JP5639482B2 - 高い安定性を有する高分子電解質、電気化学的システムにおけるその使用 - Google Patents
高い安定性を有する高分子電解質、電気化学的システムにおけるその使用 Download PDFInfo
- Publication number
- JP5639482B2 JP5639482B2 JP2011002033A JP2011002033A JP5639482B2 JP 5639482 B2 JP5639482 B2 JP 5639482B2 JP 2011002033 A JP2011002033 A JP 2011002033A JP 2011002033 A JP2011002033 A JP 2011002033A JP 5639482 B2 JP5639482 B2 JP 5639482B2
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- electrolyte
- carbon
- electrochemical
- polyelectrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F283/00—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
- C08F290/062—Polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/26—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
- C08G65/2603—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
- C08G65/2606—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
- C08G65/2609—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups containing aliphatic hydroxyl groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/329—Polymers modified by chemical after-treatment with organic compounds
- C08G65/333—Polymers modified by chemical after-treatment with organic compounds containing nitrogen
- C08G65/33348—Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing isocyanate group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/10—Homopolymers or copolymers of methacrylic acid esters
- C08L33/12—Homopolymers or copolymers of methyl methacrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/02—Polyalkylene oxides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09D133/10—Homopolymers or copolymers of methacrylic acid esters
- C09D133/12—Homopolymers or copolymers of methyl methacrylate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/48—Conductive polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/50—Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/56—Solid electrolytes, e.g. gels; Additives therein
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0088—Composites
- H01M2300/0091—Composites in the form of mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Power Engineering (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Materials Engineering (AREA)
- Electrochemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Conductive Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
本発明は、高性能、特に高安定性を有する電解質および電解質組成物に、およびこれらの電解質および/またはこれらの電気化学的組成物を使用する電気化学的システムに関する。
3rdRechargeable Battery Seminar, Beerfield Beach, F1(1990)においてT. Naguraによって説明されたソニー社製リチウムイオン電池のマーケティングは、電話およびコンピュータのような携帯電子装置の分野においてそれら電池の拡大と重要な前進を可能にした。Liイオン電池の技術はリチウムのインターカレーションがある電極に基づく;アノードはグラファイトより成り、そしてカソードは金属酸化物(LiCoO2、LiMnO4、LiNiO2)より成る。第一充電中に炭素表面において不動態皮膜が形成される。この不動態皮膜の化学および組成は複雑である。この皮膜の電気化学的プロトコルは工業秘密である。1990年から1999年まで、Liイオン電池の化学は液体電解質の使用に本質的に基づいていた。同じ化学を電気自動車の分野における応用のための大きな容積に対して外挿することは、この電池の安全確保を大きな規模で必要とする液体電解質の反応性の故に疑問なままである。
本発明は、実質的な電気化学的安定性を有する少なくとも1種の4分枝重合体に基づく高分子電解質に関する。HVSP(High Voltage Stable Polymer:高電圧安定性重合体)とも称されるこの高分子電解質は、電気化学的システムで有利に使用することができる。
本発明のもう1つの目的は、乾燥または可塑性重合体の製造を可能にする方法、および、特にハイブリッドスーパーコンデンサーおよび電気化学的発電装置の分野におけるその使用に関する。
本発明は、また、乾燥または可塑性重合体の製造を可能にする方法、並びに、特にハイブリッドスーパーコンデンサーおよび電気化学的発電装置の分野におけるその使用に関する。
本発明の範囲内で、電気化学的装置という表現は、特に電池、スーパーコンデンサーおよびハイブリッドスーパーコンデンサーをカバーする。
スーパーコンデンサーは、挿入なしの少なくとも2つの二重層電極を含み、そしてそれは挿入反応には頼らない。
電池またはスーパーコンデンサーは、一般に、次のとおり表される:
−好ましくはハイブリッド末端基、なおもさらに好ましくはハイブリッドアクリレート(好ましくはメタクリレート)およびアルコキシ(好ましくは1〜8個の炭素原子を有するアルコキシ、なおもさらに好ましくはメトキシまたはエトキシ)末端基またはビニル末端基を有する少なくとも1種の4分枝重合体にして、その4分枝重合体の少なくとも1つの分枝鎖(好ましくは少なくとも2分枝した)は架橋を起こすことが可能であるそのような少なくとも1種の4分枝重合体;
次のファミリーから選ばれる少なくとも1つの成分:
化学式(CH2−CF2)n(式中、nは、好ましくは1,000〜4,000の間で変わり、好ましくはnは150付近となるように)の(PVDF)とも称されるポリ(ビニリルジエンフルオリド)であって、好ましくは10,000〜1,000,000の平均分子量を有するもの、より好ましくはさらに100,000〜250,000の平均分子量を有するものと;
式[(CH2−CF2)x(CF2−CF(CH3))1−x]n(式中、nは1,000〜4,000の間で変わり、好ましくはnは2,000から3,000まで変わり、より好ましくはさらにnは150付近であり、そしてxは好ましくは0.15〜0.5の間で変わる)の(PVDF−HFP)とも称されるポリ(ビニリジエンフルオロ−コ−ヘキサフルオロプロペン)共重合体であって、好ましくは10,000〜1,000,000の平均分子量を有するもの、より好ましくはさらに100,000〜250,000の平均分子量を有するものと;
化学式(CF2−CF2)n(式中、nは5から20,000まで変わり、好ましくはnは50から10,000まで変わる)の(PTFE)とも称されるポリ(テトラフルオロエチレン)であって、好ましくは500〜5,000,000の平均分子量を有するもの、より好ましくはさらに5,000〜1,000,000、好ましくは約200,000の平均分子量を有するものと;
ポリ(エチレン−コ−プロピレン−コ−5−メチレン−2−ノルボルネン)またはEPDMとも称されるエチレン−プロピレン−ジエン共重合体であって、好ましくは10,000〜250,000、好ましくは20,000〜100,000の平均分子量を有するものと;
ポリオール、好ましくは:
好ましくは50,000〜1,000,000の平均分子量を有するポリビニルアルコール、またはOH基の一部がOCH3、OC2H5、OCH4OH、OCH2CH(CH3)OH、OC(=O)CH3またはOC(=O)C2H5で置換されている、好ましくは5,000〜250,000の平均分子量を有するセルロース、および/または
エチレンオキシド縮合生成物であって、好ましくは1,000〜5,000の平均分子量を有する、好ましくは純粋な、またはグリセロール若しくはトリメチロールプロパン上のプロピレンオキシドと混合状態にあり、そして場合により式(O=C=N)x−R(式中、2<x<4であり、そしてRは基(O=C=N)xによる多官能性を保証するアリール基またはアルキル基を表す)のジまたはトリ−イソシアネートにより多分架橋されているもの、などのポリオールと
から選ばれる少なくとも1種の成分;
式[(CH2−C(CH3))/(CO2CH3)]n(式中、nは、好ましくは100〜10,000の間で変わり、より好ましくはさらにnは500から5,000まで変わる)の(PMMA)とも称されるポリ(メチルメタクリレート)であって、好ましくは10,000〜1,000,000の平均分子量を有するもの、好ましくは50,000〜500,000の平均分子量を有するもの;
化学式[(CH2−CH(CN))]n(式中、nは150から18,800まで変わり、なおもさらに好ましくはnは300から4,000まで変わる)の(PAN)とも称されるポリ(アクリロニトリル)、好ましくは10,000〜1,000,000の平均分子量を有するもの、なおもさらに好ましくは20,000〜200,000の平均分子量を有するもの;
SiO2−Al2O3;および
被覆されていない、または、好ましくは米国特許−A−第6,190,804号明細書の第1欄および第2欄において定義されている重合体の1種または2種以上と相溶性である(即ち、安定であるおよび/または二次的寄生反応を生じさせない)有機物質であって、好ましくは少なくとも1種のポリオールおよび/または1種のポリエチレン−ポリオキシエチレン共重合体を含む群から選ばれる該有機物質、および/または好ましくはSiO2および/またはAl2O3である無機物質で被覆されているナノTiO2
に基づく上記高分子電解質。
少なくとも1種のリチウム塩の存在下で架橋することによって得られる電解質組成物が特に興味深い。
50〜100℃の温度において、好ましくは60〜80℃の温度において;および/または
5分〜8時間の期間、好ましくは1〜4時間の継続期間の間;および/または
好ましくはペルオキシド類、ヒドロペルオキシド類およびペルエステル類を含む群から選ばれる架橋触媒(好ましくは、この触媒はペルオキシカーボネート類のような有機ペルオキシド類(ベンゾイルペルオキシドまたはアゾ化合物)より成る群から選ばれる)の存在下で有利に行われる。
もう1つの有利な態様によれば、上記の電解質組成物は固体の形態をしており、この形態はドクターブレード塗布法によって、または押し出しによって得られる。
本発明の少なくとも1種の電解質、および/または本発明による少なくとも1つの電解質組成物;
好ましくはLi4Ti5O12タイプの電気活性アノード;および
LiCoPO4および/またはLi(Mn0.66Ni0.34)O2等から製造されたもののような3.5〜5ボルトタイプのカソード
を含む上記の電気化学的装置にある。
本発明による少なくとも1種の高分子電解質および/または少なくとも1つの電解質組成物;
好ましくはLi4Ti5O12タイプの電気活性アノード;および
好ましくは大きな表面積を持つ炭素タイプの電気活性カソード
を含む。
それ故、本発明の1つの目的は、明細書の段落0055の説明において定義される方法によって測定される、4ボルトより高いサイクリング中安定性を有する任意の電気化学的装置を提供することである。
発明の好ましい態様の説明
本発明の第一の好ましい態様は図1で説明される。アノードおよびカソードの動作は図中でそれらそれぞれの平均電圧によって描かれている。
金属リチウム;
炭素およびグラファイト;
リチウム系合金;および
Li4Ti5O12
の動作が図1に描かれている。
4ボルト(LiCoO2、LiMn2O4、LiNiO2);および
5ボルト(LiCoPO4、大きな表面積を有する炭素:二重層炭素)
の動作が図1に描かれている。
使用される電気化学的方法は、10mV/時の走査速度により使用される徐速シクロボルタンメトリー(slow cyclovoltammetry)である。この方法は酸化電流を電圧の関数として示す:電流がゼロに近い各時間に重合体の作動電圧は安定している。
技術(I)−Li4Ti5O12/HVSP/炭素:ハイブリッドスーパーコンデンサー
この構成において:
−Li4Ti5O12は挿入アノードを表し、HVSPは電解質および隔離板であり、カソードは大きな比面積、即ち50m2/グラムより大きい、好ましくは500〜2500m2/グラム、なおもさらに好ましくは約2400m2/グラム(グラファイトの場合は、グラファイトの内部平面の理論的限界に相当する約1200m2/グラム)の比面積を持つ炭素に基づき(好ましくは、グラファイトに基づき);このカソードに関連する機構は二重層(CDL)である;
−電解質は2つの形態で現れることができる:
・乾燥形態であって、40〜85重量%、好ましくは約50重量%の重合体マトリックスを含み、残りがイオン伝導性を確実に達成するためにリチウム塩または塩類の混合物であり、それらの塩が、好ましくは、LiN(SO2CF3)2;LiTFSI;LiN(SO2C2F5)2;BETI;LiC(SO2CF3)3;LiBF4;LiPF6;LiClO4;LiSO3CF3およびLiAsF6を含む群から選ばれる形態;
・ゲルであって、5〜75重量%のELEXCEL重合体および95〜25重量%の可塑剤を含み、この可塑剤がEC(エチレンカーボネート)、PC(プロピレンカーボネート)、γ−GBL(γ−ブチロラクトン)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、TESA(テトラエチル−スルホンアミド)、エチル−メチルカーボネート(EMC)のような有機溶媒の混合物であり、上記の塩または塩類の混合物は上記可塑剤に対して0.75から2モルまで変わる濃度で存在する形態。
技術(II)−グラファイト/HVSP/炭素:ハイブリッドスーパーコンデンサー
この構成において、グラファイトは挿入アノードを構成し、HVSPは電解質および隔離板であり、カソードは大きな表面積を持つ炭素に基づき、このカソードに関連する機構は二重層タイプ(CDL)のものである。
−乾燥形態であって、40〜85重量%、好ましくは約50重量%の固体重合体を含み、残りがイオン伝導性を確実に達成するためにリチウム塩または塩類の混合物より成り、それらの塩が、好ましくは、LiN(SO2CF3)2;LiTFSI、LiN(SO2C2F5)2;BETI;LiC(SO2CF3)3;LiBF4;LiPF6;LiClO4;LiSO3CF3およびLiAsF6より成る群から選ばれる形態;
−ゲルであって、5〜75重量%の重合体材料および95〜25重量%の液体可塑剤を含み、この可塑剤がEC(エチレンカーボネート)、PC(プロピレンカーボネート)、γ−GBL(γ−ブチロラクトン)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、TESA(テトラエチル−スルホンアミド)、エチル−メチルカーボネート(EMC)のような有機溶媒の混合物であり、上記の塩または塩類の混合物は上記溶媒中に上記可塑剤に対して0.75から2モルまで変わる濃度で存在する形態。
技術(III)−Li4Ti5O12/HVSP/カソード5ボルト(LiCoPO4):Liイオン
アノードおよびカソードは挿入材料であり、HVSPは電解質である。
−乾燥形態であって、40〜85重量%、好ましくは約50重量%の重合体マトリックスを含み、残りがイオン伝導性を与えるためにリチウム塩または塩類の混合物より成り、それらの塩が、好ましくは、LiN(SO2CF3)2;LiTFSI;LiN(SO2C2F5)2;BETI;LiC(SO2CF3)3;LiBF4;LiPF6;LiClO4;LiSO3CF3およびLiAsF6より成る群から選ばれる形態;
−ゲルであって、5〜75重量%のゲルおよび重合体マトリックス並びに95〜25重量%の可塑剤を含み、この可塑剤がEC(エチレンカーボネート)、PC(プロピレンカーボネート)、γ−GBL(γ−ブチロラクトン)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、TESA(テトラエチル−スルホンアミド)、エチルメチルカーボネート(EMC)のような有機溶媒の混合物であり、上記の塩または塩類の混合物は上記可塑剤に対して0.75から2モルまで変わる濃度で存在する形態。
技術(IV)−グラファイト/HVSP/カソード5ボルト(LiCoPO4):Liイオン電池
この構成において、アノード(グラファイト)およびカソードは挿入材料であり、HVSPは電解質および隔離板を構成する。このアノードに関連する機構はGICタイプ(グラファイトインターカレーション化合物)のものである。
−乾燥形態であって、40〜85重量%、好ましくは50重量%の重合体マトリックスを含み、残りがイオン伝導性を確実に達成するためにリチウム塩または塩類の混合物より成り、それらの塩が、好ましくは、LiN(SO2CF3)2;LiTFSI;LiN(SO2C2F5)2;BETI;LiC(SO2CF3)3;LiBF4;LiPF6;LiClO4;LiSO3CF3およびLiAsF6より成る群から選ばれる形態;
−ゲルであって、5〜75重量%のゲルおよび重合体マトリックス並びに95〜25重量%の可塑剤を含み、この可塑剤がEC(エチレンカーボネート)、PC(プロピレンカーボネート)、γ−GBL(γ−ブチロラクトン)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、TESA(テトラエチル−スルホンアミド)、エチルメチルカーボネート(EMC)のような有機溶媒の混合物であり、上記の塩または塩類の混合物は上記可塑剤に対して0.75から2モルまで変わる濃度で存在する形態。
参考例1−重合体ゲル・ELEXCEL MP210-1:電解質およびバインダーの酸化下における安定性の試験
80重量%の4分枝星形状重合体・ELEXCEL MP210-1を、20重量%の、分子量500,000g/モルのPVDF(KUREHA、日本、KF 1300)と混合して重合体マトリックスを与える。
この混合物をアルミニウム集電装置上に分散させ、その後に窒素の流れの下で12時間中ずっと加熱する。次いで、乾燥を真空下で2時間中に完了させる。かくして得られた電極を、EC+DMC−1MLiClO4電解質で浸されたCelgard(商品番号2300)により分離されているリチウム金属電極に対面するように取り付ける。
参考例2−重合体ゲル・ERM-1 ELEXCEL:電解質の酸化下における安定性の試験
Shawinigan炭素(20重量パーセント)をタイプPVDFのバインダー(80重量パーセント)と混合して複合材料にする。電極を手作業で作る。この電極を作用電極として使用する。金属リチウムを、化学電池において参照電極としてのみならず対極としても用いる。
実施例3−重合体ゲル・ERM-1 ELEXCEL/TiO2(XP-416):電解質の酸化下における安定性試験
参考例2におけると同じShawinigan炭素をタイプPVDFのバインダーと混合する。この複合材料から電極を手作業で作る。この電極を3電極タイプの電気化学的装置中で作用電極として使用する。金属リチウムを参照電極としてのみならず対極としても用いる。DKS社ロット8K1201からの重合体・ERM-1 ELEXCEL(4つの分枝鎖)をTomiyamaからのEC/GBL中1.5MのLiBF4と混合し、そしてAkzo Nobel社からのPerkadox 16熱開始剤を、割合:0.101グラムのPerkadox 16(1000ppm)、100グラムのERM1/(EC:GBL+LiBF4)溶液、および0.506グラムのTiO2ナノ(Kronos社からのXP-416)で添加することによって高分子電解質を調製する。ERM1/(EC:GBL+LiBF4)の重量比は(90:10)である。
実施例4−重合体ゲル・ERM-1 ELEXCEL/TiO2(XP-413):電解質の酸化下における安定性の試験
参考例2におけると同じShawinigan炭素をPVDFタイプのバインダーと混合する。この複合材料からその足をアルミニウム支持体上に置くことによって電極を作る。この電極を3電極タイプの電気化学的システム中で作用電極として使用する。金属リチウムを参照電極としてのみならず電極としても用いる。DKS社ロット8K1201からのERM-1 ELEXCEL(4つの分枝鎖)をTomiyamaからのEC/GBL(1:3)中1.5MのLiBF4と混合し、そしてAkzo Nobel社からのPerkadox 16熱開始剤を、0.050グラムのPerkadox 16(500ppm)、100グラムのERM1/(EC:GBL+LiBF4)溶液、0.105グラムの、無機表面処理(Al2O3およびZrO2)およびポリオールに基づく第二の有機表面処理によるTiO2ナノルチル(Kronos社のXP-413)の割合で添加することによって高分子電解質を調製する。ERM1/(EC:GBL+LiBF4)の重量比は(90:10)であることを知っている。図4は、摂氏80°の温度における赤外線現場重合のために使用した装置を示すもので、1時間後にゲルが完全に形成され、それは白っぽい色のものである。上記の3つの電極をMacPile(登録商標)タイプのサイクリング装置に接続する。電気化学的安定性の試験を参考例1におけるように行う。図5は、重合体ゲルの酸化壁を示す。100μAの電流を用いて測定された安定性壁の電圧は4.57ボルトである。
実施例5−重合体ゲル・ERM-1 ELEXCEL/TiO2(XP-415):電解質の酸化下における安定性の試験
Shawinigan炭素(参考例2におけると同じ)をPVDFタイプのバインダーと混合する。この電極を作用電極として使用する。金属リチウムを参照電極としてのみならず対極としても用いる。DKS社ロット8K1201からの重合体ERM-1 ELEXCEL(4つの分枝鎖)をTomiyamaからのEC/GBL(1:3)中1.5MのLiBF4と混合し、そしてAkzo Nobel社からのPerkadox 16熱開始剤を、0.050グラムのPerkadox 16(500ppm)、100グラムの溶液・ERM1/(EC:GBL+LiBF4)、および0.105グラムの、無機表面処理(Al2O3、SiO2およびZrO2)並びにポリオールに基づく第二の有機処理によるTiO2ナノルチル(Kronos社のXP-415)の割合で添加することによって高分子電解質を調製する。重量比ERM1/(EC:GBL+LiBF4)は(90:10)であることを知っている。図4は赤外線現場重合のために使用した装置を示す。摂氏80°の温度において1時間後にゲルが完全に形成され、それは白っぽい色のものである。上記の3つの電極をMacPile(登録商標)タイプのサイクリング装置に接続する。電気化学的安定性試験を参考例1におけるように行う。図5は重合体ゲルの酸化壁を示す。100μAの電流値において測定された安定性壁の電圧は4.65ボルトである。
実施例6−重合体ゲル・ERM-1 ELEXCEL/TiO2(XP-414):電解質の酸化下における安定性の試験
参考例2におけると同じShawinigan炭素をPVDFタイプのバインダーと混合する。この電極を3電極タイプのシステム中で作用電極として使用する。金属リチウムを参照電極としてのみならず対極としても用いる。DKS社ロット8K1201からの重合体ERM-1 ELEXCEL(4つの分枝鎖)をTomiyamaからのEC/GBL(1:3)中1.5MのLiBF4と混合し、そしてAkzo Nobel社からのPerkadox 16熱開始剤を、0.050グラムのPerkadox 16(500ppm)、100グラムの溶液・ERM1/(EC:GBL+LiBF4)、および0.108グラムの、無機表面処理(Al2O3)およびポリオールに基づく第二の有機処理によるTiO2ナノルチル(Kronos社からのXP-414)の割合で添加することによって高分子電解質を調製する。重量比ERM1/(EC:GBL+LiBF4)は(90:10)であることを知っている。図4は赤外線現場重合試験のために使用した装置を示す。摂氏80°において1時間後にゲルが完全に形成され、それは白っぽい色のものである。上記の3つの電極をMacPile(登録商標)タイプのサイクリング装置に接続する。電気化学的安定性試験を参考例1におけるように行う。図5は重合体ゲルの酸化壁を示す。100μAにおいて測定された安定性壁の電圧は4.608ボルトである。
実施例7−重合体ゲル・ERM-1 ELEXCEL/SiO2:電解質の酸化下における安定性の試験
参考例2におけると同じShawinigan炭素をPVDFタイプのバインダーと混合する。この電極を3電極タイプの電気化学的システム中で作用電極として使用する。金属リチウムを参照電極としてのみならず対極としても用いる。DKS社ロット8K1201からのERM-1 ELEXCEL(4つの分枝鎖)をTomiyamaからのEC/GBL(1:3)中1.5MのLiBF4と混合し、そしてAkzo Nobel社からのPerkadox 16熱開始剤を、0.050グラムのPerkadox 16(500ppm)、100グラムの溶液・ERM1/(EC:GBL+LiBF4)、および0.103グラムの、Degussa社からのナノSiO2 *Aerosil(非晶質ヒュームドシリカ)の割合で添加することによって高分子電解質を調製する。重量比・WRM1/(EC:GBL+LiBF4)は(90:10)であることを知っている。図4は赤外線現場重合試験のために使用した装置を示す。摂氏80°の温度において1時間後にゲルが完全に形成され、それは白っぽい色のものである。上記の3つの電極をMacPile(登録商標)タイプのサイクリング装置に接続する。電気化学的安定性試験を実施例4におけるように行う。図6は重合体ゲルの酸化壁を示す。100μAの電流値において測定された安定性壁の電圧は4.757ボルトである。
参考例8−重合体ゲル・ERM-1 ELEXCEL/PVDF:電解質の酸化下における安定性の試験
参考例2におけると同じShawinigan炭素をPVDFタイプのバインダーと混合する。この電極を3電極システム中で作用電極として使用する。金属リチウムを参照電極としてのみならず対極としても用いる。DKS社ロット8K1201からのERM-1 ELEXCEL(4つの分枝鎖)をTomiyamaからのEC/GBL(1:3)中1.5MのLiBF4と混合し、そしてAkzo Nobel社からのPerkadox 16熱開始剤を、割合・0.050グラムのPerkadox 16(500ppm)、100グラムの溶液・ERM1/(EC:GBL+LiBF4)、および0.11グラムのPVDF(Kruha社、日本)で添加することによって高分子電解質を調製する。重量比・ERM1/(EC:GBL+LiBF4)は(90:10)であることを知っている。図4は赤外線現場重合試験を行うために使用した装置を示す。80℃の温度において1時間後にゲルが完全に形成され、それは白っぽい色のものである。上記の3つの電極をMacPile(登録商標)タイプのサイクリング装置に接続する。電気化学的安定性試験を参考例1におけるように行う。図7は重合体ゲルの酸化壁を示す。100μAにおいて測定された安定性壁の電圧は4.607ボルトである。
参考例9−重合体ゲル・ERM-1 ELEXCEL/PMMA:電解質の酸化下における安定性の試験
参考例2におけると同じShawinigan炭素をPVDFタイプのバインダーと混合する。この電極を3電極システム中で作用電極として使用する。金属リチウムを参照電極としてのみならず対極としても用いる。DKS社ロット8K1201からのERM-1 ELEXCEL(4つの分枝鎖)をTomiyamaからのEC/GBL(1:3)中1.5MのLiBF4と混合し、そしてAkzo Nobel社からのPerkadox 16熱開始剤を、割合・0.050グラムのPerkadox 16(500ppm)、100グラムの溶液・ERM1/(EC:GBL+LiBF4)および0.11グラムのPMMA(Aldrich社)で添加することによって高分子電解質を調製する。重量比・ERM1/(EC:GBL+LiBF4)は(90:10)であることを知っている。模式図1は赤外線現場重合を行うために使用した配置を示す。80℃において1時間後にゲルが完全に形成され、それは白っぽい色のものである。上記の3つの電極をMacPile(登録商標)タイプのサイクリング装置に接続する。電気化学的安定性試験を参考例1におけるように行う。図7は重合体ゲルの酸化壁を示す。100μAにおいて測定された安定性壁の電圧は4.742ボルトである。
参考例10−ハイブリッドスーパーコンデンサーの製造
アノードを、1%の斜方晶系グラファイトで被覆された、大きさ(被覆後)が20μmである球形グラファイトの粒子から作り、その混合を機械的融解によって、またはハイブリダイザー(Hybridiser)を用いて行い、90%のグラファイトを5%のスチレン・ブタジエンゴム(STYRENE BUTADIENE RUBBER(SBR)Zeon)、および水に溶解されている5%のWSCタイプの増粘剤(DKS社、日本)と混合する。最適な濃度を、銅上にドクターブレードを用いて分散させるのに選択する。
電気化学的発電装置(ハイブリッドスーパーコンデンサー)を原理・アノード/高分子電解質/カソードに従って作る。かくして得られたスーパーコンデンサーの電気化学的性能の評価を2.5〜4.5ボルトの間で行う。平均電位は3.6ボルトであり、そしてその平均キャパシタンスは0.25mAhである。
参考例11−ハイブリッドスーパーコンデンサーの製造
アノードを、6%のKetjenカーボンブラックで被覆されているLi4Ti5O12のナノ粒子から作る。混合を機械的融解によって、またはハイブリダイザーを用いて確実に達成する。90%のLi4Ti5O12−炭素を、水に溶解した5%のWSCタイプの増粘剤(DKS社、日本)が加えられている5%のスチレン・ブタジエンゴム(STYRENE BUTADIENE RUBBER(SBR)Zeon)と混合する。最適な濃度を、アルミニウム上にドクターブレード技術によって分散させるのに選択する。
参考例12−Liイオン電池の製造
アノードを、6%のKetjenカーボンブラックで被覆されているLi4Ti5O12ナノ粒子から作る。混合を機械的融解によって、またはハイブリダイザーを用いて確実に達成する。90%のLi4Ti5O12−炭素を、5%のスチレン・ブタジエンゴム(STYRENE BUTADIENE RUBBER(SBR)Zeon)、および水に溶解されている5%のWSCタイプの増粘剤(DKS社、日本)と混合する。最適な濃度を、アルミニウム上にドクターブレード法によって塗布するのに選択する。
参考例13−重合体ゲルとの界面Li金属の安定性
重合体ゲル中におけるリチウム金属の機械的安定性を、化学電池;リチウム金属//電解質ゲル//LiFePO4を用いることによって確認した。重合体ゲルは参考例1で用いられたものと同じである。サイクリングを充電・放電においてC/1の速度において行う。樹枝状結晶は形成されず、リチウム/重合体ゲル界面は100回を超えるサイクリング後も安定なままである。
本発明を特定の用途を参照して説明したけれども、多くの変化および修正はそれらの用途と関係する可能性があり、そして、本発明は、本発明のこのような修正、使用または改変を、一般に本発明の原理に従ってカバーしようと、そして本発明が見いだされる活動分野で知られるようになるかまたは普通になり、かつ前記特許請求の範囲に従って前述の必須要素に適用することができる本発明の説明のどんな変形も含めようと意図するものであることが理解される。
Claims (14)
- 電気化学的発電装置のための高分子電解質であって、この高分子電解質は架橋してポリマーゲル状の電解質組成物を形成させるものであり、この高分子電解質は:
(a)アクリレート末端基およびアルコキシ末端基を有する星状ポリエーテルである少なくとも1種の4分枝重合体であって、少なくとも1つの分枝が架橋を起こすことが可能である前記4分枝重合体と;
(b)ナノTiO 2 と;
を含み、前記4分枝重合体は、式(I):
に相当するアクリレート末端基を有する分枝を持つ4官能性重合体であり、4.5ボルトより高い安定性電圧を示す、上記高分子電解質。 - リチウム塩と可塑剤、または塩類と可塑剤との混合物をさらに含む、請求項1記載の高分子電解質。
- 乾燥形態(溶媒を含まない)であり、イオン伝導性を提供するために、重合体のマトリックス中にリチウム塩又は塩類の混合物を加えることによって得られる、請求項1に記載の高分子電解質。
- リチウム塩が、LiN(SO2CF3)2;LiTFSI、LiN(SO2C2F5)2;BETI、LiC(SO2CF3)3、LiBF4、LiPF6、LiClO4、LiSO3CF3、及びLiAsF6からなる群から選択される、請求項2に記載の高分子電解質。
- 可塑剤が、エチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、テトラエチル−スルホンアミドおよびメチル−エチルカーボネート(EMC)からなる群から選ばれる少なくとも1種の有機溶媒の混合物より成る、請求項2に記載の高分子電解質。
- 請求項1に定義された高分子電解質から得られる電解質組成物であって、前記電解質の成分を重合体の架橋を可能にする条件に付すことによって得られる電解質組成物。
- 架橋がUV、熱処理および/または電子ビーム(EB)によって達成される、請求項6に記載の電解質組成物。
- 50〜100℃の温度で行われる架橋によって得られる、請求項6に記載の電解質組成物。
- 有機ペルオキシド、ヒドロペルオキシド及びペルエステルより成る群から選ばれる触媒の存在下で架橋させることによって得られる、請求項6に記載の電解質組成物。
- 電気化学的装置であって:
請求項1で定義される少なくとも1種の電解質;
電気活性アノード;および
3.5〜5ボルトタイプのカソード;
を含む上記の電気化学的装置。 - 電気活性カソードが4ボルトタイプのものであり、LiCoO2、LiMn2O4、LiNiO2、およびこれらの酸化物のレドックス対を単独でまたは混合物として含んでいる化合物より成る群から選ばれる少なくとも1種の酸化物から構成される、請求項10に記載の電気化学的装置。
- 電気活性アノードが天然および/または合成グラファイトから、および/または高結晶化度を有する炭素から造られたグラファイトインターカレーション化合物(GIC)タイプのものであって、その炭素が、2000℃に等しいかまたはそれより高い温度において熱処理されている、請求項10に記載の電気化学的装置。
- 電気活性アノードが低結晶化度を有する炭素より成り、炭素は2000℃より低い温度において処理されている、請求項10に記載の電気化学的装置。
- 電気活性アノードがタイプLi4Ti5O12であり、そしてカソードがLiCoPO4および/またはLi(Mn0.66Ni0.34)O2から製造されたタイプである、請求項10に記載の電気化学的装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002367290A CA2367290A1 (fr) | 2002-01-16 | 2002-01-16 | Electrolyte polymere a haute stabilite > 4 volts comme electrolyte pour supercondensateur hybride et generateur electrochimique |
CA2,367,290 | 2002-01-16 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003563038A Division JP5112605B2 (ja) | 2002-01-16 | 2003-01-15 | 高い安定性を有する高分子電解質、電気化学的システムにおけるその使用 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2011129937A JP2011129937A (ja) | 2011-06-30 |
JP2011129937A5 JP2011129937A5 (ja) | 2012-10-18 |
JP5639482B2 true JP5639482B2 (ja) | 2014-12-10 |
Family
ID=27587688
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003563038A Expired - Lifetime JP5112605B2 (ja) | 2002-01-16 | 2003-01-15 | 高い安定性を有する高分子電解質、電気化学的システムにおけるその使用 |
JP2011002033A Expired - Lifetime JP5639482B2 (ja) | 2002-01-16 | 2011-01-07 | 高い安定性を有する高分子電解質、電気化学的システムにおけるその使用 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003563038A Expired - Lifetime JP5112605B2 (ja) | 2002-01-16 | 2003-01-15 | 高い安定性を有する高分子電解質、電気化学的システムにおけるその使用 |
Country Status (6)
Country | Link |
---|---|
US (1) | US7897674B2 (ja) |
EP (1) | EP1466379B1 (ja) |
JP (2) | JP5112605B2 (ja) |
CA (1) | CA2367290A1 (ja) |
ES (1) | ES2775949T3 (ja) |
WO (1) | WO2003063287A2 (ja) |
Families Citing this family (76)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2409524A1 (fr) | 2002-10-23 | 2004-04-23 | Hydro-Quebec | Particule comportant un noyau a base de graphite recouvert d'au moins une couche continue ou discontinue, leurs procedes d'obtention et leurs utilisations |
CA2418257A1 (fr) * | 2003-01-30 | 2004-07-30 | Hydro-Quebec | Composition electrolytique et electrolyte, generateurs les contenant et operant sans formation de dendrite lors du cyclage |
WO2005012377A1 (de) * | 2003-07-30 | 2005-02-10 | Celanese Ventures Gmbh | Neue polyvinylester- und neue polyvinylalkohol-copolymere |
DE10350481A1 (de) * | 2003-10-29 | 2005-06-16 | Henkel Kgaa | Festigkeitsoptimierte Polymere mit gemischten Oxyalkyleneinheiten |
US10629947B2 (en) | 2008-08-05 | 2020-04-21 | Sion Power Corporation | Electrochemical cell |
CA2482003A1 (fr) | 2004-10-12 | 2006-04-12 | Hydro-Quebec | Melange ternaire polymere - sel fondu - solvant, procede de fabrication et utilisation dans les systemes electrochimiques |
CA2534243A1 (fr) * | 2006-01-25 | 2007-07-25 | Hydro Quebec | Particules d'oxyde metallique enrobees a faible taux de dissolution, procedes de preparation et utilisation dans les systemes electrochimiques |
CA2534276A1 (fr) | 2006-01-26 | 2007-07-26 | Hydro Quebec | Melange cobroye d'un materiau actif et d'un materiau de conduction, ses procedes de preparation et ses applications |
CA2569991A1 (en) * | 2006-12-07 | 2008-06-07 | Michel Gauthier | C-treated nanoparticles and agglomerate and composite thereof as transition metal polyanion cathode materials and process for making |
TWI480435B (zh) * | 2007-09-19 | 2015-04-11 | Univ California | 氮化鎵塊狀晶體(bulk crystals)及其生長方法 |
CN101939862B (zh) * | 2008-01-08 | 2014-03-12 | 赛昂能源有限公司 | 多孔电极以及相关联的方法 |
EP2450983B1 (en) * | 2008-10-29 | 2013-12-11 | Samsung Electronics Co., Ltd. | Electrolyte composition and catalyst ink and solid electrolyte membrane formed by using the same |
US20110070491A1 (en) * | 2009-08-28 | 2011-03-24 | Sion Power Corporation | Electrochemical cells comprising porous structures comprising sulfur |
WO2011040349A1 (en) * | 2009-09-30 | 2011-04-07 | Semiconductor Energy Laboratory Co., Ltd. | Redox capacitor and manufacturing method thereof |
CN101958415B (zh) * | 2010-08-20 | 2012-11-14 | 华南师范大学 | 一种动力锂离子电池二氧化钛微球负极材料及其制备方法 |
US12215572B2 (en) | 2010-12-21 | 2025-02-04 | Fastcap Ultracapacitors Llc | Power system for high temperature applications with rechargeable energy storage |
US8760851B2 (en) | 2010-12-21 | 2014-06-24 | Fastcap Systems Corporation | Electrochemical double-layer capacitor for high temperature applications |
US9214709B2 (en) | 2010-12-21 | 2015-12-15 | CastCAP Systems Corporation | Battery-capacitor hybrid energy storage system for high temperature applications |
CN102097212B (zh) * | 2011-01-06 | 2013-01-23 | 中国科学院过程工程研究所 | 一种复合聚合物凝胶电解质及其制备方法 |
US9379369B2 (en) | 2011-02-15 | 2016-06-28 | Lg Chem, Ltd. | Integrated electrode assembly and secondary battery using same |
US9001495B2 (en) | 2011-02-23 | 2015-04-07 | Fastcap Systems Corporation | High power and high energy electrodes using carbon nanotubes |
AU2012258672A1 (en) | 2011-05-24 | 2014-01-16 | Fastcap Systems Corporation | Power system for high temperature applications with rechargeable energy storage |
EP2718945B1 (en) | 2011-06-07 | 2020-07-22 | Fastcap Systems Corporation | Energy storage media for ultracapacitors |
WO2012174393A1 (en) | 2011-06-17 | 2012-12-20 | Sion Power Corporation | Plating technique for electrode |
US9558894B2 (en) | 2011-07-08 | 2017-01-31 | Fastcap Systems Corporation | Advanced electrolyte systems and their use in energy storage devices |
KR102285708B1 (ko) | 2011-07-08 | 2021-08-04 | 패스트캡 시스템즈 코포레이션 | 고온 에너지 저장 장치 |
EP2737502B1 (en) * | 2011-07-27 | 2023-07-05 | Fastcap Systems Corporation | Power supply for downhole instruments |
FR2980042B1 (fr) * | 2011-09-09 | 2014-10-24 | Commissariat Energie Atomique | Procede de fabrication d'une electrode et encre pour electrode |
WO2013055573A1 (en) | 2011-10-13 | 2013-04-18 | Sion Power Corporation | Electrode structure and method for making the same |
CA3115288A1 (en) | 2011-11-03 | 2013-05-10 | Fastcap Systems Corporation | Production logging instrument |
CN103165289A (zh) * | 2011-12-14 | 2013-06-19 | 海洋王照明科技股份有限公司 | 染料敏化太阳能电池的对电极、其制备方法、染料敏化太阳能电池及其制备方法 |
WO2013123131A1 (en) | 2012-02-14 | 2013-08-22 | Sion Power Corporation | Electrode structure for electrochemical cell |
EP2936594B1 (en) | 2012-12-19 | 2017-02-22 | Basf Se | Electrode structure and method for making same |
CN104919639B (zh) * | 2013-01-15 | 2019-02-01 | 阿莫绿色技术有限公司 | 聚合物电解质、利用其的锂二次电池及其制备方法 |
JP6293256B2 (ja) | 2013-03-12 | 2018-03-14 | アップル インコーポレイテッド | 先進のカソード材料を用いた高電圧、高体積エネルギー密度のリチウムイオンバッテリ |
US12261284B2 (en) | 2013-03-15 | 2025-03-25 | Sion Power Corporation | Protective structures for electrodes |
US9406980B2 (en) * | 2013-09-24 | 2016-08-02 | Blackberry Limited | System and method of mitigating high-temperature, high-charge gas swelling of battery of portable electronic device |
US10872737B2 (en) | 2013-10-09 | 2020-12-22 | Fastcap Systems Corporation | Advanced electrolytes for high temperature energy storage device |
US11270850B2 (en) | 2013-12-20 | 2022-03-08 | Fastcap Systems Corporation | Ultracapacitors with high frequency response |
EP3084481B8 (en) | 2013-12-20 | 2024-01-03 | Fastcap Systems Corporation | Electromagnetic telemetry device |
EP2889339B1 (en) * | 2013-12-24 | 2016-08-10 | ESSILOR INTERNATIONAL (Compagnie Générale d'Optique) | Optical article comprising an electrically conductive layer, and production method |
ES2902857T3 (es) | 2014-04-01 | 2022-03-30 | Hydro Quebec | Uso de polímeros como agentes lubricantes en la producción de películas de metales alcalinos |
CN106256034B (zh) | 2014-05-01 | 2019-04-23 | 锡安能量公司 | 电极制造方法及相关制品 |
WO2015195595A1 (en) | 2014-06-17 | 2015-12-23 | Medtronic, Inc. | Semi-solid electrolytes for batteries |
US9716265B2 (en) | 2014-08-01 | 2017-07-25 | Apple Inc. | High-density precursor for manufacture of composite metal oxide cathodes for Li-ion batteries |
EP3204955B1 (en) | 2014-10-09 | 2022-01-05 | Fastcap Systems Corporation | Nanostructured electrode for energy storage device |
US10333173B2 (en) | 2014-11-14 | 2019-06-25 | Medtronic, Inc. | Composite separator and electrolyte for solid state batteries |
CN116092839A (zh) | 2015-01-27 | 2023-05-09 | 快帽系统公司 | 宽温度范围超级电容器 |
US10297821B2 (en) | 2015-09-30 | 2019-05-21 | Apple Inc. | Cathode-active materials, their precursors, and methods of forming |
CN115394997A (zh) | 2016-03-14 | 2022-11-25 | 苹果公司 | 用于锂离子电池的阴极活性材料 |
US10135093B2 (en) * | 2016-03-30 | 2018-11-20 | Wildcat Discovery Technologies, Inc. | High voltage solid electrolyte compositions |
CN112158891B (zh) | 2016-09-20 | 2023-03-31 | 苹果公司 | 具有改善的颗粒形态的阴极活性材料 |
JP2019530630A (ja) | 2016-09-21 | 2019-10-24 | アップル インコーポレイテッドApple Inc. | リチウムイオン電池用の表面安定化カソード材料及びその合成方法 |
WO2018102652A1 (en) | 2016-12-02 | 2018-06-07 | Fastcap Systems Corporation | Composite electrode |
KR102140127B1 (ko) * | 2017-04-25 | 2020-07-31 | 주식회사 엘지화학 | 리튬 이차전지용 음극, 이의 제조방법 및 이것을 포함하는 리튬 이차전지 |
CA2994005A1 (fr) | 2018-02-05 | 2019-08-05 | Hydro-Quebec | Copolymeres d'unites ester et ether, leurs procedes de fabrication et leurs utilisations |
CN108933281B (zh) * | 2018-06-26 | 2020-08-25 | 上海交通大学 | 一种柔性陶瓷/聚合物复合固态电解质及其制备方法 |
US11695108B2 (en) | 2018-08-02 | 2023-07-04 | Apple Inc. | Oxide mixture and complex oxide coatings for cathode materials |
WO2020034036A1 (en) | 2018-08-15 | 2020-02-20 | HYDRO-QUéBEC | Electrode materials and processes for their preparation |
US11749799B2 (en) | 2018-08-17 | 2023-09-05 | Apple Inc. | Coatings for cathode active materials |
CA3110728A1 (en) * | 2018-09-28 | 2020-04-02 | Hydro-Quebec | Polymer additives and their use in electrode materials and electrochemical cells |
EP3861579A4 (fr) | 2018-10-02 | 2022-07-06 | Hydro-Québec | Matériaux d'électrode comprenant un oxyde lamellaire de sodium et de métal, électrodes les comprenant et leur utilisation en électrochimie |
CN109841836B (zh) * | 2018-12-27 | 2021-07-16 | 国联汽车动力电池研究院有限责任公司 | 一种凝胶复合锂金属电极及其制备方法和应用 |
CN111755735B (zh) * | 2019-03-26 | 2021-12-14 | 中国科学院苏州纳米技术与纳米仿生研究所 | 一种多孔有机化合物电解质及其制备方法和应用 |
CN113906585A (zh) | 2019-05-31 | 2022-01-07 | 魁北克电力公司 | 包含含有钾和金属的层状氧化物的电极材料、包含该材料的电极及其在电化学中的用途 |
US11557765B2 (en) | 2019-07-05 | 2023-01-17 | Fastcap Systems Corporation | Electrodes for energy storage devices |
US11757096B2 (en) | 2019-08-21 | 2023-09-12 | Apple Inc. | Aluminum-doped lithium cobalt manganese oxide batteries |
US12206100B2 (en) | 2019-08-21 | 2025-01-21 | Apple Inc. | Mono-grain cathode materials |
US12074321B2 (en) | 2019-08-21 | 2024-08-27 | Apple Inc. | Cathode active materials for lithium ion batteries |
EP3854835A1 (en) | 2020-01-24 | 2021-07-28 | Hydro-Quebec | Polymer compositions comprising at least one polymer based on ionic monomers, methods of making same and their use in electrochemical applications |
AU2022216350A1 (en) | 2021-02-05 | 2023-07-06 | HYDRO-QUéBEC | Ionic plastic crystals, compositions comprising same, methods for manufacturing same and uses thereof |
WO2022207920A1 (fr) | 2021-04-02 | 2022-10-06 | Sce France | Polymères multibranches, compositions les comprenant, leurs procédés de préparation, et leur utilisation en électrochimie |
CA3120992A1 (fr) * | 2021-06-03 | 2022-12-03 | Benoit FLEUTOT | Liants d'electrode comprenant un melange d'un polymere base sur le polybutadiene et de polynorbornene, electrodes les comprenant et leur utilisation en electrochimie |
KR102534585B1 (ko) | 2021-10-27 | 2023-05-26 | 한국에너지기술연구원 | 고분자 전해질 조성물, 고분자 전해질 및 이를 포함하는 하이브리드 커패시터 |
CN114388277B (zh) * | 2021-12-13 | 2023-08-04 | 上海应用技术大学 | 镀钴石墨/钴铝层状氢氧化物超级电容器电极的制备方法 |
WO2024192508A1 (fr) * | 2023-03-17 | 2024-09-26 | Hydro-Quebec | Electrolyte polymere solide pour batteries tout solide |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2543996B2 (ja) | 1989-12-06 | 1996-10-16 | 日本石油株式会社 | 高分子固体電解質 |
JPH05198303A (ja) * | 1992-01-21 | 1993-08-06 | Dai Ichi Kogyo Seiyaku Co Ltd | 電 池 |
US5356555A (en) * | 1992-09-14 | 1994-10-18 | Allergan, Inc. | Non-oxidative method and composition for simultaneously cleaning and disinfecting contact lenses using a protease with a disinfectant |
JP3481685B2 (ja) * | 1994-08-29 | 2003-12-22 | 住友精化株式会社 | ゲル状電解質 |
EP0890192A1 (fr) * | 1997-01-17 | 1999-01-13 | Hydro-Quebec | Composition electrolytique a base de polymeres pour generateur electrochimique |
JP3104127B2 (ja) * | 1997-05-23 | 2000-10-30 | 第一工業製薬株式会社 | 固体電解質 |
US6399254B1 (en) * | 1997-05-23 | 2002-06-04 | Dai-Ichi Kogyo Seiyaku Co., Ltd. | Solid electrolyte |
JPH1125983A (ja) * | 1997-07-04 | 1999-01-29 | Japan Storage Battery Co Ltd | リチウム電池用活物質 |
JP4005192B2 (ja) * | 1997-12-09 | 2007-11-07 | 第一工業製薬株式会社 | 固体電池 |
US6252762B1 (en) * | 1999-04-21 | 2001-06-26 | Telcordia Technologies, Inc. | Rechargeable hybrid battery/supercapacitor system |
US6737464B1 (en) * | 2000-05-30 | 2004-05-18 | University Of South Carolina Research Foundation | Polymer nanocomposite comprising a matrix polymer and a layered clay material having a low quartz content |
US7101643B2 (en) * | 2001-05-31 | 2006-09-05 | The Regents Of The University Of California | Polymeric electrolytes based on hydrosilyation reactions |
US6673273B2 (en) * | 2001-10-24 | 2004-01-06 | 3M Innovative Properties Company | Crosslinked polymer electrolyte compositions |
-
2002
- 2002-01-16 CA CA002367290A patent/CA2367290A1/fr not_active Abandoned
-
2003
- 2003-01-15 WO PCT/CA2003/000052 patent/WO2003063287A2/fr active Application Filing
- 2003-01-15 EP EP03700260.7A patent/EP1466379B1/fr not_active Expired - Lifetime
- 2003-01-15 US US10/501,844 patent/US7897674B2/en not_active Expired - Lifetime
- 2003-01-15 ES ES03700260T patent/ES2775949T3/es not_active Expired - Lifetime
- 2003-01-15 JP JP2003563038A patent/JP5112605B2/ja not_active Expired - Lifetime
-
2011
- 2011-01-07 JP JP2011002033A patent/JP5639482B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US20050234177A1 (en) | 2005-10-20 |
WO2003063287A2 (fr) | 2003-07-31 |
JP2006501600A (ja) | 2006-01-12 |
US7897674B2 (en) | 2011-03-01 |
EP1466379B1 (fr) | 2020-01-08 |
ES2775949T3 (es) | 2020-07-28 |
JP2011129937A (ja) | 2011-06-30 |
EP1466379A2 (fr) | 2004-10-13 |
WO2003063287A3 (fr) | 2003-12-04 |
CA2367290A1 (fr) | 2003-07-16 |
JP5112605B2 (ja) | 2013-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5639482B2 (ja) | 高い安定性を有する高分子電解質、電気化学的システムにおけるその使用 | |
JP6402174B2 (ja) | リチウムバッテリ用正電極 | |
JP3571032B2 (ja) | ゲル状高分子電解質およびこれを用いたリチウム電池 | |
JP2006501600A5 (ja) | ||
CN100550505C (zh) | 有机电解质溶液及采用它的锂电池 | |
CN1316670C (zh) | 锂聚合物电池及其制备方法 | |
JP4748930B2 (ja) | 非水溶媒系二次電池 | |
JP3675460B2 (ja) | 有機電解液及びそれを採用したリチウム電池 | |
JP5376771B2 (ja) | 有機電解液及びこれを採用したリチウム電池 | |
KR101451805B1 (ko) | 리튬이차전지 전해질용 첨가제, 이를 포함하는 유기 전해액및 상기 전해액을 채용한 리튬 전지 | |
US20040043295A1 (en) | Rechargeable composite polymer battery | |
CN1846326A (zh) | 改进电池安全性的电解质溶剂和包含其的锂二次电池 | |
KR100573109B1 (ko) | 유기 전해액 및 이를 채용한 리튬 전지 | |
CN109560285B (zh) | 一种正极极片及使用该正极极片的二次电池 | |
WO2014120970A1 (en) | Organometallic-inorganic hybrid electrodes for lithium-ion batteries | |
KR101451804B1 (ko) | 유기 전해액 및 이를 채용한 리튬 전지 | |
KR102094993B1 (ko) | 리튬 이차전지용 음극 및 이를 채용한 리튬 이차전지 | |
KR100846479B1 (ko) | 전기화학적 그라프팅 모노머를 포함하는 유기전해액, 및이를 채용한 리튬 전지 | |
KR20190088330A (ko) | 탄소나노튜브-전극 활물질 복합 파우더와 그를 포함하는 고체 전해질 전지용 전극의 제조방법 | |
JP4707312B2 (ja) | 非水溶媒系二次電池 | |
CA3167843A1 (en) | In-situ polymerized hybrid polymer electrolyte for high voltage lithium batteries | |
JP3664560B2 (ja) | リチウム2次電池 | |
KR20230170418A (ko) | 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 | |
KR100407485B1 (ko) | 겔형의 고분자 전해질 및 이를 채용한 리튬 전지 | |
KR102517774B1 (ko) | 프리 폴리머 전해질을 포함하는 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120328 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130426 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20130725 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20130730 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130819 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140203 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20140430 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20140507 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140729 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141007 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141024 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5639482 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |