[go: up one dir, main page]

JP5692163B2 - 車両、および送電装置 - Google Patents

車両、および送電装置 Download PDF

Info

Publication number
JP5692163B2
JP5692163B2 JP2012115417A JP2012115417A JP5692163B2 JP 5692163 B2 JP5692163 B2 JP 5692163B2 JP 2012115417 A JP2012115417 A JP 2012115417A JP 2012115417 A JP2012115417 A JP 2012115417A JP 5692163 B2 JP5692163 B2 JP 5692163B2
Authority
JP
Japan
Prior art keywords
power
power transmission
unit
state
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012115417A
Other languages
English (en)
Other versions
JP2013243844A (ja
Inventor
真士 市川
真士 市川
近藤 直
直 近藤
直樹 牛来
直樹 牛来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012115417A priority Critical patent/JP5692163B2/ja
Priority to US13/860,962 priority patent/US9373971B2/en
Publication of JP2013243844A publication Critical patent/JP2013243844A/ja
Application granted granted Critical
Publication of JP5692163B2 publication Critical patent/JP5692163B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Description

本発明は、車両、送電装置、および非接触給電システムに関し、より特定的には、非接触給電システムにおける電力伝送効率を改善するための技術に関する。
電源コードや送電ケーブルを用いない非接触のワイヤレス電力伝送が近年注目されており、車両外部の電源(以下「外部電源」とも称する。)によって車載の蓄電装置を充電可能な電気自動車やハイブリッド車両等への適用が提案されている。
非接触給電システムにおいては、電力伝送効率を向上させるために、送電側と受電側との間のインピーダンスを整合させることが重要となる。
また、このような非接触給電システムの受電側には、一般的に、受電された電力を蓄えるための蓄電装置が設けられるが、蓄電装置の充電状態が変化すると、それに応じて受電側の入力インピーダンスが変化し得る。
特開2011−120443号公報(特許文献1)は、非接触型電力伝送装置において、バッテリの充電状態に応じた負荷変動により生じる入力インピーダンスの変化に対応して、受電電力を変換してバッテリに供給するDC/DCコンバータのデューティを変化させて、インピーダンスマッチングを行なう構成を開示する。
特開2011−120443号公報 特開2011−223739号公報 特許第4868077号
特開2011−120443号公報(特許文献1)に開示された技術によれば、バッテリの充電状態により変化し得る入力インピーダンスをDC/DCコンバータによって調整して、インピーダンスの不整合による電力伝送効率の低下を抑制することができる。
しかしながら、インピーダンスの変動範囲全体にわたってインピーダンスマッチングを行なうことを可能とするためには、使用するDC/DCコンバータにはそれに対応できる仕様(定格電力容量など)が必要とされる。そうすると、DC/DCコンバータ自体のサイズが大きくなり、必要となるコストも増加する。さらに、DC/DCコンバータのサイズが大きくなると、DC/DCコンバータの駆動における損失も大きくなるので、総合的な電力伝送効率に影響をおよぼしてしまうおそれがある。
本発明は、このような課題を解決するためになされたものであって、その目的は、電力伝送効率の低下を防止することが可能な非接触給電システムを提供することである。
本発明における車両は、送電装置からの電力を非接触で受電することが可能である。車両は、受電部と、受電部で受電した電力を蓄える蓄電装置と、インピーダンス調整部とを備える。インピーダンス調整部は、受電部と蓄電装置との間に電気的に接続され、受電部と蓄電装置との間のインピーダンスを調整する。インピーダンス調整部は、送電装置から受電部への電力伝送状態に応じて、インピーダンスの調整状態を第1の調整状態と第2の調整状態との間で切換えるように構成される。第1の調整状態においては、受電部で受電した電力はインピーダンス調整がされない状態で蓄電装置へ供給される。
好ましくは、車両は、インピーダンス調整部を制御するための制御装置をさらに備える。制御装置は、蓄電装置へ供給する充電電力の大きさに応じて、第1の調整状態と第2の調整状態とを切換える。
好ましくは、制御装置は、蓄電装置の充電状態に応じて、第1の充電電力および第1の充電電力よりも小さい第2の充電電力を用いて蓄電装置を充電する。制御装置は、第1の充電電力を用いる場合にはインピーダンス調整部を第1の調整状態に切換え、第2の充電電力を用いる場合にはインピーダンス調整部を第2の調整状態に切換える。
好ましくは、車両は、インピーダンス調整部を制御するための制御装置をさらに備える。制御装置は、送電装置と受電部との間の電力伝送効率に応じて、第1の調整状態と第2の調整状態とを切換える。
好ましくは、制御装置は、第1の調整状態で電力が伝達されている際に電力伝送効率が予め定められたしきい値を下回った場合には、インピーダンス調整部を第1の調整状態から第2の調整状態へ切換える。
好ましくは、車両は、受電部で受電した電力を整流するための整流装置をさらに備える。インピーダンス調整部は、整流装置からの電圧を変換して蓄電装置へ供給するためのDC/DCコンバータを含む。
好ましくは、車両は、受電部で受電した電力を整流するための整流装置をさらに備える。インピーダンス調整部は、受電部と整流装置との間に設けられ、コイルおよびコンデンサの少なくとも一方を含んで構成される整合器を有する。
好ましくは、インピーダンス調整部は、第1の調整状態と第2の調整状態とを切換えるための切換部を含む。
好ましくは、車両は、切換部を制御するための制御装置をさらに備える。制御装置は、切換部の切換状態と蓄電装置に供給される電力の状態とに基づいて、切換部の異常を判定する。
好ましくは、送電装置は、電力を非接触で供給するための送電部を含む。送電部の固有周波数と受電部の固有周波数との差は、送電部の固有周波数または受電部の固有周波数の±10%以下である。
好ましくは、送電装置は、電力を非接触で供給するための送電部を含む。送電部と受電部との結合係数は0.1以下である。
好ましくは、送電装置は、電力を非接触で供給するための送電部を含む。受電部は、受電部と送電部との間に形成される特定の周波数で振動する磁界、および、受電部と送電部との間に形成される特定の周波数で振動する電界の少なくとも一方を通じて、送電部から受電する。
本発明による送電装置は、電源部と、電源部からの電力を受電装置に非接触で供給する送電部と、インピーダンス調整部とを備える。インピーダンス調整部は、電源部と送電部との間に電気的に接続され、電源部と送電部との間のインピーダンスを調整する。インピーダンス調整部は、送電部から受電装置への電力伝送状態に応じて、インピーダンスの調整状態を第1の調整状態と第2の調整状態との間で切換えるように構成される。
好ましくは、送電装置は、インピーダンス調整部を制御するための制御装置をさらに備える。制御装置は、電源部の出力電力に応じて、第1の調整状態と第2の調整状態とを切換える。第1の調整状態においては、電源部からの電力はインピーダンス調整がされない状態で送電部へ供給される。制御装置は、送電部と受電部との位置ズレに応じて第1の調整状態と第2の調整状態とを切換える。
好ましくは、送電装置は、インピーダンス調整部を制御するための制御装置をさらに備える。制御装置は、送電部と受電装置との間の電力伝送効率に応じて、第1の調整状態と第2の調整状態とを切換える。
好ましくは、第1の調整状態においては、電源部からの電力はインピーダンス調整がされない状態で送電部へ供給される。
本発明による非接触給電システムは、送電装置と車両との間で非接触で電力を供給する。送電装置は、電源部と、電源部からの電力を車両に非接触で供給する送電部と、第1のインピーダンス調整部とを含む。第1のインピーダンス調整部は、電源部と送電部との間に電気的に接続され、電源部と送電部との間のインピーダンスを調整し、送電装置から車両への電力伝送状態に応じて、インピーダンスの調整状態を第1の調整状態と第2の調整状態との間で切換えるように構成される。第1の調整状態においては、電源部からの電力はインピーダンス調整がされない状態で送電部へ供給される。車両は、送電部からの電力を非接触で受電する受電部と、受電部で受電した電力を蓄える蓄電装置と、第2のインピーダンス調整部とを含む。第2のインピーダンス調整部は、受電部と蓄電装置との間に電気的に接続され、受電部と蓄電装置との間のインピーダンスを調整し、送電装置から車両への電力伝送状態に応じて、インピーダンスの調整状態を第3の調整状態と第4の調整状態との間で切換えるように構成される。第3の調整状態においては、受電部で受電した電力はインピーダンス調整がされない状態で蓄電装置へ供給される。
好ましくは、非接触給電システムは、第1および第2のインピーダンス調整部を制御するための制御装置をさらに備える。制御装置は、送電部と受電部との位置ズレに起因するインピーダンスの不整合を第1のインピーダンス調整部により調整し、蓄電装置の充電中の負荷変動に起因するインピーダンスの不整合を第2のインピーダンス調整部により調整する。
本発明によれば、電力伝送効率の低下を効率的に防止することが可能な非接触給電システムを提供することができる。
本発明の実施の形態に従う車両給電システムの全体構成図である。 実施の形態1における、車両および送電装置の構成を詳細に説明する機能ブロック図である。 送電装置から車両への電力伝送時の等価回路図である。 電力伝送システムのシミュレーションモデルを示す図である。 送電部および受電部の固有周波数のズレと電力伝送効率との関係を示す図である。 固有周波数を固定した状態で、エアギャップを変化させたときの電力伝送効率と、送電部に供給される電流の周波数との関係を示すグラフである。 電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。 蓄電装置の充電状態と充電電力との関係の一例を説明するための図である。 受電側の負荷抵抗の変化に伴う電力伝送効率の変化の一例を説明するための図である。 実施の形態1におけるインピーダンス調整制御を説明するための第1の図である。 実施の形態1におけるインピーダンス調整制御を説明するための第2の図である。 実施の形態1において、車両ECUで実行されるインピーダンス調整制御処理を説明するためのフローチャートである。 図12におけるステップS150のリレーチェック処理の詳細を説明するためのフローチャートである。 DC/DCコンバータの他の例を示す詳細図である。 DC/DCコンバータのさらに他の例を示す詳細図である。 インピーダンス調整部として整合器を用いた場合の例を示す図である。 実施の形態2における、車両および送電装置の構成を詳細に説明する機能ブロック図である。 送電部と受電部との間の相対的な位置ズレと、電力伝送効率との関係を説明するための図である。 実施の形態2における、車両および送電装置の構成の他の例を説明するための機能ブロック図である。 実施の形態2において、送電ECUで実行されるインピーダンス調整制御処理を説明するためのフローチャートである。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
[実施の形態1]
(非接触給電システムの構成)
図1は、この発明の実施の形態に従う車両給電システム(非接触給電システム)10の全体構成図である。図1を参照して、車両給電システム10は、車両100と、送電装置200とを備える。車両100は、受電部110と、通信部160とを含む。また、送電装置200は、電源装置210と、送電部220と、通信部230とを含む。
受電部110は、たとえば車体底面に設置され、送電装置200の送電部220から出力される高周波の交流電力を、電磁界を介して非接触で受電する。なお、受電部110の詳細な構成については、送電部220の構成、ならびに送電部220から受電部110への電力伝送とともに、後ほど説明する。通信部160は、車両100が送電装置200と通信を行なうための通信インターフェースである。
送電装置200における電源装置210は、所定の周波数を有する交流電力を発生する。一例として、電源装置210は、図示されない系統電源から電力を受けて高周波の交流電力を発生し、その発生した交流電力を送電部220へ供給する。
送電部220は、たとえば駐車場の床面に設置され、電源装置210から高周波の交流電力の供給を受ける。そして、送電部220は、送電部220の周囲に発生する電磁界を介して車両100の受電部110へ非接触で電力を出力する。なお、送電部220の詳細な構成についても、受電部110の構成、ならびに送電部220から受電部110への電力伝送とともに、後ほど説明する。通信部230は、送電装置200が車両100と通信を行なうための通信インターフェースである。
車両給電システム10においては、送電装置200の送電部220から車両100の受電部110へ非接触で電力が伝送される。
図2は、図1に示した車両給電システム10の詳細構成図である。図2を参照して、送電装置200は、上述のように、電源装置210と、送電部220とを含む。電源装置210は、通信部230に加えて、制御装置である送電ECU240と、電源部250とをさらに含む。また、送電部220は、共振コイル221と、キャパシタ222と、電磁誘導コイル223とを含む。
電源部250は、送電ECU240からの制御信号MODによって制御され、商用電源400などの交流電源から受ける電力を高周波の電力に変換する。そして、電源部250は、その変換した高周波電力を電磁誘導コイル223へ供給する。
また、電源部250は、図示されない電圧センサ,電流センサによってそれぞれ検出される送電電圧Vtrおよび送電電流Itrを送電ECU240へ出力する。
電磁誘導コイル223は、電磁誘導により共振コイル221と磁気的に結合可能である。電磁誘導コイル223は、電源部250から供給された高周波電力を、電磁誘導によって共振コイル221に伝達する。
共振コイル221は、電磁誘導コイル223から伝達された電力を、車両100の受電部110に含まれる共振コイル111へ非接触で電力を転送する。なお、受電部110と送電部220との間の電力伝送については、図3を用いて後述する。
通信部230は、上述のように、送電装置200と車両100との間で無線通信を行なうための通信インターフェースであり、通信部160と情報INFOの授受を行なう。通信部230は、車両100側の通信部160から送信される車両情報、ならびに、送電の開始および停止を指示する信号等を受信し、受信したこれらの情報を送電ECU240へ出力する。また、通信部230は、送電ECU240からの送電電圧Vtrおよび送電電流Itr等の情報を車両100へ送信する。
送電ECU240は、いずれも図1には図示しないがCPU(Central Processing Unit)、記憶装置および入出力バッファを含み、各センサ等からの信号の入力や各機器への制御信号の出力を行なうとともに、電源装置210における各機器の制御を行なう。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
車両100は、受電部110および通信部160に加えて、充電リレーCHR170と、整流器180と、インピーダンス調整部181と、電圧検出部186と、蓄電装置190と、システムメインリレーSMR115と、パワーコントロールユニットPCU(Power Control Unit)120と、モータジェネレータ130と、動力伝達ギヤ140と、駆動輪150と、制御装置である車両ECU(Electronic Control Unit)300と、電圧センサ195と、電流センサ196とを含む。受電部110は、共振コイル111と、キャパシタ112と、電磁誘導コイル113とを含む。インピーダンス調整部181は、DC/DCコンバータ185と、切換部であるリレーRY10とを含む。
また、本実施の形態においては、車両100として電気自動車を例として説明するが、蓄電装置に蓄えられた電力を用いて走行が可能な車両であれば車両100の構成はこれに限られない。車両100の他の例としては、エンジンを搭載したハイブリッド車両や、燃料電池を搭載した燃料電池車などが含まれる。
共振コイル111は、送電装置200に含まれる共振コイル221から非接触で電力を受電する。
電磁誘導コイル113は、電磁誘導により共振コイル111と磁気的に結合可能である。この電磁誘導コイル113は、共振コイル111により受電された電力を電磁誘導により取出して整流器180へ出力する。
整流器180は、電磁誘導コイル113からCHR170を介して受けた交流電力を整流し、その整流された直流電力を蓄電装置190に出力する。整流器180としては、たとえば、ダイオードブリッジおよび平滑用のキャパシタ(いずれも図示せず)を含む構成とすることができる。整流器180として、スイッチング制御を用いて整流を行なう、いわゆるスイッチングレギュレータを用いることも可能である。整流器180が受電部110に含まれる場合には、発生する電磁場に伴うスイッチング素子の誤動作等を防止するために、ダイオードブリッジのような静止型の整流器とすることがより好ましい。
CHR170は、受電部110と整流器180との間に電気的に接続される。CHR170は、車両ECU300からの制御信号SE2により制御され、受電部110から整流器180への電力の供給と遮断とを切換える。
DC/DCコンバータ185は、たとえば、スイッチングレギュレータのような電圧変換器である。DC/DCコンバータ185は、車両ECU300からの制御信号PWDによって制御され、整流器180からの直流電圧を変換して蓄電装置190へ供給する。また、後述するように、DC/DCコンバータ185のデューティを変更することによって送電装置200から見た受電側(車両)のインピーダンスを調整することができる。
DC/DCコンバータ185と整流器180との間には、リレーRY10が電気的に接続される。リレーRY10は、整流器180とDC/DCコンバータ185とを結ぶ正極側の電力経路に設けられるリレーと、DC/DCコンバータ185をバイパスするバイパス経路BPに設けられるリレーとを含む。RY10に含まれるこれらのリレーは、車両ECU300からの制御信号SE3によって制御され、蓄電装置190を充電する際に、バイパス経路BPを経由した電力伝達(第1の調整状態)と、DC/DCコンバータ185を経由した電力伝達(第2の調整状態)とを切換える。なお、図2においては、リレーRY10は、正極側の電力経路のみを切換える構成としているが、DC/DCコンバータ185の構成に応じて、正極側および負極側の電力経路の双方を切換えるようにしてもよい。
蓄電装置190は、充放電可能に構成された電力貯蔵要素である。蓄電装置190は、たとえば、リチウムイオン電池、ニッケル水素電池あるいは鉛蓄電池などの二次電池や、電気二重層キャパシタなどの蓄電素子を含んで構成される。
蓄電装置190は、整流器180に接続される。そして、蓄電装置190は、受電部110で受電されかつ整流器180で整流された電力を蓄電する。また、蓄電装置190は、SMR115を介してPCU120とも接続される。蓄電装置190は、車両駆動力を発生させるための電力をPCU120へ供給する。さらに、蓄電装置190は、モータジェネレータ130で発電された電力を蓄電する。蓄電装置190の出力は、たとえば200V程度である。
蓄電装置190には、いずれも図示しないが、蓄電装置190の電圧VBおよび入出力される電流IBを検出するための電圧センサおよび電流センサが設けられる。これらの検出値は、車両ECU300へ出力される。車両ECU300は、この電圧VBおよび電流IBに基づいて、蓄電装置190の充電状態(「SOC(State Of Charge)」とも称する。)を演算する。
電圧検出部186は、たとえば、直列に接続されたスイッチと電圧センサとを含んで構成され、DC/DCコンバータ185と蓄電装置190とを結ぶ電力線間の電圧VCを検出することができる。電圧検出部186は、図13において後述するように、リレーRY10の異常を検出する際に用いられる。
SMR115は、蓄電装置190とPCU120との間に電気的に接続される。そして、SMR115は、車両ECU300からの制御信号SE1によって制御され、蓄電装置190とPCU120との間での電力の供給と遮断とを切換える。
PCU120は、いずれも図示しないが、コンバータやインバータを含む。コンバータは、車両ECU300からの制御信号PWCにより制御されて蓄電装置190からの電圧を変換する。インバータは、車両ECU300からの制御信号PWIにより制御されて、コンバータで変換された電力を用いてモータジェネレータ130を駆動する。
モータジェネレータ130は交流回転電機であり、たとえば、永久磁石が埋設されたロータを備える永久磁石型同期電動機である。
モータジェネレータ130の出力トルクは、動力伝達ギヤ140を介して駆動輪150に伝達される。車両100は、このトルクを用いて走行する。モータジェネレータ130は、車両100の回生制動動作時には、駆動輪150の回転力によって発電することができる。そして、その発電電力は、PCU120によって蓄電装置190の充電電力に変換される。
また、モータジェネレータ130の他にエンジン(図示せず)が搭載されたハイブリッド自動車では、エンジンおよびモータジェネレータ130を協調的に動作させることによって、必要な車両駆動力が発生される。この場合、エンジンの回転による発電電力を用いて、蓄電装置190を充電することも可能である。
通信部160は、上述のように、車両100と送電装置200との間で無線通信を行なうための通信インターフェースであり、送電装置200の通信部230と情報INFOの授受を行なう。通信部160から送電装置200へ出力される情報INFOには、車両ECU300からの車両情報や、送電の開始および停止を指示する信号が含まれる。
車両ECU300は、いずれも図2には図示しないがCPU、記憶装置および入出力バッファを含み、各センサ等からの信号の入力や各機器への制御信号の出力を行なうとともに、車両100における各機器の制御を行なう。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
電圧センサ195は、電磁誘導コイル113に並列に接続され、受電部110で受電された受電電圧Vreを検出する。電流センサ196は、電磁誘導コイル113とCHR170とを結ぶ電力線に設けられ、受電電流Ireを検出する。検出された受電電圧Vreおよび受電電流Ireは、車両ECU300に送信され、電力伝送効率の演算等に用いられる。
なお、図2においては、受電部110および送電部220に、電磁誘導コイル113,223がそれぞれ設けられる構成を示したが、受電部110および送電部220に電磁誘導コイル113,223が設けられない構成とすることも可能である。この場合には、図2には示されないが、送電部220においては共振コイル221が電源部250に接続され、受電部110においては共振コイル111がCHR170を介して整流器180に接続される。
(電力伝送の原理)
図3は、送電装置200から車両100への電力伝送時の等価回路図である。図3を参照して、送電装置200の送電部220は、共振コイル221と、キャパシタ222と、電磁誘導コイル223とを含む。
電磁誘導コイル223は、共振コイル221と所定の間隔をおいて、たとえば共振コイル221と略同軸上に設けられる。電磁誘導コイル223は、電磁誘導により共振コイル221と磁気的に結合し、電源装置210から供給される高周波電力を電磁誘導により共振コイル221へ供給する。
共振コイル221は、キャパシタ222とともにLC共振回路を形成する。なお、後述するように、車両100の受電部110においてもLC共振回路が形成される。共振コイル221およびキャパシタ222によって形成されるLC共振回路の固有周波数と、受電部110のLC共振回路の固有周波数との差は、前者の固有周波数または後者の固有周波数の±10%以下である。そして、共振コイル221は、電磁誘導コイル223から電磁誘導により電力を受け、車両100の受電部110へ非接触で送電する。
なお、電磁誘導コイル223は、電源装置210から共振コイル221への給電を容易にするために設けられるものであり、電磁誘導コイル223を設けずに共振コイル221に電源装置210を直接接続してもよい。また、キャパシタ222は、共振回路の固有周波数を調整するために設けられるものであり、共振コイル221の浮遊容量を利用して所望の固有周波数が得られる場合には、キャパシタ222を設けない構成としてもよい。
車両100の受電部110は、共振コイル111と、キャパシタ112と、電磁誘導コイル113とを含む。共振コイル111は、キャパシタ112とともにLC共振回路を形成する。上述のように、共振コイル111およびキャパシタ112によって形成されるLC共振回路の固有周波数と、送電装置200の送電部220における、共振コイル221およびキャパシタ222によって形成されるLC共振回路の固有周波数との差は、前者の固有周波数または後者の固有周波数の±10%である。そして、共振コイル111は、送電装置200の送電部220から非接触で受電する。
電磁誘導コイル113は、共振コイル111と所定の間隔をおいて、たとえば共振コイル111と略同軸上に設けられる。電磁誘導コイル113は、電磁誘導により共振コイル111と磁気的に結合し、共振コイル111によって受電された電力を電磁誘導により取出して電気負荷装置118へ出力する。なお、電気負荷装置118は、受電部110によって受電された電力を利用する電気機器であり、具体的には、整流器180(図2)以降の電気機器を包括的に表わしたものである。
なお、電磁誘導コイル113は、共振コイル111からの電力の取出しを容易にするために設けられるものであり、電磁誘導コイル113を設けずに共振コイル111に整流器180を直接接続してもよい。また、キャパシタ112は、共振回路の固有周波数を調整するために設けられるものであり、共振コイル111の浮遊容量を利用して所望の固有周波数が得られる場合には、キャパシタ112を設けない構成としてもよい。
送電装置200において、電源装置210から電磁誘導コイル223へ高周波の交流電力が供給され、電磁誘導コイル223を用いて共振コイル221へ電力が供給される。そうすると、共振コイル221と車両100の共振コイル111との間に形成される磁界を通じて共振コイル221から共振コイル111へエネルギ(電力)が移動する。共振コイル111へ移動したエネルギ(電力)は、電磁誘導コイル113を用いて取出され、車両100の電気負荷装置118へ伝送される。
上述のように、この電力伝送システムにおいては、送電装置200の送電部220の固有周波数と、車両100の受電部110の固有周波数との差は、送電部220の固有周波数または受電部110の固有周波数の±10%以下である。このような範囲に送電部220および受電部110の固有周波数を設定することで電力伝送効率を高めることができる。一方、上記の固有周波数の差が±10%よりも大きくなると、電力伝送効率が10%よりも小さくなり、電力伝送時間が長くなるなどの弊害が生じる可能性がある。
なお、送電部220(受電部110)の固有周波数とは、送電部220(受電部110)を構成する電気回路(共振回路)が自由振動する場合の振動周波数を意味する。なお、送電部220(受電部110)を構成する電気回路(共振回路)において、制動力または電気抵抗を実質的に零としたときの固有周波数は、送電部220(受電部110)の共振周波数とも呼ばれる。
図4および図5を用いて、固有周波数の差と電力伝送効率との関係とを解析したシミュレーション結果について説明する。図4は、電力伝送システムのシミュレーションモデルを示す図である。また、図5は、送電部および受電部の固有周波数のズレと電力伝送効率との関係を示す図である。
図4を参照して、電力伝送システム89は、送電部90と、受電部91とを備える。送電部90は、第1コイル92と、第2コイル93とを含む。第2コイル93は、共振コイル94と、共振コイル94に設けられたキャパシタ95とを含む。受電部91は、第3コイル96と、第4コイル97とを備える。第3コイル96は、共振コイル99とこの共振コイル99に接続されたキャパシタ98とを含む。
共振コイル94のインダクタンスをインダクタンスLtとし、キャパシタ95のキャパシタンスをキャパシタンスC1とする。また、共振コイル99のインダクタンスをインダクタンスLrとし、キャパシタ98のキャパシタンスをキャパシタンスC2とする。このように各パラメータを設定すると、第2コイル93の固有周波数f1は、下記の式(1)によって示され、第3コイル96の固有周波数f2は下記の式(2)によって示される。
f1=1/{2π(Lt×C1)1/2} … (1)
f2=1/{2π(Lr×C2)1/2} … (2)
ここで、インダクタンスLrおよびキャパシタンスC1,C2を固定して、インダクタンスLtのみを変化させた場合において、第2コイル93および第3コイル96の固有周波数のズレと電力伝送効率との関係を図5に示す。なお、このシミュレーションにおいては、共振コイル94および共振コイル99の相対的な位置関係は固定とし、さらに、第2コイル93に供給される電流の周波数は一定である。
図5に示すグラフのうち、横軸は固有周波数のズレ(%)を示し、縦軸は一定周波数の電流における電力伝送効率(%)を示す。固有周波数のズレ(%)は、下記の式(3)によって示される。
(固有周波数のズレ)={(f1−f2)/f2}×100(%) … (3)
図5から明らかなように、固有周波数のズレ(%)が0%の場合には、電力伝送効率は100%近くとなる。固有周波数のズレ(%)が±5%の場合には、電力伝送効率は40%程度となる。固有周波数のズレ(%)が±10%の場合には、電力伝送効率は10%程度となる。固有周波数のズレ(%)が±15%の場合には、電力伝送効率は5%程度となる。すなわち、固有周波数のズレ(%)の絶対値(固有周波数の差)が、第3コイル96の固有周波数の10%以下の範囲となるように第2コイル93および第3コイル96の固有周波数を設定することで、電力伝送効率を実用的なレベルに高めることができることがわかる。さらに、固有周波数のズレ(%)の絶対値が第3コイル96の固有周波数の5%以下となるように第2コイル93および第3コイル96の固有周波数を設定すると、電力伝送効率をさらに高めることができるのでより好ましい。なお、シミュレーションソフトしては、電磁界解析ソフトウェア(JMAG(登録商標):株式会社JSOL製)を採用している。
再び図2を参照して、送電装置200の送電部220および車両100の受電部110は、送電部220と受電部110との間に形成され、かつ、特定の周波数で振動する磁界と、送電部220と受電部110との間に形成され、かつ、特定の周波数で振動する電界との少なくとも一方を通じて、非接触で電力を授受する。送電部220と受電部110との結合係数κは0.1以下が好ましく、送電部220と受電部110とを電磁界によって共振(共鳴)させることで、送電部220から受電部110へ電力が伝送される。
ここで、送電部220の周囲に形成される特定の周波数の磁界について説明する。「特定の周波数の磁界」は、典型的には、電力伝送効率と送電部220に供給される電流の周波数と関連性を有する。そこで、まず、電力伝送効率と、送電部220に供給される電流の周波数との関係について説明する。送電部220から受電部110に電力を伝送するときの電力伝送効率は、送電部220および受電部110間の距離などの様々な要因よって変化する。たとえば、送電部220および受電部110の固有周波数(共振周波数)をf0とし、送電部220に供給される電流の周波数をf3とし、送電部220および受電部110の間のエアギャップをエアギャップAGとする。
図6は、固有周波数f0を固定した状態で、エアギャップAGを変化させたときの電力伝送効率と、送電部220に供給される電流の周波数f3との関係を示すグラフである。図6を参照して、横軸は、送電部220に供給される電流の周波数f3を示し、縦軸は、電力伝送効率(%)を示す。効率曲線L1は、エアギャップAGが小さいときの電力伝送効率と、送電部220に供給される電流の周波数f3との関係を模式的に示す。この効率曲線L1に示すように、エアギャップAGが小さい場合には、電力伝送効率のピークは周波数f4,f5(f4<f5)において生じる。エアギャップAGを大きくすると、電力伝送効率が高くなるときの2つのピークは、互いに近づくように変化する。そして、効率曲線L2に示すように、エアギャップAGを所定距離よりも大きくすると、電力伝送効率のピークは1つとなり、送電部220に供給される電流の周波数が周波数f6のときに電力伝送効率がピークとなる。エアギャップAGを効率曲線L2の状態よりもさらに大きくすると、効率曲線L3に示すように電力伝送効率のピークが小さくなる。
たとえば、電力伝送効率の向上を図るため手法として次のような手法が考えられる。第1の手法としては、エアギャップAGにあわせて、送電部220に供給される電流の周波数を一定として、キャパシタ222やキャパシタ112のキャパシタンスを変化させることで、送電部220と受電部110との間での電力伝送効率の特性を変化させる手法が考えられる。具体的には、送電部220に供給される電流の周波数を一定とした状態で、電力伝送効率がピークとなるように、キャパシタ222およびキャパシタ112のキャパシタンスを調整する。この手法では、エアギャップAGの大きさに関係なく、送電部220および受電部110に流れる電流の周波数は一定である。なお、電力伝送効率の特性を変化させる手法としては、整合器(図示せず)を利用する手法や、車両100において整流器180と蓄電装置190との間に設けられるDC/DCコンバータ185を利用する手法などを採用することも可能である。
また、第2の手法としては、エアギャップAGの大きさに基づいて、送電部220に供給される電流の周波数を調整する手法である。たとえば、電力伝送特性が効率曲線L1となる場合には、周波数f4またはf5の電流を送電部220に供給する。周波数特性が効率曲線L2,L3となる場合には、周波数f6の電流を送電部220に供給する。この場合においては、エアギャップAGの大きさに合わせて送電部220および受電部110に流れる電流の周波数を変化させることになる。
第1の手法では、送電部220を流れる電流の周波数は、固定された一定の周波数となり、第2の手法では、送電部220を流れる周波数は、エアギャップAGによって適宜変化する周波数となる。第1の手法や第2の手法などによって、電力伝送効率が高くなるように設定された特定の周波数の電流が送電部220に供給される。送電部220に特定の周波数の電流が流れることで、送電部220の周囲には、特定の周波数で振動する磁界(電磁界)が形成される。受電部110は、受電部110と送電部220との間に形成され、かつ特定の周波数で振動する磁界を通じて送電部220から電力を受電している。したがって、「特定の周波数で振動する磁界」とは、必ずしも固定された周波数の磁界とは限らない。なお、上記の例では、エアギャップAGに着目して、送電部220に供給される電流の周波数を設定するようにしているが、電力伝送効率は、送電部220および受電部110の水平方向のズレ等のように他の要因によっても変化するものであり、当該他の要因に基づいて、送電部220に供給される電流の周波数を調整する場合がある。
なお、上記の説明では、共振コイルとしてヘリカルコイルを採用した例について説明したが、共振コイルとして、メアンダラインなどのアンテナなどを採用した場合には、送電部220に特定の周波数の電流が流れることで、特定の周波数の電界が送電部220の周囲に形成される。そして、この電界を通して、送電部220と受電部110との間で電力伝送が行なわれる。
この電力伝送システムにおいては、電磁界の「静電磁界」が支配的な近接場(エバネッセント場)を利用することで、送電および受電効率の向上が図られている。
図7は、電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。図7を参照して、電磁界は3つの成分から成る。曲線k1は、波源からの距離に反比例した成分であり、「輻射電磁界」と称される。曲線k2は、波源からの距離の2乗に反比例した成分であり、「誘導電磁界」と称される。また、曲線k3は、波源からの距離の3乗に反比例した成分であり、「静電磁界」と称される。なお、電磁界の波長を「λ」とすると、「輻射電磁界」と「誘導電磁界」と「静電磁界」との強さが略等しくなる距離は、λ/2πと表わすことができる。
「静電磁界」は、波源からの距離とともに急激に電磁波の強度が減少する領域であり、この実施の形態に係る電力伝送システムでは、この「静電磁界」が支配的な近接場(エバネッセント場)を利用してエネルギ(電力)の伝送が行なわれる。すなわち、「静電磁界」が支配的な近接場において、近接する固有周波数を有する送電部220および受電部110(たとえば一対のLC共振コイル)を共鳴させることにより、送電部220から他方の受電部110へエネルギ(電力)を伝送する。この「静電磁界」は遠方にエネルギを伝播しないので、遠方までエネルギを伝播する「輻射電磁界」によってエネルギ(電力)を伝送する電磁波に比べて、共鳴法は、より少ないエネルギ損失で送電することができる。
このように、この電力伝送システムにおいては、送電部220と受電部110とを電磁界によって共振(共鳴)させることで、送電部220と受電部110との間で非接触によって電力が伝送される。そして、送電部220と受電部110との間の結合係数(κ)は、たとえば、0.3以下程度であり、好ましくは、0.1以下である。当然のことながら、結合係数(κ)を0.1〜0.3程度の範囲も採用することができる。結合係数(κ)は、このような値に限定されるものでなく、電力伝送が良好となる種々の値をとり得る。
なお、電力伝送における、上記のような送電部220と受電部110との結合を、たとえば、「磁気共鳴結合」、「磁界(磁場)共鳴結合」、「電磁界(電磁場)共振結合」、「電界(電場)共振結合」等という。「電磁界(電磁場)共振結合」は、「磁気共鳴結合」、「磁界(磁場)共鳴結合」、「電界(電場)共振結合」のいずれも含む結合を意味する。
送電部220と受電部110とが上記のようにコイルによって形成される場合には、送電部220と受電部110とは、主に磁界(磁場)によって結合し、「磁気共鳴結合」または「磁界(磁場)共鳴結合」が形成される。なお、送電部220と受電部110とに、たとえば、メアンダライン等のアンテナを採用することも可能であり、この場合には、送電部220と受電部110とは、主に電界(電場)によって結合し、「電界(電場)共鳴結合」が形成される。
(インピーダンス調整制御の説明)
上述のように、車両外部からの電力を用いて蓄電装置を充電する際には、蓄電装置の充電状態によって充電電力が変化される場合がある。
図8は、蓄電装置の充電状態(SOC)と充電電力との関係の一例を示したものである。図8に示される例においては、時刻t1において充電が開始されると、SOCが低い状態においては、比較的大きな充電電力P2によって充電が行なわれる。そして、満充電状態を表わすS2よりも少し低いS1にSOCが到達すると(図8中の時刻t2)、充電電力がP2からP1(P2>P1)に低下される。これによって、SOCがS1からS2になるまでの期間(図8中の時刻t2〜t3)は、低い充電電力によりSOCが緩やかに増加する。
上述のように蓄電装置のSOCは、蓄電装置に設けられた電流センサおよび電圧センサの検出値に基づいて演算される。そして、蓄電装置への充電は、大きな充電電力で実行するほうが充電時間を短くすることができる。しかしながら、大きな充電電力による充電の場合、蓄電装置の内部抵抗によって蓄電装置に加わる電圧が高くなるので、蓄電装置の劣化や損傷を招くおそれがある。したがって、図8のように、満充電に近い状態では充電電力を低下させて緩やかに充電を行なうことで、蓄電装置の過電圧を抑制するこができる。また、正確なSOCを把握することもできるので、満充電状態の判定を正確に行なうこともできる。なお、充電電力の調整においては、電圧を変化させる場合、および、電流を変化させる場合がある。
非接触による電力伝送においては、上述のように、送電側と受電側とのインピーダンスのマッチング状態が電力伝送効率に影響を与える。そのため、充電動作が進行するにつれてインピーダンスが変化すると、それに伴って電力伝送効率が徐々に低下してしまう可能性がある。特に、図8で示したような充電電力の切換えが行なわれる場合には、充電電力の変更前後において、送電側から見た受電側のインピーダンスがさらに大きく変化するため、電力伝送効率への影響も大きくなり得る。
図9は、受電側の負荷抵抗の変化に伴う電力伝送効率の変化の一例を示した図である。図9においては、横軸には蓄電装置の負荷抵抗(インピーダンス)が示され、縦軸には電力伝送効率が示される。なお、理解を容易にするために、図9では、SOCは一定の状態としており、したがって、負荷抵抗の変化は充電電力の変化によるものである。
一般的に、充電電力が大きい場合(図9中の充電電力P2)は、充電電力が小さい場合(図9中の充電電力P1)に比べて受電側の負荷抵抗が小さくなる。そして、設計時において受電部および送電部のインピーダンスを充電電力P2の状態でマッチングさせた場合、図9の曲線W10のように、充電電力をP1に低下させたときには電力伝送効率が低下する。逆に、設計時において充電電力P1の状態でインピーダンスをマッチングさせた場合には、図9の曲線W11のように、充電電力P2における電力伝送効率が低下する。
一方、上述したように、DC/DCコンバータを用いることによって、受電側のインピーダンスを調整することが可能である。この場合には、蓄電装置の負荷変動に対応してDC/DCコンバータを適切に調整することで、図9中の曲線W12のように、DC/DCコンバータ自体の損失(Δ)があるものの、電力伝送効率をほぼ一定にすることができる。
しかしながら、DC/DCコンバータを、図9で示したような広範な負荷変動に対応できるようにするためには、DC/DCコンバータに対してより高い仕様(たとえば、定格容量など)が要求されることになる。そうすると、DC/DCコンバータ自体のサイズが大きくなり、コストの増加にもつながる。
さらに、大きな充電電力を用いた充電時間は長時間実行されるため、DC/DCコンバータ自体の損失(Δ)による電力伝送効率の低下が無視できないものとなり得る。
そこで、実施の形態1においては、図9の曲線W10のように、充電電力の大きい状態に適合させて受電部のインピーダンスを設計して、大電力を用いた充電ではDC/DCコンバータを使用しないようにするとともに、充電電力を低下させた状態に切換えられた場合にのみDC/DCコンバータを使用して電力伝送効率の低下を抑制するインピーダンス調整制御を実行する。
これによって、相対的に長時間実行される大電力での充電においては、DC/DCコンバータの使用による損失を抑制し、小さい充電電力に切換えられた状態においては、DC/DCコンバータにより電力伝送効率を向上させることによって、充電動作の全体にわたって電力効率を向上させることができる。
さらに、DC/DCコンバータは充電電力が小さい特定の場合にのみ使用されるので、DC/DCコンバータを常時使用する場合に比べて、DC/DCコンバータの小型化を図ることができ、製造コストを低減することもできる。
次に、インピーダンス調整制御における具体的な動作を、図10および図11を用いて説明する。まず、充電電力が大きい場合には、図10のように、リレーRY10に含まれる、バイパス経路側のリレーRY11が閉成され、DC/DCコンバータ185側のリレーRY12が開放される。これによって、整流器180で整流された充電電力は、図10中の矢印AR1のように、DC/DCコンバータ185を通らずにバイパス経路BPを介して蓄電装置190に伝達される。このとき、DC/DCコンバータ185におけるスイッチング損失を抑制するために、スイッチング動作を停止することが好ましい。
そして、充電電力が低下されると、図11に示されるように、バイパス経路側のリレーRY11およびDC/DCコンバータ185側のリレーRY12が切換えられるとともに、DC/DCコンバータ185が駆動される。これによって、充電電力はDC/DCコンバータ185により電圧変換されて、蓄電装置190に供給される。このDC/DCコンバータ185の駆動によって、蓄電装置190の実際のインピーダンスはR2ではあるが、送電装置側から見た見かけ上のインピーダンスはR1となる。そのため、送電装置の送電部および車両側の受電部の共振周波数を維持することができる。
図12は、実施の形態1において、車両ECU300で実行されるインピーダンス調整制御処理を説明するためのフローチャートである。図12および後述する図13に示されるフローチャート中の各ステップについては、車両ECU300に予め格納されたプログラムがメインルーチンから呼び出されて、所定周期もしくは所定の条件が成立したことに応答して実行されることによって実現される。あるいは、一部のステップについては、専用のハードウェア(電子回路)を構築して処理を実現することも可能である。
図2および図12を参照して、ユーザから非接触給電を用いた充電が指示されると、車両ECU300は、まず送電部220のある充電位置への車両100の位置決めを行なうための誘導処理を行なう。なお、ユーザによる駐車位置への車両100の駐車が完了した後に充電が指示された場合には、以下で説明するステップ(以下、ステップをSと略す。)S100〜S140の処理はスキップされてもよい。
車両ECU300は、S100にて、DC/DCコンバータ185を停止させるとともに、リレーRY10においてリレーRY11を閉成し、リレーRY12を開放する(S110)。この誘導処理においては、S120で説明するように通常の充電時よりも小さい微小電力が用いられるため、DC/DCコンバータ185による損失の影響が少なくなるように、電力伝達経路がバイパス経路BPに切換えられる。
そして、車両ECU300は、S120にて送電装置200に対して、テスト送電の開始指令を出力する。これに応答して、送電装置200から微小電力が出力される。
その後、車両ECU300は、ユーザが駐車動作を実施している間、S130にて駐車動作時の位置検出処理を実行する。図6等において説明したように、送電部220と受電部110との間の距離によって電力伝送効率が変化する。そのため車両ECU300は、テスト送電で伝送される電力の電力伝送効率に基づいて、車両100の駐車位置が適切であるか否かを判定する。具体的には、車両ECU300は、電力伝送効率が所定のしきい値を上回る状態になった場合に駐車位置が適切であると判断する。
車両ECU300は、たとえばナビゲーション画面(図示せず)等に表示することによってユーザに位置決めの状態を通知する。ユーザは、通知された位置決め状態に応じて、駐車位置を調整する。
なお、車両100が駐車動作を自動で実行する機能を有している場合には、車両ECU300により判断される位置決め状態に基づいて駐車制御が行なわれるようにしてもよい。
次に、車両ECU300は、S140にて、駐車動作が完了したか否かを判定する。具体的には、車両ECU300は、たとえば、パーキングブレーキの操作、駐車完了信号の入力などのようなユーザによる駐車完了動作に基づいて、駐車動作が完了したか否かを判定する。また、自動駐車制御が行なわれる場合には、駐車制御の完了によって判定するようにしてもよい。
駐車動作が完了していない場合(S140にてNO)は、処理がS130に戻されて、車両ECU300は、駐車動作が完了するまで、位置検出処理を継続する。
駐車動作が完了した場合(S140にてYES)は、S150に処理が進められて、車両ECU300は、次にリレーRY10の接点の異常をチェックするリレーチェック処理を行なう。リレーチェック処理の詳細については、図13を用いて後述する。
リレーチェック処理においてリレーRY10の異常がない場合には、処理がS160に進められ、車両ECU300は、テスト送電の停止指令を送電装置200へ出力するとともに、本格的な充電動作を実行するための大電力での送電開始指令を送電装置へ出力する(S170)。送電装置200は、これに応じて微小電力の送電を停止し、大電力を用いた送電動作を開始する。なお、図12には示されていないが、リレーチェック処理においてリレーRY10の異常が検出された場合には、車両ECU300は、ユーザへの異常通知を行なって以降の処理をスキップして処理を終了する。
車両ECU300は、S180において、蓄電装置190の充電処理を実行し、蓄電装置190のSOCが図8で説明したようなしきい値S1よりも大きくなったか否かを判定する(S190)。
SOCがしきい値S1以下の場合(S190にてNO)は、処理がS180に戻されて、充電処理が継続される。
SOCがしきい値S1を上回った場合(S190にてYES)は、S200に処理が進められ、車両ECU300は、大電力を用いた送電の停止指令を送電装置200へ出力する。
なお、S190においては、SOCに代えて、電力伝送効率と所定のしきい値との比較を用いることも可能である。その場合には、電力伝送効率がしきい値以上のときには処理がS180に戻されて充電処理が継続され、電力伝送効率がしきい値より小さいときにはS200へ処理が進められる。
送電装置200からの送電が停止されると、車両ECU300は、S210にてリレーRY10を切換えて、RY11を開放するとともにRY12を閉成する。そして、車両ECU300は、DC/DCコンバータ185を起動する。
その後、車両ECU300は、S220にて小電力を用いた送電を開始するための指令を送電装置200へ出力する。この開始指令に応答して、送電装置200から小電力を用いた送電が実行される。
車両ECU300は、DC/DCコンバータ185を制御して、送電装置200から見た蓄電装置190の見た目のインピーダンスが、大電力を用いた送電の場合と同じレベルになるようにしながら充電処理をさらに実行する(S240)。そして、車両ECU300は、S250にて、蓄電装置190のSOCが満充電状態を示すしきい値S2を上回ったか否かを判定する。
SOCがしきい値S2以下の場合(S240にてNO)は、処理がS240に戻されて、車両ECU300は、満充電状態になるまで小電力を用いた送電を継続する。
SOCがしきい値S2を上回った場合(S240にてYES)は、車両ECU300は、蓄電装置190の充電が完了したと判断して、送電装置200に対して送電停止指令を出力する。
この送電停止指令に応答して送電装置200からの送電が停止すると、車両ECU300は、DC/DCコンバータ185を停止するとともに(S270)、リレーRY10を切換えて、リレーRY11を閉成するとともにリレーRY12を開放する(S280)。なお、このとき、RY11およびRY12の双方を開放するようにしてもよい。
次に、図13を用いて、図12におけるS150のリレーチェック処理の詳細について説明する。
図2および図13を参照して、リレーチェック処理が開始されると、車両ECU300は、S300にて、まず送電装置200に対して、微小電力を用いたテスト送電の開始指令を出力する。なお、すでに送電開始指令が送信されている場合には、S300の処理はスキップされる。
そして、車両ECU300は、S310にて、リレーRY10におけるリレーRY11を閉成するとともにリレーRY12を開放するように制御信号SE3を出力し、バイパス経路BP側の電力経路を選択する。そして、車両ECU300は、S320にて、電圧検出部186に含まれる電圧センサにおいて電圧VCが検出されたか否かを判定する。
リレーRY11が制御信号SE3の指令通りに閉成状態になっていれば、電圧検出部186において電圧VCが検出されるはずである。そのため、電圧VCが検出されない場合(S320にてNO)は、S400に処理が進められて、車両ECU300は、リレーRY11が開放状態のままとなる異常が生じていると判断し、処理を図12のS160に進める。
電圧VCが検出された場合(S320にてYES)は、処理がS330に進められて、車両ECU300は、リレーRY11およびRY12の双方を開放するような制御信号SE3をリレーRY10へ出力し、S340にて電圧検出部186において電圧VCが検出されたか否かを判定する。
この状態においては、リレーRY11が制御信号SE3の指令通りに開放状態となっていれば、電圧検出部186において電圧VCは検出されないはずである。そのため、電圧VCが検出された場合(S340にてYES)は、S410に処理が進められて、車両ECU300は、リレーRY11が閉成状態のままとなる異常が生じていると判断し、処理を図12のS160に進める。
電圧VCが検出されなかった場合(S340にてNO)は、処理がS350に進められて、車両ECU300は、リレーRY11を開放したままでリレーRY12を閉成するような制御信号SE3をリレーRY10へ出力するとともに、DC/DCコンバータ185を起動する。
この状態においては、リレーRY11は正常であるので、リレーRY12が制御信号SE3の指令通りに閉成状態となっていれば、DC/DCコンバータ185が駆動されることによって電圧検出部186において電圧VCが検出されるはずである。そのため、電圧VCが検出されない場合(S360にてNO)は、S420に処理が進められて、車両ECU300は、リレーRY12が開放状態のままとなる異常が生じていると判断し、処理を図12のS160に進める。
電圧VCが検出された場合(S360にてYES)は、処理がS370に進められて、車両ECU300は、DC/DCコンバータ185を駆動した状態で、リレーRY11およびRY12の双方を開放するような制御信号SE3をリレーRY10へ出力する。
この状態においては、リレーRY12が制御信号SE3の指令通りに閉成状態となっていれば、電圧検出部186において電圧VCが検出されないはずである。そのため、電圧VCが検出された場合(S380にてYES)は、S420に処理が進められて、車両ECU300は、リレーRY12が閉成状態のままとなる異常が生じていると判断し、処理を図12のS160に進める。
電圧VCが検出されなかった場合(S380にてNO)は、処理がS390に進められて、車両ECU300は、リレーRY11およびRY12の双方が正常であると判断する。
なお、DC/DCコンバータが非絶縁型の場合、DC/DCコンバータを駆動しない場合であっても通電状態となるので、S340にて電圧VCが検出された場合、リレーRY10またはリレーRY11が閉成状態のままとなる異常と判断することができる。
また、図13に示されたフローチャートにおいては、リレーの切換えによる電圧の変化に基づいてリレーの異常を判定する場合を例として説明したが、電圧に代えて、あるいはそれに加えて、回路を流れる電流や力率の変化に基づいてリレーの異常を判定するようにしてもよい。また、充電開始前の判定だけでなく、充電動作の実行中において、電力伝送効率が、通常の充電動作において想定され得る電力伝送効率の変動範囲をさらに下回る場合、あるいは電力伝送効率が大きく低下するような場合には、当該リレーの異常が生じている可能性が高いと判断し、充電動作を停止するようにしてもよい。
上記の図12および図13に示されるような処理に従って制御を行なうことによって、非接触給電システムにおいて、蓄電装置の負荷変動に伴う電力伝達効率の低下を防止して、電力伝達効率を向上することができる。
なお、リレーRY10およびDC/DCコンバータ185の構成については、たとえば、図14および図15のように、図2に示された構成以外で構築することも可能である。
図14に示されるインピーダンス調整部181Aは、DC/DCコンバータ185Aと、リレーRY30,RY35とを含む。DC/DCコンバータ185Aは、一次巻線L30と二次巻線L31とを有するトランスを含む絶縁型のコンバータである。一次巻線L30にはスイッチング素子SW30が直列に接続されており、このスイッチング素子SW30のデューティを制御することによって所望の電圧に変換する。二次巻線L31で受電した電力は、ダイオードD30を用いて整流され、かつキャパシタC30を用いて平滑化されて蓄電装置190へ供給される。
このようなDC/DCコンバータ185Aにおいては、スイッチング素子SW30をオフ状態とすると一次巻線L30には電流が流れないので、二次巻線L31には電力が供給されない。すなわち、スイッチング素子SW30が、図2におけるリレーRY10内のリレーRY12として機能し得る。そのため、リレーRY10として、バイパス経路BPの選択および非選択を切換えるためのリレーRY11に対応するリレーRY30,RY35を設けることで、図2と同様の機能を実現することができる。
また、図15は、インピーダンス調整部181Bとして、リアクトルL35と、スイッチング素子SW35と、ダイオードD35を含むチョッパ回路で構成された、非絶縁型のDC/DCコンバータ185Bが設けられる場合の例である。
図15のDC/DCコンバータ185Bにおいては、スイッチング素子SW35がオフ状態である場合には、整流器180から供給される直流電力は、そのまま蓄電装置190へと供給される。すなわち、図2におけるバイパス経路BPを用いる場合の電力伝達に相当する。一方、スイッチング素子SW35がデューティ制御されることによって、整流器180からの直流電圧が昇圧されて蓄電装置190へ供給される。
図15の例においては、スイッチング素子SW35の駆動状態において、バイパス状態と昇圧状態とが切換えられるので、図2のような追加的なリレーRY10を省略することができる。
また、上記の例においては、整流器180以降の直流電力の経路にインピーダンス調整部を設けたが、図16の例に示すように、整流器180より前の交流電力の経路にインピーダンス調整部181Bとして整合器175を設けるようにすることも可能である。
整合器175は、受電部110と整流器180との間の2本の電力線間にリレーRY42と直列接続されたリアクトルL40と、当該電力線にそれぞれ設けられるキャパシタC40,C41と、キャパシタC40,C41にそれぞれ並列に接続されるリレーRY40,RY41とを含む。
インピーダンス調整を行なわない場合には、リレーRY40,RY41が閉成されるとともに、リレーRY42が開放される。一方、インピーダンス調整を行なう場合には、リレーRY40,RY41が開放されるとともに、リレーRY42が閉成される。なお、整合器175は一例であり、所望のインピーダンス調整を行なうことができれば、図16以外の構成とすることも可能である。
[実施の形態2]
実施の形態1においては、充電電力の切換えや蓄電装置の充電状態の変化に伴う蓄電装置のインピーダンス変動を、車両側のインピーダンス調整部(DC/DCコンバータ,整合器)によって調整する場合について説明した。
ところで、充電動作を実行している間に、乗員の乗降や荷物の積み降ろしなどによって、車両と地面との間の距離が変動し得る。そうすると、図4および図5等で説明したように、送電部と受電部との間のインピーダンスが変化することによって電力伝送効率に影響がおよぼされ得る。
そこで、実施の形態2においては、このような送電部と受電部との位置ズレに伴うインピーダンス変化を、送電装置側において調整する場合について説明する。
図17は、実施の形態2の車両給電システム10Aにおける、車両100Aおよび送電装置200Aの構成を詳細に説明する機能ブロック図である。図17においては、実施の形態1の図2で示した車両給電システム10における、車両100側のインピーダンス調整部181(リレーRY10,DC/DCコンバータ185)および電圧検出部186に代えて、送電装置200A側の電源装置210AにリレーRY20および整合器270を含むインピーダンス調整部280が設けられる構成となっている。図17において、図2と重複する要素の説明は繰り返さない。
整合器270は、電源部250と送電部220とを結ぶ電力経路に並列に接続される。整合器270は、たとえばリアクトルとキャパシタとを含んで構成され、送電部220のインピーダンスを調整することが可能である。
リレーRY20は、送電ECU240からの制御信号SE10によって制御され、電源部250と送電部220とを電気的に直接接続する第1の電力経路と、整合器270を介して電源部250と送電部220とを電気的に接続する第2の電力経路とを切換えることができるように構成される。
送電ECU240は、車両100Aからの受電電力に基づいて電力伝送効率を演算する。そして、送電ECU240は、演算により求めた電力伝送効率に基づいてリレーRY20を切換える。なお、電力伝送効率については、送電装置200A側において検出可能な反射電力に基づいて演算するようにしてもよい。あるいは、車両100Aからの出力電力指令値と実際の出力電力との差に基づいてリレーRY20を切換えるようにしてもよい。
また、車両ECU300が、送電ECU240から通信部を介して送信された送電電力情報および車両側での受電電力情報から電力伝送効率を演算し、送電ECU240が、車両ECU300から送信される指示に従ってリレーRY20を切換えるようにしてもよい。
たとえば、図18に示されるように、送電部220と受電部110との間に位置ズレのない設計上の最適位置において、整合器270を用いない状態でインピーダンスが調整されている場合には、電力伝送効率が所定の許容値αに低下するまでは、整合器270を用いず、上述の第1の電力経路によって電力が伝達されるようにリレーRY20が切換えられる。一方、送電部220と受電部110との間の位置ズレによって、電力伝送効率が許容値αを下回った場合(図18中のA1)には、整合器270を用いて、第2の電力経路によって電力伝達がなされるようにRY20が切換えられる。この場合には、整合器270は、電力伝送効率が許容値を下回る状態になったときのインピーダンスのズレを補償するように設定される。
なお、図17においては、整合器を使用する場合と使用しない場合とを切換える場合の例を説明したが、図19に示されるように、電力伝送効率(すなわち、送電部と受電部との位置ズレ)に応じて、異なる2つの整合器270A,270Bを切換えるようにしてもよい。また、2つより多くの電力経路を切換えるようにしてもよい。
図20は、実施の形態2において、送電ECU240で実行されるインピーダンス調整制御処理を説明するためのフローチャートである。図20に示されるフローチャート中の各ステップについては、送電ECU240に予め格納されたプログラムがメインルーチンから呼び出されて、所定周期もしくは所定の条件が成立したことに応答して実行されることによって実現される。あるいは、一部のステップについては、専用のハードウェア(電子回路)を構築して処理を実現することも可能である。
図17および図20を参照して、送電ECU240は、S500にて車両100Aとの通信を確立すると、S510にて、リレーRY20に含まれるリレーの故障の有無を検出するためのリレーチェック処理を実行する。また、送電ECU240は、S510において、車両100Aから送信される情報から、車両側の充電系統の異常の有無についてもあわせてチェックする。
なお、図20においてはリレーチェック処理の詳細については示さないが、実施の形態1と同様に、テスト送電を実行しながらリレーRY20を切換えた場合の電圧、電流等の変化に基づいて異常の有無を判定するようにしてもよい。また、リレーチェック処理については、車両との通信確立の有無にかかわらず、送電装置において定期的に実行されるようにしてもよい。
送電ECU240は、S520にて、リレーチェック処理においてリレーRY20が正常であったか否かを判定する。リレーRY20が異常である場合(S520にてNO)には、以降の処理がスキップされて、車両100Aの送電動作が禁止される。リレーRY20が正常である場合(S520にてYES)は、処理がS530に進められる。S520による判定結果は、通信部230によって、車両100Aに送信される。
送電ECU240は、リレーRY20が正常である場合には、S530にて、車両100Aから、駐車動作ガイダンスのためのテスト送電開始指令を受信したか否かを判定する。テスト送電開始指令を受信していない場合(S530にてNO)は、以降の処理がスキップされる。テスト送電開始指令を受信した場合(S530にてYES)は、処理がS540に進められ、送電ECU240は、微小電力を用いたテスト送電を開始する。
そして、送電ECU240は、S550にて、車両100Aからの情報によって、ユーザによる駐車動作が完了したか否かを判定する。
駐車動作が完了していない場合(S550にてNO)は、処理がS550に戻されて、駐車動作が完了するまでテスト送電を継続する。駐車動作が完了した場合(S550にてYES)は、処理がS560に進められて、車両からの受電電力に関する情報、および/または、送電装置200Aで検出される反射電力などを用いて電力伝送効率を演算するとともに、演算された電力伝送効率が所定の許容値αより大きいか否かを判定する(S570)。
電力伝送効率が許容値α以下の場合(S570にてNO)は、処理がS561に進められて、テスト送電が一時的に停止される。そして、送電ECU240は、S562にて、RY20を制御して電力経路を切換える。その後、送電ECU240は、S563にてテスト送電を再開するとともに、電力伝送効率を再度演算する(S560)。その後、S570にて再び電力伝送効率が所定の許容値αより大きいか否かを判定する。
電力伝送効率が許容値αを上回っている場合(S570にてYES)は、車両100Aの送電が許可され、処理がS580へ進められる。
送電ECU240は、S580にてテスト送電を停止する。そして、送電ECU240は、S590にて、車両100Aから、充電開始指令を受信したか否かを判定する。
充電開始指令を受信していない場合(S590にてNO)は、処理がS590に戻されて、車両100Aからの充電開始指令の受信を待つ。
充電開始指令を受信した場合(S590にてYES)は、処理がS600に進められて、送電ECU240は、車両100Aに対して大電力を用いた送電を開始する。これに応答して、車両100Aは蓄電装置190の充電を実行する。
そして、送電ECU240は、S610にて、送電動作を実行中に車両100Aから送電停止指令を受信したか否かを判定する。送電停止指令は、たとえば、蓄電装置190の充電が完了した場合、充電完了前にユーザにより強制的に充電が中止された場合、あるいは、車両100A側において異常が発生した場合などに車両100Aから出力される。
送電停止指令を受信した場合(S610にてYES)は、処理がS640に進められて、送電ECU240は車両100Aへの送電動作を停止する。
一方、送電停止指令を受信していない場合(S610にてNO)は、処理がS620に進められ、送電ECU240は、送電中の電力伝送効率を演算し、演算された電力伝送効率が許容値αより大きいか否かを判定する(S630)。
電力伝送効率が許容値αより大きい場合(S630にてYES)は、処理がS610に戻され、送電ECU240は送電動作を継続する。電力伝送効率が許容値α以下である場合(S630にてNO)は、処理がS640に進められて、送電ECU240は、車両100Aへの送電動作を停止して処理を終了する。なお、電力伝送効率が許容値α以下であることによって送電動作を停止した場合、上記のS560〜S580、およびS561〜S563のテスト送電によって整合器の切換えを実行し、電力伝送効率が許容値αを上回る状態に調整した後に充電が再開される。
なお、図20には示されていないが、S570において、切換え可能な整合器の各々についての電力伝送効率のいずれもが許容値α以下であるような場合には、車両100Aへの送電が禁止されるようにしてもよい。あるいは、ユーザからの指示によって、低下した電力伝送効率であっても車両100Aへの送電が許可される場合には、処理がS580に進められて、車両100Aへの送電が実行される。この場合には、S630における許容値も変更される。
以上のような制御に従って制御を行なうことによって、送電装置側のインピーダンス調整部を用いて、送電部と受電部との距離の変化(位置ズレ)に伴う電力伝送効率の低下を防止することができる。
なお、実施の形態1および実施の形態2を組み合わせた構成、すなわち、送電装置および車両の双方にインピーダンス調整部を設ける構成とすることも可能である。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
10,10A 車両給電システム、89 電力伝送システム、90,220 送電部、91,110 受電部、92,93,96,97 コイル、94,99,111,221 共振コイル、95,98,112,222,C30,C40,C41 キャパシタ、100,100A,100B 車両、113,223,113,223 電磁誘導コイル、115 SMR、118 電気負荷装置、120 PCU、130 モータジェネレータ、140 動力伝達ギヤ、150 駆動輪、160,230 通信部、170 CHR、175,270,270A,270B 整合器、180 整流器、181,181A,181B,280,280A インピーダンス調整部、185,185A,185B DC/DCコンバータ、186 電圧検出部、190 蓄電装置、195 電圧センサ、196 電流センサ、200,200A 送電装置、210,210A 電源装置、240 送電ECU、250 電源部、300 車両ECU、400 商用電源、BP バイパス経路、D30,D35 ダイオード、L30,L31 巻線、L35,L40 リアクトル、RY10〜12,RY20,RY30,RY35,RY40〜42 リレー、SW30,SW35 スイッチング素子。

Claims (15)

  1. 送電装置からの電力を非接触で受電する受電部と、
    前記受電部で受電した電力を蓄える蓄電装置と、
    前記受電部と前記蓄電装置との間に電気的に接続され、前記受電部と前記蓄電装置との間のインピーダンスを調整するためのインピーダンス調整部とを備え、
    前記インピーダンス調整部は、前記送電装置から前記受電部への電力伝送状態に応じて、インピーダンスの調整状態を第1の調整状態と第2の調整状態との間で切換えるように構成され、
    前記第1の調整状態においては、前記受電部で受電した電力はインピーダンス調整がされない状態で前記蓄電装置へ供給され、
    前記第2の調整状態においては、前記受電部で受電した電力はインピーダンス調整がされた状態で前記蓄電装置へ供給され、
    前記インピーダンス調整部を制御するための制御装置をさらに備え、
    前記制御装置は、車両に設けられた前記受電部を前記送電装置に位置合わせする場合に前記受電部に前記送電装置からの電力を受電するときには、前記インピーダンス調整部を前記第1の調整状態とし、前記位置合わせが完了した後に、前記蓄電装置へ充電を行なうために前記受電部に前記送電装置からの電力を受電する場合には、前記送電装置から前記受電部への電力伝送状態に応じて、前記第1の調整状態と前記第2の調整状態とを切換える、車両。
  2. 前記制御装置は、前記蓄電装置へ供給する充電電力の大きさに応じて、前記第1の調整状態と前記第2の調整状態とを切換える、請求項1に記載の車両。
  3. 前記制御装置は、前記蓄電装置の充電状態に応じて、第1の充電電力および前記第1の充電電力よりも小さい第2の充電電力を用いて前記蓄電装置を充電し、
    前記制御装置は、前記第1の充電電力を用いる場合には前記インピーダンス調整部を前記第1の調整状態に切換え、前記第2の充電電力を用いる場合には前記インピーダンス調整部を前記第2の調整状態に切換える、請求項2に記載の車両。
  4. 前記制御装置は、前記送電装置と前記受電部との間の電力伝送効率に応じて、前記第1の調整状態と前記第2の調整状態とを切換える、請求項1に記載の車両。
  5. 前記制御装置は、前記第1の調整状態で電力が伝達されている際に前記電力伝送効率が予め定められたしきい値を下回った場合には、前記インピーダンス調整部を前記第1の調整状態から前記第2の調整状態へ切換える、請求項4に記載の車両。
  6. 前記受電部で受電した電力を整流するための整流装置をさらに備え、
    前記インピーダンス調整部は、前記整流装置からの電圧を変換して前記蓄電装置へ供給するためのDC/DCコンバータを含む、請求項1に記載の車両。
  7. 前記受電部で受電した電力を整流するための整流装置をさらに備え、
    前記インピーダンス調整部は、前記受電部と前記整流装置との間に設けられ、コイルおよびコンデンサの少なくとも一方を含んで構成される整合器を有する、請求項1に記載の車両。
  8. 前記インピーダンス調整部は、前記第1の調整状態と前記第2の調整状態とを切換えるための切換部を含む、請求項1に記載の車両。
  9. 前記切換部を制御するための制御装置をさらに備え、
    前記制御装置は、前記切換部の切換状態と前記蓄電装置に供給される電力の状態とに基づいて、前記切換部の異常を判定する、請求項8に記載の車両。
  10. 前記送電装置は、電力を非接触で供給するための送電部を含み、
    前記送電部の固有周波数と前記受電部の固有周波数との差は、前記送電部の固有周波数または前記受電部の固有周波数の±10%以下である、請求項1に記載の車両。
  11. 前記送電装置は、電力を非接触で供給するための送電部を含み、
    前記送電部と前記受電部との結合係数は0.1以下である、請求項1に記載の車両。
  12. 前記送電装置は、電力を非接触で供給するための送電部を含み、
    前記受電部は、前記受電部と前記送電部との間に形成される特定の周波数で振動する磁界、および、前記受電部と前記送電部との間に形成される特定の周波数で振動する電界の少なくとも一方を通じて、前記送電部から受電する、請求項1に記載の車両。
  13. 蓄電装置を有する車両の受電部に非接触で電力を供給する送電装置であって、
    電源部と、
    前記電源部からの電力を受電装置に非接触で供給する送電部と、
    前記電源部と前記送電部との間に電気的に接続され、前記電源部と前記送電部との間のインピーダンスを調整するためのインピーダンス調整部とを備え、
    前記インピーダンス調整部は、前記送電部から前記受電装置への電力伝送状態に応じて、インピーダンスの調整状態を第1の調整状態と第2の調整状態との間で切換えるように構成され、
    前記インピーダンス調整部を制御するための制御装置をさらに備え、
    前記制御装置は、前記送電部から前記受電部を経由して前記蓄電装置に充電を行なっている場合に前記送電部と前記受電部との間の電力伝送効率を監視し、前記電力伝送効率が許容値よりも小さくなった場合には前記送電部からの送電を停止するとともに、送電電力を下げたテスト送電を行なって、前記電力伝送効率が前記許容値以上となるように調整するために前記第1の調整状態と前記第2の調整状態とを切換える、送電装置。
  14. 前記制御装置は、前記テスト送電時に前記インピーダンス調整部の調整状態を切換えることによって前記電力伝送効率が前記許容値以上になった場合には、前記テスト送電を停止させた後に前記蓄電装置に充電を行なうための送電を再開する、請求項13に記載の送電装置。
  15. 前記第1の調整状態においては、前記電源部からの電力はインピーダンス調整がされない状態で前記送電部へ供給される、請求項13に記載の送電装置。
JP2012115417A 2012-05-21 2012-05-21 車両、および送電装置 Active JP5692163B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012115417A JP5692163B2 (ja) 2012-05-21 2012-05-21 車両、および送電装置
US13/860,962 US9373971B2 (en) 2012-05-21 2013-04-11 Vehicle, power transmitting device and contactless power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012115417A JP5692163B2 (ja) 2012-05-21 2012-05-21 車両、および送電装置

Publications (2)

Publication Number Publication Date
JP2013243844A JP2013243844A (ja) 2013-12-05
JP5692163B2 true JP5692163B2 (ja) 2015-04-01

Family

ID=49580782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012115417A Active JP5692163B2 (ja) 2012-05-21 2012-05-21 車両、および送電装置

Country Status (2)

Country Link
US (1) US9373971B2 (ja)
JP (1) JP5692163B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106541845A (zh) * 2016-11-25 2017-03-29 上海工程技术大学 一种无线电动汽车充电系统及控制方法

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5841668B2 (ja) 2012-09-05 2016-01-13 ルネサスエレクトロニクス株式会社 非接触充電装置およびそれを用いる非接触給電システム
US9998180B2 (en) 2013-03-13 2018-06-12 Integrated Device Technology, Inc. Apparatuses and related methods for modulating power of a wireless power receiver
DE102013016702A1 (de) * 2013-10-08 2015-04-09 Audi Ag Crasherkennung bei stillstehendem Kraftfahrzeug
KR102015095B1 (ko) * 2014-01-30 2019-08-27 인테그레이티드 디바이스 테크놀로지, 인코포레이티드 무선 전력 수신기와 통신하기 위한 장치들 및 관련 방법들
CN104842993B (zh) * 2014-02-18 2019-04-12 株式会社斯巴鲁 电池电压的控制装置及电池电压的控制方法
WO2015128941A1 (ja) * 2014-02-25 2015-09-03 日産自動車株式会社 非接触給電システム及び送電装置
US9845019B2 (en) * 2014-02-25 2017-12-19 Nissan Motor Co., Ltd. Wireless power supply system and power transmission device
JP6252334B2 (ja) * 2014-04-22 2017-12-27 株式会社デンソー 非接触給電システム
US9692251B2 (en) * 2014-07-03 2017-06-27 Intel Corporation Apparatus, system and method of wireless power transfer
GB2534114A (en) * 2014-09-30 2016-07-20 Drayson Tech (Europe) Ltd Inductive power transfer system
JP6354565B2 (ja) * 2014-12-19 2018-07-11 Tdk株式会社 受電装置
DE102015101094A1 (de) * 2015-01-27 2016-07-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Ladesteuerung für eine Batterie in einem Fahrzeug
CN106560981B (zh) * 2015-10-02 2021-04-27 松下知识产权经营株式会社 无线电力传输系统
JP6601365B2 (ja) * 2016-07-27 2019-11-06 株式会社デンソー 制御システム
CN107947252B (zh) 2016-10-12 2020-09-22 Oppo广东移动通信有限公司 终端和设备
CN106936325A (zh) * 2016-12-21 2017-07-07 蔚来汽车有限公司 多功能车载功率变换器和包含其的电动汽车
JP6631556B2 (ja) * 2017-02-23 2020-01-15 トヨタ自動車株式会社 車両及び電力伝送システム
JP7005927B2 (ja) * 2017-04-12 2022-01-24 株式会社デンソー 電源システム
KR102318241B1 (ko) * 2017-04-13 2021-10-27 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 충전 대기 설비 및 충전 방법
JP2019004593A (ja) * 2017-06-14 2019-01-10 本田技研工業株式会社 車両の電源装置
JP6618519B2 (ja) * 2017-11-22 2019-12-11 株式会社Subaru 車両
DE102017223229A1 (de) * 2017-12-19 2019-06-19 Volkswagen Aktiengesellschaft Elektrisches System und Verfahren zur Diagnose der Funktionsfähigkeit von Leistungsrelais in einem elektrischen System
US10148124B1 (en) * 2018-01-05 2018-12-04 Channel Well Technology Co., Ltd. Uninterrupted power bank capable of supplying high DC voltage during interruption of main supply and providing AC voltage as normal supply of the main supply
JP7010035B2 (ja) * 2018-02-06 2022-01-26 トヨタ自動車株式会社 電動車両
JP7162054B2 (ja) * 2018-03-27 2022-10-27 株式会社Fuji 非接触給電システム
JP7227779B2 (ja) * 2019-02-05 2023-02-22 株式会社Subaru 車両
US11571984B2 (en) 2020-04-21 2023-02-07 Toyota Motor North America, Inc. Load effects on transport energy
US20210323433A1 (en) 2020-04-21 2021-10-21 Toyota Motor North America, Inc. Transport charge offload management
CN113949031B (zh) * 2020-07-16 2025-05-23 施耐德电器工业公司 电机保护器的电源装置及其供电方法
JP7435499B2 (ja) 2021-02-08 2024-02-21 トヨタ自動車株式会社 異常判定装置及び異常判定方法
JP7578016B2 (ja) 2021-02-16 2024-11-06 トヨタ自動車株式会社 車載ソーラー充電制御システム、車載ソーラー充電制御方法及びプログラム
JP7484811B2 (ja) * 2021-05-17 2024-05-16 トヨタ自動車株式会社 異常判定装置、異常判定システム、移動体、及び異常判定方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032309A1 (ja) * 2008-09-19 2010-03-25 トヨタ自動車株式会社 非接触受電装置およびそれを備える車両
BRPI0823208A2 (pt) 2008-09-25 2015-06-30 Toyota Motor Co Ltd Sistema de alimentação de energia e veículo mjovido a eletricidade
KR101248453B1 (ko) * 2008-12-09 2013-04-01 도요타지도샤가부시키가이샤 비접촉 전력 전송 장치 및 비접촉 전력 전송 장치에 있어서의 전력 전송 방법
JP5459058B2 (ja) * 2009-11-09 2014-04-02 株式会社豊田自動織機 共鳴型非接触電力伝送装置
JP2011223739A (ja) 2010-04-09 2011-11-04 Sony Corp 給電装置、受電装置、およびワイヤレス給電システム
JP5838324B2 (ja) * 2010-05-03 2016-01-06 パナソニックIpマネジメント株式会社 発電装置、発電システム、および無線電力伝送装置
JP5282068B2 (ja) * 2010-05-14 2013-09-04 株式会社豊田自動織機 共鳴型非接触給電システムの受電側設備
JP5569182B2 (ja) * 2010-06-28 2014-08-13 株式会社エクォス・リサーチ 非接触送電システム、非接触送電装置、およびインピーダンスの調整方法
JP4856288B1 (ja) * 2010-08-10 2012-01-18 パイオニア株式会社 インピーダンス整合装置、制御方法
JP2012138976A (ja) * 2010-12-24 2012-07-19 Equos Research Co Ltd 電力伝送システム
KR101896979B1 (ko) * 2011-05-12 2018-09-11 삼성전자주식회사 무선 전력 전송 및 충전 시스템, 무선전력 전송 및 충전 시스템의 공진 주파수 제어 방법
US9272630B2 (en) * 2011-05-27 2016-03-01 Samsung Electronics Co., Ltd. Electronic device and method for transmitting and receiving wireless power
JP5880122B2 (ja) * 2012-02-21 2016-03-08 株式会社豊田自動織機 非接触電力伝送装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106541845A (zh) * 2016-11-25 2017-03-29 上海工程技术大学 一种无线电动汽车充电系统及控制方法

Also Published As

Publication number Publication date
US20130307471A1 (en) 2013-11-21
JP2013243844A (ja) 2013-12-05
US9373971B2 (en) 2016-06-21

Similar Documents

Publication Publication Date Title
JP5692163B2 (ja) 車両、および送電装置
JP5643270B2 (ja) 車両および非接触給電システム
JP6119756B2 (ja) 非接触給電システムおよび送電装置
CN102714429B (zh) 非接触受电装置、非接触输电装置、非接触供电系统以及车辆
US9666359B2 (en) Vehicle, power receiving device, power transmitting device, and contactless power supply system
JP5794203B2 (ja) 送電装置、受電装置、車両、および非接触給電システム
US9379572B2 (en) Contactless power transmitting device, contactless power receiving device, and contactless power transfer system
JP5700133B2 (ja) 非接触受電装置、非接触送電装置および非接触送受電システム
JP4868077B2 (ja) 給電システムおよび電動車両
JP5703988B2 (ja) 受電装置、送電装置、車両、および非接触給電システム
JP5720780B2 (ja) 受電装置、車両、および非接触給電システム
JP2013126326A (ja) 非接触受電装置およびそれを搭載する車両、非接触送電装置、ならびに非接触給電システム
JP5884698B2 (ja) 非接触受電装置
JP5920185B2 (ja) 非接触受電装置
JP2015027224A (ja) 非接触受電装置
JP2015035872A (ja) 非接触受電装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141117

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150119

R151 Written notification of patent or utility model registration

Ref document number: 5692163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151