R independently represent a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms,
2 3 4 5 2 3 4 5
Bはベンゼン環、ビフエニル環又はナフタレン環からなる基を示し、  B represents a group consisting of a benzene ring, a biphenyl ring or a naphthalene ring,
Z及び Zは独立に OH、アルコキシ又はハロゲンを示す。  Z and Z independently represent OH, alkoxy or halogen.
1 2  1 2
[4] 多価フエノール性ィ匕合物 100重量部に対して、請求項 1又は 2に記載のインドール 骨格含有榭脂を 2から 200重量部配合してなるフエノール榭脂組成物。  [4] A phenol resin composition comprising 2 to 200 parts by weight of the indole skeleton-containing resin according to claim 1 or 2 based on 100 parts by weight of the polyvalent phenolic compound.
[5] エポキシ榭脂及び硬化剤よりなるエポキシ榭脂組成物において、硬化剤の一部又 は全部として、請求項 1又は 2に記載のインドール骨格含有榭脂を、エポキシ榭脂 10 0重量部に対して 2から 200重量部配合してなることを特徴とするエポキシ榭脂組成 物。  [5] In an epoxy resin composition comprising an epoxy resin and a curing agent, the indole skeleton-containing resin according to claim 1 or 2 is used as a part or all of the curing agent. 2 to 200 parts by weight of an epoxy resin composition,
[6] 請求項 5に記載のエポキシ榭脂組成物を硬化してなるエポキシ榭脂硬化物。  [6] An epoxy resin cured product obtained by curing the epoxy resin composition according to claim 5.
[7] 下記一般式(10) [7] The following general formula (10)
H-L -(X-L ) -H (10)  H-L-(X-L) -H (10)
1 1 n  1 1 n
ここで、  here,
Lは下記式(11)又は式(12)  L is the following formula (11) or formula (12)
Figure imgf000026_0001
Figure imgf000026_0001
OG OG
-A ( 1 2 ) で表される基のいずれかであり、 Rは水素原子、グリシジルォキシ基、炭素数 1〜8の  -A (1 2) is one of the groups represented by the formula, R is a hydrogen atom, a glycidyloxy group, having 1 to 8 carbon atoms
6  6
アルコキシ基、ハロゲン原子又は炭素数 1〜8の炭化水素基を示し、 Yは水素原子、 炭素数 1〜8の炭化水素基又はグリシジル基を示し、 Gはグリシジル基を示し、 Aは炭 素数 1〜8のアルキル基若しくはグリシジルォキシ基が置換してもよいベンゼン環又 はナフタレン環力 なる基を示し、式( 11)と式( 12)で表される基の存在割合 (モル 比)が 1: 9〜9: 1の範囲であり、 An alkoxy group, a halogen atom, or a hydrocarbon group having 1 to 8 carbon atoms, Y represents a hydrogen atom, a hydrocarbon group having 1 to 8 carbon atoms or a glycidyl group, G represents a glycidyl group, and A represents 1 carbon atom. ~ 8 alkyl group or glycidyloxy group may be substituted benzene ring or Represents a group having a naphthalene ring force, and the abundance ratio (molar ratio) of the groups represented by the formulas (11) and (12) is in the range of 1: 9 to 9: 1.
Xは下記式 (a)又は式 (b)  X is the following formula (a) or formula (b)
( a ) (a)
R3 R 3
F  F
一 B—  One B—
( b )  (b)
で表される架橋基であり、 R、 R、 R及び Rは独立に、水素原子又は炭素数 1〜6 R, R, R and R are independently a hydrogen atom or a carbon number of 1-6.
2 3 4 5  2 3 4 5
の炭化水素基を示し、 Bはベンゼン環、ビフヱ-ル環又はナフタレン環力 なる基を 示し、  B represents a group having a benzene ring, biphenyl ring or naphthalene ring,
nは 1〜: LOの数を示す;  n represents 1 to: the number of LOs;
で表されるインドール骨格含有エポキシ榭脂。  Indole skeleton-containing epoxy resin represented by
[8] エポキシ榭脂及び硬化剤よりなるエポキシ榭脂組成物において、請求項 7に記載 のエポキシ榭脂を必須成分として配合してなるエポキシ榭脂組成物。 [8] An epoxy resin composition comprising the epoxy resin according to claim 7 as an essential component in an epoxy resin composition comprising an epoxy resin and a curing agent.
[9] 請求項 8に記載のエポキシ榭脂組成物を硬化してなる硬化物。  [9] A cured product obtained by curing the epoxy resin composition according to claim 8.
[10] 請求項 7に記載のエポキシ榭脂を製造する方法において、下記一般式(1) [10] In the method for producing an epoxy resin according to claim 7, the following general formula (1)
H-L-(X-L) -H (1)  H-L- (X-L) -H (1)
ここで、  here,
Lは下記式(2)又は式(3) L is the following formula (2) or formula (3)
Figure imgf000028_0001
Figure imgf000028_0001
で表される基のいずれかであり、 は水素原子、水酸基、炭素数 1〜8のアルコキシ 基、ハロゲン原子又は炭素数 1〜8の炭化水素基を示し、 Aは炭素数 1〜8のアルキ ル基若しくは水酸基が置換してもよ 、ベンゼン環又はナフタレン環力もなる基を示し 、式(2)と式(3)で表される基の存在割合 (モル比)が 1: 9〜9: 1の範囲であり、 X及び nは式(10)と同じ意味を有する; Represents a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 8 carbon atoms, a halogen atom or a hydrocarbon group having 1 to 8 carbon atoms, and A represents an alkyl group having 1 to 8 carbon atoms. A group having a benzene ring or a naphthalene ring force, even if substituted with a ruthenium group or a hydroxyl group, the abundance ratio (molar ratio) of the groups represented by the formulas (2) and (3) is 1: 9-9: A range of 1 and X and n have the same meaning as in formula (10);
で表されるインドール骨格含有樹脂と、ェピクロルヒドリンを反応させることを特徴とす るエポキシ榭脂の製造方法 n A process for producing an epoxy resin characterized by reacting an indole skeleton-containing resin represented by the formula with epichlorohydrin n
PCT/JP2005/019079 2004-10-21 2005-10-18 Resin containing indole skeleton, epoxy resin containing indole skeleton, epoxy resin composition and cured product therefrom WO2006043524A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004306972A JP2006117790A (en) 2004-10-21 2004-10-21 Indole skeleton-containing resin, epoxy resin composition and cured product thereof
JP2004-306972 2004-10-21
JP2005031843 2005-02-08
JP2005-031843 2005-02-08

Publications (1)

Publication Number Publication Date
WO2006043524A1 true WO2006043524A1 (en) 2006-04-27

Family

ID=36202939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019079 WO2006043524A1 (en) 2004-10-21 2005-10-18 Resin containing indole skeleton, epoxy resin containing indole skeleton, epoxy resin composition and cured product therefrom

Country Status (1)

Country Link
WO (1) WO2006043524A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249420A (en) * 2005-02-08 2006-09-21 Nippon Steel Chem Co Ltd Indole skeleton-containing epoxy resin, epoxy resin composition and cured product thereof
JP2007297538A (en) * 2006-05-01 2007-11-15 Nippon Steel Chem Co Ltd Indole skeleton-containing resin, indole skeleton-containing epoxy resin, epoxy resin composition and cured product thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105166A (en) * 2000-09-27 2002-04-10 Nippon Kayaku Co Ltd Epoxy resin, epoxy resin composition and cured product thereof
WO2003068837A1 (en) * 2002-02-12 2003-08-21 Nippon Steel Chemical Co., Ltd. Indole resins, epoxy resins and resin compositions containing the same
JP2003301031A (en) * 2002-04-10 2003-10-21 Nippon Kayaku Co Ltd Phenolic resin, epoxy resin and method for preparation thereof, and resin composition
JP2004238501A (en) * 2003-02-06 2004-08-26 Nippon Kayaku Co Ltd Crystalline phenolic resin, liquid epoxy resin and epoxy resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002105166A (en) * 2000-09-27 2002-04-10 Nippon Kayaku Co Ltd Epoxy resin, epoxy resin composition and cured product thereof
WO2003068837A1 (en) * 2002-02-12 2003-08-21 Nippon Steel Chemical Co., Ltd. Indole resins, epoxy resins and resin compositions containing the same
JP2003301031A (en) * 2002-04-10 2003-10-21 Nippon Kayaku Co Ltd Phenolic resin, epoxy resin and method for preparation thereof, and resin composition
JP2004238501A (en) * 2003-02-06 2004-08-26 Nippon Kayaku Co Ltd Crystalline phenolic resin, liquid epoxy resin and epoxy resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249420A (en) * 2005-02-08 2006-09-21 Nippon Steel Chem Co Ltd Indole skeleton-containing epoxy resin, epoxy resin composition and cured product thereof
JP2007297538A (en) * 2006-05-01 2007-11-15 Nippon Steel Chem Co Ltd Indole skeleton-containing resin, indole skeleton-containing epoxy resin, epoxy resin composition and cured product thereof

Similar Documents

Publication Publication Date Title
JP5320130B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP5931234B2 (en) Method for producing epoxy resin composition
CN102656204A (en) Epoxy resin, process for production thereof, epoxy resin composition using same, and cured product
WO2017170703A1 (en) Polyhydroxy resin, method for producing same, epoxy resin, epoxy resin composition and cured product of epoxy resin composition
JP6462295B2 (en) Modified polyvalent hydroxy resin, epoxy resin, epoxy resin composition and cured product thereof
JP5548562B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP5000191B2 (en) Carbazole skeleton-containing resin, carbazole skeleton-containing epoxy resin, epoxy resin composition and cured product thereof
JP5457304B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP5734603B2 (en) Phenolic resin, epoxy resin, production method thereof, epoxy resin composition and cured product
JP6124865B2 (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP2017066268A (en) Polyvalent hydroxy resin, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
JP5548792B2 (en) Polyvalent hydroxy resin, production method thereof, epoxy resin composition and cured product thereof
JP5166096B2 (en) Polyvalent hydroxy compound, epoxy resin, production method thereof, epoxy resin composition and cured product thereof
WO2003068837A1 (en) Indole resins, epoxy resins and resin compositions containing the same
JP2007297538A (en) Indole skeleton-containing resin, indole skeleton-containing epoxy resin, epoxy resin composition and cured product thereof
JP2010235826A (en) POLYHYDROXY HYDROXY RESIN, PROCESS FOR PRODUCING THEM, EPOXY RESIN COMPOSITION AND CURED PRODUCT THEREOF
JP2010235823A (en) Epoxy resin, epoxy resin composition and cured product thereof
WO2006043524A1 (en) Resin containing indole skeleton, epoxy resin containing indole skeleton, epoxy resin composition and cured product therefrom
JP2008231071A (en) New polyvalent hydroxy compound, and epoxy resin composition and its cured product
JP2006117790A (en) Indole skeleton-containing resin, epoxy resin composition and cured product thereof
JP4813201B2 (en) Indole skeleton-containing epoxy resin, epoxy resin composition and cured product thereof
WO2008114766A1 (en) Novel polyvalent hydroxy compound, method for producing the compound, epoxy resin and epoxy resin composition each using the compound, and cured product of the composition
JP2008222837A (en) New polyhydric hydroxy compound, method for producing the hydroxy compound, and thermosetting resin composition containing the hydroxy compound and its cured product
JP2008222838A (en) Epoxy resin and epoxy resin composition and its cured product
WO2008117839A1 (en) Novel polyvalent hydroxy compound, method for producing the same, epoxy resin using the compound, and epoxy resin composition and cured product thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05795656

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5795656

Country of ref document: EP