JP5466486B2 - Molding method for injection molding machine - Google Patents
Molding method for injection molding machine Download PDFInfo
- Publication number
- JP5466486B2 JP5466486B2 JP2009260272A JP2009260272A JP5466486B2 JP 5466486 B2 JP5466486 B2 JP 5466486B2 JP 2009260272 A JP2009260272 A JP 2009260272A JP 2009260272 A JP2009260272 A JP 2009260272A JP 5466486 B2 JP5466486 B2 JP 5466486B2
- Authority
- JP
- Japan
- Prior art keywords
- molding
- measurement
- injection
- screw
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 171
- 238000000465 moulding Methods 0.000 title claims description 103
- 238000001746 injection moulding Methods 0.000 title claims description 40
- 238000005259 measurement Methods 0.000 claims description 154
- 230000008569 process Effects 0.000 claims description 119
- 239000011347 resin Substances 0.000 claims description 99
- 229920005989 resin Polymers 0.000 claims description 99
- 239000012778 molding material Substances 0.000 claims description 82
- 238000002347 injection Methods 0.000 claims description 63
- 239000007924 injection Substances 0.000 claims description 63
- 239000000463 material Substances 0.000 claims description 58
- 238000005303 weighing Methods 0.000 claims description 54
- 230000005856 abnormality Effects 0.000 claims description 52
- 238000010438 heat treatment Methods 0.000 claims description 50
- 238000001816 cooling Methods 0.000 claims description 41
- FDSYTWVNUJTPMA-UHFFFAOYSA-N 2-[3,9-bis(carboxymethyl)-3,6,9,15-tetrazabicyclo[9.3.1]pentadeca-1(15),11,13-trien-6-yl]acetic acid Chemical compound C1N(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC2=CC=CC1=N2 FDSYTWVNUJTPMA-UHFFFAOYSA-N 0.000 claims description 17
- 239000008188 pellet Substances 0.000 claims description 16
- 238000002844 melting Methods 0.000 claims description 14
- 230000008018 melting Effects 0.000 claims description 14
- 230000002159 abnormal effect Effects 0.000 claims description 10
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 8
- 239000004626 polylactic acid Substances 0.000 claims description 8
- 238000012544 monitoring process Methods 0.000 claims 1
- 238000007792 addition Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000007493 shaping process Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 230000002411 adverse Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000010006 flight Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Injection Moulding Of Plastics Or The Like (AREA)
Description
本発明は、加熱筒内に供給された樹脂ペレットによる成形材料をスクリュの回転により可塑化計量する計量工程を有する射出成形機の成形方法に関する。 The present invention relates to a molding method of an injection molding machine having a measuring step of plasticizing and weighing a molding material made of resin pellets supplied into a heating cylinder by rotating a screw.
一般に、加熱筒内に供給された樹脂ペレットによる成形材料をスクリュの回転により可塑化計量する計量工程と、可塑化計量した加熱筒内の溶融樹脂を金型に対して射出充填する射出工程とを有する射出成形機の成形方法は知られており、この場合、計量工程では、米粒状の樹脂ペレット(成形材料)が、図3に示す射出成形機Mのホッパー12から加熱筒2内に供給され、スクリュ3の回転に従って前方へ移送されるとともに、加熱筒2及びスクリュ3による加熱混練作用により徐々に可塑化され、可塑化された溶融樹脂はスクリュ3の前方に計量蓄積される。 Generally, there are a measuring step for plasticizing and weighing a molding material made of resin pellets supplied into a heating cylinder by rotating a screw, and an injection process for injecting and filling molten resin in the heating cylinder that has been plasticized and measured into a mold. A molding method of an injection molding machine is known. In this case, in the metering step, rice granular resin pellets (molding material) are supplied into the heating cylinder 2 from the hopper 12 of the injection molding machine M shown in FIG. As the screw 3 is rotated, it is transferred forward and gradually plasticized by the heating and kneading action of the heating cylinder 2 and the screw 3, and the plasticized molten resin is measured and accumulated in front of the screw 3.
ところで、樹脂ペレットとして特定の成形材料、例えば、比較的新しい樹脂材料であるイーストマン・ケミカル社製のPCTA樹脂材料等を使用して成形を行う場合、計量工程において早期に溶融が開始し、スクリュが加熱筒内で空回りすることにより、計量不能になる問題が発生する。即ち、PCTA樹脂材料等の特定の成形材料を使用した場合、成形材料は、ホッパー12の直下にある落下孔13に落下した直後から加熱筒2側の熱影響(40〜80〔℃〕程度)を受け、図3に示すF3位置で樹脂ペレットPe…の表面が溶融を開始する。これにより、同F3位置では、図9(a)のように、樹脂ペレットPe…同士がくっつき合う現象を生じるとともに、落下孔13から前方へスクリュフライト3fが1ピッチ分程度入り込んだ図3に示すF4位置では、図9(b)のように、表面の溶融がかなり進行し、スクリュフライト3f…間に、いわばオコシ状に詰まった状態となってしまう。そして、図3に示すF6位置では、図9(c)のように、ほとんど一体化した状態になる。この結果、成形を開始した後、10〜20ショット程度は計量が行われるも、これ以後は、スクリュ3が回転しても落下孔13内の成形材料Pe…がスクリュフライト3f…によっても加熱筒2内に食い込まなくなる。即ち、成形材料Pe…は落下孔13から前方へ送られにくくなり、計量不能に陥いる。なお、このような特定の樹脂材料に対しては、その樹脂特性にマッチングさせた専用成形機を設計すればよいが、他の樹脂材料に対する成形ができなくなるため、既存の射出成形機を利用して成形可能にすることが望ましい。 By the way, when molding is performed using a specific molding material as a resin pellet, such as a PCTA resin material manufactured by Eastman Chemical Co., which is a relatively new resin material, melting starts early in the measurement process, and the screw As a result of idling in the heating cylinder, there arises a problem that measurement is impossible. That is, when a specific molding material such as a PCTA resin material is used, the molding material has a thermal effect on the side of the heating cylinder 2 immediately after dropping into the drop hole 13 directly below the hopper 12 (about 40 to 80 [° C.]). In response, the surface of the resin pellets Pe ... starts to melt at the position F3 shown in FIG. As a result, at the same F3 position, as shown in FIG. 9A, a phenomenon occurs in which the resin pellets Pe... Adhere to each other, and the screw flight 3f enters about 1 pitch forward from the drop hole 13 as shown in FIG. At the F4 position, as shown in FIG. 9 (b), the melting of the surface proceeds considerably, and the screw flight 3f... And in the F6 position shown in FIG. 3, it will be in the state almost integrated like FIG.9 (c). As a result, after molding is started, weighing is performed for about 10 to 20 shots. Thereafter, even if the screw 3 rotates, the molding material Pe ... in the drop hole 13 is also heated by the screw flight 3f ... No longer bite into 2. That is, the molding material Pe is difficult to be fed forward from the drop hole 13 and cannot be measured. For such a specific resin material, it is sufficient to design a dedicated molding machine that matches the resin characteristics. However, since it is impossible to mold other resin materials, an existing injection molding machine is used. It is desirable to enable molding.
従来、このような要請に応える得る射出成形機としては、特許文献1及び2で開示される射出成形機が知られており、特許文献1には、射出スクリュの基部温度を相対的に低くし、計量時における樹脂の搬送を確実にすることを目的として、射出シリンダにおける樹脂採取口の外周部に、シリンダ基部温調用のウォータージャケットを配備するとともに、このウォータージャケットの後方に、射出スクリュの基部外周面と嵌合する孔を設けた射出スクリュ温調用のウォータージャケットを配備した射出成形機の一部が開示され、また、特許文献2には、材料食い込み不良を解消し、樹脂の可塑化及び計量を安定に行うことを目的として、スクリュ有効長さの後端から先端までを順に供給部,圧縮部,計量部に区画し、その各部にわたりスクリュフライトを連続形成した射出スクリュであって、スクリュ外径Dと供給部スクリュ溝深さhfとの比をhf/D=0.14〜0.17に、スクリュフライト後面とスクリュ溝底面との間の曲率半径Rと、供給部スクリュ溝深さhfとの比を、R/hf=1.47〜2.1に、スクリュフライト前面とスクリュ溝底面との間の曲率半径rと、供給部スクリュ溝深さhfとの比を、r/hf=0.63〜0.88に設定した射出スクリュを備える射出成形機の一部が開示されている。 Conventionally, injection molding machines disclosed in Patent Documents 1 and 2 are known as injection molding machines that can meet such requirements. In Patent Document 1, the base temperature of an injection screw is relatively lowered. In order to ensure the transfer of the resin during weighing, a water jacket for adjusting the temperature of the cylinder base is provided on the outer periphery of the resin sampling port of the injection cylinder, and the injection screw base is provided behind the water jacket. A part of an injection molding machine provided with a water jacket for adjusting the temperature of an injection screw provided with a hole to be fitted to the outer peripheral surface is disclosed, and in Patent Document 2, a material biting failure is eliminated, plasticization of resin and For the purpose of stable measurement, the rear end of the effective screw length is divided into a supply section, a compression section, and a measurement section in order. An injection screw in which flights are continuously formed, wherein the ratio of the screw outer diameter D and the supply portion screw groove depth hf is hf / D = 0.14 to 0.17, and the space between the screw flight rear surface and the screw groove bottom surface The ratio of the curvature radius R of the screw portion to the supply portion screw groove depth hf is R / hf = 1.47 to 2.1, the curvature radius r between the screw flight front surface and the screw groove bottom surface, and the supply portion screw. A part of an injection molding machine including an injection screw in which a ratio to the groove depth hf is set to r / hf = 0.63 to 0.88 is disclosed.
しかし、上述した従来の射出成形機は、次のような解決すべき課題が存在した。 However, the conventional injection molding machine described above has the following problems to be solved.
第一に、特許文献1の場合は、ウォータージャケットを含む追加的な温調装置が必要になるとともに、特許文献2の場合は、デザイン変更したスクリュが必要になるなど、コスト面において無視できない追加的な構成要素が必要になる。したがって、実施に際しては、追加的な構成要素によるコストアップを招くとともに、追加的な構成要素は固定要素故に変更が困難となり、他の樹脂材料に対しては適合しない場合も生じ得るなど、汎用性に難がある。 First, in the case of Patent Document 1, an additional temperature control device including a water jacket is required, and in the case of Patent Document 2, an additional screw that has been redesigned is required and cannot be ignored in terms of cost. Components are required. Therefore, in implementation, the cost increases due to the additional components, and it is difficult to change the additional components because they are fixed elements, and may not be compatible with other resin materials. There are difficulties.
第二に、既存の樹脂材料にとっては、ある程度の目的が達成されるとしても、上述したPCTA樹脂材料等のような特定の樹脂材料にとっては、必ずしも課題解決の有効な対応策とはならない。即ち、特定の樹脂材料により成形を行う際に発生する計量不能になるという固有の課題を解決するためには、特許文献1のように、射出スクリュの基部温度を相対的に低くしても加熱筒側への悪影響を防止する温度分布等の設定が容易に行えないとともに、特許文献2のように、特定の成形材料以外の他の樹脂材料に対する最適化を行ったとしても、必ずしも特定の樹脂材料にとって有効な対応策とはならない。 Second, even if a certain purpose is achieved for an existing resin material, it is not necessarily an effective countermeasure for solving the problem for a specific resin material such as the PCTA resin material described above. In other words, in order to solve the inherent problem of being impossible to measure which occurs when molding with a specific resin material, as in Patent Document 1, even if the base temperature of the injection screw is relatively low, heating is performed. The temperature distribution and the like that prevent adverse effects on the cylinder side cannot be easily set, and even if optimization is performed on other resin materials other than the specific molding material as in Patent Document 2, the specific resin is not necessarily used. It is not an effective countermeasure for materials.
本発明は、このような背景技術に存在する課題を解決した射出成形機の成形方法の提供を目的とするものである。 An object of the present invention is to provide a molding method of an injection molding machine that solves the problems existing in the background art.
本発明に係る射出成形機Mの成形方法は、上述した課題を解決するため、加熱筒2内に供給された樹脂ペレットによる成形材料をスクリュ3の回転により可塑化計量する計量工程S1cと、可塑化計量した加熱筒2内の溶融樹脂を金型4に射出充填する射出工程S3cとを有する成形方法であって、特定の成形材料Pe…により成形を行うに際し、射出工程S3cの終了から計量工程S1cの開始間で、スクリュ3を、計量時の回転方向に対して反対方向に、所定の角度Rrだけ回転させることにより加熱筒2内の成形材料Pe…に対して計量工程S1cの反対の挙動を付与する分塊工程S10c(S10ce)を行うようにしたことを特徴とする。 In order to solve the above-described problems, the molding method of the injection molding machine M according to the present invention comprises a weighing step S1c for plasticizing and weighing a molding material made of resin pellets supplied into the heating cylinder 2 by the rotation of the screw 3, and a plastic step A molding method having an injection step S3c for injecting and filling molten resin in the heating cylinder 2 into the mold 4 and performing the molding with a specific molding material Pe ..., the metering step from the end of the injection step S3c Between the start of S1c, by rotating the screw 3 by a predetermined angle Rr in the opposite direction to the rotation direction during weighing, the opposite behavior of the weighing step S1c with respect to the molding material Pe ... in the heating cylinder 2 It is characterized by carrying out a lump process S10c (S10ce) for applying the above.
この場合、発明の好適な態様により、特定の成形材料Pe…には、100〔℃〕以下の温度で溶融を開始する樹脂特性を有する、少なくとも、PCTA樹脂材料,PCTG樹脂材料又はポリ乳酸樹脂材料を含ませることができる。また、所定の角度Rrは、0.25〜4回転から選択することができる。 In this case, according to a preferred embodiment of the invention, the specific molding material Pe ... has at least a PCTA resin material, a PCTG resin material, or a polylactic acid resin material having a resin property of starting melting at a temperature of 100 [° C.] or less. Can be included. The predetermined angle Rr can be selected from 0.25 to 4 rotations.
一方、本発明の他の形態に係る射出成形機Mの成形方法は、上述した課題を解決するため、加熱筒2内に供給された樹脂ペレットによる成形材料をスクリュ3の回転により可塑化計量する計量工程S1cと、可塑化計量した加熱筒2内の溶融樹脂を金型4に射出充填する射出工程S3cとを有する成形方法であって、特定の成形材料Pe…により成形を行うに際し、計量工程S1cにおける計量開始から計量終了までの計量時間Tmdを監視し、当該計量時間Tmdが設定した計量異常判定時間Tmsを超えたときは、射出工程S3cと計量工程S1c間で、スクリュ3を、計量時の回転方向に対して反対方向に、所定の角度Rrだけ回転させることにより加熱筒2内の成形材料Pe…に対して計量工程S3cの反対の挙動を付与する分塊工程S10c(S10ce)を行うようにしたことを特徴とする。 On the other hand, the molding method of the injection molding machine M according to another embodiment of the present invention plasticizes and measures the molding material by the resin pellets supplied into the heating cylinder 2 by the rotation of the screw 3 in order to solve the above-described problems. A molding method having a measuring step S1c and an injection step S3c for injecting and filling the molten resin in the heating cylinder 2 subjected to plasticization and weighing into the mold 4, and when performing molding with a specific molding material Pe ... The measurement time Tmd from the start of measurement to the end of measurement in S1c is monitored. When the measurement time Tmd exceeds the set measurement abnormality determination time Tms, the screw 3 is measured between the injection process S3c and the measurement process S1c. In the opposite direction to the rotation direction, the blocker gives the opposite behavior of the weighing step S3c to the molding material Pe ... in the heating cylinder 2 by rotating it by a predetermined angle Rr. Characterized in that to perform the S10c (S10ce).
この場合、発明の好適な態様により、特定の成形材料Pe…には、100〔℃〕以下の温度で溶融を開始する樹脂特性を有する、少なくとも、PCTA樹脂材料,PCTG樹脂材料又はポリ乳酸樹脂材料を含ませることができる。また、所定の角度Rrに対して、予め基本角度Rroを設定し、最初に計量時間Tmdが計量異常判定時間Tmsを超えたなら基本角度Rroだけ分塊工程S10c(S10ce)を行うとともに、この後、計量時間Tmdが計量異常判定時間Tmsを超えたなら、超える毎に、基本角度Rroから順次大きくした所定の角度Rrにより分塊工程S10c(S10ce)を行うことができる。この際、所定の角度Rrに対して、予め限界角度RLを設定し、所定の角度Rrが限界角度RLを超えたなら、異常処理を行うことができる。さらに、計量異常判定時間Tmsを超えたと判定する条件は、設定した判定回数Nだけ連続して超えたことを条件とすることができる。また、射出工程S3cと計量工程S1c間には、射出工程S3cの終了から計量工程S1cの開始間、又は計量工程S1cの終了から射出工程S3cの開始間を含ませることができる。 In this case, according to a preferred embodiment of the invention, the specific molding material Pe ... has at least a PCTA resin material, a PCTG resin material, or a polylactic acid resin material having a resin property of starting melting at a temperature of 100 [° C.] or less. Can be included. In addition, a basic angle Rro is set in advance with respect to the predetermined angle Rr, and when the measurement time Tmd first exceeds the measurement abnormality determination time Tms, the lump process S10c (S10ce) is performed for the basic angle Rro. If the measurement time Tmd exceeds the measurement abnormality determination time Tms, the lump process S10c (S10ce) can be performed at a predetermined angle Rr that is sequentially increased from the basic angle Rro each time the measurement time Tmd exceeds the measurement abnormality determination time Tms. At this time, if the limit angle RL is set in advance with respect to the predetermined angle Rr, and the predetermined angle Rr exceeds the limit angle RL, abnormality processing can be performed. Furthermore, the condition for determining that the measurement abnormality determination time Tms has been exceeded can be a condition that the measurement abnormality determination time N has been continuously exceeded. Further, the injection process S3c and the weighing process S1c can include a period between the end of the injection process S3c and the start of the measurement process S1c, or a period between the end of the measurement process S1c and the start of the injection process S3c.
他方、本発明の他の形態に係る射出成形機Mの成形方法は、上述した課題を解決するため、加熱筒2内に供給された樹脂ペレットによる成形材料をスクリュ3の回転により可塑化計量する計量工程S1cと、可塑化計量した加熱筒2内の溶融樹脂を金型4に射出充填する射出工程S3cとを有する成形方法であって、特定の成形材料Pe…により成形を行うに際し、射出工程S3cが終了した後における成形品の冷却時間Tcdを監視し、連続する冷却時間Tcdが設定した冷却限界判定時間Tcsを超えたときは、スクリュ3を、計量時の回転方向に対して反対方向に、所定の角度Rrだけ回転させることにより加熱筒2内の成形材料Pe…に対して計量工程S1cの反対の挙動を付与する分塊工程S10cを行うようにしたことを特徴とする。 On the other hand, the molding method of the injection molding machine M according to another embodiment of the present invention plasticizes and measures the molding material by the resin pellets supplied into the heating cylinder 2 by rotating the screw 3 in order to solve the above-described problems. A molding method having a measuring step S1c and an injection step S3c for injecting and filling the molten resin in the heating cylinder 2 plasticized and metered into the mold 4, and when performing molding with a specific molding material Pe ... The cooling time Tcd of the molded product after S3c is finished is monitored, and when the continuous cooling time Tcd exceeds the set cooling limit judgment time Tcs, the screw 3 is moved in the direction opposite to the rotation direction during measurement. , By performing a lump process S10c that gives the opposite behavior of the weighing process S1c to the molding material Pe ... in the heating cylinder 2 by rotating it by a predetermined angle Rr. That.
この場合、発明の好適な態様により、特定の成形材料Pe…には、100〔℃〕以下の温度で溶融を開始する樹脂特性を有する、少なくとも、PCTA樹脂材料,PCTG樹脂材料又はポリ乳酸樹脂材料を含ませることができる。また、必要により、分塊工程S10cの終了後、当該分塊工程S10cの開始時の角度までスクリュ3を戻すための戻し工程S10crを行うことができる。 In this case, according to a preferred embodiment of the invention, the specific molding material Pe ... has at least a PCTA resin material, a PCTG resin material, or a polylactic acid resin material having a resin property of starting melting at a temperature of 100 [° C.] or less. Can be included. Further, if necessary, a return step S10cr for returning the screw 3 to the angle at the start of the split step S10c can be performed after the end of the split step S10c.
このような手法による本発明に係る射出成形機Mの成形方法によれば、次のような顕著な効果を奏する。 According to the molding method of the injection molding machine M according to the present invention by such a technique, the following remarkable effects can be obtained.
(1) 特定の成形材料Pe…により成形を行うに際し、射出工程S3cと計量工程S1c間で、スクリュ3を、計量時の回転方向に対して反対方向に、所定の角度Rrだけ回転させることにより加熱筒2内の成形材料Pe…に対して計量工程S1cの反対の挙動を付与する分塊工程S10c(S10ce)を行うようにしたため、くっついた成形材料Pe…同士を分離する方向に戻すことができる。即ち、成形材料Pe…がスクリュフライトにより加熱筒2内に移送される場合、スクリュ3の回転に従って当該回転方向に徐々に圧縮されるが、計量工程S1cの反対の挙動を付与する分塊工程S10c(S10ce)を行うことにより、圧縮状態の解放及び分離方向の回転付与により、くっついた成形材料Pe…同士が分離する方向に戻される。これにより、成形材料Pe…は、加熱筒2内に食い込み易くなり、比較的低い温度で溶融しやすい特定の成形材料Pe…を成形する場合であっても、計量工程S1cにおいてスクリュ3が空回りし、計量不能になる不具合を解消できる。 (1) When performing molding with a specific molding material Pe ..., by rotating the screw 3 by a predetermined angle Rr in the opposite direction to the rotation direction during measurement between the injection process S3c and the measurement process S1c. Since the splitting step S10c (S10ce) for imparting the opposite behavior of the weighing step S1c to the molding material Pe ... in the heating cylinder 2 is performed, it is possible to return the stuck molding materials Pe ... in a direction to separate them. it can. That is, when the molding material Pe ... is transferred into the heating cylinder 2 by screw flight, it is gradually compressed in the direction of rotation according to the rotation of the screw 3, but a lump process S10c imparting the opposite behavior of the weighing process S1c. By performing (S10ce), the stuck molding material Pe is returned to the direction in which they are separated by releasing the compressed state and applying rotation in the separating direction. As a result, the molding material Pe ... easily penetrates into the heating cylinder 2, and even when a specific molding material Pe ... that is easy to melt at a relatively low temperature is molded, the screw 3 is idled in the weighing step S1c. , Can solve the problem of weighing out.
(2) 分塊工程S10c(S10ce)を行うに際しては、射出工程S3cと計量工程S1c間で、スクリュ3を、計量時の回転方向に対して反対方向に、所定の角度Rrだけ回転させれば足りるため、追加的な構成要素を伴うことなく、ソフトウェア(制御プログラム)の変更により容易に実施可能となる。したがって、実施の容易化及びコストダウンを図ることができるとともに、固定要素が追加されるなどの変更が生じないため、他の樹脂材料の成形に悪影響を及ぼす虞れがなく、汎用性及び安定性(信頼性)に優れる。 (2) When performing the lump process S10c (S10ce), the screw 3 is rotated by a predetermined angle Rr in the opposite direction to the rotation direction during measurement between the injection process S3c and the measurement process S1c. Therefore, it can be easily implemented by changing software (control program) without additional components. Therefore, the implementation can be facilitated and the cost can be reduced, and since there is no change such as addition of a fixing element, there is no possibility of adversely affecting the molding of other resin materials, and versatility and stability. Excellent (reliability).
(3) 計量工程S1cにおける計量開始から計量終了までの計量時間Tmdを監視し、当該計量時間Tmdが設定した計量異常判定時間Tmsを超えたときに、射出工程S3cと計量工程S1c間で、分塊工程S10c(S10ce)を行うようにすれば、実際の計量時間Tmdにより判定できるため、特定の成形材料Pe…の樹脂特性が未知の場合であっても、計量不能になる不具合を確実に解消し、本発明に係る成形方法の有効性を享受できる。 (3) The measurement time Tmd from the start of measurement to the end of measurement in the measurement step S1c is monitored, and when the measurement time Tmd exceeds the set measurement abnormality determination time Tms, the minute is measured between the injection step S3c and the measurement step S1c. If the lump process S10c (S10ce) is performed, the determination can be made based on the actual measurement time Tmd, so that even if the resin characteristics of the specific molding material Pe ... are unknown, the problem that the measurement becomes impossible is surely solved. And the effectiveness of the shaping | molding method concerning this invention can be enjoyed.
(4) 成形品の冷却時間Tcdを監視し、連続する冷却時間Tcdが設定した冷却限界判定時間Tcsを超えたときに、分塊工程S10cを行うようにすれば、成形材料Pe…における表面の溶融及び成形材料Pe…同士のくっつきの進行を停止できるため、成形品の冷却時間Tcdが長くなる場合であっても、計量不能になる不具合を確実に解消し、本発明に係る成形方法の有効性を享受できる。 (4) If the cooling time Tcd of the molded product is monitored, and when the continuous cooling time Tcd exceeds the set cooling limit judgment time Tcs, the lump step S10c is performed, the surface of the molding material Pe ... Since it is possible to stop the progress of the adhesion between the melting and the molding material Pe ..., even when the cooling time Tcd of the molded product becomes long, the problem that the measurement becomes impossible is surely eliminated, and the molding method according to the present invention is effective. Enjoy the sex.
(5) 射出工程S3cの終了から計量工程S1cの開始間で、スクリュ3を、計量時の回転方向に対して反対方向に、所定の角度Rrだけ回転させることにより加熱筒2内の成形材料Pe…に対して計量工程S1cの反対の挙動を付与する分塊工程S10c(S10ce)を行うようにしたため、射出工程S3cの終了から計量工程S1cの開始間における冷却時間の待ち時間等の条件を考慮し、分塊工程S10c又は10ceを行う際の最適なタイミングを選定できる。 (5) Between the end of the injection step S3c and the start of the measuring step S1c, the screw 3 is rotated by a predetermined angle Rr in the opposite direction to the rotating direction at the time of measuring, thereby forming the molding material Pe in the heating cylinder 2 Since the lump process S10c (S10ce) that gives the opposite behavior to the weighing process S1c is performed on the ..., the conditions such as the waiting time of the cooling time between the end of the injection process S3c and the start of the weighing process S1c are taken into consideration And the optimal timing at the time of performing the lump process S10c or 10ce can be selected.
(6) 好適な態様により、特定の成形材料Pe…に、100〔℃〕以下の温度で溶融を開始する樹脂特性を有する、少なくとも、PCTA樹脂材料,PCTG樹脂材料又はポリ乳酸樹脂材料を含ませれば、固有の樹脂特性を有するこれらの特定の成形材料Pe…に対して、計量不能になる不具合を解消する観点から好適であり、確実かつ安定した計量、更には成形を行うことができる。 (6) According to a preferred embodiment, at least a PCTA resin material, a PCTG resin material, or a polylactic acid resin material having a resin property of starting melting at a temperature of 100 [° C.] or less is included in a specific molding material Pe. For example, these specific molding materials Pe having unique resin characteristics are suitable from the viewpoint of eliminating the problem of incapability of metering, and reliable and stable metering and further molding can be performed.
(7) 好適な態様により、所定の角度Rrとして、0.25〜4回転から選択すれば、分塊工程S10c(S10ce)の有効性を確保する観点からその最適化を図ることができる。 (7) According to a preferred aspect, if the predetermined angle Rr is selected from 0.25 to 4 rotations, the optimization can be achieved from the viewpoint of ensuring the effectiveness of the lump process S10c (S10ce).
(8) 好適な態様により、所定の角度Rrに対して、予め基本角度Rroを設定し、最初に計量時間Tmdが計量異常判定時間Tmsを超えたなら基本角度Rroだけ分塊工程S10c(S10ce)を行うとともに、この後、計量時間Tmdが計量異常判定時間Tmsを超えたなら、超える毎に、基本角度Rroから順次大きくした所定の角度Rrにより分塊工程S10c(S10ce)を行うようにすれば、分塊工程S10c(S10ce)の有効性を確実に担保することができる。 (8) According to a preferred embodiment, a basic angle Rro is set in advance with respect to a predetermined angle Rr. If the measurement time Tmd first exceeds the measurement abnormality determination time Tms, the lump process S10c (S10ce) is performed by the basic angle Rro. After this, if the weighing time Tmd exceeds the weighing abnormality determination time Tms, every time the weighing time Tmd exceeds the basic angle Rro, the block process S10c (S10ce) is performed at a predetermined angle Rr. The effectiveness of the lump process S10c (S10ce) can be reliably ensured.
(9) 好適な態様により、所定の角度Rrに対して、予め限界角度RLを設定し、所定の角度Rrが限界角度RLを超えたなら、異常処理を行うようにすれば、分塊工程S10c(S10ce)を行うことに伴う成形品質への影響を回避することができ、成形不良が発生する前に、成形動作を停止したり異常警報を発するなどの異常処理を行い、必要な対応策を講じることができる。 (9) If the limit angle RL is set in advance with respect to the predetermined angle Rr and the abnormal process is performed when the predetermined angle Rr exceeds the limit angle RL according to a preferred aspect, the block process S10c (S10ce) can avoid the influence on the molding quality, and before the molding failure occurs, perform abnormal processing such as stopping the molding operation or issuing an abnormal alarm, and take necessary countermeasures. Can be taken.
(10) 好適な態様により、計量異常判定時間Tmsを超えたと判定する条件として、設定した判定回数Nだけ連続して超えたことを条件とすれば、一時的に計量異常判定時間Tmsを超えるノイズ的な要素を排除でき、計量時間Tmdが計量異常判定時間Tmsを実質的に超える場合のみを確実に検出できる。 (10) According to a preferred aspect, if the condition for determining that the measurement abnormality determination time Tms has been exceeded is a condition that the measurement abnormality determination time N has been exceeded, the noise that temporarily exceeds the measurement abnormality determination time Tms Therefore, only when the measurement time Tmd substantially exceeds the measurement abnormality determination time Tms can be reliably detected.
(11) 好適な態様により、分塊工程S10cの終了後、当該分塊工程S10cの開始時の角度までスクリュ3を戻すための戻し工程S10crを行うようにすれば、特に、冷却時間Tcdが長くなり、分塊工程S10cの回数が増えるような場合であっても、分塊工程S10cにより発生する可能性がある計量後の溶融樹脂(計量値)に対する影響を相殺できる。 (11) If the return step S10cr for returning the screw 3 to the angle at the start of the bundling step S10c is performed according to a preferred embodiment, the cooling time Tcd is particularly long. Thus, even if the number of times of the lump process S10c is increased, the influence on the molten resin (measured value) after measurement that may be generated by the lump process S10c can be offset.
次に、本発明に係る好適実施形態を挙げ、図面に基づき詳細に説明する。 Next, preferred embodiments according to the present invention will be given and described in detail with reference to the drawings.
まず、本実施形態に係る成形方法を実施できる射出成形機Mの構成について、図2及び図3を参照して説明する。 First, the configuration of an injection molding machine M that can perform the molding method according to the present embodiment will be described with reference to FIGS. 2 and 3.
図2は、射出成形機Mの全体構成を示す。射出成形機Mは射出装置Miと型締装置Mcを備える。射出装置Miは、加熱筒2を備え、この加熱筒2は、先端に射出ノズル11を、後部にホッパー12をそれぞれ有する。そして、ホッパー12の下端は落下孔13を介して加熱筒2の内部に連通する。14…は加熱筒2及び射出ノズル11の外周面に装着したヒータを示す。また、加熱筒2には、スクリュ3を装填するとともに、加熱筒2の後端には、スクリュ3を進退駆動する射出シリンダ15及び当該スクリュ3を回転駆動する計量モータ(オイルモータ)16を備える。他方、型締装置Mcは、金型4を支持する固定盤17及び可動盤18を備えるとともに、可動盤18を進退駆動することにより、金型4に対する型開閉及び型締を行う型締シリンダ19を備える。その他のアクチュエータとしては、図示を省略したが、金型4における成形品の突き出しを行う突出しシリンダや射出装置Miを進退移動させて金型4に対するノズルタッチ又はその解除を行う射出装置移動シリンダ等を備えている。 FIG. 2 shows the overall configuration of the injection molding machine M. The injection molding machine M includes an injection device Mi and a mold clamping device Mc. The injection device Mi includes a heating cylinder 2, and the heating cylinder 2 has an injection nozzle 11 at the tip and a hopper 12 at the rear. The lower end of the hopper 12 communicates with the inside of the heating cylinder 2 through the drop hole 13. Reference numerals 14... Denote heaters mounted on the outer peripheral surfaces of the heating cylinder 2 and the injection nozzle 11. The heating cylinder 2 is loaded with a screw 3, and the rear end of the heating cylinder 2 is provided with an injection cylinder 15 that drives the screw 3 forward and backward, and a metering motor (oil motor) 16 that rotates the screw 3. . On the other hand, the mold clamping device Mc includes a stationary platen 17 and a movable platen 18 that support the mold 4, and a mold clamping cylinder 19 that performs mold opening / closing and mold clamping with respect to the mold 4 by driving the movable platen 18 forward and backward. Is provided. As other actuators, although not shown in the drawings, a projecting cylinder for projecting a molded product in the mold 4, an injection apparatus moving cylinder for performing nozzle touch on the mold 4 or releasing it by moving the injection apparatus Mi forward and backward, etc. I have.
一方、21は油圧駆動部であり、油圧駆動源となる可変吐出型油圧ポンプを利用した油圧ポンプ22及び各種切換バルブを配した油圧パネル23を備える。油圧ポンプ22は、サーボモータ24により回転駆動されるとともに、このサーボモータ24の回転数は、当該サーボモータ24に付設したロータリエンコーダ25により検出される。なお、26はオイルタンクを示す。 On the other hand, 21 is a hydraulic drive unit, which includes a hydraulic pump 22 using a variable discharge hydraulic pump as a hydraulic drive source and a hydraulic panel 23 provided with various switching valves. The hydraulic pump 22 is driven to rotate by a servo motor 24, and the rotation speed of the servo motor 24 is detected by a rotary encoder 25 attached to the servo motor 24. Reference numeral 26 denotes an oil tank.
また、射出成形機Mの全体の制御を司るコンピュータ機能を有する成形機コントローラ31を備え、この成形機コントローラ31は、本実施形態に係る成形方法を実行するための制御プログラム31pを格納する。成形機コントローラ31はサーボ回路を内蔵し、このサーボ回路には上述したサーボモータ24に接続する。これにより、サーボモータ24の回転数を可変制御し、油圧ポンプ22の吐出流量及び吐出圧力を可変制御できるため、上述した各シリンダ15,19…及び計量モータ16等の駆動制御により成形サイクルにおける各動作工程を駆動制御できる。32はスクリュ3の位置(スクリュ位置)を検出する位置センサであり、成形機コントローラ31に接続する。 Moreover, the molding machine controller 31 having a computer function for controlling the entire injection molding machine M is provided, and the molding machine controller 31 stores a control program 31p for executing the molding method according to the present embodiment. The molding machine controller 31 has a built-in servo circuit connected to the servo motor 24 described above. As a result, the number of rotations of the servo motor 24 can be variably controlled, and the discharge flow rate and discharge pressure of the hydraulic pump 22 can be variably controlled. Therefore, the drive control of the cylinders 15, 19. The operation process can be driven and controlled. A position sensor 32 detects the position of the screw 3 (screw position) and is connected to the molding machine controller 31.
他方、成形機コントローラ31には、ディスプレイ33を接続する。ディスプレイ33には、タッチパネル33pが付設されており、このタッチパネル33pにより各種設定等を行うことができる。したがって、タッチパネル33pを付設したディスプレイ33は、設定部34を構成する。この設定部34により、本実施形態に係る成形方法の実施に用いる計量異常判定時間Tmsや冷却限界判定時間Tcs等を設定することができる。また、成形機コントローラ31は、内蔵するシーケンスコントローラを介して油圧パネル23に接続するとともに、射出成形機Mの動作状態を検出する圧力センサ及び温度センサ等の各種センサを含むセンサ群、及びサーボモータ24に付設されたロータリエンコーダ25は、成形機コントローラ31の入力ポートに接続する。さらに、成形機コントローラ31は、内蔵するヒータドライバを介してヒータ14…に接続する。 On the other hand, a display 33 is connected to the molding machine controller 31. A touch panel 33p is attached to the display 33, and various settings and the like can be performed by the touch panel 33p. Therefore, the display 33 provided with the touch panel 33p constitutes the setting unit 34. The setting unit 34 can set the measurement abnormality determination time Tms, the cooling limit determination time Tcs, and the like used for carrying out the forming method according to the present embodiment. The molding machine controller 31 is connected to the hydraulic panel 23 via a built-in sequence controller, and includes a sensor group including various sensors such as a pressure sensor and a temperature sensor for detecting the operation state of the injection molding machine M, and a servo motor. A rotary encoder 25 attached to 24 is connected to an input port of the molding machine controller 31. Further, the molding machine controller 31 is connected to the heaters 14 through built-in heater drivers.
次に、射出成形機Mを用いた本実施形態に係る成形方法の原理について、図6を参照して説明する。 Next, the principle of the molding method according to this embodiment using the injection molding machine M will be described with reference to FIG.
前述したように、樹脂ペレットとして、比較的新しい樹脂材料であるイーストマン・ケミカル社製のPCTA樹脂材料等(特定の樹脂材料Pe…)を使用して成形を行う場合、計量工程においてスクリュ3が加熱筒2内で空回りし、事実上、計量不能になる問題を生じる。即ち、PCTA樹脂材料等の特定の成形材料Pe…を使用した場合、成形材料Pe…は、ホッパー12の直下にある落下孔13に落下した直後から加熱筒2側の熱影響(40〜80〔℃〕程度)を受け、表面の溶融が開始することにより、樹脂ペレット(成形材料Pe…)同士がくっつき合うとともに、スクリュ3により移送された直後からスクリュ3のスクリュフライト3f…間にオコシ状に詰まった状態となる。この結果、成形を開始した後、10〜20ショット程度は計量が行われるも、これ以後は、スクリュ3のスクリュフライト3f…が回転しても、落下孔13内の成形材料Pe…は加熱筒2内に食い込まなくなる。即ち、成形材料Pe…は落下孔13から前方へ送られにくくなり、計量不能に陥いる。 As described above, when molding is performed using a relatively new resin material such as PCTA resin material (specific resin material Pe ...) manufactured by Eastman Chemical Co., as a resin pellet, There is a problem in that it becomes idle in the heating cylinder 2 and becomes virtually impossible to measure. That is, when a specific molding material Pe ... such as a PCTA resin material is used, the molding material Pe ... has a thermal effect on the side of the heating cylinder 2 immediately after dropping into the drop hole 13 directly below the hopper 12 (40-80 [ In addition, the resin pellets (molding material Pe ...) stick to each other, and immediately after being transferred by the screw 3, the screw flight 3f ... It becomes clogged. As a result, after molding is started, weighing is performed for about 10 to 20 shots. Thereafter, even if the screw flight 3f of the screw 3 rotates, the molding material Pe ... in the drop hole 13 is heated. No longer bite into 2. That is, the molding material Pe is difficult to be fed forward from the drop hole 13 and cannot be measured.
このように、比較的低い温度で溶融しやすいPCTA樹脂材料等の特定の成形材料Pe…を成形する場合、通常の樹脂材料よりも早い段階で表面の溶融が開始し、成形材料Pe…同士がくっつき合うことにより、スクリュフライト3f…の回転によっても加熱筒2の内部に食い込まなくなる。そこで、くっつき合った成形材料Pe…同士を再度バラバラな状態に戻すことが有効と考えれるため、スクリュ3を計量時とは反対方向に回転させることによりその有効性を検証した。即ち、計量工程では、スクリュ3の回転により、成形材料Pe…がその回転方向に圧縮されるため、オコシ状になる前に、スクリュ3を所定の角度Rrだけ計量時とは反対方向に回転させ、圧縮された成形材料Pe…に対して計量時とは反対の挙動を付与すれば、くっつき合った成形材料Pe…同士を分離させることができると考えられるため、その確認を試みた。 Thus, when molding a specific molding material Pe ... such as a PCTA resin material that is easily melted at a relatively low temperature, the melting of the surface starts at an earlier stage than a normal resin material, and the molding materials Pe ... By sticking to each other, the rotation of the screw flight 3 f. Therefore, since it is considered effective to return the stuck molding materials Pe... To each other again, the effectiveness was verified by rotating the screw 3 in the direction opposite to that during measurement. That is, in the measuring step, the molding material Pe is compressed in the rotational direction by the rotation of the screw 3, so that the screw 3 is rotated by a predetermined angle Rr in the opposite direction to the measuring direction before it becomes squeezed. Since it is considered that if the compressed molding material Pe... Is given a behavior opposite to that at the time of measurement, the molding materials Pe.
図6は、特定の成形材料Pe…を計量した際に、スクリュ3を計量時とは反対方向に回転させる角度Rrをパラメータとしたショット順に対する計量時間Tmd〔秒〕の変化を示す。この場合、特定の成形材料Pe…には、100〔℃〕以下の温度で溶融を開始する樹脂特性を有するPCTA樹脂材料(イーストマン・ケミカル社製AN014(品番))を使用し、落下孔13内の温度は40〔℃〕に設定した。図6中、R90は各ショットの計量開始前にスクリュ3を計量時に対して反対方向へ90〔゜〕回転させた場合、R180は各ショットの計量開始前にスクリュ3を同方向へ180〔゜〕回転させた場合、R360は各ショットの計量開始前にスクリュ3を同方向へ360〔゜〕回転させた場合、Rnは各ショットの計量開始前に同方向へのスクリュ3の回転は行わない場合をそれぞれ示す。 FIG. 6 shows a change in the measurement time Tmd [seconds] with respect to the shot order with the angle Rr for rotating the screw 3 in the direction opposite to that when measuring when a specific molding material Pe is measured. In this case, a PCTA resin material (AN014 (product number) manufactured by Eastman Chemical Co., Ltd.) having a resin characteristic of starting melting at a temperature of 100 [° C.] or less is used as the specific molding material Pe. The temperature inside was set to 40 ° C. In FIG. 6, R90 indicates that when the screw 3 is rotated 90 [deg.] In the opposite direction to the time of measurement before starting the measurement of each shot, R180 indicates that the screw 3 is rotated 180 [[deg.] In the same direction before the measurement of each shot is started. When rotated, R360 does not rotate the screw 3 in the same direction before starting the measurement of each shot when R3 rotates the screw 3 360 ° in the same direction before the start of measuring each shot. Each case is shown.
図6から明らかなように、Rnの場合、成形(ショット)の開始から9ショット程度までは計量可能であっても、その後、急激に計量時間Tmdが延び、計量不能になる。なお、正常に計量が行われた場合の計量時間Tmdは、図6より2.5〜3〔秒〕程度である。また、R90の場合、成形の開始から22ショット程度までは計量可能であっても、その後、急激に計量時間Tmdが延び、計量不能になる。これに対して、R180とR360の場合、成形の開始から80ショットを超えても計量可能である。 As is apparent from FIG. 6, in the case of Rn, even if measurement is possible from the start of molding (shot) to about 9 shots, thereafter, the measurement time Tmd is suddenly increased and measurement is impossible. In addition, the measurement time Tmd when the measurement is normally performed is about 2.5 to 3 [seconds] from FIG. Further, in the case of R90, even if the measurement can be performed up to about 22 shots from the start of molding, the measurement time Tmd is suddenly extended thereafter, and the measurement becomes impossible. On the other hand, in the case of R180 and R360, it is possible to measure even after exceeding 80 shots from the start of molding.
この結果、一ショット毎に、スクリュ3を計量時の回転方向に対して反対方向に、所定の角度Rr、即ち、例示の場合、180〔゜〕以上、回転させれば、成形材料Pe…を加熱筒2内に食い込み可能な状態に再生可能であり、比較的低い温度で溶融しやすい特定の成形材料Pe…を成形する場合であっても、加熱筒2内で生じるスクリュ3の空回りを回避し、計量不能になる不具合を解消できる。 As a result, if the screw 3 is rotated by a predetermined angle Rr, that is, in the example, 180 [°] or more in the opposite direction to the rotating direction during measurement for each shot, the molding material Pe. Even when molding a specific molding material Pe, which can be regenerated to be able to bite into the heating cylinder 2 and is easily melted at a relatively low temperature, the idle rotation of the screw 3 generated in the heating cylinder 2 is avoided. This eliminates the problem of being unable to measure.
次に、本実施形態に係る具体的な成形方法について、図2〜図5を参照しつつ図1に示すフローチャートに従って説明する。 Next, a specific forming method according to the present embodiment will be described according to the flowchart shown in FIG. 1 with reference to FIGS.
最初に、設定部34を利用して必要な設定を行う。なお、使用する特定の樹脂材料Pe…は、図6の実験において使用した樹脂材料Pe…と同じPCTA樹脂材料であり、加熱筒2の加熱温度は240〔℃〕、落下孔13内の温度は40〔℃〕である。主要な設定項目は以下のとおりである。 First, necessary setting is performed using the setting unit 34. The specific resin material Pe used is the same PCTA resin material as the resin material Pe used in the experiment of FIG. 6, the heating temperature of the heating cylinder 2 is 240 ° C., and the temperature in the drop hole 13 is 40 [° C.]. The main setting items are as follows.
(a) 計量開始から計量終了までの計量時間Tmdの長さに対して異常の有無を判定するための計量異常判定時間Tmsを設定する。例示(図6)の場合、正常な計量時間Tmdは、2.5〜3〔秒〕程度であるため、計量異常判定時間Tmsは5〔秒〕に設定した。 (A) A measurement abnormality determination time Tms for determining the presence or absence of abnormality with respect to the length of the measurement time Tmd from the start of measurement to the end of measurement is set. In the case of the example (FIG. 6), since the normal measurement time Tmd is about 2.5 to 3 [seconds], the measurement abnormality determination time Tms is set to 5 [seconds].
(b) 計量異常判定時間Tmsを超えたと判定する条件は、計量異常判定時間Tmsを判定回数Nだけ連続して超えたことを条件とするため、この判定回数Nを設定する。例示の場合、2回に設定した。 (B) Since the condition for determining that the measurement abnormality determination time Tms has been exceeded is that the measurement abnormality determination time Tms has been continuously exceeded by the determination number N, this determination number N is set. In the case of illustration, it was set to 2 times.
(c) スクリュ3を計量時の回転方向に対して反対方向に回転させる所定の角度Rrを設定する。例示の場合、所定の角度Rrの初期値、即ち、基本角度Rroとして、180〔゜〕を設定した。また、所定の角度Rrは、計量異常判定時間Tmsを超える毎に、基本角度Rroから順次大きくする。この場合、加算値(例示は、180〔゜〕)を設定し、基本角度Rro(180〔゜〕)から180〔゜〕ずつ順次加算するようにした。なお、所定の角度Rrを順次大きくする方法は、任意であり、例えば、加算値は加算する毎に異なる値であってもよいし、基本角度Rro又は使用中の所定の角度Rrに対して係数を乗ずる方法などであってもよい。基本角度Rroの大きさの選定は任意であるが、一定の効果を確保し、かつ計量値等に対する無用な影響を回避する観点から、0.25〜2回転(90〜720〔゜〕)の範囲に選定し、特に、後述する分塊工程の有効性を確保する観点からその最適化を図ることが望ましい。 (C) A predetermined angle Rr for rotating the screw 3 in the opposite direction to the rotating direction during measurement is set. In the example, 180 [°] is set as the initial value of the predetermined angle Rr, that is, the basic angle Rro. Further, the predetermined angle Rr is sequentially increased from the basic angle Rro every time the measurement abnormality determination time Tms is exceeded. In this case, an addition value (for example, 180 [°]) is set, and the basic angle Rro (180 [°]) is sequentially added in increments of 180 [°]. The method of sequentially increasing the predetermined angle Rr is arbitrary. For example, the addition value may be a different value every time the addition is performed, or a coefficient with respect to the basic angle Rro or the predetermined angle Rr in use. A method of multiplying by may be used. The size of the basic angle Rro can be selected arbitrarily, but it is 0.25 to 2 rotations (90 to 720 [°]) from the viewpoint of ensuring a certain effect and avoiding unnecessary influence on the measurement value and the like. It is desirable to select the range, and in particular, to optimize it from the viewpoint of ensuring the effectiveness of the subsequent block process.
(d) 所定の角度Rrに対する限界角度RLを設定する。例示は、4回転を設定し、限界角度RL(4回転)を超えたなら異常処理を行うようにした。これにより、後述する分塊工程を行うことに伴う成形品質への影響を回避することができ、成形不良が発生する前に、成形動作を停止したり異常警報を発するなどの異常処理を行い、必要な対応策を講じることができる。 (D) A limit angle RL with respect to the predetermined angle Rr is set. In the example, 4 rotations are set, and if the limit angle RL (4 rotations) is exceeded, an abnormal process is performed. Thereby, it is possible to avoid the influence on the molding quality associated with performing the block process described later, before performing the abnormal processing such as stopping the molding operation or issuing an abnormal alarm before molding failure occurs, Necessary measures can be taken.
(e) スクリュ3を計量時に対して反対方向へ角度Rrだけ回転させるタイミングを設定する。このタイミングには、射出工程S3と計量工程S1間、即ち、射出工程S3の終了から計量工程S1の開始間、又は計量工程S1の終了から射出工程S3の開始間を選択できる。例示の場合、射出工程S3の終了から計量工程S1の開始間のタイミングを選択した。 (E) The timing for rotating the screw 3 by an angle Rr in the opposite direction to the time of measurement is set. This timing can be selected between the injection step S3 and the weighing step S1, that is, between the end of the injection step S3 and the start of the weighing step S1, or between the end of the weighing step S1 and the start of the injection step S3. In the case of illustration, the timing between the end of the injection step S3 and the start of the weighing step S1 was selected.
以下、具体的な成形手順について説明する。まず、特定の樹脂材料Pe…をホッパー12に投入する。特定の樹脂材料Pe…は、素材としてPCTA樹脂材料を用いた大きさが米粒状の樹脂ペレットである。そして、成形機コントローラ31は油圧パネル23を切換え、サーボモータ24を制御することにより、オイルモータ16を、計量時の回転方向へ設定した回転速度により回転させる計量工程を行う(ステップS1)。この際、射出シリンダ15の後油室には所定の背圧を付与する。次いで、計量工程S1が終了したなら、成形機コントローラ31は油圧パネル23を切換え、サーボモータ24を制御することにより、射出シリンダ15のピストンを、設定した射出速度により前進させる射出工程を行う(ステップS2,S3)。 Hereinafter, a specific forming procedure will be described. First, a specific resin material Pe is put into the hopper 12. The specific resin material Pe ... is a resin pellet having a grain shape using a PCTA resin material as a raw material. Then, the molding machine controller 31 switches the hydraulic panel 23 and controls the servo motor 24 to perform a metering process for rotating the oil motor 16 at the rotational speed set in the rotational direction during metering (step S1). At this time, a predetermined back pressure is applied to the rear oil chamber of the injection cylinder 15. Next, when the metering step S1 is completed, the molding machine controller 31 switches the hydraulic panel 23 and controls the servo motor 24 to perform an injection step of advancing the piston of the injection cylinder 15 at the set injection speed (step) S2, S3).
一方、成形機コントローラ31は、上述した計量工程S1が終了した段階において、計量開始から計量終了までの時間である計量時間Tmdの取込みを行う(ステップS2,S4)。したがって、成形機コントローラ31は計量開始から計量終了までの時間を検出するタイマ機能を備えている。また、成形機コントローラ31は取り込んだ計量時間Tmdが予め設定した計量異常判定時間Tmsを超えたか否かを判定する(ステップS5)。この際、計量時間Tmdが計量異常判定時間Tmsを超えていない場合には、次に述べるカウント数をリセットし、このショットの判定処理を終了する。これに対して、計量時間Tmdが計量異常判定時間Tmsを超えている場合には、異常判定として1をカウントし、このショットの判定処理を終了する。そして、カウントによりカウント数が2になった場合には、連続して超えた回数が2、即ち、予め設定した判定回数の2に達するため、これに基づいて分塊指令を出力する(ステップS6,S7)。分塊指令を出力したなら、カウント数はリセットする。 On the other hand, the molding machine controller 31 takes in the measuring time Tmd that is the time from the start of measurement to the end of measurement at the stage where the above-described measurement process S1 is completed (steps S2 and S4). Therefore, the molding machine controller 31 has a timer function for detecting the time from the start of measurement to the end of measurement. Further, the molding machine controller 31 determines whether or not the taken measurement time Tmd exceeds a preset measurement abnormality determination time Tms (step S5). At this time, if the measurement time Tmd does not exceed the measurement abnormality determination time Tms, the count number described below is reset, and the shot determination process is terminated. On the other hand, when the measurement time Tmd exceeds the measurement abnormality determination time Tms, 1 is counted as the abnormality determination, and this shot determination process is terminated. Then, when the count number becomes 2 by the count, the number of times that has been continuously exceeded reaches 2, that is, the predetermined number of determination times 2, so that a block command is output based on this (step S6). , S7). If a block command is output, the count is reset.
他方、射出工程が終了した際に、上述した分塊指令が出力していない場合には、成形品の冷却工程等の後続する工程を経て、一ショット分の成形が終了する(ステップS8,S9)。これに対して、射出工程が終了した際に、上述した分塊指令が出力している場合には、分塊工程、即ち、成形機コントローラ31は油圧パネル23を切換え、サーボモータ24を制御することにより、オイルモータ16を計量時の回転方向に対して反対方向へ設定速度で回転させる分塊工程を行う(ステップS8,S9,S10)。この場合、反対方向へスクリュ3を回転させる角度Rrは、予め設定した180〔゜〕となる。また、回転させる設定速度は、計量時の回転速度を用いることができるが、この回転速度は任意に設定可能である。さらに、分塊工程S10を行う際は、成形機コントローラ31により、スクリュ3の前後方向位置を固定する位置制御を行う。 On the other hand, when the above-described block command is not output when the injection process is completed, the molding for one shot is completed through subsequent processes such as the cooling process of the molded product (steps S8 and S9). ). On the other hand, when the above-described block command is output when the injection process is finished, the block process, that is, the molding machine controller 31 switches the hydraulic panel 23 and controls the servo motor 24. Thus, a lump process is performed in which the oil motor 16 is rotated at a set speed in a direction opposite to the rotation direction during measurement (steps S8, S9, S10). In this case, the angle Rr for rotating the screw 3 in the opposite direction is 180 [°] set in advance. Moreover, the rotation speed at the time of measurement can be used as the set speed for rotation, but this rotation speed can be arbitrarily set. Furthermore, when performing the lump process S10, the molding machine controller 31 performs position control for fixing the position of the screw 3 in the front-rear direction.
そして、次の成形があれば、以後、同様の成形工程(成形サイクル)が繰返して行われる(ステップS11,S1…)。この場合、分塊工程が行われた以降は、通常、計量時間Tmdが計量異常判定時間Tmsを超えることのないショットが継続することとなるが、様々な環境により、再度、計量時間Tmdが計量異常判定時間Tmsを超える場合がある(ステップS4,S5,S6)。この場合には、基本角度Rro(180〔゜〕)に対して、加算値として設定した180〔゜〕を加算し、以後は、所定の角度Rrを360〔゜〕に変更して分塊工程を行う(ステップS6,S7)。したがって、この後、さらに、計量時間Tmdが計量異常判定時間Tmsを超える場合が発生したときは、360〔゜〕に
加算値となる180〔゜〕を加算し、所定の角度Rrを540〔゜〕に変更した分塊工程を行う(ステップS6,S7)。このように、計量時間Tmdが計量異常判定時間Tmsを超えたなら、超える毎に、基本角度Rroから順次大きくした所定の角度Rrにより分塊工程を行う。これにより、分塊工程の有効性を確実に担保することができる。
If there is a next molding, the same molding process (molding cycle) is repeated thereafter (steps S11, S1,...). In this case, after the bundling process is performed, the shot in which the measurement time Tmd does not exceed the measurement abnormality determination time Tms continues normally. However, the measurement time Tmd is again measured depending on various environments. The abnormality determination time Tms may be exceeded (steps S4, S5, S6). In this case, 180 [°] set as an addition value is added to the basic angle Rro (180 [°]), and thereafter, the predetermined angle Rr is changed to 360 [°] to perform the block process. (Steps S6 and S7). Therefore, after that, when the measurement time Tmd exceeds the measurement abnormality determination time Tms, 180 [°] as an addition value is added to 360 [°], and the predetermined angle Rr is set to 540 [°. ] The changed block process is performed (steps S6 and S7). As described above, when the measurement time Tmd exceeds the measurement abnormality determination time Tms, the bundling process is performed at a predetermined angle Rr that is sequentially increased from the basic angle Rro. Thereby, the effectiveness of a lump process can be ensured reliably.
一方、所定の角度Rrが大きくなり、予め設定した限界角度RLを超えたなら、異常処理、例えば、成形動作を停止したり異常警報を発するなどの異常処理を行う(ステップS12,S13)。このように、所定の角度Rrに対して、予め限界角度RLを設定し、所定の角度Rrが限界角度RLを超えたなら、異常処理を行うようにすれば、分塊工程を行うことに伴う成形品質への影響を回避することができ、成形不良が発生する前に必要な対応策を講じることができる利点がある。 On the other hand, if the predetermined angle Rr becomes larger and exceeds a preset limit angle RL, an abnormal process such as stopping the molding operation or issuing an abnormal alarm is performed (steps S12 and S13). As described above, if the limit angle RL is set in advance with respect to the predetermined angle Rr, and if the predetermined angle Rr exceeds the limit angle RL, an abnormal process is performed, it is accompanied by performing the block process. There is an advantage that the influence on the molding quality can be avoided and necessary countermeasures can be taken before molding defects occur.
図4に、本実施形態に係る成形方法を実施した際におけるショット順に対する計量時間の変化を示している。同図から明らかなように、最初のショットから7番目のショットまでの計量時間Tmdはいずれも計量異常判定時間Tmsを超えていないが、8番目のショットと9番目のショットの計量時間Tmdは連続して計量異常判定時間Tmsを超えている。したがって、9番目のショットが終了した時点ではカウント数が2、即ち、連続して超えた回数が判定回数の2になるため、分塊指令が出力される。これにより、次のショットから分塊工程がショット毎に行われる。 In FIG. 4, the change of the measurement time with respect to shot order at the time of implementing the shaping | molding method which concerns on this embodiment is shown. As can be seen from the figure, the measurement time Tmd from the first shot to the seventh shot does not exceed the measurement abnormality determination time Tms, but the measurement time Tmd of the eighth shot and the ninth shot is continuous. Thus, the measurement abnormality determination time Tms is exceeded. Accordingly, when the ninth shot is completed, the count number is 2, that is, the number of times that the number is continuously exceeded is the determination number 2, so that a block command is output. Thereby, the lump process is performed for every shot from the next shot.
なお、図4において、10番目のショットでは、分塊工程が行なわれることにより計量時間Tmdが計量異常判定時間Tmsを超えることはないが、11番目のショットでは、再び計量時間Tmdが計量異常判定時間Tmsを超えている。しかし、12番目のショットでは、再び計量時間Tmdが計量異常判定時間Tmsを超えなくなるため、11番目のショットの挙動は判定回数の2には達しないため、一時的なバラツキとして判断する。例示の場合、13番目のショット以降は、計量時間Tmdが計量異常判定時間Tmsを超えることなく安定した計量が行われる。このように、計量異常判定時間Tmsを超えたと判定する条件として、設定した判定回数Nだけ連続して超えたことを条件とすれば、一時的に計量異常判定時間Tmsを超えるノイズ的な要素を排除でき、計量時間Tmdが計量異常判定時間Tmsを実質的に超える場合のみを確実に検出できる利点がある。 In FIG. 4, in the 10th shot, the weighing time Tmd does not exceed the measurement abnormality determination time Tms due to the bundling process, but in the 11th shot, the measurement time Tmd is again determined as the measurement abnormality. Time Tms is exceeded. However, in the twelfth shot, since the measurement time Tmd does not exceed the measurement abnormality determination time Tms again, the behavior of the eleventh shot does not reach the number of determinations of 2, so it is determined as a temporary variation. In the example, after the 13th shot, stable weighing is performed without the weighing time Tmd exceeding the weighing abnormality determination time Tms. As described above, if the condition for determining that the measurement abnormality determination time Tms has been exceeded is that the predetermined determination number N has been exceeded, a noisy element that temporarily exceeds the measurement abnormality determination time Tms can be obtained. There is an advantage that only when the weighing time Tmd substantially exceeds the weighing abnormality determination time Tms can be reliably detected.
図5は、本実施形態に係る成形方法における分塊工程S10c(S10ce)を行うタイミングを示す。図1の実施形態では、分塊工程S10cを行うタイミングとして、射出工程S3cの終了から計量工程S1cの開始間に行う場合を示したが、図5に示す分塊工程S10ceのように、計量工程S3cの終了から射出工程S3cの開始間に行ってもよい。いずれのタイミングにより行っても、特定の樹脂材料Pe…の表面が溶融する状態に対して一定時間が経過する前に分塊工程S10c(S10ce)を挿入できる点で同様の作用を呈する。このように、射出工程S3cの終了から計量工程S1cの開始間、又は計量工程S1cの終了から射出工程S3cの開始間のいずれにも適用できるため、射出工程S3cの終了から計量工程S1cの開始間における冷却時間、或いは計量工程S1cの終了から射出工程S3cの開始間における待ち時間等の条件を考慮し、分塊工程S10cを行う際の最適なタイミングを選定できる。 FIG. 5 shows the timing for performing the lump process S10c (S10ce) in the molding method according to the present embodiment. In the embodiment of FIG. 1, as the timing of performing the lump process S10c, the case where it is performed between the end of the injection process S3c and the start of the weighing process S1c is shown. However, as in the lump process S10ce illustrated in FIG. It may be performed between the end of S3c and the start of the injection step S3c. Regardless of the timing, the same effect is exhibited in that the segmentation step S10c (S10ce) can be inserted before a certain time elapses with respect to the state in which the surface of the specific resin material Pe. Thus, since it can be applied between the end of the injection step S3c and the start of the weighing step S1c, or between the end of the measurement step S1c and the start of the injection step S3c, the interval between the end of the injection step S3c and the start of the measurement step S1c. In consideration of the cooling time or the waiting time between the end of the weighing step S1c and the start of the injection step S3c, it is possible to select the optimum timing when performing the lump step S10c.
よって、このような本実施形態に係る成形方法によれば、特定の成形材料Pe…により成形を行うに際し、射出工程S3cと計量工程S1c間で、スクリュ3を、計量時の回転方向に対して反対方向に、所定の角度Rrだけ回転させることにより加熱筒2内の成形材料Pe…に対して計量工程S1cの反対の挙動を付与する分塊工程S10cを行うようにしたため、成形材料Pe…は、加熱筒2内に食い込み易くなり、比較的低い温度で溶融しやすい特定の成形材料Pe…を成形する場合であっても、計量工程S1cにおいてスクリュ3が空回りし、計量不能になる不具合を解消できる。また、分塊工程S10cを行うに際しては、射出工程S3cと計量工程S1c間で、スクリュ3を、計量時の回転方向に対して反対方向に、所定の角度Rrだけ回転させれば足りるため、追加的な構成要素を伴うことなく、ソフトウェア(制御プログラム)の変更により容易に実施可能となる。したがって、実施の容易化及びコストダウンを図ることができるとともに、固定要素が追加されるなどの変更が生じないため、他の樹脂材料の成形に悪影響を及ぼす虞れがなく、汎用性及び安定性(信頼性)に優れる。特に、上記実施形態では、計量工程S1cにおける計量開始から計量終了までの計量時間Tmdを監視し、当該計量時間Tmdが設定した計量異常判定時間Tmsを超えたときに、以後の成形から、射出工程S3cと計量工程S1c間で、分塊工程S10cを行うようにすれば、実際の計量時間Tmdにより判定できるため、特定の成形材料Pe…の樹脂特性が未知の場合であっても、計量不能になる不具合を確実に解消し、本発明に係る成形方法の有効性を享受できる。 Therefore, according to such a molding method according to the present embodiment, when molding is performed using a specific molding material Pe ..., the screw 3 is moved between the injection step S3c and the weighing step S1c with respect to the rotation direction during weighing. In the opposite direction, by rotating by a predetermined angle Rr, the lump process S10c that gives the opposite behavior of the weighing process S1c to the molding material Pe ... in the heating cylinder 2 is performed, so the molding material Pe ... Even in the case of molding a specific molding material Pe, which is easy to bite into the heating cylinder 2 and melts at a relatively low temperature, the problem that the screw 3 becomes idle in the measuring step S1c and measurement becomes impossible is solved. it can. In addition, when performing the lump process S10c, it is sufficient to rotate the screw 3 by a predetermined angle Rr in the opposite direction to the rotation direction during measurement between the injection process S3c and the measurement process S1c. It can be easily implemented by changing the software (control program) without accompanying a typical component. Therefore, the implementation can be facilitated and the cost can be reduced, and since there is no change such as addition of a fixing element, there is no possibility of adversely affecting the molding of other resin materials, and versatility and stability. Excellent (reliability). In particular, in the above embodiment, the measurement time Tmd from the start of measurement to the end of measurement in the measurement step S1c is monitored, and when the measurement time Tmd exceeds the set measurement abnormality determination time Tms, the subsequent molding to the injection process. If the splitting step S10c is performed between S3c and the measuring step S1c, it can be determined by the actual measuring time Tmd, so that even if the resin characteristic of the specific molding material Pe ... is unknown, it becomes impossible to measure. Can be reliably solved, and the effectiveness of the molding method according to the present invention can be enjoyed.
他方、図7及び図8は、本発明の変更実施形態に係る成形方法を示す。変更実施形態に係る成形方法は、特定の成形材料Pe…により成形を行うに際し、図7に示すように、射出工程S3cが終了した後における成形品の冷却時間Tcdを監視し、連続する冷却時間Tcdが設定した冷却限界判定時間Tcsを超えたときは、スクリュ3を、計量時の回転方向に対して反対方向に、所定の角度Rrだけ回転させることにより加熱筒2内の成形材料Pe…に対して計量工程の反対の挙動を付与する分塊工程S10cを行うようにしたものである。 On the other hand, FIG.7 and FIG.8 shows the shaping | molding method which concerns on the modified embodiment of this invention. In the molding method according to the modified embodiment, when molding with a specific molding material Pe ..., as shown in FIG. 7, the cooling time Tcd of the molded product after the injection step S3c is completed is monitored, and the continuous cooling time is monitored. When Tcd exceeds the set cooling limit determination time Tcs, the screw 3 is rotated in a direction opposite to the rotation direction during measurement by a predetermined angle Rr to form the molding material Pe in the heating cylinder 2. On the other hand, the lump process S10c which gives the opposite behavior of the weighing process is performed.
図8には、射出工程が終了した後における成形品の冷却時間Tcdをパラメータとしたショット順に対する計量時間の変化に対するシミュレーション結果を示す。図8中、C30は冷却時間Tcdが30〔秒〕間連続した場合、C60は冷却時間Tcdが60〔秒〕間連続した場合、C90は冷却時間Tcdが90〔秒〕間連続した場合、C120は冷却時間Tcdが120〔秒〕間連続した場合をそれぞれ示す。 FIG. 8 shows a simulation result with respect to a change in the measurement time with respect to the shot order using the cooling time Tcd of the molded product after the injection process as a parameter. In FIG. 8, C30 is when the cooling time Tcd is continuous for 30 [seconds], C60 is when the cooling time Tcd is continuous for 60 [seconds], C90 is when the cooling time Tcd is continuous for 90 [seconds], C120 Indicates a case where the cooling time Tcd continues for 120 seconds.
冷却時間Tcdの連続時間が長くなった場合、成形材料Pe…がホッパー12の下方にある落下孔13及びスクリュフライト3f…間に滞在し、その状態で表面の溶融が進行する度合が高くなるため、その後、スクリュ3を回転しても空回りする可能性も高くなる。そこで、冷却限界判定時間Tcsを設定し、連続する冷却時間Tcdが冷却限界判定時間Tcsを超えたときには、分塊工程S10cを行うようにした。これにより、連続する冷却時間Tcdが長くなることに伴う不具合を回避できる。 When the continuous time of the cooling time Tcd becomes longer, the molding material Pe ... stays between the drop hole 13 and the screw flight 3f ... below the hopper 12, and the degree of progress of melting of the surface in that state increases. After that, even if the screw 3 is rotated, the possibility of idling increases. Therefore, the cooling limit determination time Tcs is set, and when the continuous cooling time Tcd exceeds the cooling limit determination time Tcs, the lump process S10c is performed. Thereby, the malfunction accompanying continuous cooling time Tcd becoming long can be avoided.
例えば、図8の場合、冷却限界判定時間Tcsを60〔秒〕に設定すれば、計量不能になることを回避できるため、図7に示す計量工程S1cと射出工程S3c間における冷却時間Tcdが、例えば、90秒であるとすれば、この冷却時間Tcdでは、射出工程S3cが終了した後、60〔秒〕の経過後に、分塊工程S10cが行われる。したがって、冷却時間Tcdが更に長い場合には、60〔秒〕を経過する度に、繰り返し分塊工程S10cを行えばよい。この場合、使用する所定の角度Rrは、0.25〜4回転(90〜1440〔゜〕)の範囲、望ましくは0.25〜2回転(90〜720〔゜〕)の範囲により設定できる。 For example, in the case of FIG. 8, if the cooling limit determination time Tcs is set to 60 [seconds], it becomes possible to avoid the inability to measure, so the cooling time Tcd between the weighing step S1c and the injection step S3c shown in FIG. For example, if it is 90 seconds, in this cooling time Tcd, after the injection step S3c is completed, after the elapse of 60 [seconds], the lump step S10c is performed. Therefore, when the cooling time Tcd is longer, the batching step S10c may be performed repeatedly every 60 [seconds]. In this case, the predetermined angle Rr to be used can be set in the range of 0.25 to 4 rotations (90 to 1440 [°]), preferably in the range of 0.25 to 2 rotations (90 to 720 [°]).
このように、成形品の冷却時間Tcdを監視し、連続する冷却時間Tcdが設定した冷却限界判定時間Tcsを超えたときに、分塊工程S10cを行うようにすれば、成形材料Pe…における表面の溶融及び成形材料Pe…同士のくっつきの進行を停止できるため、成形品の冷却時間Tcdが長くなる場合であっても、計量不能になる不具合を確実に解消し、本発明に係る成形方法の有効性を享受できる。 Thus, if the cooling time Tcd of the molded product is monitored and the continuous cooling time Tcd exceeds the set cooling limit determination time Tcs, the lump step S10c is performed, so that the surface of the molding material Pe ... And the progress of sticking between the molding materials Pe ... can be stopped, so that even when the cooling time Tcd of the molded product becomes long, the problem that the measurement becomes impossible is surely eliminated, and the molding method according to the present invention You can enjoy the effectiveness.
また、図7は、分塊工程S10cの終了後、当該分塊工程S10cの開始時の角度までスクリュ3を戻すための戻し工程S10crを行う場合を示す。即ち、分塊工程S10cにより、スクリュ3を、計量時の回転方向に対して反対方向に、所定の角度Rrだけ回転させることにより加熱筒2内の成形材料Pe…に対して計量工程S1cの反対の挙動を付与するとともに、直後に、戻し工程S10crを行い、スクリュ3を、計量時の回転方向に、同角度Rrだけ回転させることにより、スクリュ3を分塊工程S10cの開始時の角度まで戻すようにしたものである。これにより、特に、冷却時間Tcdが長くなり、分塊工程S10cの回数が増えるような場合であっても、分塊工程S10cにより発生する可能性がある計量後の溶融樹脂(計量値)に対する影響を相殺することが可能となる。なお、分塊工程S10c及び戻し工程S10crを行う際は、スクリュ3の前後方向位置を固定する位置制御を行う。 Moreover, FIG. 7 shows the case where return process S10cr for returning the screw 3 to the angle at the time of the start of the said chunk process S10c is performed after completion | finish of the chunk process S10c. That is, by the splitting step S10c, the screw 3 is rotated by a predetermined angle Rr in the opposite direction to the rotating direction at the time of weighing, so that the molding material Pe ... in the heating cylinder 2 is opposite to the weighing step S1c. Immediately after that, the return step S10cr is performed, and the screw 3 is rotated by the same angle Rr in the rotation direction at the time of measurement, thereby returning the screw 3 to the angle at the start of the bundling step S10c. It is what I did. Thereby, in particular, even when the cooling time Tcd becomes long and the number of times of the lump process S10c increases, the influence on the molten resin (measured value) after measurement that may be generated by the lump process S10c. Can be offset. In addition, when performing the lump process S10c and the return process S10cr, the position control which fixes the front-back direction position of the screw 3 is performed.
以上、好適実施形態及び変更実施形態について詳細に説明したが、本発明は、このような実施形態に限定されるものではなく、細部の構成,素材,数量,数値,手法等において、本発明の要旨を逸脱しない範囲で、任意に変更,追加,削除することができる。 As described above, the preferred embodiment and the modified embodiment have been described in detail. However, the present invention is not limited to such an embodiment, and the present invention is not limited to the detailed configuration, material, quantity, numerical value, method, and the like. Changes, additions and deletions can be made arbitrarily without departing from the scope.
例えば、本発明は、基本的に、特定の成形材料Pe…により成形を行うに際し、射出工程S3cと計量工程S1c間で、スクリュ3を、計量時の回転方向に対して反対方向に、所定の角度Rrだけ回転させることにより加熱筒2内の成形材料Pe…に対して計量工程S1cの反対の挙動を付与する分塊工程S10cを行うことが計量工程S1cを行うに際して有効な手法であるため、特定の成形材料Pe…の樹脂特性等が明確に解っている場合には、予め所定の角度Rrを設定し、最初からショット毎に分塊工程S10cを行うようにしてもよい。この場合、使用する所定の角度Rrは、0.25〜4回転(90〜1440〔゜〕)の範囲、望ましくは0.25〜2回転(90〜720〔゜〕)の範囲により設定できる。 For example, according to the present invention, basically, when molding is performed with a specific molding material Pe ..., the screw 3 is placed between the injection step S3c and the metering step S1c in a direction opposite to the rotational direction during metering in a predetermined direction. Since it is an effective technique to perform the weighing step S1c, performing the lump step S10c that imparts the opposite behavior of the weighing step S1c to the molding material Pe ... in the heating cylinder 2 by rotating the angle Rr. If the resin characteristics and the like of the specific molding material Pe ... are clearly understood, a predetermined angle Rr may be set in advance, and the chunking step S10c may be performed for each shot from the beginning. In this case, the predetermined angle Rr to be used can be set in the range of 0.25 to 4 rotations (90 to 1440 [°]), preferably in the range of 0.25 to 2 rotations (90 to 720 [°]).
また、例示の各実施形態は、組合わせて利用することができる。したがって、例えば、計量工程S1cにおける計量開始から計量終了までの計量時間Tmdを監視し、当該計量時間Tmdが設定した計量異常判定時間Tmsを超えたときに、射出工程S3cと計量工程S1c間で分塊工程S10cを行う場合、成形の開始から計量異常判定時間Tmsを超えるまでは、設定した基本角度Rro(例えば、180〔゜〕)だけ反対方向にスクリュ3を回転させる初期分塊工程を行い、計量異常判定時間Tmsを超えたときは、より大きい所定の角度Rr(例えば、360〔゜〕)だけ反対方向にスクリュ3を回転させる分塊工程S10cを行うようにしてもよい。このように、成形の開始から計量異常判定時間Tmsを超えるまで、設定した初期設定角度(基本角度)Rroだけ反対方向にスクリュ3を回転させる初期分塊工程を行うようにすれば、特定の成形材料Pe…を使用し、計量不能になる可能性が高いような場合には、最初から初期分塊工程が行われるため、成形材料Pe…同士のくっつきを低減し、より正確で安定した計量を行うことができる。さらに、戻し工程S11cも、他の各実施形態における分塊工程S10c(S10ce)に対して、組合わせ使用できる。 Moreover, each exemplary embodiment can be used in combination. Therefore, for example, the measurement time Tmd from the start of measurement to the end of measurement in the measurement step S1c is monitored, and when the measurement time Tmd exceeds the set measurement abnormality determination time Tms, the separation is performed between the injection step S3c and the measurement step S1c. When performing the lump process S10c, from the start of molding until the measurement abnormality determination time Tms is exceeded, an initial lump process is performed in which the screw 3 is rotated in the opposite direction by the set basic angle Rro (for example, 180 [°]), When the measurement abnormality determination time Tms is exceeded, the lump process S10c in which the screw 3 is rotated in the opposite direction by a larger predetermined angle Rr (for example, 360 [°]) may be performed. In this way, if the initial bundling process in which the screw 3 is rotated in the opposite direction by the set initial setting angle (basic angle) Rro from the start of molding until the measurement abnormality determination time Tms is exceeded, a specific molding is performed. When the material Pe ... is used and there is a high possibility that measurement will not be possible, the initial lump process is performed from the beginning, so the sticking between the molding materials Pe ... is reduced and more accurate and stable measurement is possible. It can be carried out. Furthermore, the returning step S11c can also be used in combination with the lump step S10c (S10ce) in the other embodiments.
一方、特定の成形材料Pe…として、PCTA樹脂材料を例示したが、類似の樹脂材料であるPCTG樹脂材料(イーストマン・ケミカル社製)やポリ乳酸樹脂材料、即ち、100〔℃〕以下の温度で溶融を開始する樹脂特性を有する樹脂材料であってもよい。これらの特定の成形材料Pe…を使用すれば、固有の樹脂特性を有するこれらの特定の成形材料Pe…に対して、計量不能になる不具合を解消する観点から好適であり、確実かつ安定した計量、更には成形を行うことができる。もちろん、これらの例示以外の特定の樹脂材料Pe…を用いることを排除するものではない。また、計量異常判定時間Tmsを超えたと判定する条件は、設定した判定回数の2だけ連続して超えたことを条件とする場合を示したが、判定回数は3以上に設定してもよいし、1の場合を排除するものではない。さらに、計量時間Tmdを取込み、計量異常判定時間Tmsにより異常を判定する場合を例示したが、計量時間の代わりに、計量速度又は一定時間経過しても設定位置に達しないこと等を利用して判定してもよい。 On the other hand, the PCTA resin material is exemplified as the specific molding material Pe ..., but a PCTG resin material (manufactured by Eastman Chemical Co.) or a polylactic acid resin material which is a similar resin material, that is, a temperature of 100 [° C.] or less. It may be a resin material having a resin property of starting melting. If these specific molding materials Pe ... are used, these specific molding materials Pe ... having specific resin characteristics are suitable from the viewpoint of eliminating the problem of being unable to measure, and reliable and stable measurement. Further, molding can be performed. Of course, the use of a specific resin material Pe ... other than these examples is not excluded. In addition, the condition for determining that the measurement abnormality determination time Tms has been exceeded is a case where the condition is that the set number of determinations is continuously exceeded by 2, but the number of determinations may be set to 3 or more. The case of 1 is not excluded. Furthermore, the case where the measurement time Tmd is taken in and abnormality is determined based on the measurement abnormality determination time Tms is exemplified. However, instead of the measurement time, the measurement position or the set position is not reached even after a certain time has passed. You may judge.
本発明に係る成形方法は、加熱筒内に供給された樹脂ペレットによる成形材料をスクリュの回転により可塑化計量する計量工程を有する各種タイプの射出成形機に利用することができる。 The molding method according to the present invention can be used for various types of injection molding machines having a measuring step of plasticizing and weighing a molding material made of resin pellets supplied into a heating cylinder by rotating a screw.
M:射出成形機,2:加熱筒,3:スクリュ,4:金型,S1c:計量工程,S3c:射出工程,S10c(S10ce):分塊工程,S11c:戻し工程,Pe…:特定の成形材料,Tmd:計量時間,Tms:計量異常判定時間,Tcd:冷却時間,Tcs:冷却限界判定時間 M: injection molding machine, 2: heating cylinder, 3: screw, 4: mold, S1c: metering process, S3c: injection process, S10c (S10ce): lump process, S11c: return process, Pe ...: specific molding Material, Tmd: Measurement time, Tms: Measurement abnormality determination time, Tcd: Cooling time, Tcs: Cooling limit determination time
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009260272A JP5466486B2 (en) | 2009-11-13 | 2009-11-13 | Molding method for injection molding machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009260272A JP5466486B2 (en) | 2009-11-13 | 2009-11-13 | Molding method for injection molding machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011104817A JP2011104817A (en) | 2011-06-02 |
JP5466486B2 true JP5466486B2 (en) | 2014-04-09 |
Family
ID=44228890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009260272A Active JP5466486B2 (en) | 2009-11-13 | 2009-11-13 | Molding method for injection molding machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5466486B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7567521B2 (en) | 2021-02-01 | 2024-10-16 | Ubeマシナリー株式会社 | Screw position setting method and screw type injection device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01249420A (en) * | 1988-03-31 | 1989-10-04 | Nissei Plastics Ind Co | Method for controlling injection molder |
JP2004167978A (en) * | 2002-11-22 | 2004-06-17 | Toshiba Mach Co Ltd | Operation method for injection apparatus in injection molding machine |
JP4297277B2 (en) * | 2004-11-24 | 2009-07-15 | 日精樹脂工業株式会社 | Injection molding method |
JP4231517B2 (en) * | 2006-09-12 | 2009-03-04 | 日精樹脂工業株式会社 | Measuring method for injection molding machine |
JP4199287B1 (en) * | 2007-07-23 | 2008-12-17 | ファナック株式会社 | Injection molding machine and reverse rotation amount adjustment method in reverse rotation process in injection molding machine |
JP4672042B2 (en) * | 2008-04-18 | 2011-04-20 | 日精樹脂工業株式会社 | Screw driving method and apparatus for injection molding machine |
-
2009
- 2009-11-13 JP JP2009260272A patent/JP5466486B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011104817A (en) | 2011-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9821498B2 (en) | Injection molding method and injection molding device | |
EP1938947B1 (en) | Injection molding machine and method of adjusting control condition for reverse rotation of screw in injection molding machine | |
JP4264445B2 (en) | Abnormality monitoring method for injection molding machines | |
CN102762355A (en) | In an injection molding machine, a method of controlling a melt accumulator | |
US20130095199A1 (en) | Metering controller for injection molding machine | |
US20150140148A1 (en) | Controller for injection molding machine | |
JP5466486B2 (en) | Molding method for injection molding machine | |
KR20190104117A (en) | Injection molding machine | |
KR20110104790A (en) | Injection molding machine and its material supply control method | |
JP6795716B1 (en) | Injection device and injection control method | |
JP7277332B2 (en) | CONTROL DEVICE AND CONTROL METHOD FOR INJECTION MOLDING MACHINE | |
JP5666488B2 (en) | Method of flushing injection device | |
JPH0547382B2 (en) | ||
JP5210785B2 (en) | Injection molding machine | |
JP4864398B2 (en) | Molding machine and plasticizing state monitoring method | |
CN102470596A (en) | Method for controlling multiple injection molding chambers | |
JP7299125B2 (en) | CONTROL DEVICE AND CONTROL METHOD FOR INJECTION MOLDING MACHINE | |
JP2001260192A (en) | Injection molding method | |
JP4275652B2 (en) | Measuring method of injection molding machine for disk substrate molding | |
JP5052246B2 (en) | Injection molding machine | |
JP2021172003A5 (en) | ||
JP2598687Y2 (en) | Inspection equipment for injection molding machines | |
JP2006305778A (en) | Control device of injection molding machine | |
JP5226191B2 (en) | Molding machine and control method thereof | |
JP5001073B2 (en) | Injection molding machine and molding control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110422 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130408 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140115 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140124 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5466486 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |