[go: up one dir, main page]

JP5489945B2 - フッ素系高分子電解質膜 - Google Patents

フッ素系高分子電解質膜 Download PDF

Info

Publication number
JP5489945B2
JP5489945B2 JP2010227917A JP2010227917A JP5489945B2 JP 5489945 B2 JP5489945 B2 JP 5489945B2 JP 2010227917 A JP2010227917 A JP 2010227917A JP 2010227917 A JP2010227917 A JP 2010227917A JP 5489945 B2 JP5489945 B2 JP 5489945B2
Authority
JP
Japan
Prior art keywords
polymer electrolyte
membrane
electrolyte membrane
group
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010227917A
Other languages
English (en)
Other versions
JP2012084278A (ja
Inventor
三知代 山根
直人 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2010227917A priority Critical patent/JP5489945B2/ja
Publication of JP2012084278A publication Critical patent/JP2012084278A/ja
Application granted granted Critical
Publication of JP5489945B2 publication Critical patent/JP5489945B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Description

本発明は、フッ素系高分子電解質膜に関するものである。
燃料電池は、電池内で、水素、メタノール等の燃料を電気化学的に酸化することにより、燃料の化学エネルギーを、直接、電気エネルギーに変換して取り出すものであり、クリーンな電気エネルギー供給源として注目されている。特に、固体高分子電解質型燃料電池は、他の燃料電池と比較して低温で作動することから、自動車代替動力源、家庭用コジェネレーションシステム、携帯用発電機等として期待されている。
このような固体高分子電解質型燃料電池は、電極触媒層(アノード触媒層、カソード触媒層)とガス拡散層とを積層した構成を有するガス拡散電極がプロトン交換膜の両面に接合された膜電極接合体を少なくとも備えている。ここでいうプロトン交換膜は、高分子鎖中にスルホン酸基、カルボン酸基等の強酸性基を有し、プロトンを選択的に透過する性質を有する組成物からなる高分子電解質膜である。このようなプロトン交換膜に用いられる組成物としては、化学的安定性の高いナフィオン(登録商標、デュポン社製)に代表されるパーフルオロ系プロトン組成物が挙げられ、これを用いたプロトン交換膜が好適に用いられる。
燃料電池の運転時においては、アノード側のガス拡散電極に燃料(例えば、水素)、カソード側のガス拡散電極に酸化剤(例えば、酸素や空気)がそれぞれ供給される。そして、両電極間が外部回路で接続されることにより、燃料電池の作動が実現される。具体的には、水素を燃料とした場合、アノード触媒層内のアノード触媒上で水素が酸化されてプロトンが生じる。このプロトンは、アノード触媒層内のプロトン伝導性ポリマーを通った後、プロトン交換膜内を移動し、カソード触媒層内のプロトン伝導性ポリマーを通って同層内のカソード触媒上に達する。一方、水素の酸化によりプロトンと同時に生じた電子は、外部回路を通ってカソード側のガス拡散電極に到達する。カソード電極層内のカソード触媒上では、上記プロトンと酸化剤中の酸素とが反応して水が生成する。そして、このとき電気エネルギーが取り出される。
この際、プロトン交換膜は、ガス透過率を低くすることによりガスバリア隔壁としての役割も果たす必要がある。プロトン交換膜のガス透過率が高いと、アノード側水素のカソード側へのリーク及びカソード側酸素のアノード側へのリーク、すなわち、クロスリークが発生する。クロスリークが発生すると、いわゆるケミカルショートの状態となって良好な電圧が取り出せなくなる。また、アノード側水素とカソード側酸素とが反応して過酸化水素が発生しプロトン交換膜を化学劣化させるという問題もある。このような問題を解決するために、過酸化水素発生抑制効果を有するポリベンズイミダゾールやポリフェニレンスルフィド等の添加剤をイオン交換樹脂に複合化させることで化学耐久性を向上させたプロトン交換膜が提案されている。(特許文献1〜2参照)
一方で、電池の内部抵抗を小さくし、出力をより高くするという観点から、電解質であるプロトン交換膜の薄膜化が検討されている。しかし、このプロトン交換膜を薄膜化するとガスバリア隔壁としての効果が低下するため、クロスリークの問題はより深刻なものとなる。さらに、プロトン交換膜を薄膜化することで、膜自体の機械的強度が低下するため、膜電極接合体の作製やセル組み立て時の膜の取扱い性が困難になったり、カソード側で発生した水を含んで寸法変化することにより膜が破れたりするという物理的な問題がある。
そこで、このような問題を解決するために、多孔膜にイオン交換樹脂を充填したプロトン交換膜が提案されている(特許文献3〜5参照)。
また、近年、燃料電池運転時間のさらなる長期化、およびさらなる高温化・低湿化から、ポリベンズイミダゾールやポリフェニレンスルフィド等の添加剤を複合化したイオン交換樹脂を多孔膜に充填した物理的耐久性と化学的耐久性を両立した膜が提案されている(特許文献6参照)。
国際公開第2005/000949号パンフレット 国際公開第2008/102851号パンフレット 特公平5−75835号公報 特公平7−68377号公報 特許4402625号公報 特開2009−242688号公報
しかしながら、特許文献1〜2に開示されているプロトン交換膜は、長期間の化学的耐久性は有しているが、寸法変化の繰りかえしに耐え得る物理的な耐久性を向上させる観点からはなお改良の余地があった。また特許文献3〜5に開示されているプロトン交換膜はいずれも、過酸化水素等の発生等による膜の劣化を抑制することができないため、プロトン交換膜の化学的耐久性を向上させる観点からはなお改良の余地があった。
さらに特許文献6に開示されているプロトン交換膜は、化学耐久性と物理耐久性を両立させる手段を施しているが、フラッティングを防止するためには多孔質膜の細孔径を大きくすることが好ましい反面、細孔径を大きくすると、電解質の体積膨潤を多孔質膜の機械強度で抑制し難くなるため、化学的耐久性と物理的耐久性を両立させる観点からは、なお改良の余地があった。また、細孔径を小さくするとポリベンズイミダゾールやポリフェニレンスルフィド等の添加剤が充填し難くなり膜中にボイドが発生するといった問題がある。
そこで、本発明は、化学的耐久性と物理的耐久性を両立した優れたフッ素系高分子電解質膜を提供することを課題とする。
本発明者は上記事情に鑑み鋭意検討の結果、微多孔膜の空隙に高分子電解質組成物を充填した高分子電解質膜において、高分子電解質組成物としてフッ素系高分子電解質とチオエーテル化合物を含むものを用いると共に、微多孔膜として特定の細孔分布を有する微多孔膜を用いることにより、80℃水中における寸法変化を抑制し、さらに過酸化水素等の発生を抑制した、耐久性に優れた高分子電解質膜を実現し得ることを見出し、本発明を完成するに至った。
即ち、本発明は以下のフッ素系高分子電解質膜を提供する。
微多孔膜の空隙にフッ素系高分子電解質組成物が含有されてなる高分子電解質膜であって、前記微多孔膜の細孔分布が、細孔径0.07μm〜0.4μmの範囲に少なくとも2つの分布中心を有し、前記フッ素系高分子電解質組成物が、フッ素系高分子電解質(A成分)と、チオエーテル化合物(B成分)を含有する、高分子電解質膜。
本発明によると、80℃水中における寸法変化比を抑制し、さらに過酸化水素等の発生を抑制した、化学的耐久性と物理的耐久性に優れた高分子電解質膜を提供することができる。
本発明の実施例及び比較例に使用した微多孔膜の細孔分布曲線である。
以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。なお、本発明は、以下の本実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
本実施形態の高分子電解質膜は、微多孔膜の空隙にフッ素系高分子電解質組成物が含有されるフッ素系高分子電解質膜であって、前記微多孔膜が、特定の構造を有する微多孔膜であり、前記フッ素系高分子電解質組成物が、チオエーテル化合物を含む。
[フッ素系高分子電解質組成物]
(フッ素系高分子電解質)
フッ素系高分子電解質とは、少なくとも1つの繰り返し単位内にフッ素原子を有する高分子電解質であり、具体例としては、下記一般式(1)で表される構造単位を有するパーフルオロカーボン高分子化合物が挙げられる。
−[CF2CX12a−[CF2−CF((−O−CF2−CF(CF23))b−Oc−(CFR1d−(CFR2e−(CF)f−X4)]g− (1)
ここで、式(1)中、X1、X2及びX3はそれぞれ独立してハロゲン原子及び炭素数1〜3のパーフルオロアルキル基からなる群から選択され、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられ、フッ素原子又は塩素原子であることが好ましい。
4はCOOZ、SO3Z、PO32又はPO3HZである。Zは水素原子、リチウム原子、ナトリウム原子もしくはカリウム原子等のアルカリ金属原子;カルシウム原子もしくはマグネシウム原子等のアルカリ土類金属原子又はアミン類(NH4、NH31、NH212、NHR123、NR1234)である。R1、R2、R3およびR4はそれぞれ独立してアルキル基およびアレーン基からなる群から選択される。X4がPO32である場合、Zは同じでも異なっていても良い。
上記アルキル基とは、特に限定されるものではなく、一般式Cn2n+1で表される1価の基(nは、1以上の整数を表し、1〜20の整数であることが好ましく、1〜10の整数であることがより好ましい。)が挙げられ、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられ、置換されていてもよい。アレーン基もまた置換されていてもよい。
1およびR2はそれぞれ独立してハロゲン原子、炭素数1〜10のパーフルオロアルキル基およびフルオロクロロアルキル基からなる群から選択され、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられ、フッ素原子または塩素原子であることが好ましい。
aおよびgは0≦a<1、0<g≦1、a+g=1をみたす数である。
bは0〜8の整数である。
cは0または1である。
d、eおよびfはそれぞれ独立して0〜6の整数である(ただし、d、eおよびfは同時に0ではない。
上記一般式(1)で、Zがアルカリ土類金属である場合には、例えば、(COO)2Zまたは(SO32Zのように、2つのX4がアルカリ土類金属と塩を形成していてもよい。
中でも、下記一般式(3)または(4)で表されるパーフルオロカーボンスルホン酸ポリマーまたはその金属塩が特に好ましい。
−[CF2CF2a−[CF2−CF((−O−CF2−CF(CF3))b−O−(CF2h−SO3X)]g− (3)
式中、aおよびgは0≦a<1、0<g≦1、a+g=1を満たす数であり、bは1〜3の整数であり、hは1〜8の整数であり、Xは水素原子またはアルカリ金属原子である。
−[CF2CF2a−[CF2−CF(−O−(CF2h−SO3X)]g− (4)
式中、aおよびgは0≦a<1、0<g≦1、a+g=1を満たす数であり、hは1〜8の整数であり、Xは水素原子またはアルカリ金属原子である。
本実施の形態において用いることのできるイオン交換基を有するパーフルオロカーボン高分子化合物は、例えば、下記一般式(5)で表される前駆体ポリマーを重合した後、アルカリ加水分解、酸処理等を行って製造することができる。
−[CF2CX12a−[CF2−CF((−O−CF2−CF(CF23))b−Oc−(CFR1d−(CFR2e−(CF2f−X5)]g− (5)
式中、X1、X2及びX3はそれぞれ独立してハロゲン原子及び炭素数1〜3のパーフルオロアルキル基からなる群から選択され、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられ、フッ素原子又は塩素原子であることが好ましい。
5はCOOR3、COR4またはSO24である。R3は炭素数1〜3の炭化水素系アルキル基である。R4はハロゲン原子である。
1およびR2はそれぞれ独立してハロゲン原子、炭素数1〜10のパーフルオロアルキル基およびフルオロクロロアルキル基からなる群から選択され、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子およびヨウ素原子が挙げられ、フッ素原子または塩素原子であることが好ましい。
aおよびgは0≦a<1、0<g≦1、a+g=1をみたす数である。
bは0〜8の整数である。
cは0または1である。
d、eおよびfはそれぞれ独立して0〜6の整数である(ただし、d、eおよびfは同時に0ではない。
上記一般式(5)で表される前駆体ポリマーは、例えば、フッ化オレフィン化合物とフッ化ビニル化合物とを共重合させることにより製造し得る。
ここで、フッ化オレフィン化合物としては、例えば、下記一般式(1a)で表される化合物が挙げられる。
CF2=CX12 (1a)
式中、X1およびX2は、一般式(5)について上述したとおりである。
具体的には、CF2=CF2、CF2=CFCl、CF2=CCl2等が挙げられる。
また、フッ化ビニル化合物としては、例えば、下記一般式(1b)で表される化合物が挙げられる。
CF2=CF((−O−CF2−CF(CF23))b−Oc−(CFR1d−(CFR2e−(CF2f−X5) (1b)
式中、X3、X5、R1、R2、b、c、d、eおよびfおは、一般式(5)について上述したとおりである。
具体的には、CF2=CFO(CF2j−SO2F、CF2=CFOCF2CF(CF3)O(CF2j−SO2F、CF2=CF(OCF2CF(CF3))j−(CF2j-1−SO2F、CF2=CFO(CF2j−CO2R、CF2=CFOCF2CF(CF3)O(CF2j−CO2R、CF2=CF(CF2j−CO2R、CF2=CF(OCF2CF(CF3))j−(CF22−CO2R(ここで、jは1〜8の整数、Rは炭素数1〜3の炭化水素系アルキル基を表す。)等が挙げられる。
上記のような前駆体ポリマーは公知の方法により合成することができる。合成方法は、特に限定されるものではないが、以下のような方法を挙げることができる。
(i)含フッ素炭化水素等の重合溶媒を使用し、この重合溶媒に充填溶解した状態でフッ化ビニル化合物とフッ化オレフィンのガスとを反応させて重合が行われる方法(溶液重合)。上記含フッ素炭化水素としては、例えば、トリクロロトリフルオロエタン、1、1、1、2、3、4、4、5、5、5―デカフロロペンタン等、「フロン」と総称される化合物群を好適に使用することができる。
(ii)含フッ素炭化水素等の溶媒を使用せず、フッ化ビニル化合物そのものを重合溶媒として用いてフッ化ビニル化合物の重合が行われる方法(塊状重合)。
(iii)界面活性剤の水溶液を重合溶媒として用い、この重合溶媒に充填溶解した状態でフッ化ビニル化合物とフッ化オレフィンガスとを反応させて重合が行われる方法(乳化重合)。
(iv)界面重合剤およびアルコール等の助乳化剤の水溶液を用い、この水溶液に充填乳化した状態でフッ化ビニル化合物とフッ化オレフィンのガスとを反応させて重合が行われる方法(ミニエマルジョン重合、マイクロエマルジョン重合)。
(v)懸濁安定剤の水溶液を用い、この水溶液に充填懸濁した状態でフッ化ビニル化合物とフッ化オレフィンのガスとを反応させて重合が行われる方法(懸濁重合)。
本実施の形態においては、前駆体ポリマーの重合度の指標としてメルトマスフローレート(以下「MFR」と略称することがある。)を使用することができる。本実施の形態において、成形加工の観点から、前駆体ポリマーのMFRは、0.01以上が好ましく、0.1以上がより好ましく、0.3以上がさらに好ましい。MFRの上限は特に限定されないが、成形加工の観点から、100以下が好ましく、50以下がより好ましく、10以下がさらに好ましい。
以上のようにして作製された前駆体ポリマーは、塩基性反応液体中で加水分解処理され、温水等で十分に水洗され、酸処理される。この加水分解処理および酸処理によって、例えば、パーフルオロカーボンスルホン酸樹脂前駆体はプロトン化され、SO3H体であるパーフルオロカーボンスルホン酸樹脂となる。
本実施形態において、フッ素系高分子電解質の含有量は、高分子電解質として用いられるポリマー全体に対して100質量%であることが化学耐久性の観点から好ましいが、例えば、炭化水素系高分子電解質等を任意の割合で含んでもよい。炭化水素系高分子電解質としては、例えば、ポリフェニレンスルフィド、ポリフェニレンエーテル、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリチオエーテルエーテルスルホン、ポリチオエーテルケトン、ポリチオエーテルエーテルケトン、ポリベンゾイミダゾール、ポリベンゾオキサゾール、ポリオキサジアゾール、ポリベンザオキサジノン、ポリキシリレン、ポリフェニレン、ポリチオフェン、ポリピロール、ポリアニリン、ポリアセン、ポリシアノゲン、ポリナフチリジン、ポリフェニレンスルフィドスルホン、ポリフェニレンスルホン、ポリイミド、ポリエーテルイミド、ポリエステルイミド、ポリアミドイミド、ポリアリレート、芳香族ポリアミド、ポリスチレン、ポリエステル、ポリカーボネート等が挙げられる。炭化水素系高分子電解質の含有量は、高分子電解質全体に対して、好ましくは50質量%以下、より好ましくは20質量%以下である。
本実施形態においてフッ素系高分子電解質は、そのイオン交換容量が好ましくは0.5〜3.0ミリ当量/gであることが好ましく、この条件を満足するようにイオン交換基を有することが好ましい。イオン交換容量を3.0ミリ当量/g以下とすることにより、この高分子電解質を含む高分子電解質膜の、燃料電池運転中の高温高加湿下での膨潤が低減される傾向にある。高分子電解質膜の膨潤が低減されることは、高分子電解質膜の強度が低下したり、しわが発生して電極から剥離したりするなどの問題、さらには、ガス遮断性が低下する問題を改善し得る。一方、イオン交換容量を0.5ミリ当量/g以上とすることにより、そのような条件を満足する高分子電解質膜を備えた燃料電池は、その発電能力を良好に維持し得る。これらの観点から、フッ素系高分子電解質(A成分)のイオン交換容量は、より好ましくは0.65〜2.8ミリ当量/g、さらに好ましくは1.3〜2.5ミリ当量/gである。
なお、本実施形態におけるフッ素系高分子電解質のイオン交換容量は、下記のようにして測定される。
まず、イオン交換基の対イオンがプロトンの状態となっている高分子電解質からなる膜を、25℃の飽和NaCl水溶液に浸漬し、その水溶液を十分な時間攪拌する。次いで、その飽和NaCl水溶液中のプロトンを、0.01N水酸化ナトリウム水溶液で中和滴定する。中和後にろ過して得られたイオン交換基の対イオンがナトリウムイオンの状態となっている高分子電解質からなる膜を、純水ですすぎ、更に真空乾燥した後、秤量する。中和に要した水酸化ナトリウムの物質量をM(mmol)、イオン交換基の対イオンがナトリウムイオンである高分子電解質からなる膜の質量をW(mg)とし、下記式により当量質量EW(g/当量)を求める。
EW=(W/M)−22
更に、得られたEW値の逆数をとって1000倍することにより、イオン交換容量(ミリ当量/g)が算出される。
したがって、本実施形態におけるフッ素系高分子電解質は、その当量重量(EW)値が好ましくは330〜2000g/当量であり、より好ましくは355〜1540g/当量であり、さらに好ましくは400〜770g/当量である。
このイオン交換容量は、フッ素系高分子電解質膜1g中に存在するイオン交換基数を調整することで上記数値範囲内に入るよう調整できる。
本実施形態においてフッ素系高分子電解質組成物は、燃料電池運転時の耐熱性の観点から、ガラス転移温度が好ましくは80℃以上であり、より好ましくは100℃以上、さらに好ましくは120℃以上、特に好ましくは130℃以上である。ここで、高分子電解質のガラス転移温度は、JIS−C−6481に準拠して測定される。具体的には、膜状に成形した高分子電解質を5mm幅に切り出し、動的粘弾性測定装置を用いて試験片を室温から2℃/分の割合で昇温させ、粘弾性測定装置にて試験片の動的粘弾性及び損失正接を測定する。測定した損失正接のピーク温度をガラス転移温度とする。また、このガラス転移温度は、フッ素系高分子電解質組成物に含まれる高分子電解質の構造式、分子量、イオン交換容量等を制御することによって調整できる。
本実施形態に係る高分子電解質膜は、80℃における含水率が好ましくは5質量%〜150質量%であり、より好ましくは10質量%〜100質量%であり、更に好ましくは20質量%〜80質量%であり、特に好ましくは30質量%〜70質量%である。高分子電解質の含水率を上記範囲に調整すると、長期にわたる寸法変化安定性及び高温・低加湿条件においても高い電池性能が発現するといった効果を奏する。80℃における含水率が5質量%以上であると、プロトン移動をするための水が充分に存在するため、燃料電池に用いた際に優れた電池性能が発現する。一方、80℃における含水率が150質量%以下であると、高分子電解質がゲル状になるおそれが少なく、膜として成形することが容易となる。
なお、高分子電解質膜の80℃における含水率は、高分子電解質の分子量、MFR、結晶化度及びイオン交換容量や、微多孔膜表面の親水処理面積、高分子電解質膜の熱処理温度及び時間等を調整することで調整され得る。
80℃における含水率を高くする手段としては、例えば、高分子電解質のイオン交換基密度を上げたり、高分子電解質前駆体ポリマーのMFRを高くしたり、熱処理温度や熱処理時間を減少させて高分子電解質の結晶化を抑制する、微多孔膜表面を親水基修飾することが挙げられる。一方、80℃における含水率を低くする手段としては、例えば、高分子電解質のイオン交換基密度を下げたり、高分子電解質前駆体ポリマーのMFRを低くしたり、高分子電解質膜を電子線等により架橋することが挙げられる。
(チオエーテル化合物)
本発明で用いるフッ素系高分子電解質組成物は、チオエーテル化合物(B)を含有する。チオエーテル化合物としては、−(R−S)r−(Sは硫黄原子、Rは炭化水素基、rは1以上の整数)の化学構造を有する化合物である。このような化学構造を有する化合物としては、具体的には、例えば、ジメチルチオエーテル、ジエチルチオエーテル、ジプロピルチオエーテル、メチルエチルチオエーテル、メチルブチルチオエーテルのようなジアルキルチオエーテル、テトラヒドロチオフェン、テトラヒドロアピランのような環状チオエーテル、メチルフェニルスルフィド、エチルフェニルスルフィド、ジフェニルスルフィド、ジベンジルスルフィドのような芳香族チオエーテル等が挙げられる。なお、ここで例示したものをチオエーテル化合物としてそのまま用いてもよく、例えばポリフェニレンスルフィド(PPS)のように、例示したものを単量体に用いて得られる重合体をチオエーテル化合物として用いてもよい。
チオエーテル化合物は、耐久性の観点からrが10以上の重合体(オリゴマー、ポリマー)であることが好ましく、rが1,000以上の重合体であることがより好ましい。特に好ましいチオエーテル化合物は、ポリフェニレンスルフィド(PPS)である。
ここでポリフェニレンスルフィドについて説明する。本実施形態において用いることのできるポリフェニレンスルフィドとしては、パラフェニレンスルフィド骨格を好ましくは70モル%以上、より好ましくは90モル%以上有するポリフェニレンスルフィドが挙げられる。
上記ポリフェニレンスルフィドの製造方法は、特に限定されないが、例えば、ハロゲン置換芳香族化合物(p−ジクロルベンゼン等)を硫黄及び炭酸ソーダの存在下で重合させる方法、極性溶媒中でハロゲン置換芳香族化合物を硫化ナトリウム若しくは硫化水素ナトリウムと水酸化ナトリウムの存在下で重合させる方法、極性溶媒中でハロゲン置換芳香族化合物を硫化水素と水酸化ナトリウム若しくはナトリウムアミノアルカノエートの存在下で重合させる方法、または、p−クロルチオフェノールの自己縮合による方法等が挙げられる。これらの中でもN−メチルピロリドン、ジメチルアセトアミド等のアミド系溶媒やスルホラン等のスルホン系溶媒中で硫化ナトリウムとp−ジクロルベンゼンとを反応させる方法が好適に用いられる。
また、ポリフェニレンスルフィドにおける−SX基(Sは硫黄原子、Xはアルカリ金属原子又は水素原子である)の含有量は、通常10μmol/g〜10,000μmol/gであると好ましく、より好ましくは15μmol/g〜10,000μmol/g、更に好ましくは20μmol/g〜10,000μmol/gである。
−SX基の含有量が上記範囲にあるということは、反応活性点が多いことを意味する。−SX基の含有量濃度が上記範囲を満たすポリフェニレンスルフィドを用いることで、本実施形態に係る高分子電解質との混和性が向上することに伴ってその分散性が向上し、高温低加湿条件下でより高い耐久性が得られると考えられる。
また、チオエーテル化合物としては、末端に酸性官能基を導入したものも好適に用いることができる。導入する酸性官能基としては、スルホン酸基、リン酸基、カルボン酸基、マレイン酸基、無水マレイン酸基、フマル酸基、イタコン酸基、アクリル酸基、メタクリル酸基からなる群より選ばれるものが好ましく、スルホン酸基が特に好ましい。
なお、酸性官能基の導入方法は特に限定されず、一般的な方法が用いられる。例えば、スルホン酸基をチオエーテル化合物に導入する場合、無水硫酸、発煙硫酸などのスルホン化剤を用いて公知の条件で導入することができる。より具体的には、例えば、K.Hu, T.Xu, W.Yang, Y.Fu, Journal of Applied Polymer Science, Vol.91,や、 E.Montoneri, Journal of Polymer Science: Part A: Polymer Chemistry, Vol.27, 3043−3051(1989)に記載の条件で導入できる。
また、導入した上記酸性官能基を更に金属塩又はアミン塩に置換したものもチオエーテル化合物として好適に用いられる。金属塩としてはナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩等のアルカリ土類金属塩が好ましい。
さらに、チオエーテル化合物を粉末状で用いる場合、チオエーテル化合物の平均粒子径は、高分子電解質中での分散性が向上することで高寿命化等の効果を良好に実現させる観点から、0.01μm〜2.0μmであることが好ましく、0.01μm〜1.0μmがより好ましく、0.01μm〜0.5μmがさらに好ましく、0.01μm〜0.1μmが特に好ましい。この平均粒子径は、レーザ回折/散乱式粒子径分布測定装置(例えば、堀場製作所製、型番:LA−950)によって測定される値である。
チオエーテル化合物を高分子電解質中に微分散させる方法としては、例えば、高分子電解質等との溶融混練時に高せん断を与えて粉砕及び微分散させる方法、後述の高分子電解質溶液を得た後、その溶液をろ過し粗大チオエーテル化合物粒子を除去し、ろ過後の溶液を用いる方法、等が挙げられる。溶融混練を行う場合に好適に用いられるポリフェニレンスルフィドの溶融粘度は、成形加工性の観点から、1〜10,000ポイズであると好ましく、より好ましくは100〜10,000ポイズである。なお、溶融粘度は、フローテスターを用いて、300℃、荷重196N、L/D(L:オリフィス長、D:オリフィス内径)=10/1で6分間保持して得られる値である。
チオエーテル化合物の質量(Wd)に対する高分子電解質(高分子電解質膜に含まれる高分子電解質の総量)の質量(Wa)の比(Wa/Wd)は、60/40〜99.99/0.01であることが好ましく、70/30〜99.95/0.05がより好ましく、80/20〜99.9/0.1が更に好ましく、90/10〜99.5/0.5が特に好ましい。高分子電解質の質量の比を60以上とすることにより、一層良好なイオン伝導性が実現され得、一層良好な電池特性が実現され得る。一方、チオエーテル化合物の質量の比を40以下とすることにより、高温低加湿条件での電池運転における耐久性が向上し得る。
本実施形態の高分子電解質膜には、耐久性を向上させる目的で、ポリアゾール化合物等の添加剤を含有してもよい。これらの添加剤は、1種を単独で又は2種以上を組み合わせて用いられる。
(ポリアゾール化合物)
本実施形態に使用できるポリアゾール化合物としては、例えば、ポリイミダゾール系化合物、ポリベンズイミダゾール系化合物、ポリベンゾビスイミダゾール系化合物、ポリベンゾオキサゾール系化合物、ポリオキサゾール系化合物、ポリチアゾール系化合物、ポリベンゾチアゾール系化合物等の環内に窒素原子を1個以上含む複素五員環を構成要素とする化合物の重合体が挙げられる。なお、上記複素五員環には、窒素原子以外に酸素原子、硫黄原子等を含むものであってもよい。
また、ポリアゾール化合物の分子量は、GPC測定を行った場合の重量平均分子量として、300〜500,000(ポリスチレン換算)であると好ましい。
上記複素五員環を構成要素とする化合物として、例えば、p−フェニレン基、m−フェニレン基、ナフタレン基、ジフェニレンエーテル基、ジフェニレンスルホン基、ビフェニレン基、ターフェニル基、2,2−ビス(4−カルボキシフェニレン)ヘキサフルオロプロパン基に代表される2価の芳香族基が複素五員環と結合した化合物を用いることが、耐熱性を得る観点から好ましい。具体的には、ポリアゾール化合物として、ポリベンズイミダゾールが好ましく用いられる。
また、ポリアゾール化合物は、下記の一般的な変性方法を用いて、イオン交換基が導入されたもの(変性ポリアゾール化合物)であってもよい。このような変性ポリアゾール化合物としては、ポリアゾール化合物に、アミノ基、四級アンモニウム基、カルボキシル基、スルホン酸基、ホスホン酸基からなる群より選ばれる1種以上の基を導入したものが挙げられる。なお、アニオン性のイオン交換基をポリアゾール化合物に導入することにより、本実施形態の高分子電解質膜全体のイオン交換容量を増加させることができ、結果的に燃料電池運転時の高い出力を得ることができるため有用である。上記変性ポリアゾール化合物のイオン交換容量は0.1〜3.5ミリ当量/gであることが好ましい。
ポリアゾール化合物の変性方法は、特に限定されないが、例えば、発煙硫酸、濃硫酸、無水硫酸及びその錯体、プロパンサルトン等のスルトン類、α−ブロモトルエンスルホン酸、クロロアルキルスルホン酸等を用いて、ポリアゾール化合物にイオン交換基を導入する方法や、ポリアゾール化合物のモノマー合成時にイオン交換基を含有させて重合する方法等が挙げられる。
また、ポリアゾール化合物は、高分子電解質の相に島状に分散していることが好適である。ここで、「島状に分散している」とは、染色処理を施さずにTEM観察を行った場合に、高分子電解質の相の中にポリアゾール化合物を含む相が粒子状に分散した状態を意味する。このような状態で分散することは、ポリアゾール化合物を含む部分が高分子電解質を主体とする部分に均一に微分散していることを表しており、耐久性の観点から好ましい。
さらに、高分子電解質とポリアゾール化合物とは、例えば、イオン結合して酸塩基のイオンコンプレックスを形成している状態を形成していてもよいし、共有結合している状態であってもよい。すなわち、例えば、高分子電解質がスルホン酸基を有し、ポリアゾール化合物がイミダゾール基、オキサゾール基、チアゾール基等の反応基を有する場合、高分子電解質中のスルホン酸基と、ポリアゾール化合物中の各反応基が有する窒素原子とが、イオン結合や共有結合により互いに結合してもよい。
なお、上記イオン結合や共有結合が存在するか否かについては、フーリエ変換赤外分光計(Fourier−Transform Infrared Spectrometer)(以下、FT−IRとする)を用いて確認することができる。例えば、高分子電解質としてパーフルオロカーボンスルホン酸樹脂、ポリアゾール化合物としてポリ[2,2'(m−フェニレン)−5,5'−ベンゾイミダゾール](以下、「PBI」という。)を用いた場合、FT−IRによる測定を行うと、上記高分子電解質中のスルホン酸基とPBI中のイミダゾール基との化学結合に由来するシフトした吸収ピークが、1458cm-1付近、1567cm-1付近、1634cm-1付近に認められる。
なお、ポリアゾール化合物としてPBIを添加した高分子電解質膜を作製し、その膜について動的粘弾性試験を行うと、室温から200℃の昇温過程で得られる損失正接(Tanδ)のピーク温度(Tg)が、PBIを添加しない高分子電解質膜に比較して高くなる。このようなTgの上昇は、高分子電解質膜の耐熱性の向上や機械強度の向上を実現させ得ることから好ましい。
また、チオエーテル化合物の質量(Wd)に対するポリアゾール化合物の質量(Wc)の比(Wc/Wd)は、1/99〜99/1であると好ましい。さらに、化学的安定性と耐久性(分散性)とのバランスの観点から、Wc/Wdは5/95〜95/5がより好ましく、10/90〜90/10が更に好ましく、20/80〜80/20が特に好ましい。
さらに、ポリアゾール化合物とチオエーテル化合物との合計質量が高分子電解質膜中に占める割合は、0.01質量%〜50質量%であると好ましい。イオン伝導性と耐久性(分散性)とのバランスの観点から、上記合計質量は0.05質量%〜45質量%であるとより好ましく、0.1質量%〜40質量%であると更に好ましく、0.2質量%〜35質量%であるとさらにより好ましく、0.3質量%〜30質量%であると特に好ましい。
[微多孔膜]
本実施形態に係る微多孔膜の原料に限定はなく、例えば、ポリテトラフルオロエチレン、ポリアミド、ポリイミド、ポリオレフィン、ポリカーボネイト等の単体あるいはこれらの混合物等が用いられるが、ポリテトラフルオロエチレン(PTFE)製であることが好ましい。
本実施形態で好ましく用いられるPTFE微多孔膜の製造方法は、特に限定されないが、高分子電解質膜の寸法変化を抑制する観点から、延伸PTFE微多孔膜であることが好ましい。延伸PTFE微多孔膜の製造方法は、例えば特開昭51−30277号公報、特表平1−01876号公報および特開平10−30031号公報等に開示されているような公知の方法で作製することができる。具体的には、まずPTFE乳化重合水性分散液を凝析して得られたファインパウダーに、ソルベントナフサ、ホワイトオイルなどの液状潤滑剤を添加し、棒状にペースト押出を行う。その後、この棒状のペースト押出物(ケーク)を圧延して、PTFE未焼成体を得る。この時の未焼成テープを長手方向(MD方向)および/または幅方向(TD方向)に任意倍率延伸する。延伸時もしくは、延伸後、押出時に充填した液状潤滑剤を過熱もしくは抽出により除去し、延伸PTFE微多孔膜を得ることができる。
また、本実施形態における微多孔膜は、必要に応じて、非繊維化物(例えば低分子量PTFE)、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、着色顔料等の公知の添加剤を、本発明の課題達成及び効果を損なわない範囲で含有してもよい。
本実施形態における微多孔膜は、その細孔分布が、細孔径0.07μm〜0.4μmの範囲に少なくとも2つの分布中心(ピーク)を有することを特徴とする。微多孔膜の細孔分布が2つの分布中心を有すると、(i)大きい方の分布中心付近の細孔径を有する細孔が、反応生成水の排出の促進および添加剤の易充填性といった役割を担う、(ii)小さい方の分布中心付近の細孔径を有する細孔が、細孔に充填された電解質の膜平面方向への体積膨潤を抑えて、電解質膜の機械強度を保つ役割を担うといった別々の役割を果たすことになるため、この微多孔膜を用いた高分子電解質膜は化学的耐久性と物理的耐久性を両立し易くなる。
ここで微多孔膜の細孔分布は、JIS−K−3832に記載されるバブルポイント法を用いたバブルポイント・ハーフドライ法により測定される値を言う。
小さい方の細孔径の分布中心が0.07μm以上であれば、過酸化水素抑制効果等を有する添加剤や電解質溶液を充填しやすく、過酸化水素抑制効果を奏しつつ高分子電解質膜にボイドが発生するのを抑制でき、充填速度速くできるためプロセス性に優れる。また大きい方の細孔径の分布中心が0.4μm以下であると、高分子電解質膜の寸法変化が抑制できるので、膜の補強効果に優れる。
微多孔膜の細孔分布は、細孔径0.1μm〜0.4μmの範囲に少なくとも2つの分布中心を有することが好ましく、細孔径0.15μm〜0.4μmの範囲に少なくとも2つの分布中心を有することがより好ましい。
また、小さい方の分布中心は、0.1〜0.2μmの範囲にあってもよく、0.15〜0.2μmの範囲にあってもよい。また、大きい方の分布中心は、0.2〜0.4μmの範囲にあってもよく、0.22〜0.3μmの範囲にあってもよい。
本実施形態における微多孔膜の細孔分布は、細孔径0.07μm〜0.4μmの細孔分布に対する細孔径0.2μm以下の細孔が占める割合が0.1以上(数量比)であり、かつ細孔径0.2μmより大きい細孔が占める割合が0.5以上(数量比)であることが好ましい。
微多孔膜の細孔径0.07μm〜0.4μmの細孔に対する細孔径0.2μm以下の細孔に占める割合を0.1以上(数量比)に調整すると、高分子電解質膜の寸法変化を抑制し易くなるため、高分子電解質が高物理耐久性を発現する傾向にある。一方、細孔径0.07μm〜0.4μmの細孔に対する細孔径0.2μm以下の細孔の占める割合は、0.5以下(数量比)であることが好ましい。
また微多孔膜の細孔径0.07μm〜0.4μmの細孔に対する0.2μm以上の細孔に占める割合を0.5以上(数量比)に調整すると、燃料電池運転中に発生する反応生成水の排出が円滑に行うことができ、さらに微多孔膜に添加剤を容易に充填し易くなるため、膜にボイドが発生し難く、さらに添加剤を膜中に均一分散させることができ、高分子電解質膜が高化学耐久性を発現する傾向にある。一方、細孔径0.07μm〜0.4μmの細孔に対する0.2μm以上の細孔の占める割合は0.9以下(数量比)であることが好ましい。
微多孔膜の孔径は、製造する際の潤滑剤の種類、潤滑剤の添加量、潤滑剤の分散性、微多孔膜の延伸倍率、潤滑剤抽出溶剤、熱処理温度、熱処理時間、抽出時間および抽出温度によって、その数値を上記範囲に調整することができる。
例えば、潤滑剤の添加量を調整すると共に、MDとTDの延伸倍率を変えて逐次二軸延伸を行うこと等によって、本実施形態のような細孔分布とすることができる。
また本実施形態における微多孔膜は、単層でも、必要に応じて複層からなる構成であっても良い。複層構造にすることにより、各単層に仮にボイドやピンホール等の欠陥が発生した場合にも欠陥が伝播しないという観点からは、複層が好ましい。一方、電解質および添加剤の充填性の観点からは、単層が好ましい。PTFE微多孔膜を複層にする方法としては、2つ以上の単層を熱ラミネートで接着する方法やケークを複数重ねて圧延する方法等が挙げられる。
また本実施形態に係る微多孔膜はその製造時の機械流れ方向(MD)及びこれに垂直な方向(TD)の少なくとも一方の弾性率が250MPa以下であることが好ましい。微多孔膜の弾性率を250MPa以下とすることにより、高分子電解質膜の寸法安定性が向上する。ここで微多孔膜の弾性率はJIS−K7113に準拠して測定される値を言う。
フッ素系高分子電解質におけるプロトン伝導は、フッ素系高分子電解質が水を吸収し、イオン交換基が水和される事によって可能となる。したがって、イオン交換基密度が上がり、イオン交換容量が大きくなるほど、同湿度での伝導度は高くなる。また湿度が高いほど、伝導度は高くなる。
本実施形態におけるフッ素系高分子電解質は、スルホン基密度が高い場合は、低湿度下においても高い伝導度を示すが、高湿度下にて極度に含水するという問題がある。
例えば、家庭用燃料電池の運転では、1日1回以上の起動と停止が通常行われるが、その際の湿度変化により高分子電解質膜は膨潤収縮を繰り返す事になる。高分子電解質膜がこのような乾湿寸法変化を繰り返す事は、性能面・耐久面の両面においてマイナスである。本実施形態におけるフッ素系高分子電解質は、そのイオン交換容量が高い場合は、含水し易く、そのままの状態で膜を形成すると乾湿寸法変化が大きい。弾性率が250MPa以下の柔軟性を有する微多孔膜を用いることにより、膜の体積変化による応力を微多孔膜の柔軟性で緩和し、寸法変化を抑制することが可能となる。
したがって、微多孔膜の弾性率は、1〜250MPaがより好ましく、5〜200MPaがさらに好ましく、10〜150MPaが最も好ましい。
本実施形態に係る微多孔膜は、その空孔率が50%〜90%であると好ましく、60%〜90%であるとより好ましく、60%〜85%であると更に好ましく、50%〜85%であると特に好ましい。空孔率が50%〜90%の範囲にあることにより、高分子電解質膜のイオン導電性の向上と高分子電解質膜の強度の向上及び寸法変化の抑制を両立することができる傾向にある。ここで、微多孔膜の空孔率は、水銀圧入法により水銀ポロシメータ(例えば、島津製作所製、商品名:オートポアIV 9520、初期圧約20kPa)によって測定される値を言う。
微多孔膜の空孔率は、微多孔膜中の孔数、孔径、孔形状、延伸倍率、液状潤滑剤添加量及び液状潤滑剤の種類によって、その数値を上記範囲に調整することができる。微多孔膜の空隙率を高くする手段としては、例えば、液状潤滑剤の添加量を5〜50質量%に調整する方法が挙げられる。この範囲に液状潤滑剤の添加量を調整することで、微多孔膜を構成する樹脂の成形性が維持されると共に可塑化効果が十分となるため、微多孔膜を構成する樹脂からなる繊維を二軸方向に高度にフィブリル化させることができ効率よく延伸倍率を増加させることが出来る。逆に、空隙率を低くする手段としては、例えば、液状潤滑剤を減量すること、延伸倍率を減少すること等が挙げられる。
本実施形態における微多孔膜は、その膜厚が0.1μm〜50μmであると好ましく、0.5μm〜30μmであるとより好ましく、1.0μm〜20μmであると更に好ましく、2.0μm〜20μmであると特に好ましい。膜厚が0.1μm〜50μmの範囲にあることにより、高分子電解質が微多孔膜中に孔充填しやすくなるとともに、高分子電解質の寸法変化が抑制される傾向にある。ここで、微多孔膜の膜厚は、その膜を50%RHの恒温恒湿の室内で十分に静置した後、公知の膜厚計(例えば、東洋精機製作所製、商品名「B−1」)を用いて測定される値を言う。
微多孔膜の膜厚は、キャスト溶液の固形分量、押し出し樹脂量、押し出し速度、微多孔膜の延伸倍率によって、その数値を上記範囲に調整することができる。
本実施形態における微多孔膜は、さらに、収縮低減のため熱固定処理を施されることが好ましい。この熱固定処理を行うことにより、高温雰囲気下での微多孔膜の収縮を低減し、高分子電解質膜の寸法変化を低減することができる。熱固定は、例えばTD(幅方向)テンターにより、微多孔膜原料の融点以下の温度範囲でTD(幅方向)方向の応力を緩和させることにより、微多孔膜に施される。本実施形態に好ましく用いられるPTFEの場合、好ましい応力緩和温度範囲は200℃〜420℃である。
また、本実施形態における微多孔膜は、本発明の課題解決及び効果を損なわない範囲で、界面活性剤塗布、化学的改質などの表面処理を必要に応じて施されてもよい。表面処理を施すことで微多孔膜の表面を親水化することができ、高分子電解質溶液の高充填性といった効果を奏するほか、高分子電解質膜の含水率を調整し得る。
[高分子電解質膜]
本実施形態の高分子電解質膜は、微多孔膜の空隙にフッ素系高分子電解質組成物を充填することで得ることができる。
本実施形態において、高分子電解質膜の膜厚は、1μm〜500μmであることが好ましく、より好ましくは2μm〜100μm、更に好ましくは5μm〜50μm、特に好ましくは5μm〜35μmである。膜厚を上記範囲に調整することは、水素と酸素との直接反応のような不都合を低減し得る点、燃料電池製造時の取り扱いの際や燃料電池運転中に差圧・歪み等が生じても、膜の損傷等が発生し難いという点で好ましい。さらに、高分子電解質膜のイオン透過性を維持し、固体高分子電解質膜としての性能を維持する観点からも、膜厚を上記範囲に調整することは好ましい。
本実施形態において、高分子電解質膜の80℃水中における平面方向寸法変化は15%以下であることが好ましく、13%以下であることがより好ましく、11%以下であることがさらに好ましい。
ここで、本実施形態の80℃水中における平面方向寸法変化は以下のようにして測定される。
膜サンプルを4cm×3cmの矩形膜に切り出し、恒温恒湿の室内(23℃、50%RH)に1時間以上放置した後、その乾燥状態の矩形膜サンプルの平面方向の各寸法を測定した。
次に、上記寸法を測定した矩形膜サンプルを80℃の熱水中で1時間煮沸し、電解質膜の水分による質量変化が5%以下の湿潤状態になるように(水分吸収による体積膨潤が飽和に達するように)充分に水を吸収させた。この際、熱水中から膜を取り出し、表面の水分を充分に除去した状態で、電子天秤で質量変化量が5%以下となったことを確認した。この水を吸収して膨張した湿潤状態の膜サンプルを熱水中から取り出し、平面方向(長手(MD)方向、幅(TD)方向)の各寸法を測定した。乾燥状態での平面方向における各寸法を基準として、その乾燥状態での各寸法から湿潤状態での平面方向における各寸法(MD方向およびTD方向)の増分の平均を取って、平面方向寸法変化(%)とした。
平面方向寸法変化は、微多孔膜の構造、弾性率や膜厚、フッ素系高分子電解質のEW、高分子電解質膜の熱処理温度等を調整することで、上記範囲に調整することができる。
[高分子電解質膜の製造方法]
次に、本実施形態の高分子電解質膜の製造方法について説明する。本実施形態の高分子電解質膜は、微多孔膜の微細な空孔にフッ素系高分子電解質組成物を充填することで得ることができる。
微多孔膜の空孔にフッ素系高分子電解質組成物を充填する方法としては、特に限定されないが、例えば、後述する高分子電解質溶液を微多孔膜に塗工する方法や、高分子電解質溶液に微多孔膜を含浸させた後、乾燥する方法等が挙げられる。例えば、移動しているまたは静置されている細長いキャスティング基材(シート)上に高分子電解質溶液の被膜を形成し、その溶液上に細長い微多孔膜を接触させ、未完成な複合構造体を作製する。この未完成な複合構造体を熱風循環槽中等で乾燥させる。次に乾燥させた未完成な複合構造体の上に高分子電解質溶液の被膜をさらに形成させ、高分子電解質膜を作製する方法が上げられる。高分子電解質溶液と微多孔膜の接触は、乾燥状態で行われても、未乾燥状態または湿潤状態で行われても良い。また、接触させる場合に、ゴムローラーで圧着させたり、微多孔膜のテンションをコントロールしながら行っても良い。さらに、高分子電解質を含むシートを押し出し成形やキャスト成形等で予め成形しておき、このシートを微多孔膜と重ねて熱プレスすることにより充填してもよい。
さらに、高分子電解質膜の伝導性や機械的強度を向上する目的で、このようにして作製された高分子電解質膜の少なくとも一方の主面上に、高分子電解質を含む層を1層以上積層してもよい。また、本実施形態の高分子電解質膜においては、架橋剤や紫外線、電子線、放射線等を用いて、そこに含まれる化合物同士を架橋してもよい。
本実施形態の高分子電解質膜は、上述のように製造された後、さらに熱処理が施されることが好ましい。この熱処理により高分子電解質膜中の結晶物部分と高分子固体電解質部分とが強固に接着され、その結果、機械的強度が安定化され得る。この熱処理の温度は、好ましくは100℃〜230℃、より好ましくは110℃〜230℃、更に好ましくは120℃〜200℃である。熱処理の温度を上記範囲に調整することで、結晶物部分と電解質組成物部分との間の密着力が向上する傾向にある。また、高分子電解質膜の高含水率や機械強度を維持する観点からも上記温度範囲は好適である。熱処理の時間は、熱処理の温度にもよるが、高耐久性を有する高分子電解質膜を得る観点から、好ましくは5分間〜3時間、より好ましくは10分間〜2時間である。
(高分子電解質溶液)
本実施形態に係る高分子電解質膜を製造する際に用いることのできる高分子電解質溶液は、上記高分子電解質、チオエーテル化合物、溶媒と、必要に応じてその他の添加剤とを含むものである。この高分子電解質溶液は、そのまま、あるいはろ過、濃縮等の工程を経た後、微多孔膜への充填液として用いられる。あるいは、この溶液を単独又は他の電解質溶液と混合して用いることもできる。
高分子電解質溶液の製造方法について説明する。この高分子電解質溶液の製造方法は特に限定されず、例えば、高分子電解質を溶媒に溶解又は分散させた溶液を得た後、必要に応じてその液に添加剤を分散させる。あるいは、まず、高分子電解質を溶融押出し、延伸等の工程を経ることにより高分子電解質と添加剤とを混合し、その混合物を溶媒に溶解又は分散させる。このようにして高分子電解質溶液が得られる。
より具体的には、まず、高分子電解質の前駆体ポリマーからなる成形物を塩基性反応液体中に浸漬し、加水分解する。この加水分解処理により、上記高分子電解質の前駆体ポリマーは高分子電解質に変換される。次に、加水分解処理された上記成形物を温水などで十分に水洗し、その後、成形物に酸処理を施す。酸処理に用いられる酸は、特に限定されないが、塩酸、硫酸、硝酸等の鉱酸類やシュウ酸、酢酸、ギ酸、トリフルオロ酢酸等の有機酸類が好ましい。この酸処理によって、高分子電解質の前駆体ポリマーはプロトン化され、高分子電解質、例えばパーフルオロカーボンスルホン酸樹脂が得られる。
上述のように酸処理された上記成形物(高分子電解質を含む成形物)は、上記高分子電解質を溶解又は懸濁させ得る溶媒(樹脂との親和性が良好な溶媒)に溶解又は懸濁される。このような溶媒としては、例えば、水やエタノール、メタノール、n−プロパノール、イソプロピルアルコール、ブタノール、グリセリンなどのプロトン性有機溶媒や、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドンなどの非プロトン性有機溶媒等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。特に、1種の溶媒を用いる場合、溶媒が水であると好ましい。また、2種以上を組み合わせて用いる場合、水とプロトン性有機溶媒との混合溶媒が好ましい。
高分子電解質を溶媒に溶解又は懸濁する方法としては、特に限定されない。例えば、上記溶媒中にそのまま高分子電解質を溶解又は分散させてもよいが、大気圧下又はオートクレーブ等で密閉加圧した条件のもとで、0〜250℃の温度範囲で高分子電解質を溶媒に溶解又は分散するのが好ましい。特に、溶媒として水及びプロトン性有機溶媒を用いる場合、水とプロトン性有機溶媒との混合比は、溶解方法、溶解条件、高分子電解質の種類、総固形分濃度、溶解温度、攪拌速度等に応じて適宜選択できるが、水に対するプロトン性有機溶媒の質量の比は、水1に対してプロトン性有機溶媒0.1〜10であると好ましく、より好ましくは水1に対してプロトン性有機溶媒0.1〜5である。
なお、高分子電解質溶液には、乳濁液(液体中に液体粒子がコロイド粒子又はそれよりも粗大な粒子として分散して乳状をなすもの)、懸濁液(液体中に固体粒子がコロイド粒子又は顕微鏡で見える程度の粒子として分散したもの)、コロイド状液体(巨大分子が分散した状態)、ミセル状液体(多数の小分子が分子間力で会合してできた親液コロイド分散系)等の1種又は2種以上が含まれる。
また、高分子電解質膜の成形方法や用途に応じて、高分子電解質溶液を濃縮したり、ろ過することが可能である。濃縮の方法としては特に限定されないが、例えば、高分子電解質溶液を加熱し、溶媒を蒸発させる方法や、減圧濃縮する方法等がある。高分子電解質溶液を塗工用溶液として用いる場合、高分子電解質溶液の固形分率は、高すぎると粘度が上昇して取り扱い難くなる傾向にあり、一方、低すぎると生産性が低下する傾向にあるため、0.5質量%〜50質量%であると好ましい。高分子電解質溶液をろ過する方法としては、特に限定されないが、例えば、フィルターを用いて、加圧ろ過する方法が代表的に挙げられる。上記フィルターには、90%捕集粒子径が高分子電解質溶液に含まれる固体粒子の平均粒子径の10倍〜100倍の濾材を用いることが好ましい。この濾材の材質としては紙、金属等が挙げられる。特に濾材が紙の場合は、90%捕集粒子径が上記固体粒子の平均粒子径の10倍〜50倍であることが好ましい。金属製フィルターを用いる場合、90%捕集粒子径が上記固体粒子の平均粒子径の50倍〜100倍であることが好ましい。当該90%捕集粒子径を平均粒子径の10倍以上に設定することは、送液するときに必要な圧力が高くなりすぎることを抑制したり、フィルターが短期間で閉塞してしまうことを抑制し得る。一方、90%捕集粒子径を平均粒子径の100倍以下に設定することは、フィルムで異物の原因となるような粒子の凝集物や樹脂の未溶解物を良好に除去する観点から好ましい。
[膜電極接合体]
本実施形態の高分子電解質膜は、膜電極接合体、及び固体高分子電解質型燃料電池の構成部材として用いることができる。高分子電解質膜の両面にアノード及びカソードの2種類の電極触媒層が接合したユニットは、膜電極接合体(以下、「MEA」と略称することがある。)と呼ばれる。電極触媒層の更に外側に一対のガス拡散層を対向するように接合したものについても、MEAと呼ばれる場合がある。本実施形態に係るMEAは、高分子電解質膜として本実施形態のものを採用する以外は公知のMEAと同様の構成を有していればよい。
電極触媒層は、一般に、触媒金属の微粒子とこれを担持した導電剤とから構成され、必要に応じて撥水剤が含まれる。上記触媒としては、水素の酸化反応及び酸素の還元反応を促進する金属であればよく、白金、金、銀、パラジウム、イリジウム、ロジウム、ルテニウム、鉄、コバルト、ニッケル、クロム、タングステン、マンガン、バナジウム、及びこれらの合金からなる群より選ばれる1種以上が挙げられる。これらの中では、主として白金が好ましい。
MEAの製造方法としては、本実施形態の高分子電解質膜を用いて、公知の製造方法を採用することができ、例えば、次のような方法が挙げられる。まず、電極用バインダーイオン交換樹脂をアルコールと水との混合溶液に溶解したものに、電極物質となる白金担持カーボンを分散させてペースト状にする。これをPTFEシートに一定量塗布して乾燥させる。次に、PTFEシートの塗布面を向かい合わせにして、その間に高分子電解質膜を挟み込み、100℃〜200℃で熱プレスにより接合してMEAを得ることができる。電極用バインダーは、一般にイオン交換樹脂を溶媒(アルコールや水等)に溶解したものが用いられるが、本実施形態の高分子電解質溶液を用いることもでき、耐久性の観点からこの高分子電解質溶液が好ましい。
[固体高分子電解質型燃料電池]
上述のようにして得られたMEA、場合によっては更に一対のガス拡散電極が電極触媒層の更に外側に対向した構造を有するMEAは、更にバイポーラプレートやバッキングプレート等の一般的な固体高分子電解質型燃料電池に用いられる構成成分と組み合わされて、固体高分子電解質型燃料電池を構成する。このような固体高分子電解質型燃料電池は、MEAとして上記のMEAを採用する以外は公知のものと同様の構成を有していればよい。
バイポーラプレートとは、その表面に燃料や酸化剤等のガスを流すための溝を形成させたグラファイトと樹脂との複合材料、又は金属製のプレート等を意味する。バイポーラプレートは、電子を外部負荷回路へ伝達する機能の他、燃料や酸化剤を電極触媒近傍に供給する流路としての機能を有している。こうしたバイポーラプレートの間に上記MEAを挿入して複数積み重ねることにより、本実施形態に係る固体高分子電解質型燃料電池が製造される。
以上説明した本実施形態の高分子電解質膜は、含水率が高く、寸法安定性、機械強度及び物理耐久性に優れており、固体高分子電解質型燃料電池用の電解質材料として好適である。
以上、本発明を実施するための形態について説明したが、本発明は上記本実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。
なお、特に断りのない限り、上述した各種パラメータは、下記実施例における測定方法に準じて測定される。
以下、実施例によりさらに本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。実施例等における各種物性の測定方法及び評価方法は次の通りである。
(1)微多孔膜の細孔分布
微多孔膜の細孔分布は、以下のようにして測定した。まず、微多孔膜サンプルをφ25mmの大きさに切り出し、貫通細孔分布/ガス、流体透過性解析装置(Xonics Corporation製、装置名:Porometer3G)を用いて測定を行った。本装置の測定は、JIS−K−3832に記載のバブルポイント法に準拠しており、まず微多孔膜の細孔体積を試験専用液体(porofil(登録商標))で完全に満たした後、微多孔膜にかかる圧力を徐々に増加させることで、試験専用液の表面張力と印加した気体の圧力、供給流量から細孔分布を求める方法である(バブルポイント・ハーフドライ法)。
微多孔膜の細孔分布は、細孔測定範囲:0.07μm〜0.4μm、流量ガス:圧縮空気で測定した。
(2)含水率
高分子電解質膜の80℃における含水率は、以下のようにして測定した。まず、高分子電解質膜からサンプルを30mm×40mm角に切りだし、膜厚を測定した。次いで、膜サンプルを80℃に温めたイオン交換水に浸漬した。1時間経過後、膜を80℃のイオン交換水から取り出し、ろ紙に挟んで軽く2、3度押さえて膜サンプル表面に付着した水をふき取った後、電子天秤で重量を測定し、W1(g)とした。次に、膜サンプルを恒温恒湿室(23℃,50%RH)にて乾燥させた。1時間以上経過後、膜サンプルをハロゲン水分計(メトラー・トレド(株)社製、HB43)に入れ、160℃,1分間乾燥させた後、膜サンプルの重量を測定した。この膜サンプルの絶乾重量をW2(g)とした。80℃における高分子電解質膜の含水率は、上記W1及びW2から、以下の式により算出した。
含水率=(W1−W2)/W2×100
(3)イオン交換容量
イオン交換基の対イオンがプロトンの状態となっている高分子電解質から膜を形成し(片方の主面の面積がおよそ2〜20cm2のもの)を、25℃の飽和NaCl水溶液30mLに浸漬し、攪拌しながら30分間放置した。次いで、その飽和NaCl水溶液中のプロトンを、フェノールフタレインを指示薬として0.01N水酸化ナトリウム水溶液として中和滴定した。中和後にろ過して得られたイオン交換基の対イオンがナトリウムイオンの状態となっている高分子電解質膜を、純水ですすぎ、更に真空乾燥して秤量した。中和に要した水酸化ナトリウムの物質量をM(mmol)、イオン交換基の対イオンがナトリウムイオンの高分子電解質膜からなる膜の質量をW(mg)とし、下記式により当量質量EW(g/当量)を求めた。
EW=(W/M)−22
更に、得られたEW値の逆数をとって1000倍することにより、イオン交換容量(ミリ当量/g)を算出した。
(4)膜厚
膜サンプルを23℃、50%RHの恒温恒湿の室内で1時間以上静置した後、膜厚計(東洋精機製作所製、商品名「B−1」)を用いて膜厚を測定した。
(5)引張強度および弾性率
膜サンプルを70mm×10mmの矩形膜に切り出し、JIS K−7127に準拠して、その引張強度および弾性率を測定した。
(6)平面方向寸法変化
膜サンプルを4cm×3cmの矩形膜に切り出し、恒温恒湿の室内(23℃、50%RH)に1時間以上放置した後、その乾燥状態の矩形膜サンプルの平面方向の各寸法を測定した。
次に、上記寸法を測定した矩形膜サンプルを80℃の熱水中で1時間煮沸し、電解質膜の水分による質量変化量が5%以下の湿潤状態になるよう充分に水を吸収させた。この際、熱水中から膜を取り出し、表面の水分を十分に除去した状態で、電子天秤で質量変化量が5%以下となったことを確認した。この水を吸収して膨張した湿潤状態の膜サンプルを熱水中から取り出し、平面方向の各寸法(長手(MD)方向および幅(TD)方向)を測定した。乾燥状態での平面方向における各寸法を基準として、その乾燥状態での各寸法から湿潤状態での平面方向における各寸法の増分の平均を取って、平面方向寸法変化(%)とした。
(7)ガラス転移温度
フッ素系高分子電解質組成物のガラス転移温度は、JIS−C−6481に準拠して測定した。まず、フッ素系高分子電解質組成物からなる膜を形成し、これを5mm幅に切り出し、動的粘弾性測定装置(アイティ計測制御製、型番:DVA−225)を用いて試験片を室温から2℃/分の割合で昇温させ、粘弾性測定装置にて試験片の動的粘弾性及び損失正接を測定した。測定した損失正接のピーク温度をガラス転移温度とした。
(8)空隙率
微多孔膜の空隙率は、水銀圧入法により水銀ポロシメータ(島津製作所製、製品名:オートポアIV 9520)を用いて測定した。まず、微多孔膜1枚を約25mm巾のサイズに切りだし、約0.08〜0.12g採取し、これを折りたたみ、標準セルに設置した。初期圧約25kpaで測定した。測定から得られるporosity値を微多孔膜の空隙率とした。
(9)燃料電池評価
高分子電解質膜の燃料電池評価を以下のように行った。まず、以下のように電極触媒層を作製した。Pt担持カーボン(田中貴金属社製TEC10E40E、Pt36.4%)1.00gに対し、5質量%パーフルオロスルホン酸ポリマー溶液SS−910(旭化成イーマテリアルズ製、当量質量(EW):910、溶媒組成:エタノール/水=50/50(質量比))を11質量%に濃縮したポリマー溶液を3.31g添加、さらに3.24gのエタノールを添加した後、ホモジナイザーでよく混合して電極インクを得た。この電極インクをスクリーン印刷法にてPTFEシート上に塗布した。塗布量は、Pt担持量およびポリマー担持量共に0.15mg/cm2になる塗布量と、Pt担持量およびポリマー担持量共に0.30mg/cm2になる塗布量の2種類とした。塗布後、室温下で1時間、空気中120℃にて1時間、乾燥を行うことにより厚み10μm程度の電極触媒層を得た。これらの電極触媒層のうち、Pt担持量およびポリマー担持量共に0.15mg/cm2のものをアノード触媒層とし、Pt担持量およびポリマー担持量共に0.30mg/cm2のものをカソード触媒層とした。
このようにして得たアノード触媒層とカソード触媒層を向い合わせて、その間に高分子電解質膜を挟み込み、160℃、面圧0.1MPaでホットプレスすることにより、アノード触媒層とカソード触媒層を高分子電解質膜に転写、接合してMEAを作製した。
このMEAの両側(アノード触媒層とカソード触媒層の外表面)にガス拡散層としてカーボンクロス(DE NORA NORTH AMERICA社製ELAT(登録商標)B−1)をセットして評価用セルに組み込んだ。この評価用セルを(東陽テクニカ製燃料電池評価システム890CL)にセットして80℃に昇温した後、アノード側に水素ガスを260cc/min、カソード側に空気ガスを880cc/minで流し、アノード、カソード側共に0.20MPa(絶対圧力)で加圧した。ガス加湿には水バブリング方式を用い、水素ガスは90℃、空気ガスは80℃で加湿してセルへ供給した状態にて、電流電圧曲線を測定して初期特性を調べた。
次に、耐久性試験をセル80℃で行った。アノード、カソードのガス加湿温度はそれぞれ45℃、80℃とした。アノード側を0.10MPa(絶対圧力)、カソード側を0.05MPa(絶対圧力)で加圧した状態で、電流密度0.1A/cm2で1分発電した。その後、3分間、開回路にして電流値を0にし、OCV(開回路の電圧)を調べた。この発電−OCVを繰りかえし、耐久性試験とした。この試験は、発電−OCVを繰り返すことで高分子電解質に乾湿寸法変化を生じさせ物理的劣化を促進させながら、かつOCV状態に保持する際に高分子電解質膜の化学的劣化を促進させるものである。
耐久性試験において、高分子電解質膜にピンホールが生じると、水素ガスがカソード側へ大量にリークするというクロスリークと呼ばれる現象が起きる。このクロスリーク量を調べるため、カソード側排気ガス中の水素濃度をマイクロGC(Varian社製、型番:CP4900)にて測定し、この測定値が10,000ppmを超えた時点で試験終了とした。本耐久性試験において、試験開始から試験終了までの時間が長いほど高分子電解質膜が化学的耐久性と物理的耐久性を両立していることを示している。試験開始から試験終了までの時間を耐久性試験の評価に用い、以下のような基準で耐久性を判定した。
◎ : 500Hr以上の耐久性を示した。
○ : 400Hr以上500Hr未満の耐久性を示した。
△ : 100Hr以上400Hr未満の耐久性を示した。
× : 100Hr未満の耐久性を示した。
[実施例1]
(高分子電解質溶液の作製)
まず、高分子電解質の前駆体ポリマーである、テトラフルオロエチレン及びCF2=CFO(CF22−SO2Fから得られたパーフルオロスルホン酸樹脂の前駆体(加水分解及び酸処理後のEW:730g/当量)ペレットを準備した。次に、その前駆体ペレットを、ポリフェニレンスルフィド(シグマアルドリッチジャパン製、310℃における溶融粘度275ポイズ)と質量比90/10で二軸押出機(WERNER&PELEIDERER社製、型番:ZSK−40、混練温度280〜310℃、スクリュー回転数200rpm)を用いて溶融混練した。溶融混練された樹脂を、ストランドダイを通してカットし、直径約2mm、長さ約2mmの円筒状ペレットを得た。この円筒状ペレットを水酸化カリウム(15質量%)とメチルアルコール(50質量%)とを溶解した水溶液に、80℃で20時間接触させて、加水分解処理を行った。その後、ペレットを60℃の水中に5時間浸漬した。次いで、水中に浸漬した後のペレットを、60℃の2N塩酸水溶液に1時間浸漬させる処理を、毎回塩酸水溶液を新しいものに代えて、5回繰り返した。そして、塩酸水溶液に繰り返し浸漬させた後のペレットを、イオン交換水で水洗、乾燥した。これにより、高分子電解質であるパーフルオロカーボンスルホン酸樹脂(PFSA)のペレットを得た。
このペレットを、エタノール水溶液(水:エタノール=50.0:50.0(質量比))と共に5Lオートクレーブ中に入れて密閉し、翼で攪拌しながら160℃まで昇温して5時間保持した。その後、オートクレーブを自然冷却して、固形分濃度5質量%の均一なパーフルオロスルホン酸樹脂溶液を得た。このパーフルオロスルホン酸樹脂溶液中のポリフェニレンスルフィド粒子径をレーザ回折/散乱式粒子径分布測定装置(堀場製作所製、型番:LA−950、測定サンプルは溶を水で希釈して使用、屈折率1.33)を用いて測定したところ、分散ポリフェニレンスルフィド粒子のメディアン径は0.23μmであった。これを80℃で減圧濃縮した後、水とエタノールを用いて希釈し、500cPの粘度を有する、固形分15.1質量%のエタノール:水=60:40(質量比)の溶液を調整し、溶液1とした。
(微多孔膜の作製)
数平均分子量650万のPTFEファインパウダー1kg当たりに、押出液状潤滑油としての炭化水素油を20℃において406mL加えて混合した。
次に、この混合物をペースト押出しすることにより得られた丸棒状成形体を、70℃に加熱したカレンダーロールによりフィルム状に成形し、PTFEフィルムを得た。このフィルムを250℃の熱風乾燥炉に通して押出助剤を蒸発除去し、平均厚み500μm、平均幅150mmの未焼成フィルムを得た。
次に、この未焼成PTFEフィルムを長手方向(MD方向)に延伸倍率5倍で延伸し、巻き取った。
得られたMD方向延伸PTFEフィルムを両端をクリップで挟み、幅方向(TD方向)に延伸倍率8倍で延伸し、熱固定を行い、延伸PTFE膜を得た。このときの延伸温度は290℃、熱固定温度は360℃であった。作製したPTFE微多孔膜を微多孔膜1とした。得られた微多孔膜1の細孔分布を図1(a)に示す。
(高分子電解質膜の作製)
上記溶液1をバーコーター(松尾産業製、バーNo.200、WET膜厚200μm)を用いて基材フィルム上に塗布した(塗布面積:幅約200mm×長さ約500mm)後、溶液1が乾ききっていない状態で、PTFE微多孔膜1(膜厚:10μm、空隙率:73%、サンプルサイズ:幅200mm×長さ500mm)を溶液1上に積層し、微多孔膜上からゴムローラーを用いて溶液1と微多孔膜を圧着させた。このとき微多孔膜の一部に溶液が充填していることを目視にて確認した後、この膜を90℃のオーブンで20分乾燥させた。次に、得られた膜のPTFE微多孔膜上から溶液1を再度同様にして積層させることで微多孔膜の空隙を溶液1で十分に充填させ、この膜を90℃のオーブンでさらに20分乾燥させた。このようにして得られた「溶液1が十分に含浸したPTFE微多孔膜」を170℃のオーブンで1時間熱処理し、膜厚約25μmの高分子電解質膜を得た。高分子電解質膜の評価結果を表1に示す。
[実施例2]
(高分子電解質溶液の作製)
高分子電解質の前駆体ポリマーである、テトラフルオロエチレン及びCF2=CFO(CF22−SO2Fから得られたパーフルオロスルホン酸樹脂の前駆体ペレットを、ポリフェニレンスルフィド(シグマアルドリッチジャパン製、310℃における溶融粘度275ポイズ)と質量比90/10で二軸押出機(WERNER&PELEIDERER社製、型番:ZSK−40、混練温度280〜310℃、スクリュー回転数200rpm)を用いて溶融混練した。溶融混練された樹脂を、ストランドダイを通してカットし、直径約2mm、長さ約2mmの円筒状ペレットを得た。この円筒状ペレットを実施例1と同様に加水分解および酸処理した後、5Lオートクレーブ中で溶解して、固形分濃度5%の溶液Aを得た。この溶液A中のポリフェニレンスルフィド粒子径をレーザ回折/散乱式粒子径分布測定装置(堀場製作所製、型番:LA−950、測定サンプルは溶を水で希釈して使用、屈折率1.33)を用いて測定したところ、分散ポリフェニレンスルフィド粒子のメディアン径は0.23μmであった。
次に、5質量%のパーフルオロカーボン酸ポリマー溶液(Aciplex−SS(登録商標)、旭化成イーマテリアルズ製、EW720、溶媒組成(質量比):エタノール/水=50/50)(溶液B−1)にジメチルアセトアミド(DMAC)を添加し、120℃で1時間還流した後、エバポレータで減圧濃縮を行って、パーフルオロカーボンスルホン酸樹脂とDMACの質量比が1.5/98.5の溶液(溶液B−2)を作製した。
さらに、ポリ[2,2'−(m−フェニレン)−5,5'−ビベンズイミダゾール](PBI)(シグマアルドリッチジャパン製、重量平均分子量27,000)をDMACとともにオートクレーブ中に入れて密閉し、200℃まで昇温して5時間保持した。その後、オートクレーブを自然冷却して、PBIとDMACの質量比が10/90のPBI溶液を得た。さらにこのPBI溶液をDMACで10倍に希釈して、1質量%の均一なPBI溶液を作製し、これを溶液Cとした。
上記溶液を溶液A/溶液B−1/溶液B−2/溶液C=30.6/14.9/46.9/7.6(質量比)で混合し、溶液が均一になるまで攪拌して、パーフルオロカーボンスルホン酸樹脂/ポリフェニレンスルフィド樹脂/PBI=92.5/5/2.5(質量比)の混合溶液を得た。これを溶液2とした。
(高分子電解質膜の作製)
高分子電解質溶液として上記溶液2を用いた以外は実施例1と同様にして、膜厚25μmの高分子電解質膜を得た。得られた高分子電解質膜の評価結果を表1に示す。
[比較例1]
(高分子電解質溶液の作製)
実施例2と同様にして、溶液2を調製した。
(高分子電解質膜の作製)
上記「溶液2」約42gを直径154mmのシャーレに流し込み、ホットプレート上にて90℃で1時間の乾燥処理を行った。次に、シャーレをオーブンに入れ170℃で1時間の熱処理を行った。その後、膜がその中に形成されたシャーレをオーブンから取り出して冷却した後、そのシャーレにイオン交換水を注いで膜を剥離させ、膜厚約30μmの高分子電解質膜を得た。高分子電解質膜の評価結果を表1に示す。
[実施例3]
(高分子電解質溶液の作製)
実施例2と同様にして、溶液2を調製した。
(微多孔膜の作製)
重量平均分子量が4×105のポリプロピレンのみからなるポリオレフィン組成物100質量部に酸化防止剤0.375質量部を加えポリオレフィン組成物を得た。このポリオレフィン組成物30質量部を二軸押出機(58mmφ、L/D=42、強混練タイプ)に投入した。またこの二軸押出機のサイドフィーダーから流動パラフィン70質量部を供給し、200rpmで溶融混練して、押出機中にてポリオレフィン溶液を調整した。
続いて、この押出機の先端に設置されたTダイから220℃で溶融混練物を押出し、冷却ロールで引き取りながらシートを成形した。次いで成形したシートを、110℃で7×5に逐次二軸延伸を行い、延伸膜を得た。得られた延伸膜を塩化メチレンで洗浄して残留する流動パラフィンを抽出除去した後、乾燥および熱処理を行いポリオレフィン微多孔膜を得た。得られた微多孔膜の細孔分布を図1(b)に示す。
(高分子電解質膜の作製)
微多孔膜として上記のようにして得られたポリオレフィン微多孔膜(膜厚:12μm、空孔率:50%)を用いたこと以外は実施例1と同様にして、膜厚30μmの高分子電解質膜を得た。高分子電解質膜の評価結果を表1に示す。
(a) 実施例1、2の微多孔膜の細孔分布曲線
(b) 実施例3の多孔膜の細孔分布曲線

Claims (6)

  1. 微多孔膜の空隙にフッ素系高分子電解質組成物が含有されてなる高分子電解質膜であって、
    前記微多孔膜の細孔分布が、細孔径0.07μm〜0.4μmの範囲に少なくとも2つの分布中心を有し、
    前記微多孔膜の細孔分布が、細孔径0.07μm〜0.4μmの細孔に対する細孔径0.2μm以下の細孔が占める割合が0.1以上(数量比)であり、かつ、細孔径0.2μmより大きい細孔が占める割合が0.5以上(数量比)である、
    前記フッ素系高分子電解質組成物が、フッ素系高分子電解質(A成分)と、チオエーテル化合物(B成分)を含有する、高分子電解質膜。
  2. 前記フッ素系高分子電解質のイオン交換容量が0.5〜3.0ミリ当量/gである請求項に記載の高分子電解質膜。
  3. 前記フッ素系高分子電解質組成物が、さらにポリアゾール化合物(C成分)を含む請求項1または2に記載の高分子電解質膜。
  4. 前記微多孔膜が、ポリテトラフルオロエチレン製である請求項1〜のいずれか1項に記載の高分子電解質膜。
  5. 請求項1〜のいずれか1項に記載の高分子電解質膜を含む膜電極接合体(MEA)。
  6. 請求項1〜のいずれか1項に記載の高分子電解質膜を含む固体高分子電解質型燃料電池。
JP2010227917A 2010-10-07 2010-10-07 フッ素系高分子電解質膜 Active JP5489945B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010227917A JP5489945B2 (ja) 2010-10-07 2010-10-07 フッ素系高分子電解質膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010227917A JP5489945B2 (ja) 2010-10-07 2010-10-07 フッ素系高分子電解質膜

Publications (2)

Publication Number Publication Date
JP2012084278A JP2012084278A (ja) 2012-04-26
JP5489945B2 true JP5489945B2 (ja) 2014-05-14

Family

ID=46242963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010227917A Active JP5489945B2 (ja) 2010-10-07 2010-10-07 フッ素系高分子電解質膜

Country Status (1)

Country Link
JP (1) JP5489945B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038705A (ja) * 2012-08-10 2014-02-27 Toyota Motor Corp 燃料電池スタックおよび燃料電池システム、燃料電池スタックの製造方法
JP5823601B2 (ja) * 2013-11-29 2015-11-25 旭化成イーマテリアルズ株式会社 高分子電解質膜
US10253147B2 (en) 2014-03-31 2019-04-09 Toray Industries, Inc. Polymer electrolyte composition, polymer electrolyte membrane using same, catalyst coated membrane, membrane electrode assembly and polymer electrolyte fuel cell
JP6892757B2 (ja) * 2016-12-15 2021-06-23 旭化成株式会社 高分子電解質膜、及びそれを用いた燃料電池
US20190367676A1 (en) 2017-02-23 2019-12-05 Asahi Kasei Kabushiki Kaisha Composition, Composite Membrane, and Membrane Electrode Assembly
JP2019056136A (ja) * 2017-09-20 2019-04-11 株式会社東芝 電気化学反応装置
JP7273929B2 (ja) * 2017-09-20 2023-05-15 株式会社東芝 電気化学反応装置および多孔質セパレータ
CN110959204A (zh) * 2017-09-29 2020-04-03 东丽株式会社 多孔复合膜、电池用隔膜以及多孔复合膜的制造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8304134B2 (en) * 2007-02-21 2012-11-06 Asahi Kasei E-Materials Corporation Polymer electrolyte composition, polymer electrolyte membrane, membrane electrode assembly and solid polymer electrolyte-based fuel cell
JP5488780B2 (ja) * 2009-01-22 2014-05-14 トヨタ自動車株式会社 燃料電池用複合型電解質膜

Also Published As

Publication number Publication date
JP2012084278A (ja) 2012-04-26

Similar Documents

Publication Publication Date Title
WO2012046777A1 (ja) フッ素系高分子電解質膜
JP5334273B2 (ja) フッ素系高分子電解質膜
KR102112648B1 (ko) 고분자 전해질막
JP5548445B2 (ja) 高分子電解質組成物、高分子電解質膜、膜電極接合体、及び固体高分子電解質型燃料電池
JP5489945B2 (ja) フッ素系高分子電解質膜
US7811694B2 (en) Polymer electrolyte for a direct oxidation fuel cell, method of preparing the same, and direct oxidation fuel cell comprising the same
JP6868685B2 (ja) 複合高分子電解質膜
JP2014135144A (ja) レドックスフロー二次電池
JP6150616B2 (ja) 高分子電解質組成物、及び高分子電解質膜
JP2015076201A (ja) 高分子電解質膜の製造方法及び高分子電解質膜の製造装置
JP5189394B2 (ja) 高分子電解質膜
JP2014110232A (ja) フッ素系高分子電解質膜
JP2005336475A (ja) 複合プロトン交換膜
JP2015153573A (ja) 高分子電解質膜、膜電極接合体、及び固体高分子形燃料電池
JP2017188460A (ja) 高分子電解質組成物の製造方法
JP2013095757A (ja) 高分子電解質組成物、高分子電解質膜、膜電極複合体及び固体高分子電解質型燃料電池
JP7106002B2 (ja) 高分子電解質膜、膜電極接合体、固体高分子電解質形燃料電池、及び高分子電解質膜の製造方法
JP2019102330A (ja) 高分子電解質膜、膜電極接合体、及び固体高分子型燃料電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140225

R150 Certificate of patent or registration of utility model

Ref document number: 5489945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350