JP5708911B2 - Body sweat monitor device - Google Patents
Body sweat monitor device Download PDFInfo
- Publication number
- JP5708911B2 JP5708911B2 JP2010246833A JP2010246833A JP5708911B2 JP 5708911 B2 JP5708911 B2 JP 5708911B2 JP 2010246833 A JP2010246833 A JP 2010246833A JP 2010246833 A JP2010246833 A JP 2010246833A JP 5708911 B2 JP5708911 B2 JP 5708911B2
- Authority
- JP
- Japan
- Prior art keywords
- case
- humidity
- skin
- area
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 210000004243 sweat Anatomy 0.000 title description 9
- 230000035900 sweating Effects 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 238000009792 diffusion process Methods 0.000 claims description 7
- 239000002775 capsule Substances 0.000 claims 2
- 238000012806 monitoring device Methods 0.000 claims 1
- 239000000523 sample Substances 0.000 claims 1
- 238000005259 measurement Methods 0.000 description 16
- 239000002274 desiccant Substances 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 6
- 230000005068 transpiration Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 230000003340 mental effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000012356 Product development Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000003287 bathing Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000002354 daily effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Landscapes
- Measuring And Recording Apparatus For Diagnosis (AREA)
Description
本発明は皮膚からの発汗現象を経時的に測定・記録するための装置に関するものである。 The present invention relates to an apparatus for measuring and recording the sweating phenomenon from the skin over time.
住環境や衣服環境の研究、ストレスなど精神性現象の研究、スポーツや様々な疾患時の心身状況モニター、さらには新生児や集中治療室患者のバイタルサインモニターにおいて発汗計は有用な装置である。 A sweat meter is a useful device for studying the living environment and clothing environment, studying mental phenomena such as stress, monitoring physical and mental conditions during sports and various diseases, and vital signs monitors for neonates and intensive care unit patients.
従来の発汗測定では、皮膚に定常的な空気流を当て、その流れの上流側と下流側に湿度センサーを配し、両センサーの湿度差から計量する方法が取られている(下記「特許文献1、2」参照)。原理的にこの方法で測定は可能であるが、実用上、三つの問題を抱える。 In conventional sweat measurement, a steady air flow is applied to the skin, humidity sensors are arranged on the upstream side and downstream side of the flow, and the measurement is performed based on the humidity difference between the two sensors (the following “Patent Document”). 1, 2 ”). In principle, measurement is possible with this method, but there are three problems in practice.
一つは、定常空気流を作り出すことが難しく、測定精度はその定常性に依存し、またポンプなどの機構部品が必要なために構造上、装置の小型・携帯型化が図りにくい。二つ目の問題は、運動時発汗のように多量の水分が蒸散する場合、湿度センサーが飽和し、測定精度の低下あるいは測定不能となることである。三つめは人工的に空気流を作りだし強制的に水蒸気を持ち去るメカニズムであるから、自然な水分蒸散現象とは懸け離れていることである。 One is that it is difficult to create a steady air flow, the measurement accuracy depends on the continuity, and because mechanical parts such as a pump are necessary, it is difficult to make the device compact and portable. The second problem is that when a large amount of water evaporates like sweat during exercise, the humidity sensor is saturated, resulting in a decrease in measurement accuracy or inability to measure. The third is a mechanism that artificially creates an air flow and forcibly removes water vapor, so it is far from natural water transpiration.
一方、多量の水分蒸散に対し、下記特許文献3のようにヒーターで湿潤空気を加熱してある程度蒸発させる対処法も考えられるが、応答が遅く、またヒーター制御の搭載により大きさの制限や価格の上昇の問題も生じる。 On the other hand, for a large amount of moisture transpiration, there is a possible countermeasure to heat the humid air with a heater and evaporate it to some extent as in Patent Document 3 below. The problem of rising will also arise.
上記の問題を解決するために、既に乾燥剤を搭載した水分蒸散量測定装置を考案している(特願2010−73544)。しかし、この装置では多量の乾燥剤を必要とし、日常の行動を束縛せずに連続測定する携帯型の場合は、その測定時間が乾燥剤量に依存することになる。また毎回の乾燥剤交換の手間も掛かる。 In order to solve the above-mentioned problem, a moisture transpiration measuring device already equipped with a desiccant has been devised (Japanese Patent Application No. 2010-73544). However, this apparatus requires a large amount of desiccant, and in the case of a portable type that continuously measures without restricting daily activities, the measurement time depends on the amount of desiccant. Also, it takes time to change the desiccant every time.
従来の発汗計や水分蒸散計が解決できなかった五つの課題、即ち、
(1)ポンプ等の機構部分を無くし小型・軽量・省電力にすることで長時間の無拘束計測を行うこと、
(2)多量の水分蒸散に対しても精度が落ちることなく計測できること、
(3)人工的な空気流を使わず出来る限り自然な蒸散状態で測定すること、
(4)乾燥剤等の消耗品を使用しないこと
(5)発汗(生理学的にはパルス的に汗が発せられることが分かっている)の正確なタイミングと大きさ(量的なレベル)を検出できること
を解決する。Five problems that conventional sweat meter and moisture transpiration meter could not solve,
(1) Long-term unconstrained measurement by eliminating the mechanical parts such as pumps and making them compact, lightweight, and power-saving.
(2) The ability to measure without loss of accuracy even for large amounts of moisture transpiration,
(3) Measure as natural transpiration as possible without using artificial airflow.
(4) Do not use consumables such as desiccants. (5) Detect the exact timing and magnitude (quantitative level) of sweating (physiologically known to produce sweat in a pulsed manner). Solve what you can do.
「発明が解決しようとする課題」に挙げた(1)〜(3)については、既に特願2010−73544において解決済みである.すなわち、皮膚接触面に穴を開けた容器に温湿度センサと乾燥剤(シリカゲル等)を内蔵させる方法である. The problems (1) to (3) listed in “Problems to be solved by the invention” have already been solved in Japanese Patent Application No. 2010-73544. In other words, a temperature / humidity sensor and a desiccant (silica gel, etc.) are built in a container with a hole in the skin contact surface.
しかし、この方法では充填する乾燥剤の量により使用可能な時間が制限されてしまう。そこで乾燥剤を装填しない代わりに、容器に適当な穴を開け、水蒸気を逃がす方法を考案した。この場合、任意の穴ではなく、容器体積、皮膚側穴面積、ケース上面穴面積の関係から求められるものである。 However, in this method, the usable time is limited by the amount of the desiccant to be filled. Therefore, instead of loading the desiccant, we devised a method of making a suitable hole in the container to release water vapor. In this case, it is calculated | required from the relationship of a container volume, skin side hole area, and case upper surface hole area instead of arbitrary holes.
またパルス状発汗のタイミングの検出に対しては、湿度データの基線の揺れを捕らえ、これを差し引く解析法で対処する方法を考案した。 In addition, we devised a method for detecting the timing of pulse sweating by analyzing the baseline of humidity data and subtracting it.
機械機構が無く湿度センサーの電子回路を中心に構成できるため小型化が可能で、身体に付けたまま普段の生活の中で発汗データを収集するなど、利用範囲が広がる。また従来の装置に比べ極めて安価に製造でき、可動部分が無いため故障率も低い。 Since there is no mechanical mechanism and it can be constructed around the electronic circuit of the humidity sensor, it is possible to reduce the size and expand the range of use, such as collecting sweat data in everyday life while attached to the body. In addition, it can be manufactured at a lower cost than conventional devices and has a low failure rate because there are no moving parts.
特願2010−73544の考案のような消耗品(乾燥剤)の交換を必要とせず、継続測定時間の制限がないため、集中治療室など長時間の連続モニターの必要な場面で使用可能である。 It does not require replacement of consumables (desiccant) as in the invention of Japanese Patent Application No. 2010-73544, and there is no restriction on continuous measurement time, so it can be used in situations where continuous monitoring is required for a long time such as an intensive care unit. .
皮膚発汗測定においては衣服内に装着可能な大きさに小型化するために、従来の一定空気流による測定方式を避け、図1に示すように温湿度センサー(2)を中心に実現する。 In the measurement of skin perspiration, the conventional measurement method using a constant air flow is avoided and the temperature / humidity sensor (2) is mainly implemented as shown in FIG.
ケース(1)の皮膚接触面と上面に、水蒸気(汗)の流入・流出バランスを考慮した面積の穴(4および5)を開ける。また水蒸気を一定時間滞留させるために、ケース内に遮蔽板(3)を配置する。 Holes (4 and 5) having an area in consideration of the inflow / outflow balance of water vapor (sweat) are formed in the skin contact surface and the upper surface of the case (1). In addition, a shielding plate (3) is disposed in the case in order to retain water vapor for a certain period of time.
この装置を用いて湿度データを取得後、湿度変化の基線動揺を求め、これを元データから差し引くことで、発汗タイミングを検出できる。 After obtaining the humidity data using this device, the baseline fluctuation of the humidity change is obtained, and the sweating timing can be detected by subtracting this from the original data.
模式図1において、水蒸気(汗)はケース皮膚側の穴(4)から流入し、まずセンサー(2)で検知される。その後、水蒸気は遮蔽板(3)によって流れが阻害され、容器内に一定時間滞留するが、最後は周辺の隙間を通り、上蓋の流出孔(5)より排出される。 In the schematic diagram 1, water vapor (sweat) flows from the hole (4) on the case skin side and is first detected by the sensor (2). After that, the flow of water is blocked by the shielding plate (3) and stays in the container for a certain period of time, but finally passes through the peripheral gap and is discharged from the outflow hole (5) of the upper lid.
このとき発汗量w(t)[g/m^3]はセンサが検出する絶対湿度x(t)[g/m^3]と外気湿度H[g/m^3]を用いて以下の式で表される(tは時間)。
w(t)=ケース内変化分+外気への流出分(自然拡散を仮定)
=(V/A1)(Δx/Δt)+(D/L2)(A2/A1){x(t)−H} …▲1▼
ここで各定数は以下の通りである。
V :ケース体積[m^3]
A1:皮膚接触側の穴面積[m^2]
A2:上面の穴面積[m^2]
L1:仮想的発汗源〜センサユニット間の拡散距離[m]
L2:ケース〜外気間の想定拡散距離[m]
D :水蒸気の空気中拡散係数[m^2/s]
但し、上式▲1▼が成立するのは外気湿度Hが一定の場合で、実際には着衣や寝具の中など比較的一定の湿度に保たれる環境での測定を想定している。At this time, the sweating amount w (t) [g / m ^ 3] is expressed by the following equation using the absolute humidity x (t) [g / m ^ 3] and the outside air humidity H [g / m ^ 3] detected by the sensor. (T is time).
w (t) = change in case + outflow to outside air (assuming natural diffusion)
= (V / A1) (Δx / Δt) + (D / L2) (A2 / A1) {x (t) −H} (1)
Here, each constant is as follows.
V: Case volume [m ^ 3]
A1: Hole area on the skin contact side [m ^ 2]
A2: Hole area on the upper surface [m ^ 2]
L1: Diffusion distance between virtual sweat source and sensor unit [m]
L2: Assumed diffusion distance between case and outside air [m]
D: Diffusion coefficient of water vapor in air [m ^ 2 / s]
However, the above formula (1) is established when the outside air humidity H is constant, and in actuality, measurement is assumed in an environment where the humidity is kept relatively constant, such as in clothes or bedding.
上式▲1▼から分かるように、ケース内の変化分が発汗量に占める割合は係数V/A1の大きさに依存し、一方、ケースから外気へ流出する部分は係数A2/A1に依存する。即ち、両係数は各変化に対する感度を表すことになる。 As can be seen from the above equation (1), the ratio of the amount of change in the case to the amount of sweating depends on the magnitude of the coefficient V / A1, while the portion flowing out from the case to the outside air depends on the coefficient A2 / A1. . That is, both coefficients represent the sensitivity to each change.
感度V/A1、A2/A1を上げるためには面積A1を小さくすればよいが、実際には流入蒸気量が減り精度が落ちる。またA2を大きくすると流出が早いため、センサーの感度(応答)が追いつかない。さらにVを大きくした場合、ケース内の湿度が一様に安定するまでに時間が掛かり、やはり精度に影響する。 In order to increase the sensitivities V / A1 and A2 / A1, the area A1 may be reduced. However, in reality, the amount of inflowing steam is reduced and the accuracy is lowered. Also, if A2 is increased, the outflow is faster, so the sensitivity (response) of the sensor cannot catch up. When V is further increased, it takes time until the humidity in the case is uniformly stabilized, which also affects the accuracy.
これらの条件および遮蔽板面積を調節し、皮膚に直接装着し行動を阻害しない装置全体サイズから逆算して設計する。具体的には、内径25mmのケースに対し、およそV/A1=75、A2/A1=1.5、遮蔽板直径21mmで安定した計測が行えた(後述の測定例)。 The design is made by adjusting these conditions and the area of the shielding plate, and calculating backward from the overall size of the device that is directly attached to the skin and does not hinder the behavior. Specifically, for a case with an inner diameter of 25 mm, stable measurement was possible at approximately V / A1 = 75, A2 / A1 = 1.5, and a shielding plate diameter of 21 mm (measurement example described later).
実際の装置(図2)では、マイクロコンピューター、メモリ、電池を搭載し、測定実施場面で発汗を計算する。計算はマイクロコンピューター内で行い内蔵メモリに蓄積しても良いし、外部にコンピューターを接続した場合はそれを用いて計算しリアルタイム表示しても良い。また既に述べたように水蒸気の流動を阻害する遮蔽板も重要な要素であるが、図2では、電子回路基板(7)がその役割を担っている。 The actual device (Fig. 2) is equipped with a microcomputer, memory, and battery, and calculates perspiration at the measurement execution scene. The calculation may be performed in a microcomputer and stored in a built-in memory. If an external computer is connected, the calculation may be performed and displayed in real time. As already described, the shielding plate that inhibits the flow of water vapor is also an important factor, but in FIG. 2, the electronic circuit board (7) plays the role.
図2の装置を用いて実際の皮膚データ(新生児;肌着を着用し薄い掛け布団を掛けた状態)を記録した例が図3[A−1]である。同図はケース内センサーが検出する発汗による絶対湿度変化の記録で、この大きな変化の中にパルス状の発汗現象が埋もれている。そこでケースの大きさや湿度センサーの応答特性に起因する遅れのために動揺する基線を、ピーク解析によって求める。実際には「負のピーク」即ちボトムラインの解析であるが、慣用に従ってピーク解析と呼ぶ。 FIG. 3 [A-1] shows an example in which the actual skin data (newborn; wearing an underwear and a thin comforter) is recorded using the apparatus of FIG. This figure is a record of the absolute humidity change due to sweating detected by the sensor in the case. The pulse-like sweating phenomenon is buried in this large change. Therefore, the baseline that fluctuates due to the delay caused by the size of the case and the response characteristics of the humidity sensor is obtained by peak analysis. Although it is actually a “negative peak” or bottom line analysis, it is referred to as peak analysis according to common usage.
ピーク解析によって求めた基線動揺が図3[A−2]であり、これを元データから差し引くと、パルス状の発汗現象を捕らえることができる(図3[B])。これにより発汗のタイミングと、発汗レベルの大小比較ができる。 The baseline fluctuation obtained by peak analysis is shown in FIG. 3 [A-2], and when this is subtracted from the original data, a pulsed sweating phenomenon can be captured (FIG. 3 [B]). As a result, the timing of sweating and the level of sweating can be compared.
ピーク解析は、全データ取得後(即ち測定完了後)に波形全体について行っても良いし、測定現場でリアルタイムにモニターする場合は、ある程度まとまった数のデータ(10個以上が好ましい)が収集された時点で部分的に順次行っても良い。 Peak analysis may be performed on the entire waveform after all data has been acquired (that is, after completion of measurement). When monitoring in real time at the measurement site, a certain amount of data (preferably 10 or more) is collected. It is also possible to carry out partly sequentially at the time.
長時間の屋外作業時、車や電車の運転および機器操作中の生理学的検査、発汗を伴う運動時の衣服や器具の開発、入浴時の生理学研究など、従来測定が難しかった実場面での無拘束計測分野への利用が期待できる。そのため健康産業、化粧品、運動機器、衣服、寝具、生活環境等のあらゆる商品開発の基礎データを提供できる。 Physiological examination during long outdoor work, driving of cars and trains and operation of equipment, development of clothing and equipment during exercise with sweating, physiological research during bathing, etc. Use in the field of restraint measurement can be expected. Therefore, it is possible to provide basic data for all product developments such as health industry, cosmetics, exercise equipment, clothes, bedding, and living environment.
医療、歯科治療においては、手術中や集中治療中の患者モニターとして有用である。特に図3に示した新生児の例のように、動きを阻害しない(即ち、配線や配管、大がかりな留め具の無い簡便な)バイタルサイン記録として活用できる。 In medical and dental treatment, it is useful as a patient monitor during surgery and intensive care. In particular, as in the example of the newborn shown in FIG. 3, it can be used as vital sign recording that does not hinder movement (that is, simple without wiring, piping, and large fasteners).
1 ケース
2 温湿度センサー
3 遮蔽板
4 流入孔
5 流出孔
6 上蓋
7 電子回路基板
8 温湿度センサー
9 ケース(枠)
10 底板DESCRIPTION OF
10 Bottom plate
Claims (1)
式w(t)=(V/A1)(Δx/Δt)+(D/L2)(A2/A1){x(t)−H}
(ここで各定数は以下の通りである。
V :ケース体積[m^3]
A1:皮膚接触側の穴面積[m^2]
A2:上面の穴面積[m^2]
L1:仮想的発汗源〜センサユニット間の拡散距離[m]
L2:ケース〜外気間の想定拡散距離[m]
D :水蒸気の空気中拡散係数[m^2/s]
H :外気湿度[g/m^3] )
から発汗量変化w(t)「g/m^3]を計測するモニター装置。A moisture suction hole (area A1) in the center of the bottom surface (skin-bonding surface) of the thin circular capsule (case) to be in close contact with the skin surface, a water vapor outlet hole (area A2) opened along the upper periphery, and the center of the inner ceiling surface Using a sweating probe having a structure in which a temperature / humidity sensor is arranged and the relationship including the capsule volume V is approximately V / A1 = 75 and A2 / A1 = 1.5, Using the absolute humidity time change x (t) [g / m ^ 3] detected by the sensor and the change Δx / Δt [g / m ^ 3 / s] of x per unit time,
Formula w (t) = (V / A1) (Δx / Δt) + (D / L2) (A2 / A1) {x (t) −H}
(Here, the constants are as follows.
V: Case volume [m ^ 3]
A1: Hole area on the skin contact side [m ^ 2]
A2: Hole area on the upper surface [m ^ 2]
L1: Diffusion distance between virtual sweat source and sensor unit [m]
L2: Assumed diffusion distance between case and outside air [m]
D: Diffusion coefficient of water vapor in air [m ^ 2 / s]
H: outside air humidity [g / m ^ 3])
Monitoring device which measures perspiration amount change w (t) “g / m ^ 3].
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010246833A JP5708911B2 (en) | 2010-10-15 | 2010-10-15 | Body sweat monitor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010246833A JP5708911B2 (en) | 2010-10-15 | 2010-10-15 | Body sweat monitor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012085983A JP2012085983A (en) | 2012-05-10 |
JP5708911B2 true JP5708911B2 (en) | 2015-04-30 |
Family
ID=46258260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010246833A Expired - Fee Related JP5708911B2 (en) | 2010-10-15 | 2010-10-15 | Body sweat monitor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5708911B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6520620B2 (en) | 2015-09-30 | 2019-05-29 | オムロン株式会社 | Contact type sensor |
WO2018016834A1 (en) * | 2016-07-18 | 2018-01-25 | 주식회사 지파워 | Device for measuring transepidermal water loss and skin care system using same |
KR101894930B1 (en) * | 2016-07-18 | 2018-09-05 | 주식회사 지파워 | Apparatus for measuring transepidermal water loss and skin management system using the same |
KR102082772B1 (en) * | 2018-01-18 | 2020-02-28 | 주식회사 지파워 | Apparatus for measuring transepidermal water loss including correction function |
WO2019155732A1 (en) * | 2018-02-06 | 2019-08-15 | Dic株式会社 | Wireless sensor device and wireless sensor device kit |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH053857A (en) * | 1991-06-25 | 1993-01-14 | Matsushita Electric Ind Co Ltd | Perspiration sensor |
JP3048554B2 (en) * | 1998-04-08 | 2000-06-05 | 株式会社ケーアンドエス | Local transpiration measurement capsule |
JP2000083905A (en) * | 1998-09-11 | 2000-03-28 | Suzuken Co Ltd | Local sweating amount measuring instrument |
JP2002269654A (en) * | 2001-03-13 | 2002-09-20 | Osaka Gas Co Ltd | Bathing safety management system |
-
2010
- 2010-10-15 JP JP2010246833A patent/JP5708911B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2012085983A (en) | 2012-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
McMinn et al. | Measuring activity energy expenditure: accuracy of the GT3X+ and actiheart monitors | |
JP5708911B2 (en) | Body sweat monitor device | |
Cao et al. | A wireless portable system with microsensors for monitoring respiratory diseases | |
Nightingale et al. | Predicting physical activity energy expenditure in manual wheelchair users | |
Salvo et al. | A wearable sweat rate sensor to monitor the athletes’ performance during training | |
Presti et al. | A magnetic resonance-compatible wearable device based on functionalized fiber optic sensor for respiratory monitoring | |
CN106999065A (en) | Wearable pain monitor using accelerometry | |
Tipparaju et al. | Reliable breathing tracking with wearable mask device | |
KR20060056843A (en) | Weigh scale with pulse or heart rate | |
BR112020001070A2 (en) | sensor apparatus for measuring a physiological parameter of an individual | |
TWM553614U (en) | Sleep monitoring and assistance system | |
Fakir et al. | Prediction of individual thermal sensation from exhaled breath temperature using a smart face mask | |
Zhang et al. | A wearable ultrathin flexible sensor inserted into nasal cavity for precise sleep respiratory monitoring | |
Relf et al. | Reliability of a wearable sweat rate monitor and routine sweat analysis techniques under heat stress in females | |
CN109171691A (en) | A kind of sleep-respiratory detection system and its detection method | |
Grlica et al. | Capacitive sensor for respiration monitoring | |
Ichinoseki-Sekine et al. | Improving the accuracy of pedometer used by the elderly with the FFT algorithm | |
CN111836581A (en) | Techniques and related systems and methods for quantifying breathing using wearable devices | |
CN104459191A (en) | Medical exercise flat plate speed calibration method and device | |
Nguyen et al. | A band-aid type sensor for wearable physiological monitoring | |
US11672482B2 (en) | Oral data collection device | |
Prada et al. | Multiphysics modeling of a wearable sensor for sweat rate measurements | |
Nagaraja | Heart Rate and SPO 2 Monitoring App while Exercising Squats for Smartphone | |
Zaveri et al. | IoT based real time low cost home quarantine patient aid system using blynk app | |
McKinney et al. | Effects of dehydration on balance as measured by the balance error scoring system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130916 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140304 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141028 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141211 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150210 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150217 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5708911 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |