[go: up one dir, main page]

JP5507289B2 - Battery control system - Google Patents

Battery control system

Info

Publication number
JP5507289B2
JP5507289B2 JP2010039858A JP2010039858A JP5507289B2 JP 5507289 B2 JP5507289 B2 JP 5507289B2 JP 2010039858 A JP2010039858 A JP 2010039858A JP 2010039858 A JP2010039858 A JP 2010039858A JP 5507289 B2 JP5507289 B2 JP 5507289B2
Authority
JP
Japan
Prior art keywords
circuit
battery
constant current
current
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010039858A
Other languages
Japanese (ja)
Other versions
JP2011176963A (en
Inventor
明広 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2010039858A priority Critical patent/JP5507289B2/en
Publication of JP2011176963A publication Critical patent/JP2011176963A/en
Application granted granted Critical
Publication of JP5507289B2 publication Critical patent/JP5507289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明はバッテリー制御システムに関する。   The present invention relates to a battery control system.

複数の二次電池(単電池またはセル)が直列に接続された組電池(バッテリー)において、各単電池と並列にバイパス抵抗を接続してバイパス放電を行い、各単電池の充電状態を揃える、つまりセルバランス(ばらつき補正)を行うようにしたバッテリー装置が知られている(例えば、特許文献1参照)。
この装置では、単電池を4個直列に接続した組電池において、バイパス抵抗器とスイッチング素子の直列体を各単電池に並列に接続するとともに、各単電池に差動増幅器を接続し、差動増幅器の出力をマルチプレクサとA/Dコンバーターを介してマイコンに接続している。そして、各単電池の開放電圧を検出して各単電池の残存容量を演算し、最少の残存容量を示す単電池以外の単電池のスイッチング素子を閉路してバイパス抵抗器を介して放電を行っている。
In an assembled battery (battery) in which a plurality of secondary batteries (unit cells or cells) are connected in series, a bypass resistor is connected in parallel to each unit cell to perform bypass discharge, and the state of charge of each unit cell is aligned. That is, a battery device that performs cell balance (variation correction) is known (see, for example, Patent Document 1).
In this device, in an assembled battery in which four unit cells are connected in series, a series body of a bypass resistor and a switching element is connected in parallel to each unit cell, and a differential amplifier is connected to each unit cell. The output of the amplifier is connected to the microcomputer via a multiplexer and an A / D converter. Then, the open voltage of each unit cell is detected to calculate the remaining capacity of each unit cell, and the switching elements of the unit cells other than the unit cell that exhibits the minimum remaining capacity are closed and discharged through the bypass resistor. ing.

特開2000−092732号公報JP 2000-092732 A

しかしながら、上述した従来のバッテリー装置では、バイパス放電を行うすべての単電池のバイパス抵抗器が発熱するため、放熱対策が難しく、バイパス放電回路部が大型になってバッテリー装置への組み込みに難点がある。   However, in the conventional battery device described above, since the bypass resistors of all the single cells that perform bypass discharge generate heat, it is difficult to take measures against heat dissipation, and the bypass discharge circuit section becomes large and has difficulty in incorporation into the battery device. .

本発明に係るバッテリー制御システムは、複数の二次電池が直列に接続された組電池における前記二次電池間の充電状態のばらつきを補正するバッテリー制御システムにおいて、それぞれの前記二次電池の充電状態を検出する充電状態検出回路と、前記充電状態検出回路により検出された前記二次電池の充電状態に基づいて、それぞれの前記二次電池の放電の要否を判定する判定回路と、前記二次電池に一定の電流を流す定電流回路と、前記定電流回路の前記一定電流を1または複数の前記二次電池に流すために回路を切り換える切換回路と、前記判定回路により放電要と判定された前記二次電池に前記定電流回路の前記一定電流が流れるように前記切換回路により回路を切り換える制御回路とを備え、前記制御回路は、前記判定回路により放電要と判定された前記組電池における前記二次電池の位置と個数に応じた所定の手順で、前記切換回路による回路の切り換えと前記定電流回路の電流値の切り換えとを段階的に行うことを特徴とする。 The battery control system according to the present invention includes a battery control system that corrects variation in a charging state between the secondary batteries in an assembled battery in which a plurality of secondary batteries are connected in series. A determination circuit for determining whether or not each secondary battery needs to be discharged based on a charge state of the secondary battery detected by the charge state detection circuit; A constant current circuit for supplying a constant current to the battery, a switching circuit for switching the circuit to pass the constant current of the constant current circuit to one or a plurality of the secondary batteries, and the determination circuit determining that the discharge is necessary and a control circuit for switching the circuit by the switching circuit so that the constant current of the constant current circuit to the secondary battery through the control circuit, by the determination circuit A predetermined procedure in response to the position and number of the secondary battery in the determined the battery pack and Den'yo, be carried out in stages and the switching of the current value of the switching between the constant current circuit of the circuit according to the switching circuit It is characterized by.

本発明によれば、従来のバイパス放電抵抗器による発熱に代えて、定電流回路のトランジスターによる発熱に置き換わることになり、ヒートシンクなどの放熱部材を用いることによって容易に放熱処理することができる。そして、発熱源となる定電流回路をセルコントローラーと別置きにすることによって、セルコントローラーから放熱体を除外することが可能になり、セルコントローラーを1枚のICパッケージに収納することが可能になって、機器を小型化することができ、バッテリー制御システムの製造とバッテリー装置への組み込みが容易になる。   According to the present invention, instead of the heat generated by the conventional bypass discharge resistor, the heat generated by the transistor of the constant current circuit is replaced, and the heat dissipation process can be easily performed by using a heat dissipation member such as a heat sink. And by disposing the constant current circuit as a heat source separately from the cell controller, it becomes possible to exclude the heat radiator from the cell controller, and it becomes possible to store the cell controller in one IC package. Thus, the device can be reduced in size, and the battery control system can be easily manufactured and incorporated in the battery device.

一実施の形態のバイパス放電回路部の概要を示す図The figure which shows the outline | summary of the bypass discharge circuit part of one embodiment 組電池10を構成する4個の単電池11〜14の内のいずれか1個をバイパス放電する場合の、スイッチ31〜34と定電流回路21,22の電流値の切り換え方法を示す図The figure which shows the switching method of the electric current value of the switches 31-34 and the constant current circuits 21 and 22 in the case of bypass discharge of any one of the four unit cells 11-14 which comprise the assembled battery 10. 単電池11と13をバイパス放電する場合のスイッチ31〜34と定電流回路21,22の電流値の切り換え方法を示す図The figure which shows the switching method of the electric current value of the switches 31-34 and the constant current circuits 21 and 22 at the time of carrying out the bypass discharge of the cell 11 and 13 3個の単電池11,13,14をバイパス放電する場合のスイッチ31〜34と定電流回路21,22の電流値の切り換え方法を示す図The figure which shows the switching method of the electric current value of the switches 31-34 and the constant current circuits 21 and 22 in the case of carrying out the bypass discharge of the three unit cells 11, 13, and 14 電気自動車に搭載した一実施の形態のバッテリー制御システムの全体構成を示すブロック図1 is a block diagram showing the overall configuration of a battery control system according to an embodiment mounted on an electric vehicle スイッチ回路30の一実施例を示す回路図Circuit diagram showing one embodiment of the switch circuit 30 定電流回路21の一実施例を示す回路図Circuit diagram showing an embodiment of the constant current circuit 21 定電流回路22の一実施例を示す回路図Circuit diagram showing one embodiment of the constant current circuit 22 電圧検出回路50の一実施例とマルチプレクサ60および制御回路70を示す回路図A circuit diagram showing an embodiment of a voltage detection circuit 50 and a multiplexer 60 and a control circuit 70 一実施の形態のセルバランス(充電容量のばらつき補正)制御を示すフローチャートThe flowchart which shows the cell balance (variation correction of charge capacity) control of one embodiment 複数の単電池の開放電圧OCVの分布度数の一例を示す図The figure which shows an example of the distribution frequency of the open circuit voltage OCV of a several cell 8個の単電池11〜18を直列に接続したバッテリー(組電池)10Aに一実施の形態のセルコントローラー100を適用した変形例の構成を示す図The figure which shows the structure of the modification which applied the cell controller 100 of one Embodiment to 10A of batteries (assembled battery) which connected eight unit cells 11-18 in series. 8個の単電池11〜18を直列に接続したバッテリー(組電池)10Aに一実施の形態のセルコントローラー100を適用した他の変形例の構成を示す図The figure which shows the structure of the other modification which applied the cell controller 100 of one Embodiment to 10A of batteries (assembled battery) which connected eight unit cells 11-18 in series.

まず、一実施の形態のバッテリー制御システムにおけるバイパス放電回路部の構成と動作について説明する。図1は、一実施の形態のバイパス放電回路部の概要を示す図である。ここでは、4個の二次電池(以下、単電池またはセルという)11〜14が直列に接続された組電池(以下、バッテリーともいう)10を例に挙げて説明するが、単電池の直列数は4個に限定されるものではない。   First, the configuration and operation of the bypass discharge circuit unit in the battery control system of the embodiment will be described. FIG. 1 is a diagram illustrating an outline of a bypass discharge circuit unit according to an embodiment. Here, an explanation will be given by taking as an example an assembled battery (hereinafter also referred to as a battery) 10 in which four secondary batteries (hereinafter referred to as single cells or cells) 11 to 14 are connected in series. The number is not limited to four.

一実施の形態のバイパス放電回路部は、2個の定電流回路21,22、4個のスイッチ31〜34および選択回路40から構成される。定電流回路21,22は、単電池11〜14の内の放電が必要な1個または複数の単電池に一定の電流を流し、それらの単電池に充電されている電荷を放電させる回路である。組電池10の正極側に接続された定電流回路21は、組電池10の正極側からスイッチ31〜34のいずれかを介して単電池11〜14のいずれかへ電流を流す方向に接続される。一方、組電池10の負極側に接続された定電流回路22は、単電池11〜14のいずれかからスイッチ31〜34のいずれかを介して組電池10の負極側へ電流を流す方向に接続される。   The bypass discharge circuit unit according to the embodiment includes two constant current circuits 21 and 22, four switches 31 to 34, and a selection circuit 40. The constant current circuits 21 and 22 are circuits that cause a constant current to flow through one or a plurality of single cells that need to be discharged among the single cells 11 to 14 and discharge the electric charges charged in those single cells. . The constant current circuit 21 connected to the positive electrode side of the assembled battery 10 is connected in a direction in which current flows from the positive electrode side of the assembled battery 10 to any of the cells 11 to 14 via any of the switches 31 to 34. . On the other hand, the constant current circuit 22 connected to the negative electrode side of the assembled battery 10 is connected in a direction in which a current flows from one of the cells 11 to 14 to the negative electrode side of the assembled battery 10 via any of the switches 31 to 34. Is done.

スイッチ31〜34は単電池11〜14と定電流回路21,22との間に設けられ、定電流回路21,22の電流を放電が必要な1個または複数の単電池へ流す切り換え回路を構成する。この一実施の形態では、各スイッチ31〜34に2回路1接点構成のスイッチを用いる。スイッチ31は接点31−1,31−2を、スイッチ32は接点32−1,32−2を,スイッチ33は接点33−1,33−2を、スイッチ34は接点34−1,34−2をそれぞれ備えており、各スイッチ31〜34の2個の接点は同時にオン(閉路)またはオフ(開路)する。   The switches 31 to 34 are provided between the single cells 11 to 14 and the constant current circuits 21 and 22, and constitute a switching circuit for flowing the current of the constant current circuits 21 and 22 to one or more single cells that need to be discharged. To do. In this embodiment, a switch having a two-circuit one-contact configuration is used for each of the switches 31-34. The switch 31 has contacts 31-1, 31-2, the switch 32 has contacts 32-1, 32-2, the switch 33 has contacts 33-1, 33-2, and the switch 34 has contacts 34-1, 34-2. The two contacts of each of the switches 31 to 34 are simultaneously turned on (closed) or turned off (opened).

なお、ここではスイッチ31〜34に2回路1接点のものを例示するが、1回路1接点のスイッチを2個用いて各スイッチ31〜34を構成しても構わない。また、ここでは有接点のスイッチ31〜34を用いた例を示すが、定電流回路21,22の電流を放電が必要な1個または複数の単電池へ流すための回路切り換え用部材であれば、MOS−FETなどの無接点の回路切り換え部材や他の部材を用いることができる。   In this example, the switches 31 to 34 have two circuits and one contact, but each switch 31 to 34 may be configured by using two switches of one circuit and one contact. In addition, although an example using contact switches 31 to 34 is shown here, any circuit switching member for flowing the current of the constant current circuits 21 and 22 to one or a plurality of single cells that need to be discharged can be used. A non-contact circuit switching member such as a MOS-FET or other members can be used.

選択回路40は、単電池11〜14の内の放電が必要な単電池に対応するスイッチ(31〜34)をオンするための駆動回路であり、詳細を後述するセルコントローラーの制御回路(CPU)からの単電池選択信号にしたがって対応するスイッチ(31〜34)をオンし、そのスイッチを構成する2個の接点を同時に閉路する。   The selection circuit 40 is a drive circuit for turning on the switches (31 to 34) corresponding to the single cells that need to be discharged among the single cells 11 to 14, and the control circuit (CPU) of the cell controller described later in detail. The corresponding switches (31 to 34) are turned on in accordance with the cell selection signal from, and the two contacts constituting the switch are simultaneously closed.

一実施の形態では、詳細を後述するが図1に破線で示すようにスイッチ31〜34と選択回路40を一つのICパッケージに収納する。ICパッケージ内のスイッチ31〜34と外部の単電池11〜14および定電流回路21,22とはICパッケージの端子CCH,C1〜C5,CCLを介して接続される。   In one embodiment, as will be described in detail later, the switches 31 to 34 and the selection circuit 40 are housed in one IC package as indicated by broken lines in FIG. The switches 31 to 34 in the IC package are connected to the external cells 11 to 14 and the constant current circuits 21 and 22 via terminals CCH, C1 to C5 and CCL of the IC package.

次に、図1に示す一実施の形態のバイパス放電回路部の動作を説明する。一実施の形態のバイパス放電回路部では、組電池10を構成する4個の単電池11〜14の中で、放電させる必要がある単電池の個数と位置に応じてスイッチ31〜34を選択駆動する、すなわち回路を切り換えるとともに、2個の定電流回路21,22の電流値を切り換える。   Next, the operation of the bypass discharge circuit unit of the embodiment shown in FIG. 1 will be described. In the bypass discharge circuit unit of the embodiment, among the four unit cells 11 to 14 constituting the assembled battery 10, the switches 31 to 34 are selectively driven according to the number and position of the unit cells that need to be discharged. That is, the circuit is switched and the current values of the two constant current circuits 21 and 22 are switched.

図2は、組電池10を構成する4個の単電池11〜14の内のいずれか1個をバイパス放電する場合の、スイッチ31〜34と定電流回路21,22の電流値の切り換え方法を示す図である。まず、単電池11の充電容量が他の単電池12〜14よりも多く、単電池11のみをバイパス放電させる場合には、図2(a)に示すように、定電流回路21,22の電流値を所定値iに設定し、スイッチ31を選択して所定時間tの間オンする。   FIG. 2 shows a method of switching the current values of the switches 31 to 34 and the constant current circuits 21 and 22 when any one of the four unit cells 11 to 14 constituting the assembled battery 10 is subjected to bypass discharge. FIG. First, when the charging capacity of the unit cell 11 is larger than that of the other unit cells 12 to 14 and only the unit cell 11 is bypass-discharged, the currents of the constant current circuits 21 and 22 as shown in FIG. The value is set to a predetermined value i, the switch 31 is selected and turned on for a predetermined time t.

これにより、所定時間tの間、単電池11→定電流回路21→スイッチ接点31−2→単電池11の経路で電流iが流れると同時に、単電池11→スイッチ接点31−1→定電流回路22→単電池14→単電池13→単電池12→単電池11の経路で電流iが流れる。この結果、図2(a)に示すように、放電が不要な単電池12〜14には所定時間tの間に電流iが流れ、放電が必要な単電池11には所定時間tの間に2倍の電流2iが流れるから、単電池11,12,13,14の放電割合は2:1:1:1となり、放電電流の差により単電池11の充電容量を減らして他の単電池12〜14と均等にすることができる。   Thereby, for the predetermined time t, the current i flows through the path of the unit cell 11 → the constant current circuit 21 → the switch contact 31-2 → the unit cell 11 and at the same time, the unit cell 11 → the switch contact 31-1 → the constant current circuit. The current i flows through a path of 22 → unit cell 14 → unit cell 13 → unit cell 12 → unit cell 11. As a result, as shown in FIG. 2 (a), the current i flows to the cells 12 to 14 that do not require discharge during a predetermined time t, and the cell 11 that requires discharge during the predetermined time t. Since the double current 2i flows, the discharge ratio of the single cells 11, 12, 13, and 14 is 2: 1: 1: 1, and the charge capacity of the single cell 11 is reduced due to the difference in discharge current, so that the other single cells 12 Can be made equal to ~ 14.

同様に、単電池12の充電容量が他の単電池11,13,14よりも多く、単電池12のみをバイパス放電させる場合には、図2(b)に示すように、定電流回路21,22の電流値を所定値iに設定し、スイッチ32を選択して所定時間tの間オンする。これにより、所定時間tの間、単電池11→定電流回路21→スイッチ接点32−2→単電池12→単電池11の経路で電流iが流れると同時に、単電池12→スイッチ接点32−1→定電流回路22→単電池14→単電池13→単電池12の経路で電流iが流れる。   Similarly, when the charging capacity of the unit cell 12 is larger than that of the other unit cells 11, 13, and 14, and only the unit cell 12 is subjected to bypass discharge, as shown in FIG. The current value of 22 is set to a predetermined value i, the switch 32 is selected and turned on for a predetermined time t. Thereby, for the predetermined time t, the current i flows through the path of the unit cell 11 → the constant current circuit 21 → the switch contact 32-2 → the unit cell 12 → the unit cell 11, and at the same time, the unit cell 12 → the switch contact 32-1. The current i flows through the path of the constant current circuit 22 → the cell 14 → the cell 13 → the cell 12.

この結果、図2(b)に示すように、放電が不要な単電池11,13,14には所定時間tの間に電流iが流れ、放電が必要な単電池12には所定時間tの間に2倍の電流2iが流れるから、単電池11,12,13,14の放電割合は1:2:1:1となり、放電電流の差により単電池12の充電容量を減らして他の単電池11,13,14と均等にすることができる。   As a result, as shown in FIG. 2 (b), the current i flows in the unit cells 11, 13, and 14 that do not require discharge during a predetermined time t, and the unit cell 12 that requires discharge has a predetermined time t. Since twice the current 2i flows between them, the discharge ratio of the single cells 11, 12, 13, and 14 is 1: 2: 1: 1. It can be made equal to the batteries 11, 13, and 14.

また、単電池13の充電容量が他の単電池11,12,14よりも多く、単電池13のみをバイパス放電させる場合には、図2(c)に示すように、定電流回路21,22の電流値を所定値iに設定し、スイッチ33を選択して所定時間tの間オンする。さらに、単電池14の充電容量が他の単電池11〜13よりも多く、単電池14のみをバイパス放電させる場合には、図2(d)に示すように、定電流回路21,22の電流値を所定値iに設定し、スイッチ34を選択して所定時間tの間オンする。   When the charging capacity of the unit cell 13 is larger than that of the other unit cells 11, 12, and 14, and only the unit cell 13 is bypass-discharged, as shown in FIG. Is set to a predetermined value i, the switch 33 is selected and turned on for a predetermined time t. Furthermore, when the charging capacity of the unit cell 14 is larger than that of the other unit cells 11 to 13 and only the unit cell 14 is bypass-discharged, the currents of the constant current circuits 21 and 22 are shown in FIG. The value is set to a predetermined value i, the switch 34 is selected and turned on for a predetermined time t.

これらの単電池13または単電池14のバイパス放電時の電流の流れについては、上述した単電池11,12の場合と同様であり説明を省略するが、いずれも放電電流の差により単電池13または単電池14の充電容量を減らして他の単電池と均等にすることができる。   The flow of current during bypass discharge of the unit cell 13 or unit cell 14 is the same as that of the unit cells 11 and 12 described above and will not be described. The charging capacity of the unit cell 14 can be reduced and made equal to other unit cells.

なお、図2において、定電流回路21,22の電流値(バイパス放電電流値)iと、スイッチ31〜34をオンする時間(バイパス放電時間)tは、バイパス放電容量、バイパス放電回路の許容電流、放熱容量、組電池10の充放電電流との関係などにより,適宜決定する。   In FIG. 2, the current value (bypass discharge current value) i of the constant current circuits 21 and 22 and the time for turning on the switches 31 to 34 (bypass discharge time) t are the bypass discharge capacity and the allowable current of the bypass discharge circuit. It is determined as appropriate depending on the relationship between the heat dissipation capacity and the charge / discharge current of the assembled battery 10.

次に、組電池10を構成する4個の単電池11〜14の内の2個の単電池をバイパス放電する場合の、スイッチ31〜34と定電流回路21,22の電流値の切り換え方法を説明する。図3は、単電池11と13をバイパス放電する場合のスイッチ31〜34と定電流回路21,22の電流値の切り換え方法を示す図である。単電池11と13の充電容量が他の単電池12,14よりも多く、単電池11と13をバイパス放電する場合には、第1から第3の3段階にわたって順次、スイッチ31〜34を切り換えるとともに、定電流回路21,22の電流値を切り換える。   Next, a method of switching the current values of the switches 31 to 34 and the constant current circuits 21 and 22 when bypass discharge of two of the four unit cells 11 to 14 constituting the assembled battery 10 is performed. explain. FIG. 3 is a diagram showing a method of switching the current values of the switches 31 to 34 and the constant current circuits 21 and 22 when the cells 11 and 13 are subjected to bypass discharge. When the charging capacity of the single cells 11 and 13 is greater than that of the other single cells 12 and 14 and the single cells 11 and 13 are bypass-discharged, the switches 31 to 34 are sequentially switched over the first to third three stages. At the same time, the current values of the constant current circuits 21 and 22 are switched.

まず、図3(a)に示す第1段階において、定電流回路21の電流値を所定値iに、定電流回路22の電流値を0にそれぞれ設定し、スイッチ31を選択して所定時間tの間オンする。これにより、所定時間tの間、定電流回路21→スイッチ接点31−2→単電池11→定電流回路21の経路で電流iが流れる。次に、図3(b)に示す第2段階では、定電流回路21の電流値を所定値iに、定電流回路22の電流値を0にそれぞれ設定し、スイッチ33を選択して所定時間tの間オンする。これにより、所定時間tの間、定電流回路21→スイッチ接点33−2→単電池13→単電池12→単電池11→定電流回路21の経路で電流iが流れる。   First, in the first stage shown in FIG. 3A, the current value of the constant current circuit 21 is set to a predetermined value i, the current value of the constant current circuit 22 is set to 0, the switch 31 is selected, and a predetermined time t Turn on for As a result, the current i flows through the path of the constant current circuit 21 → the switch contact 31-2 → the cell 11 → the constant current circuit 21 for a predetermined time t. Next, in the second stage shown in FIG. 3B, the current value of the constant current circuit 21 is set to a predetermined value i, the current value of the constant current circuit 22 is set to 0, and the switch 33 is selected for a predetermined time. Turn on for t. Thereby, during a predetermined time t, the current i flows through the path of the constant current circuit 21 → the switch contact 33-2 → the cell 13 → the cell 12 → the cell 11 → the constant current circuit 21.

さらに、図3(c)に示す第3段階において、定電流回路21の電流値を0に、定電流回路22の電流値を所定値iにそれぞれ設定し、スイッチ33を選択して所定時間tの間オンする。これにより、所定時間tの間、定電流回路22→単電池14→単電池13→スイッチ接点33−1→定電流回路22の経路で電流iが流れる。   Further, in the third stage shown in FIG. 3C, the current value of the constant current circuit 21 is set to 0, the current value of the constant current circuit 22 is set to a predetermined value i, the switch 33 is selected, and a predetermined time t Turn on for As a result, during a predetermined time t, the current i flows through the path of the constant current circuit 22 → the cell 14 → the cell 13 → the switch contact 33-1 → the constant current circuit 22.

第1段階から第3段階までの段階的なバイパス放電動作を行った結果、図3に示すように、放電が不要な単電池12と14には所定時間tの間に電流iが流れ、放電が必要な単電池11と13には2倍の時間2tの間に電流iが流れるから、単電池11,12,13,14の放電割合は2:1:2:1となり、放電時間の差により単電池11と13の充電容量を減らして他の単電池12,14と均等にすることができる。   As a result of performing the step-by-step bypass discharge operation from the first stage to the third stage, as shown in FIG. 3, the current i flows through the single cells 12 and 14 that do not need to be discharged during a predetermined time t. Since the current i flows through the unit cells 11 and 13 that require two times during the time 2t, the discharge ratio of the unit cells 11, 12, 13, and 14 is 2: 1: 2: 1, and the difference in discharge time Thus, the charging capacity of the single cells 11 and 13 can be reduced and made equal to the other single cells 12 and 14.

組電池10を構成する4個の単電池11〜14の内の単電池11と13をバイパス放電する場合を例に挙げて説明したが、単電池11と13以外の2個の単電池をバイパス放電する場合にも、放電が必要な2個の単電池の組電池10内の位置に応じた手順で3段階にわたって順次、スイッチ31〜34を切り換えるとともに、定電流回路21,22の電流値を切り換える。単電池11と13以外の2個の単電池のバイパス放電動作については図示と説明を省略する。   The case where the unit cells 11 and 13 of the four unit cells 11 to 14 constituting the assembled battery 10 are subjected to bypass discharge has been described as an example, but two unit cells other than the unit cells 11 and 13 are bypassed. Even when discharging, the switches 31 to 34 are sequentially switched over three steps in accordance with the position in the assembled battery 10 of the two unit cells that need to be discharged, and the current values of the constant current circuits 21 and 22 are changed. Switch. The illustration and description of the bypass discharge operation of two unit cells other than the unit cells 11 and 13 are omitted.

なお、図3において、定電流回路21,22の電流値(バイパス放電電流値)iと、スイッチ31〜34をオンする時間(バイパス放電時間)tは、バイパス放電容量、バイパス放電回路の許容電流、放熱容量、組電池10の充放電電流との関係などにより,適宜決定する。   In FIG. 3, the current value (bypass discharge current value) i of the constant current circuits 21 and 22 and the time for turning on the switches 31 to 34 (bypass discharge time) t are the bypass discharge capacity and the allowable current of the bypass discharge circuit. It is determined as appropriate depending on the relationship between the heat dissipation capacity and the charge / discharge current of the assembled battery 10.

次に、組電池10を構成する4個の単電池11〜14の内の3個の単電池をバイパス放電する場合の、スイッチ31〜34と定電流回路21,22の電流値の切り換え方法を説明する。図4は、3個の単電池11,13,14をバイパス放電する場合のスイッチ31〜34と定電流回路21,22の電流値の切り換え方法を示す図である。単電池11,13,14の充電容量が他の単電池12よりも多く、単電池11,13,14をバイパス放電する場合には、第1と第2の2段階にわたって順次、スイッチ31〜34を切り換えるとともに、定電流回路21,22の電流値を切り換える。   Next, a method of switching the current values of the switches 31 to 34 and the constant current circuits 21 and 22 when three of the four unit cells 11 to 14 constituting the assembled battery 10 are subjected to bypass discharge will be described. explain. FIG. 4 is a diagram illustrating a method of switching the current values of the switches 31 to 34 and the constant current circuits 21 and 22 when the three single cells 11, 13 and 14 are subjected to bypass discharge. When the charging capacity of the single cells 11, 13, and 14 is larger than that of the other single cells 12 and the single cells 11, 13, and 14 are bypass-discharged, the switches 31 to 34 are sequentially switched over the first and second stages. And the current values of the constant current circuits 21 and 22 are switched.

まず、図4(a)に示す第1段階において、定電流回路21の電流値を所定値iに、定電流回路22の電流値を0にそれぞれ設定し、スイッチ31を選択して所定時間tの間オンする。これにより、所定時間tの間、定電流回路21→スイッチ接点31−2→単電池11→定電流回路21の経路で電流iが流れる。次に、図4(b)に示す第2段階では、定電流回路21の電流値を0に、定電流回路22の電流値を所定値iにそれぞれ設定し、スイッチ33を選択して所定時間tの間オンする。これにより、所定時間tの間、定電流回路22→単電池14→単電池13→スイッチ接点33−1→定電流回路22の経路で電流iが流れる。   First, in the first stage shown in FIG. 4A, the current value of the constant current circuit 21 is set to a predetermined value i, the current value of the constant current circuit 22 is set to 0, the switch 31 is selected, and a predetermined time t Turn on for As a result, the current i flows through the path of the constant current circuit 21 → the switch contact 31-2 → the cell 11 → the constant current circuit 21 for a predetermined time t. Next, in the second stage shown in FIG. 4B, the current value of the constant current circuit 21 is set to 0, the current value of the constant current circuit 22 is set to a predetermined value i, and the switch 33 is selected for a predetermined time. Turn on for t. As a result, during a predetermined time t, the current i flows through the path of the constant current circuit 22 → the cell 14 → the cell 13 → the switch contact 33-1 → the constant current circuit 22.

第1段階から第2段階までの段階的なバイパス放電動作を行った結果、図4に示すように、放電が不要な単電池12はバイパス放電が行われず、放電が必要な単電池11,13,14には所定時間tの間に電流iが流れるから、単電池11,12,13,14の放電割合は1:0:1:1となり、放電電流の差により単電池11,13,14の充電容量を減らして他の単電池12と均等にすることができる。   As a result of performing the step-by-step bypass discharge operation from the first stage to the second stage, as shown in FIG. 4, the unit cells 11 and 13 that do not need to be discharged are not subjected to bypass discharge, and need to be discharged. , 14, the current i flows during a predetermined time t, so that the discharge ratio of the single cells 11, 12, 13, 14 is 1: 0: 1: 1, and the single cells 11, 13, 14 are caused by the difference in discharge current. Can be made equal to other unit cells 12 by reducing the charging capacity.

組電池10を構成する4個の単電池11〜14の内の3個の単電池11,13,14をバイパス放電する場合を例に挙げて説明したが、単電池11,13,14以外の3個の単電池をバイパス放電する場合にも、放電が必要な単電池の組電池10内の位置に応じた手順で第1段階と第2段階にわたって順次、スイッチ31〜34を切り換えるとともに、定電流回路21,22の電流値を切り換える。単電池11,13,14以外の3個の単電池のバイパス放電動作については図示と説明を省略する。   Although the case where three unit cells 11, 13, and 14 among the four unit cells 11 to 14 constituting the assembled battery 10 are subjected to bypass discharge has been described as an example, other than the unit cells 11, 13, and 14 has been described. Even when three cells are discharged by bypass, the switches 31 to 34 are sequentially switched over the first stage and the second stage in accordance with the procedure according to the position of the unit cell in the assembled battery 10 that needs to be discharged. The current values of the current circuits 21 and 22 are switched. The illustration and description of the bypass discharge operation of three cells other than the cells 11, 13, and 14 are omitted.

なお、図4において、定電流回路21,22の電流値(バイパス放電電流値)iと、スイッチ31〜34をオンする時間(バイパス放電時間)tは、バイパス放電容量、バイパス放電回路の許容電流、放熱容量、組電池10の充放電電流との関係などにより,適宜決定する。   In FIG. 4, the current value (bypass discharge current value) i of the constant current circuits 21 and 22 and the time for turning on the switches 31 to 34 (bypass discharge time) t are the bypass discharge capacity and the allowable current of the bypass discharge circuit. It is determined as appropriate depending on the relationship between the heat dissipation capacity and the charge / discharge current of the assembled battery 10.

次に、本願発明に係わるバッテリー制御システムを電気自動車やハイブリッド電気自動車に適用した一実施の形態を説明する。図5は、電気自動車に搭載した一実施の形態のバッテリー制御システムの全体構成を示すブロック図である。図5において、図1に示すバイパス放電回路の機器および回路と同様な機器および回路に対しては同一の符号を付して説明する。また、図5では、本願発明に係わるバッテリー制御システムと直接関係のない車載機器および車載装置の図示と説明を省略する。   Next, an embodiment in which the battery control system according to the present invention is applied to an electric vehicle or a hybrid electric vehicle will be described. FIG. 5 is a block diagram showing an overall configuration of a battery control system according to an embodiment mounted on an electric vehicle. In FIG. 5, devices and circuits similar to the devices and circuits of the bypass discharge circuit shown in FIG. In FIG. 5, illustration and description of in-vehicle devices and in-vehicle devices that are not directly related to the battery control system according to the present invention are omitted.

車両コントローラー400、モーターコントローラー300、バッテリーコントローラー200およびセルコントローラー100は、車両内に設置される通信回路を介して互いに情報の授受を行う。   The vehicle controller 400, the motor controller 300, the battery controller 200, and the cell controller 100 exchange information with each other via a communication circuit installed in the vehicle.

車両コントローラー400は、電気自動車の運転者が操作するアクセルペダルやブレーキペダル、あるいは変速レバー等の車両運転操作装置からの操作信号に基づいて車両の走行速度や制駆動力などを制御する。モーターコントローラー300は、車両コントローラー400からの速度指令や制駆動力指令に基づいてバッテリーコントローラー200およびインバーター340を制御し、車両走行駆動用モーター350の回転速度およびトルクを制御する。   The vehicle controller 400 controls the traveling speed and braking / driving force of the vehicle based on an operation signal from a vehicle driving operation device such as an accelerator pedal, a brake pedal, or a shift lever operated by a driver of the electric vehicle. The motor controller 300 controls the battery controller 200 and the inverter 340 based on the speed command and braking / driving force command from the vehicle controller 400, and controls the rotational speed and torque of the vehicle travel drive motor 350.

バッテリーコントローラー200は、電圧センサー210、電流センサー220、温度センサー230により検出されたバッテリー(組電池)10の電圧、電流、温度に基づいてバッテリー10の充放電とSOC(State Of Charge;以下では“充電状態”ともいう)を制御するとともに、セルコントローラー100を制御してバッテリー10を構成する複数の単電池(セル)11〜14の充電容量を管理し、充電容量のばらつき補正(セルバランス)を行う。   The battery controller 200 is configured to charge and discharge the battery 10 based on the voltage, current, and temperature of the battery (assembled battery) 10 detected by the voltage sensor 210, the current sensor 220, and the temperature sensor 230. In addition to controlling the charge state, the cell controller 100 is controlled to manage the charge capacities of the plurality of single cells (cells) 11 to 14 constituting the battery 10, and the charge capacity variation correction (cell balance) is performed. Do.

なお、車両コントローラー400、モーターコントローラー300、バッテリーコントローラー200およびモーター350については、本願発明に関わる単電池11〜14の充電容量のばらつき補正制御、すなわち上述したバイパス放電制御と直接、関係しないので、これらの詳細な説明を省略する。   The vehicle controller 400, the motor controller 300, the battery controller 200, and the motor 350 are not directly related to the charge capacity variation correction control of the cells 11 to 14 according to the present invention, that is, the bypass discharge control described above. The detailed description of is omitted.

セルコントローラー100は、図1に示すスイッチ回路30と選択回路40の他に、電圧検出回路50、マルチプレクサ60、制御回路(CPU)70などを備え、バッテリー10を構成する複数の単電池11〜14の電圧を検出して各単電池の充電容量を調べ、選択回路40によりスイッチ回路30を駆動して充電容量の高い単電池11〜14を定電流回路20に接続し、定電流回路20により充電容量の高い単電池11〜14に一定の電流を流して放電させる。   The cell controller 100 includes a voltage detection circuit 50, a multiplexer 60, a control circuit (CPU) 70, and the like in addition to the switch circuit 30 and the selection circuit 40 shown in FIG. Is detected, the charging capacity of each unit cell is checked, the switch circuit 30 is driven by the selection circuit 40, the unit cells 11 to 14 having a high charging capacity are connected to the constant current circuit 20, and the constant current circuit 20 is charged. A constant current is passed through the high capacity cells 11 to 14 to discharge them.

一実施の形態のセルコントローラー100には、従来のバイパス放電回路の放電用抵抗器のような高温の発熱体がないため、セルコントローラー100は1枚のICパッケージに収納される。   Since the cell controller 100 of one embodiment does not have a high-temperature heating element such as a discharge resistor of a conventional bypass discharge circuit, the cell controller 100 is housed in one IC package.

バッテリー10に充電された直流電力は開閉器310,320を介して平滑コンデンサー330およびインバーター340へ供給され、インバーター340により交流電力に変換されて交流モーター350に印加され、交流モーター350の駆動が行われる。一方、車両の制動時には、交流モーター350により発電された交流電力がインバーター340により直流電力に変換され、平滑用コンデンサー330により平滑されて開閉器310,320を介してバッテリー10に印加され、バッテリー10の充電が行われる。   The DC power charged in the battery 10 is supplied to the smoothing capacitor 330 and the inverter 340 via the switches 310 and 320, converted into AC power by the inverter 340 and applied to the AC motor 350, and the AC motor 350 is driven. Is called. On the other hand, when the vehicle is braked, AC power generated by the AC motor 350 is converted into DC power by the inverter 340, smoothed by the smoothing capacitor 330, and applied to the battery 10 via the switches 310 and 320. Is charged.

なお、図5に示す一実施の形態のバッテリー制御システムでは、4個の単電池(セル)11〜14が直列に接続されたバッテリー(組電池)10を例に挙げて説明するが、電気自動車に搭載されるバッテリーはさらに多くの単電池が直並列に接続され、両端電圧が数100Vの高圧、高容量のバッテリーが一般的であるが、もちろんこのような高圧、高容量のバッテリーに対しても本願発明を適用することができる。   In the battery control system according to the embodiment shown in FIG. 5, a battery (assembled battery) 10 in which four unit cells (cells) 11 to 14 are connected in series will be described as an example. As for the battery mounted in the battery, more single cells are connected in series and parallel, and a high-voltage, high-capacity battery with a voltage at both ends of several hundred volts is common. Of course, for such a high-voltage, high-capacity battery Also, the present invention can be applied.

図6はスイッチ回路30の一実施例を示す回路図である。図6において、図1に示す機器および回路と同様な機器および回路に対しては同一の符号を付して説明する。このスイッチ回路30では、図1に示すスイッチ接点31−1,31−2,32−1,32−2,33−1,33−2,34−1,34−2の代わりに、MOS−FET311,312,321,322,331,332,341,342を用い、これらの各MOS−FETと直列に逆流防止用ダイオードD1〜D8を接続する。なお、MOS−FET312,322,332,342はレベルシフタ(インバータ)INV1〜INV4を介して選択回路40に接続される。   FIG. 6 is a circuit diagram showing an embodiment of the switch circuit 30. In FIG. 6, devices and circuits similar to those shown in FIG. In this switch circuit 30, instead of the switch contacts 31-1, 31-2, 32-1, 32-2, 33-1, 33-2, 34-1 and 34-2 shown in FIG. , 312, 321, 322, 331, 332, 341, 342, and backflow prevention diodes D <b> 1 to D <b> 8 are connected in series with these MOS-FETs. The MOS-FETs 312, 322, 332, and 342 are connected to the selection circuit 40 via level shifters (inverters) INV1 to INV4.

図6に示すスイッチ回路30においても、図1に示すスイッチ31〜34と同様に、選択回路40によりMOS−FET311,312,321,322,331,332,341,342をオンまたはオフし、定電流回路21,22により放電が必要な1個または複数の単電池11〜14へ一定の電流を流す。   In the switch circuit 30 shown in FIG. 6 as well, as in the switches 31 to 34 shown in FIG. 1, the selection circuit 40 turns on or off the MOS-FETs 311, 312, 321, 322, 331, 332, 341, and 342, and sets the constant. The current circuits 21 and 22 cause a constant current to flow to one or a plurality of single cells 11 to 14 that need to be discharged.

図7は定電流回路21の一実施例を示す回路図である。なお、図1に示す機器および回路と同様な機器および回路に対しては同一の符号を付して説明する。オペアンプA11のバイアス端子(+端子)に定電流回路21の電流設定値に相当する電圧信号が印加されると、オペアンプA11により増幅されバイアス抵抗R11を介してトランジスターTr11に入力される。これにより、組電池(バッテリー)10の+端子からトランジスターTr12、トランジスターTr11およびバイパス電流検出用抵抗R12を介して組電池10の−端子へ電流が流れる。このとき、抵抗R12の両端にはバイパス電流に応じた電圧が発生し、この電圧はオペアンプA11の−端子へフィードバックされ、オペアンプA11によりトランジスターTr11に定電流回路21の電流設定値に応じた一定のコレクタ電流が流れる。   FIG. 7 is a circuit diagram showing an embodiment of the constant current circuit 21. In addition, the same code | symbol is attached | subjected and demonstrated to the apparatus and circuit similar to the apparatus and circuit shown in FIG. When a voltage signal corresponding to the current setting value of the constant current circuit 21 is applied to the bias terminal (+ terminal) of the operational amplifier A11, it is amplified by the operational amplifier A11 and input to the transistor Tr11 via the bias resistor R11. Thereby, a current flows from the + terminal of the assembled battery (battery) 10 to the − terminal of the assembled battery 10 via the transistor Tr12, the transistor Tr11, and the bypass current detection resistor R12. At this time, a voltage corresponding to the bypass current is generated at both ends of the resistor R12, and this voltage is fed back to the negative terminal of the operational amplifier A11. The operational amplifier A11 causes the transistor Tr11 to have a constant value according to the current set value of the constant current circuit 21. Collector current flows.

トランジスターTr12とTr13はカレントミラー回路になっており、トランジスターTr12に定電流回路21の電流設定値に応じた一定の電流が流れると、組電池10の+端子からトランジスターTr13を介してスイッチ回路30の端子CCHへ定電流回路21の電流設定値に応じた一定の電流が流れる。つまり、この定電流回路21は、バイアス端子(オペアンプA11の+端子)に定電流回路21の電流設定値に応じた電圧信号が印加されると、組電池10の+端子からスイッチ回路30の端子CCHへ定電流回路21の電流設定値に等しい一定電流を流す。   The transistors Tr12 and Tr13 are current mirror circuits. When a constant current corresponding to the current setting value of the constant current circuit 21 flows through the transistor Tr12, the switch circuit 30 of the switch circuit 30 is connected from the + terminal of the assembled battery 10 via the transistor Tr13. A constant current corresponding to the current setting value of the constant current circuit 21 flows to the terminal CCH. That is, in the constant current circuit 21, when a voltage signal corresponding to the current setting value of the constant current circuit 21 is applied to the bias terminal (the + terminal of the operational amplifier A11), the terminal of the switch circuit 30 is changed from the + terminal of the assembled battery 10. A constant current equal to the current set value of the constant current circuit 21 is supplied to CCH.

図8は定電流回路22の一実施例を示す回路図である。なお、図1に示す機器および回路と同様な機器および回路に対しては同一の符号を付して説明する。バイアス端子(オペアンプA21の+端子)に定電流回路22の電流設定値に相当する電圧信号が印加されると、オペアンプA21により増幅されバイアス抵抗R21を介してトランジスターTr21に入力される。これにより、スイッチ回路30の端子CCLからトランジスターTr21およびバイパス電流検出用抵抗R22を介して組電池10の−端子へ電流が流れる。このとき、抵抗R22の両端にはバイパス電流に応じた電圧が発生し、この電圧はオペアンプA21の−端子へフィードバックされ、オペアンプA21によりトランジスターTr21に定電流回路22の電流設定値に応じた一定のコレクタ電流が流れる。   FIG. 8 is a circuit diagram showing an embodiment of the constant current circuit 22. In addition, the same code | symbol is attached | subjected and demonstrated to the apparatus and circuit similar to the apparatus and circuit shown in FIG. When a voltage signal corresponding to the current setting value of the constant current circuit 22 is applied to the bias terminal (the + terminal of the operational amplifier A21), the voltage signal is amplified by the operational amplifier A21 and input to the transistor Tr21 via the bias resistor R21. As a result, a current flows from the terminal CCL of the switch circuit 30 to the negative terminal of the assembled battery 10 via the transistor Tr21 and the bypass current detection resistor R22. At this time, a voltage corresponding to the bypass current is generated at both ends of the resistor R22, and this voltage is fed back to the negative terminal of the operational amplifier A21. The operational amplifier A21 causes the transistor Tr21 to have a constant value according to the current set value of the constant current circuit 22. Collector current flows.

つまり、この定電流回路22は、オペアンプA21のバイアス端子(+端子)に定電流回路22の電流設定値に応じた電圧信号が印加されると、スイッチ回路30の端子CCLから組電池10の−端子へ定電流回路22の電流設定値に等しい一定電流を流す。   That is, in the constant current circuit 22, when a voltage signal corresponding to the current setting value of the constant current circuit 22 is applied to the bias terminal (+ terminal) of the operational amplifier A 21, the terminal CCL of the switch circuit 30 − A constant current equal to the current set value of the constant current circuit 22 is supplied to the terminal.

なお、定電流回路21と22の構成については図7および図8に示す実施例に限定されない。   The configurations of the constant current circuits 21 and 22 are not limited to the embodiments shown in FIGS.

ここで、一実施の形態のバイパス放電回路部における発熱と、従来のバイパス放電回路部における発熱とを比較する。上述したように、従来のバイパス放電回路部では、バイパス抵抗器とスイッチング素子の直列体を各単電池に並列に接続し、バイパス放電を行うすべての単電池のスイッチング素子をオンしてバイパス抵抗器に放電電流を流すので、バイパス放電を行うすべての単電池に並列に接続されたバイパス抵抗器が発熱する。そのため、放熱対策が難しく、バイパス放電回路部が大型になってバッテリー装置への組み込みに難点がある。   Here, the heat generation in the bypass discharge circuit unit of the embodiment is compared with the heat generation in the conventional bypass discharge circuit unit. As described above, in the conventional bypass discharge circuit section, a series connection of a bypass resistor and a switching element is connected in parallel to each unit cell, and the switching elements of all the unit cells that perform the bypass discharge are turned on. Since a discharge current is caused to flow through, bypass resistors connected in parallel to all the cells that perform bypass discharge generate heat. For this reason, it is difficult to take measures against heat dissipation, and the bypass discharge circuit section becomes large, which makes it difficult to incorporate it into the battery device.

この一実施の形態のバイパス放電回路部では、バイパス抵抗器を用いていないのでバイパス抵抗器による発熱はないが、定電流回路21、22の損失による発熱がある。図7に示す定電流回路21では、カレントミラー回路を構成するトランジスターTr12,Tr13の発熱は比較的少ないが、トランジスターTr11の発熱がある。また、図8に示す定電流回路22では、トランジスターTr21の発熱がある。これらトランジスターTr11とTr21の発熱容量は、放電対象の1または複数の単電池の放電容量に相当し、従来のバイパス放電抵抗器による放熱容量と同じである。   In the bypass discharge circuit portion of this embodiment, since no bypass resistor is used, heat is not generated by the bypass resistor, but heat is generated due to loss of the constant current circuits 21 and 22. In the constant current circuit 21 shown in FIG. 7, the transistors Tr12 and Tr13 constituting the current mirror circuit generate relatively little heat, but the transistor Tr11 generates heat. Further, in the constant current circuit 22 shown in FIG. 8, the transistor Tr21 generates heat. The heat generation capacities of these transistors Tr11 and Tr21 correspond to the discharge capacities of one or more single cells to be discharged, and are the same as the heat dissipating capacities of conventional bypass discharge resistors.

しかし、発熱が大きなトランジスターTr11,Tr21は、ヒートシンクなどの放熱部材を用いることによって、従来の不特定多数のバイパス放電抵抗器による発熱と比べ、比較的容易に放熱処理することができる。また、図5で説明したように、定電流回路20(21,22)をセルコントローラー100と別置きにすることによって、セルコントローラー100から放熱体を除外することが可能になり、セルコントローラー100を1枚のICパッケージに収納することが可能になり、機器を小型化することができ、バッテリー制御システムの製造と車載バッテリー装置への組み込みが容易になる。   However, the transistors Tr11 and Tr21 that generate a large amount of heat can be radiated relatively easily by using a heat radiating member such as a heat sink as compared with the heat generated by a conventional unspecified number of bypass discharge resistors. Further, as described with reference to FIG. 5, by disposing the constant current circuit 20 (21, 22) separately from the cell controller 100, it becomes possible to exclude the heat radiator from the cell controller 100, It can be housed in a single IC package, the device can be miniaturized, and the battery control system can be easily manufactured and incorporated in the on-vehicle battery device.

図9は、電圧検出回路50の一実施例とマルチプレクサ60および制御回路70を示す回路図である。組電池(バッテリー)10の各単電池11〜14の両端は差動増幅器A51〜A54の+端子と−端子に接続され、各差動増幅器A51〜A54は各単電池11〜14の両端電圧(セル電圧)に応じた電圧信号を出力する。   FIG. 9 is a circuit diagram showing an embodiment of the voltage detection circuit 50, the multiplexer 60 and the control circuit 70. Both ends of each of the unit cells 11 to 14 of the assembled battery (battery) 10 are connected to the + terminal and the − terminal of the differential amplifiers A51 to A54, and each of the differential amplifiers A51 to A54 has a voltage across the unit cells 11 to 14 ( A voltage signal corresponding to the cell voltage is output.

マルチプレクサ60は、制御回路(CPU)70のポートから出力されるマルチプレクサ入力切替信号にしたがって差動増幅器A51〜A54の出力電圧信号を順次切り替え、制御回路70のAD入力端子へ接続する。制御回路70は、マルチプレクサ60からAD入力端子へ入力される差動増幅器A51〜A54の出力電圧信号をAD変換し、各単電池11〜14の両端電圧(セル電圧)を検出する。   The multiplexer 60 sequentially switches the output voltage signals of the differential amplifiers A51 to A54 according to the multiplexer input switching signal output from the port of the control circuit (CPU) 70, and connects to the AD input terminal of the control circuit 70. The control circuit 70 AD-converts the output voltage signals of the differential amplifiers A51 to A54 input from the multiplexer 60 to the AD input terminal, and detects the voltages (cell voltages) across the unit cells 11 to 14.

図10は、一実施の形態のセルバランス(充電容量のばらつき補正)制御を示すフローチャートである。セルコントローラー100の制御回路(CPU)70は、バッテリーコントローラー200からのセルバランス開始指令にしたがってセルバランス制御を開始する。なお、ここでは図5〜図9に示す一実施の形態のバッテリー(組電池)10、定電流回路21,22、セルコントローラー100およびバッテリーコントローラー200のセルバランス制御を例に挙げて説明する。   FIG. 10 is a flowchart illustrating cell balance (charge capacity variation correction) control according to an embodiment. A control circuit (CPU) 70 of the cell controller 100 starts cell balance control in accordance with a cell balance start command from the battery controller 200. Here, the cell balance control of the battery (assembled battery) 10, the constant current circuits 21 and 22, the cell controller 100, and the battery controller 200 according to the embodiment shown in FIGS. 5 to 9 will be described as an example.

ステップ1において、各単電池11〜14のOCV(Open Circuit Voltage;開回路電圧または開放電圧)を測定する。具体的には、図9に示す電圧検出回路50、マルチプレクサ60および制御回路70により検出された各単電池11〜14の電圧、電流センサー220により検出された電流に基づいて、制御回路70のメモリ(不図示)に予め記憶されている単電池11〜14の充放電電流と電圧との関数から、電流が0Aのときの電圧をOCVとして算出する。   In step 1, the OCV (Open Circuit Voltage) of each of the cells 11 to 14 is measured. Specifically, the memory of the control circuit 70 is based on the voltages of the individual cells 11 to 14 detected by the voltage detection circuit 50, the multiplexer 60 and the control circuit 70 shown in FIG. 9 and the current detected by the current sensor 220. From a function of the charge / discharge current and voltage of the cells 11 to 14 stored in advance (not shown), the voltage when the current is 0 A is calculated as OCV.

ステップ2では、各単電池11〜14のOCVが予め設定された規定範囲内に分布しているかを調べる。図11は複数の単電池の開放電圧OCVの分布度数の一例を示す。すべての単電池11〜14のOCVが規定範囲内に分布している場合は、このセルバランス制御を終了する。OCVが規定範囲よりも高い単電池がある場合にはステップ3へ進み、OCVが平均値を示す単電池とOCVが規定範囲より高い単電池のSOCを算出する。なお、SOCの検出方法はこの一実施の形態の算出方法に限定されない。   In step 2, it is checked whether the OCVs of the individual cells 11 to 14 are distributed within a preset specified range. FIG. 11 shows an example of the distribution frequency of the open circuit voltage OCV of a plurality of single cells. When the OCVs of all the cells 11 to 14 are distributed within the specified range, this cell balance control is terminated. If there is a single cell whose OCV is higher than the specified range, the process proceeds to step 3 to calculate the SOC of the single cell whose OCV shows an average value and the single cell whose OCV is higher than the specified range. Note that the SOC detection method is not limited to the calculation method of this embodiment.

続くステップ4では、OCVが平均値を示す単電池のSOCとOCVが規定範囲より高い単電池のSOCとの差、単電池の公称容量および周囲温度に基づいて、放電時間すなわちスイッチ回路30のオン時間と、バイパス放電電流すなわち定電流回路21,22の電流設定値を決定する。例えば、SOCの差がA%、単電池11〜14の公称容量がK(Ah)の場合には、OCVが規定範囲より高い単電池の放電容量Z(Ah)は、
Z=K・(A/100) (Ah) ・・・(1)
となる。
In the subsequent step 4, the discharge time, that is, the switching circuit 30 is turned on based on the difference between the SOC of the single cell whose OCV is an average value and the SOC of the single cell whose OCV is higher than the specified range, the nominal capacity of the single cell, and the ambient temperature. The time and the bypass discharge current, that is, the current set values of the constant current circuits 21 and 22 are determined. For example, when the SOC difference is A% and the nominal capacity of the cells 11 to 14 is K (Ah), the discharge capacity Z (Ah) of the cell whose OCV is higher than the specified range is
Z = K · (A / 100) (Ah) (1)
It becomes.

ここで、バイパス放電電流(定電流回路21,22の電流設定値)は、バッテリー10の周囲温度に応じて決定する。例えば、バッテリー10の周囲温度が所定値のときのバイパス放電電流をiAとし、周囲温度が所定値より高い場合は周囲温度が高くなるほどバイパス放電電流を小さくする。一方、周囲温度が所定値より低い場合は周囲温度が低くなるほどバイパス放電電流を大きくする。周囲温度に応じてバイパス放電電流を決定した後、(1)式で求めた放電容量Z(Ah)から放電時間を決定する。   Here, the bypass discharge current (the current setting value of the constant current circuits 21 and 22) is determined according to the ambient temperature of the battery 10. For example, the bypass discharge current when the ambient temperature of the battery 10 is a predetermined value is iA, and when the ambient temperature is higher than the predetermined value, the bypass discharge current is decreased as the ambient temperature increases. On the other hand, when the ambient temperature is lower than the predetermined value, the bypass discharge current is increased as the ambient temperature is lowered. After the bypass discharge current is determined according to the ambient temperature, the discharge time is determined from the discharge capacity Z (Ah) obtained by equation (1).

バッテリー10の周囲温度が高い場合は、定電流回路21,22の電流設定値を低くするため、放電時間は長くなるが、定電流回路21,22のトランジスターTr11,Tr21(図7、図8参照)の単位時間当たりの発熱が抑制される。逆に、バッテリー10の周囲温度が低い場合には、定電流回路21,22の電流設定値を高くするため、放電時間が短くなり、短時間でセルバランスをとることができる。   When the ambient temperature of the battery 10 is high, the current setting value of the constant current circuits 21 and 22 is lowered, so that the discharge time becomes long, but the transistors Tr11 and Tr21 of the constant current circuits 21 and 22 (see FIGS. 7 and 8). ) Is prevented from generating heat per unit time. On the contrary, when the ambient temperature of the battery 10 is low, the current setting value of the constant current circuits 21 and 22 is increased, so that the discharge time is shortened and the cell balance can be achieved in a short time.

ステップ5において、OCVが規定範囲より高くバイパス放電をしなければならない単電池に対応するスイッチ回路30のMOS−FET(図6参照)をオンして定電流放電を開始する。ステップ6で、上記ステップ4で決定したバイパス放電時間が経過したか否かを確認し、放電時間が経過したらステップ7へ進み、放電対象の単電池に対応するスイッチ回路30のMOS−FETをオフして定電流放電を終了する。   In step 5, the MOS-FET (see FIG. 6) of the switch circuit 30 corresponding to the single cell whose OCV is higher than the specified range and must be subjected to bypass discharge is turned on to start constant current discharge. In step 6, it is confirmed whether or not the bypass discharge time determined in step 4 has elapsed. If the discharge time has elapsed, the process proceeds to step 7 and the MOS-FET of the switch circuit 30 corresponding to the discharge target cell is turned off. Then, the constant current discharge is finished.

なお、放電対象の単電池の個数と位置に応じて適宜、上述したようにスイッチ回路30の切り換え、定電流回路21,22の電流設定値の切り換え、あるいは段階的なスイッチ回路30の切り換えと定電流回路21,22の電流設定値の切り換えを行う。   Depending on the number and position of the cells to be discharged, switching of the switch circuit 30, switching of the current setting values of the constant current circuits 21, 22 or switching of the switch circuit 30 in stages is performed as appropriate. The current setting values of the current circuits 21 and 22 are switched.

上述した一実施の形態では4個の単電池11〜14を直列に接続したバッテリー(組電池)10を例に挙げて説明したが、一般に電気自動車には端子電圧が高く、かつ充電容量の大きなバッテリーが必要になるため、さらに多くの単電池を直並列に接続したバッテリーが用いられる。そのような高圧、大容量のバッテリーに対しても本願発明のバッテリー制御システムを適用することができる。   In the above-described embodiment, the battery (assembled battery) 10 in which four unit cells 11 to 14 are connected in series has been described as an example. Generally, an electric vehicle has a high terminal voltage and a large charging capacity. Since a battery is required, a battery in which more single cells are connected in series and parallel is used. The battery control system of the present invention can also be applied to such a high-voltage, large-capacity battery.

図12は、8個の単電池11〜18を直列に接続したバッテリー(組電池)10Aに一実施の形態のセルコントローラー100を適用した変形例の構成を示す。図12において、単電池11〜14に対してセルコントローラー101が、単電池15〜18に対してセルコントローラー102がそれぞれ用いられる。これらのセルコントローラー101,102は、図5〜図9に示すセルコントローラー100と同じものであり、それぞれICパッケージに収納されている。   FIG. 12 shows a configuration of a modification in which the cell controller 100 of one embodiment is applied to a battery (assembled battery) 10A in which eight unit cells 11 to 18 are connected in series. In FIG. 12, the cell controller 101 is used for the cells 11 to 14, and the cell controller 102 is used for the cells 15 to 18, respectively. These cell controllers 101 and 102 are the same as the cell controller 100 shown in FIGS. 5 to 9, and are housed in IC packages.

セルコントローラー101の端子CCH−1は定電流回路21を介して単電池11の+端子に接続され、セルコントローラー102の端子CCL−2は定電流回路23を介して単電池18の−端子に接続されている。また、セルコントローラー101の端子CCL−1は定電流回路22を介してセルコントローラー102の端子CCH−2に接続されている。   The terminal CCH-1 of the cell controller 101 is connected to the + terminal of the unit cell 11 through the constant current circuit 21, and the terminal CCL-2 of the cell controller 102 is connected to the-terminal of the unit cell 18 through the constant current circuit 23. Has been. The terminal CCL-1 of the cell controller 101 is connected to the terminal CCH-2 of the cell controller 102 via the constant current circuit 22.

セルコントローラー101のスイッチ31〜34は選択回路41により駆動され、セルコントローラー102のスイッチ35〜38は選択回路42により駆動される。これらの選択回路41,42は図5および図6に示す選択回路40と同じものである。スイッチ31〜34の代わりに、図6に示すようなMOS−FETを用いた切り換え回路を用いてもよい。なお、セルコントローラー101とセルコントローラー102の電圧検出回路50、マルチプレクサ60および制御回路70の図示を省略する。   The switches 31 to 34 of the cell controller 101 are driven by the selection circuit 41, and the switches 35 to 38 of the cell controller 102 are driven by the selection circuit 42. These selection circuits 41 and 42 are the same as the selection circuit 40 shown in FIGS. Instead of the switches 31 to 34, a switching circuit using a MOS-FET as shown in FIG. 6 may be used. Note that the voltage detection circuit 50, the multiplexer 60, and the control circuit 70 of the cell controller 101 and the cell controller 102 are not shown.

図13は、8個の単電池11〜18を直列に接続したバッテリー(組電池)10Aに一実施の形態のセルコントローラー100を適用した他の変形例の構成を示す。図13において、単電池11〜14に対してセルコントローラー103が、単電池15〜18に対してセルコントローラー104がそれぞれ用いられる。これらのセルコントローラー103,104には、それぞれ端子CCLとCCHが2個ずつ設けられているが、それ以外は図5〜図9に示すセルコントローラー100と同じものであり、それぞれICパッケージに収納されている。   FIG. 13 shows a configuration of another modification in which the cell controller 100 of one embodiment is applied to a battery (assembled battery) 10A in which eight unit cells 11 to 18 are connected in series. In FIG. 13, the cell controller 103 is used for the cells 11 to 14, and the cell controller 104 is used for the cells 15 to 18. Each of these cell controllers 103 and 104 is provided with two terminals CCL and CCH, but other than that, it is the same as the cell controller 100 shown in FIGS. 5 to 9, and each is housed in an IC package. ing.

セルコントローラー103の端子CCH−1は定電流回路21を介して単電池11の+端子に接続され、セルコントローラー103の端子CCL−1はセルコントローラー104の端子CCL−2へ、セルコントローラー103の端子CCH−1はセルコントローラー104の端子CCH−2へそれぞれ接続されている。また、セルコントローラー104の端子CCL−2は定電流回路22を介して単電池18の−端子に接続されている。図13に示す例では、セルコントローラー103と104の間の定電流回路(図12に示す定電流回路22に相当)を省略することができる。   The terminal CCH-1 of the cell controller 103 is connected to the + terminal of the cell 11 via the constant current circuit 21, and the terminal CCL-1 of the cell controller 103 is connected to the terminal CCL-2 of the cell controller 104, and the terminal of the cell controller 103. CCH-1 is connected to terminal CCH-2 of cell controller 104, respectively. The terminal CCL-2 of the cell controller 104 is connected to the negative terminal of the unit cell 18 through the constant current circuit 22. In the example shown in FIG. 13, the constant current circuit (corresponding to the constant current circuit 22 shown in FIG. 12) between the cell controllers 103 and 104 can be omitted.

単電池の個数に応じてセルコントローラーを図12または図13に示すように縦続接続することによって、さらに多くの単電池を直並列に接続したバッテリーに対しても本願発明のバッテリー制御システムを適用することができる。   The battery control system of the present invention is also applied to a battery in which more single cells are connected in series and parallel by cascading cell controllers as shown in FIG. 12 or 13 according to the number of single cells. be able to.

上述した一実施の形態とその変形例では、一つのセルコントローラーが直列に接続された4個の単電池をセルバランス制御する例を示したが、一つのセルコントローラーが直列接続された2個〜3個あるいは5個以上の単電池のセルバランス制御を行う場合についても同様である。なお、直列接続された単電池の個数が多くなるほど、スイッチ回路の切り換えと定電流回路の電流設定値の切り換えの段階数が多くなるので、バッテリー全体のセルバランス制御における所要時間と放熱との関係から、一つのセルコントローラー当たりの最適な単電池個数を決定するのが望ましい。   In the above-described embodiment and its modification, an example is shown in which cell balance control is performed on four unit cells in which one cell controller is connected in series. The same applies to the case of performing cell balance control of three or five or more single cells. As the number of cells connected in series increases, the number of stages for switching the switch circuit and the current setting value of the constant current circuit increases, so the relationship between the time required for cell balance control of the entire battery and heat dissipation. Therefore, it is desirable to determine the optimum number of single cells per cell controller.

上述した一実施の形態とその変形例において、バッテリー(組電池)を構成する二次電池(単電池またはセル)にはリチウムイオン電池、ニッケル水素電池などあらゆる種類の二次電池を適用することができる。   In the above-described embodiment and its modifications, any type of secondary battery such as a lithium ion battery or a nickel metal hydride battery can be applied to the secondary battery (unit cell or cell) constituting the battery (assembled battery). it can.

特に、エネルギー密度が高く過充電に注意を要するリチウムイオン電池では、安全性を確保するために単電池の電圧検出が不可欠である。また、リチウムイオン電池は、ニッケル水素電池のように過充電により充電容量のばらつきを補正することができないため、二次電池間の充電容量にばらつきが生じると、バッテリーとしての充放電可能な容量が少なくなる上に、二次電池の劣化状態が異なるためにバッテリーとしての寿命が短くなり、二次電池間の充電容量のばらつきを補正することが重要になる。   In particular, in a lithium ion battery having a high energy density and requiring attention to overcharging, it is indispensable to detect the voltage of the unit cell in order to ensure safety. In addition, since the lithium ion battery cannot correct the variation in charge capacity due to overcharging unlike the nickel metal hydride battery, if the charge capacity between the secondary batteries varies, the chargeable / dischargeable capacity of the battery is reduced. In addition, since the deterioration state of the secondary battery is different, the life as the battery is shortened, and it is important to correct the variation in the charge capacity between the secondary batteries.

したがって、本願発明に係わるバッテリー制御システムを複数のリチウムイオン電池が直列に接続されたバッテリー装置に適用することによって、バイパス放電回路部の放熱処理が容易になり、バッテリー装置への組み込みが容易になる顕著な効果が得られる。   Therefore, by applying the battery control system according to the present invention to a battery device in which a plurality of lithium ion batteries are connected in series, the heat dissipation process of the bypass discharge circuit section is facilitated, and the incorporation into the battery device is facilitated. A remarkable effect is obtained.

上述した一実施の形態とその変形例では、本願発明に係わるバッテリー制御システムを電気自動車またはハイブリッド電気自動車のバッテリー装置に適用した例を示したが、本願発明のバッテリー制御システムは、電気自動車以外のあらゆる用途のバッテリー装置に適用することができる。   In the above-described embodiment and its modification, an example in which the battery control system according to the present invention is applied to a battery device of an electric vehicle or a hybrid electric vehicle is shown. However, the battery control system of the present invention is not limited to an electric vehicle. It can be applied to a battery device for any application.

なお、上述した実施の形態とそれらの変形例において、実施の形態どうし、または実施の形態と変形例とのあらゆる組み合わせが可能である。   In the above-described embodiments and their modifications, all combinations of the embodiments or the embodiments and the modifications are possible.

上述した一実施の形態とその変形例によれば以下のような作用効果を奏することができる。まず、複数の二次電池11〜14が直列に接続された組電池10における二次電池間の充電状態SOCのばらつきを補正するバッテリー制御システムにおいて、電圧検出回路50,マルチプレクサ60および制御回路70により各二次電池11〜14の充電状態を検出するとともに、制御回路70により各二次電池11〜14の充電状態に基づいて各二次電池11〜14の放電の要否を判定し、スイッチ回路30、選択回路40および制御回路70により放電を要する二次電池に定電流回路21,22の一定電流が流れるように回路を切り換えるようにしたので、従来のバイパス放電抵抗器による発熱がなくなり、定電流回路21,22のトランジスターによる発熱に置き換わることになり、この定電流回路21,22のトランジスターの発熱は、ヒートシンクなどの放熱部材を用いることによって容易に放熱処理することができる。   According to the above-described embodiment and its modifications, the following operational effects can be obtained. First, in a battery control system that corrects variation in the state of charge SOC between secondary batteries in the assembled battery 10 in which a plurality of secondary batteries 11 to 14 are connected in series, the voltage detection circuit 50, the multiplexer 60, and the control circuit 70 While detecting the charge state of each secondary battery 11-14, the control circuit 70 determines the necessity of discharge of each secondary battery 11-14 based on the charge state of each secondary battery 11-14, and a switch circuit 30, the selection circuit 40 and the control circuit 70 switch the circuit so that the constant current of the constant current circuits 21 and 22 flows to the secondary battery that needs to be discharged. The heat generated by the transistors of the current circuits 21 and 22 is replaced, and the transistors of the constant current circuits 21 and 22 are generated. It can easily be dissipated processed by using a heat radiation member such as heat sink.

その上さらに、発熱源となる定電流回路21,22を、スイッチ回路30、選択回路40、電圧検出回路50、マルチプレクサ60および制御回路70から構成されるセルコントローラー100と別置きにすることによって、セルコントローラー100から放熱体を除外することが可能になり、セルコントローラー100を1枚のICパッケージに収納することが可能になって、機器を小型化することができ、バッテリー制御システムの製造とバッテリー装置への組み込みが容易になる。   Furthermore, by making the constant current circuits 21 and 22 serving as heat sources separate from the cell controller 100 including the switch circuit 30, the selection circuit 40, the voltage detection circuit 50, the multiplexer 60 and the control circuit 70, Since it becomes possible to exclude the heat radiator from the cell controller 100, the cell controller 100 can be housed in one IC package, the device can be miniaturized, and the battery control system can be manufactured and the battery can be reduced. Easy integration into the device.

また、一実施の形態とその変形例によれば、放電要と判定された二次電池の組電池10内での位置に応じて、スイッチ回路30、選択回路40および制御回路70によって放電を要する二次電池に定電流回路21,22の一定電流が流れるように回路を切り換えるようにしたので、放電を要する二次電池が組電池10内のどの位置にあっても、当該二次電池に一定電流を流して放電させることができる。   Further, according to the embodiment and the modification thereof, the switch circuit 30, the selection circuit 40, and the control circuit 70 require discharge according to the position of the secondary battery determined to be discharged in the assembled battery 10. Since the circuit is switched so that the constant current of the constant current circuits 21 and 22 flows through the secondary battery, the secondary battery is constant regardless of the position in the assembled battery 10 where the secondary battery requiring discharge is located. It can be discharged by passing an electric current.

一実施の形態とその変形例によれば、制御回路70によって、放電要と判定された二次電池の個数に応じて、スイッチ回路30、選択回路40および制御回路70によって放電を要する二次電池に定電流回路21,22の一定電流が流れるように回路を切り換えるようにしたので、組電池10内の放電を要する二次電池の個数に関わらず、それらの二次電池に一定電流を流して放電させることができる。   According to the embodiment and the modification thereof, the secondary battery that needs to be discharged by the switch circuit 30, the selection circuit 40, and the control circuit 70 according to the number of secondary batteries that are determined to be discharged by the control circuit 70. The constant current circuits 21 and 22 are switched so that a constant current flows therethrough. Therefore, regardless of the number of secondary batteries that need to be discharged in the assembled battery 10, a constant current is supplied to the secondary batteries. It can be discharged.

一実施の形態とその変形例によれば、放電要と判定された組電池における二次電池の位置と個数に応じた所定の手順で、スイッチ回路30による回路の切り換えと定電流回路21,22の電流値の切り換えとを段階的に行うようにしたので、組電池10内の放電を要する二次電池の個数と位置に関わらず、それらの二次電池に一定電流を流して放電させることができる。   According to the embodiment and the modification thereof, the switching of the circuit by the switch circuit 30 and the constant current circuits 21 and 22 are performed in a predetermined procedure according to the position and the number of secondary batteries in the assembled battery determined to be discharged. Therefore, regardless of the number and position of the secondary batteries that need to be discharged in the assembled battery 10, it is possible to discharge the secondary batteries by passing a constant current. it can.

一実施の形態とその変形例によれば、制御回路70によって、温度センサー230により検出された組電池10の周囲温度に応じて定電流回路21,22の電流値、すなわちバイパス放電電流値を変更するようにしたので、定電流回路21,22の発熱量を周囲温度に応じて調節することができ、定電流回路21,22の温度を適正に保つことができる。   According to the embodiment and its modification, the control circuit 70 changes the current value of the constant current circuits 21 and 22, that is, the bypass discharge current value according to the ambient temperature of the assembled battery 10 detected by the temperature sensor 230. Thus, the amount of heat generated by the constant current circuits 21 and 22 can be adjusted according to the ambient temperature, and the temperature of the constant current circuits 21 and 22 can be kept appropriate.

一実施の形態とその変形例によれば、スイッチ回路30、選択回路40、電圧検出回路50、マルチプレクサ60、制御回路70をICパッケージ内に収納するようにしたので、機器を小型化することができ、バッテリー制御システムの製造と車載バッテリー装置への組み込みが容易になる。   According to the embodiment and the modification thereof, the switch circuit 30, the selection circuit 40, the voltage detection circuit 50, the multiplexer 60, and the control circuit 70 are accommodated in the IC package. This makes it easy to manufacture a battery control system and incorporate it into an in-vehicle battery device.

一実施の形態とその変形例によれば、組電池を構成する複数の二次電池を所定個数ごとにグループ化し、それぞれのグループに属する所定個数の二次電池に対応するスイッチ回路30、選択回路40、電圧検出回路50、マルチプレクサ60、制御回路70をそれぞれ別個のICパッケージに収納するようにしたので、多数の二次電池が直列に接続された組電池に対しても、機器を小型化することができ、バッテリー制御システムの製造と車載バッテリー装置への組み込みが容易になる。   According to one embodiment and its modification, a plurality of secondary batteries constituting an assembled battery are grouped into a predetermined number, and a switch circuit 30 and a selection circuit corresponding to the predetermined number of secondary batteries belonging to each group 40, the voltage detection circuit 50, the multiplexer 60, and the control circuit 70 are housed in separate IC packages, so that the device can be downsized even for an assembled battery in which a large number of secondary batteries are connected in series. This facilitates the manufacture of the battery control system and the incorporation into the in-vehicle battery device.

10;組電池(バッテリー)、11〜18;二次電池(単電池、セル)、20,21,22,23;定電流回路、30;スイッチ回路、31〜34;スイッチ、40;選択回路、50;電圧検出回路、60;マルチプレクサ、70;制御回路、100;セルコントローラー、230;温度センサー、311,312,321,322,331,332,341,342;MOS−FET 10; assembled battery (battery), 11 to 18; secondary battery (unit cell, cell), 20, 21, 22, 23; constant current circuit, 30; switch circuit, 31 to 34; switch, 40; 50; voltage detection circuit, 60; multiplexer, 70; control circuit, 100; cell controller, 230; temperature sensor, 311, 312, 321, 322, 331, 332, 341, 342;

Claims (4)

複数の二次電池が直列に接続された組電池における前記二次電池間の充電状態のばらつきを補正するバッテリー制御システムにおいて、
それぞれの前記二次電池の充電状態を検出する充電状態検出回路と、
前記充電状態検出回路により検出された前記二次電池の充電状態に基づいて、それぞれの前記二次電池の放電の要否を判定する判定回路と、
前記二次電池に一定の電流を流す定電流回路と、
前記定電流回路の前記一定電流を1または複数の前記二次電池に流すために回路を切り換える切換回路と、
前記判定回路により放電要と判定された前記二次電池に前記定電流回路の前記一定電流が流れるように前記切換回路により回路を切り換える制御回路とを備え
前記制御回路は、前記判定回路により放電要と判定された前記組電池における前記二次電池の位置と個数に応じた所定の手順で、前記切換回路による回路の切り換えと前記定電流回路の電流値の切り換えとを段階的に行うことを特徴とするバッテリー制御システム。
In a battery control system for correcting variations in the charging state between the secondary batteries in an assembled battery in which a plurality of secondary batteries are connected in series,
A charge state detection circuit for detecting a charge state of each of the secondary batteries;
A determination circuit for determining whether or not each of the secondary batteries needs to be discharged based on a charge state of the secondary battery detected by the charge state detection circuit;
A constant current circuit for supplying a constant current to the secondary battery;
A switching circuit that switches a circuit to flow the constant current of the constant current circuit to one or more of the secondary batteries;
A control circuit for switching the circuit by the switching circuit so that the constant current of the constant current circuit flows to the secondary battery determined to be discharged by the determination circuit ;
The control circuit performs switching of the circuit by the switching circuit and the current value of the constant current circuit in a predetermined procedure according to the position and number of the secondary batteries in the assembled battery determined to be discharged by the determination circuit. The battery control system is characterized in that switching between the two is performed in stages .
請求項に記載のバッテリー制御システムにおいて、
前記組電池の周囲温度を検出する温度検出回路を備え、
前記制御回路は、前記温度検出回路により検出された前記組電池の周囲温度に応じて前記定電流回路の電流値を変更することを特徴とするバッテリー制御システム。
The battery control system according to claim 1 , wherein
A temperature detection circuit for detecting an ambient temperature of the assembled battery;
The battery control system, wherein the control circuit changes a current value of the constant current circuit according to an ambient temperature of the assembled battery detected by the temperature detection circuit.
請求項1または2に記載のバッテリー制御システムにおいて、
前記充電状態検出回路、前記判定回路、前記切換回路および前記制御回路をICパッケージ内に収納することを特徴とするバッテリー制御システム。
The battery control system according to claim 1 or 2 ,
A battery control system, wherein the charge state detection circuit, the determination circuit, the switching circuit, and the control circuit are housed in an IC package.
請求項1〜のいずれか一項に記載のバッテリー制御システムにおいて、
前記組電池を構成する前記複数の二次電池を所定個数ごとにグループ化し、それぞれの前記グループに属する所定個数の前記二次電池に対応する前記充電状態検出回路、前記判定回路、前記切換回路および前記制御回路をそれぞれ別個のICパッケージに収納することを特徴とするバッテリー制御システム。
In the battery control system according to any one of claims 1 to 3 ,
The plurality of secondary batteries constituting the assembled battery are grouped into a predetermined number, and the charging state detection circuit corresponding to the predetermined number of the secondary batteries belonging to each group, the determination circuit, the switching circuit, and A battery control system, wherein the control circuits are housed in separate IC packages.
JP2010039858A 2010-02-25 2010-02-25 Battery control system Active JP5507289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010039858A JP5507289B2 (en) 2010-02-25 2010-02-25 Battery control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010039858A JP5507289B2 (en) 2010-02-25 2010-02-25 Battery control system

Publications (2)

Publication Number Publication Date
JP2011176963A JP2011176963A (en) 2011-09-08
JP5507289B2 true JP5507289B2 (en) 2014-05-28

Family

ID=44689270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010039858A Active JP5507289B2 (en) 2010-02-25 2010-02-25 Battery control system

Country Status (1)

Country Link
JP (1) JP5507289B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5582970B2 (en) * 2010-11-04 2014-09-03 三菱重工業株式会社 Battery abnormality prediction system
EP2858202B1 (en) * 2012-05-25 2020-07-15 Panasonic Intellectual Property Management Co., Ltd. In-vehicle power supply device
JP2015100217A (en) * 2013-11-19 2015-05-28 蔡富生 Balancing circuit for balancing battery units
TWI680726B (en) * 2014-10-13 2020-01-01 瑞士商菲利浦莫里斯製品股份有限公司 Method of controlling an electric heater in an electrically heated smoking system and electrically heated smoking system
KR20220050654A (en) 2020-10-16 2022-04-25 주식회사 엘지에너지솔루션 Apparatus and method for diagnosging state of battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5517398B2 (en) * 2007-03-15 2014-06-11 三菱重工業株式会社 Power storage system
JP4767220B2 (en) * 2007-06-22 2011-09-07 三洋電機株式会社 Charge state equalizing device and electric vehicle equipped with the same
JP5486780B2 (en) * 2008-07-01 2014-05-07 株式会社日立製作所 Battery system

Also Published As

Publication number Publication date
JP2011176963A (en) 2011-09-08

Similar Documents

Publication Publication Date Title
US11223215B2 (en) Charging apparatus
US8497661B2 (en) Equalization device, equalization processing program, battery system, electric vehicle and equalization processing method
JP3961950B2 (en) Hybrid power supply
US10427547B2 (en) Quick charging device
US8493031B2 (en) Equalization device, battery system and electric vehicle including the same, equalization processing program, and equalization processing method
US11230199B2 (en) Motor-driven vehicle and control method for motor-driven vehicle
JP2005151720A (en) Cell balance correcting device, secondary battery, method of correcting cell balance and cell balance correcting program
JP2006211885A (en) Capacity adjusting device and capacity adjusting method for battery pack
JP2020043718A (en) Electric vehicle
JP5507289B2 (en) Battery control system
JP5737218B2 (en) Vehicle power supply
JP5376045B2 (en) Battery pack
US9634500B2 (en) Storage battery system
JPH11283678A (en) Device and method for controlling charging of cell pack
JP2019041497A (en) Power source management device
CN112787367B (en) Battery control device and abnormality sensing method
US10525835B2 (en) Power control apparatus and power control system
US11541767B2 (en) Vehicle power supply
JP6972871B2 (en) Battery control device and power supply system
JP6713283B2 (en) Power storage device, transportation device, and control method
JP2022080548A (en) Power supply control device
JP2017124800A (en) Power supply device
WO2018074331A1 (en) Power supply system
JP2020112415A (en) Estimation device and estimation method
JP2011135628A (en) Chargeable vehicle and current control circuit thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140319

R150 Certificate of patent or registration of utility model

Ref document number: 5507289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250