[go: up one dir, main page]

JP5463536B2 - シャワープレート及びその製造方法、並びにそのシャワープレートを用いたプラズマ処理装置、プラズマ処理方法及び電子装置の製造方法 - Google Patents

シャワープレート及びその製造方法、並びにそのシャワープレートを用いたプラズマ処理装置、プラズマ処理方法及び電子装置の製造方法 Download PDF

Info

Publication number
JP5463536B2
JP5463536B2 JP2007182964A JP2007182964A JP5463536B2 JP 5463536 B2 JP5463536 B2 JP 5463536B2 JP 2007182964 A JP2007182964 A JP 2007182964A JP 2007182964 A JP2007182964 A JP 2007182964A JP 5463536 B2 JP5463536 B2 JP 5463536B2
Authority
JP
Japan
Prior art keywords
shower plate
gas discharge
gas
plasma
ceramic member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007182964A
Other languages
English (en)
Other versions
JP2008047883A (ja
Inventor
正広 桶作
哲也 後藤
忠弘 大見
清隆 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Tokyo Electron Ltd
Hokuriku Seikei Industrial Co Ltd
Original Assignee
Tohoku University NUC
Tokyo Electron Ltd
Hokuriku Seikei Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Tokyo Electron Ltd, Hokuriku Seikei Industrial Co Ltd filed Critical Tohoku University NUC
Priority to JP2007182964A priority Critical patent/JP5463536B2/ja
Priority to PCT/JP2007/064191 priority patent/WO2008010520A1/ja
Priority to US12/374,405 priority patent/US20090311869A1/en
Priority to TW096126207A priority patent/TWI411360B/zh
Priority to KR1020097002731A priority patent/KR101094979B1/ko
Priority to CNA2007800270371A priority patent/CN101491164A/zh
Publication of JP2008047883A publication Critical patent/JP2008047883A/ja
Application granted granted Critical
Publication of JP5463536B2 publication Critical patent/JP5463536B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Ceramic Products (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、プラズマ処理装置とくにマイクロ波プラズマ処理装置に使用するシャワープレート及びその製造方法、並びにそのシャワープレートを用いたプラズマ処理装置、プラズマ処理方法及び電子装置の製造方法に関する。
プラズマ処理工程及びプラズマ処理装置は、近年のいわゆるディープサブミクロン素子あるいはディープサブクォーターミクロン素子と呼ばれる0.1μm、あるいはそれ以下のゲート長を有する超微細化半導体装置の製造や、液晶表示装置を含む高解像度平面表示装置の製造にとって、不可欠の技術である。
半導体装置や液晶表示装置の製造に使われるプラズマ処理装置としては、従来より様々なプラズマの励起方式が使われているが、とくに平行平板型高周波励起プラズマ処理装置あるいは誘導結合型プラズマ処理装置が一般的である。しかしこれら従来のプラズマ処理装置は、プラズマ形成が不均一であり、電子密度の高い領域が限定されているため大きな処理速度、すなわちスループットで被処理基板全面にわたり均一なプロセスを行うのが困難である問題点を有している。この問題は、とくに大径の基板を処理する場合に深刻になる。しかもこれら従来のプラズマ処理装置では、電子温度が高いため被処理基板上に形成される半導体素子にダメージが生じ、また処理室壁のスパッタリングによる金属汚染が大きいなど、いくつかの本質的な問題を有している。このため、従来のプラズマ処理装置では、半導体装置や液晶表示装置のさらなる微細化及びさらなる生産性の向上に対する厳しい要求を満たすことが困難になりつつある。
これに対して、従来より直流磁場を用いずにマイクロ波電界により励起された高密度プラズマを使うマイクロ波プラズマ処理装置が提案されている。例えば、均一なマイクロ波を発生するように配列された多数のスロットを有する平面状のアンテナ(ラジアルラインスロットアンテナ)から処理室内にマイクロ波を放射し、このマイクロ波電界により処理室内のガスを電離してプラズマを励起させる構成のプラズマ処理装置が提案されている(例えば特許文献1を参照)。このような手法で励起されたマイクロ波プラズマではアンテナ直下の広い領域にわたって高いプラズマ密度を実現でき、短時間で均一なプラズマ処理を行うことが可能である。しかもかかる手法で形成されたマイクロ波プラズマではマイクロ波によりプラズマを励起するため電子温度が低く、被処理基板のダメージや金属汚染を回避することができる。さらに大面積基板上にも均一なプラズマを容易に励起できるため、大口径半導体基板を使った半導体装置の製造工程や大型液晶表示装置の製造にも容易に対応できる。
これらのプラズマ処理装置においては、通常、処理室内にプラズマ励起用ガスを均一に供給するために、複数のガス放出孔を備えたシャワープレートが使用されている。しかし、シャワープレートの使用によって、シャワープレート直下に形成されたプラズマがシャワープレートのガス放出孔に逆流することがある。ガス放出孔にプラズマが逆流すると、異常放電やガスの堆積が発生し、プラズマを励起するためのマイクロ波の伝送効率や歩留まりの劣化が発生してしまうという問題がある。
このプラズマのガス放出孔への逆流を防止するための手段として、シャワープレートの構造の改良が多く提案されている。
例えば、特許文献2には、ガス放出孔の孔径をシャワープレートの直下に形成されるプラズマのシース厚の2倍より小さくすることが有効であることが開示されている。しかし、ガス放出孔の孔径を小さくするだけでは、プラズマの逆流を防止する手段としては不十分である。とくに、ダメージを低減し処理速度を高める目的のために、プラズマ密度を従来の1012cm−3程度から1013cm−3程度に高めようとすると、プラズマの逆流が顕著となり、ガス放出孔の孔径の制御だけではプラズマの逆流を防止することはできない。また、微細な孔径のガス放出孔をシャワープレート本体に孔加工により形成することは困難であり、加工性の問題もある。
また、特許文献3には、通気性の多孔質セラミックス焼結体からなるシャワープレートを使用することも提案されている。これは、多孔質セラミックス焼結体を構成する多数の気孔の壁によりプラズマの逆流を防止しようとするものである。しかし、この常温・常圧で焼結された一般的な多孔質セラミックス焼結体からなるシャワープレートは、気孔径が数μmから20μm程度の大きさまでバラツキが大きく、また最大結晶粒子径が20μm程度と大きくて組織が均一でないため、表面平坦性が悪く、また、プラズマに接する面を多孔質セラミックス焼結体とすると、実効表面積が増えてしまい、プラズマの電子・イオンの再結合が増加してしまい、プラズマ励起の電力効率が悪いという問題点がある。また、この特許文献3には、シャワープレート全体を多孔質セラミックス焼結体で構成する代わりに、緻密なアルミナからなるシャワープレートにガス放出用の開口部を形成し、この開口部に常温・常圧で焼結された一般的な多孔質セラミックス焼結体を装着し、この多孔質セラミックス焼結体を介してガスを放出する構造も開示されている。しかし、この構造においてもプラズマに前記の常温・常圧で焼結された多孔質セラミックス焼結体とほとんど同じ特性の一般的な多孔質セラミックス焼結体が接するので、表面平坦性の悪さから発生する上記の問題点は解消されない。
さらに、本願出願人は、先に、特許文献4において、シャワープレートの構造面からではなくガス放出孔の直径寸法の調整によるプラズマの逆流を防止するための手段を提案した。すなわち、ガス放出孔の直径寸法を0.1〜0.3mm未満とし、しかも、その直径寸法公差を±0.002mm以内の精度とすることにより、プラズマの逆流を防止するとともに、ガスの放出量のバラツキをなくしたものである。
ところが、このシャワープレートを、プラズマ密度を1013cm−3に高めた条件で実際にマイクロ波プラズマ処理装置で使用したところ、図12に示すように、シャワープレート本体400とカバープレート401との間に形成されたプラズマ励起用ガスを充填する空間402とそれに連通する縦孔403にプラズマの逆流が原因と思われる薄茶色の変色部分が見られた。
特開平9−63793号公報 特開2005−33167号公報 特開2004−39972号公報 国際公開第06/112392号パンフレット
本発明が解決しようとする課題は、プラズマの逆流の発生をより完全に防止でき、効率の良いプラズマ励起が可能なシャワープレートを提供することにある。
本発明者は、プラズマの逆流が、ガス放出孔の長さと孔径の比(長さ/孔径、以下「アスペクト比」という。)に影響を受けるのではないかとの発想のもとに研究を重ねた結果、このアスペクト比を20以上とすればプラズマの逆流を劇的に止めることが可能なことを明らかにするに至り、本発明を完成させた。
すなわち、本発明は、プラズマ処理装置の処理室に配置され、前記処理室にプラズマを発生させるためにプラズマ励起用ガスを放出する複数のガス放出孔を備えたシャワープレートにおいて、ガス放出孔のアスペクト比を20以上とすることによって、プラズマの逆流を防止しようとするものである。
図1は、ガス放出孔のアスペクト比とプラズマの逆流の関係を示す説明図である。プラズマ処理装置の処理室内の圧力が低くなると平均自由行程が長くなり、プラズマを構成する電子が直線的に進む距離が長くなる。このように、電子が直線的に進むと仮定すると、図1に示すプラズマの進入可能角度θは、ガス放出孔Aのアスペクト比によって一義的に決まる。すなわち、ガス放出孔Aのアスペクト比を大きくすればプラズマの進入可能角度θが小さくなり、プラズマの逆流を防止することができることになる。本発明は、この発想のもとにガス放出孔Aのアスペクト比の構成要件を明らかにしたものであり、上述のとおりガス放出孔Aのアスペクト比を20以上とすることにより、プラズマの逆流を劇的に止めることが可能となった。
本発明で規定するようなアスペクト比を有する微細で細長いガス放出孔を、シャワープレート本体にドリルその他の工具を用いて孔加工方法により形成することは困難であり、加工性の問題もある。そこで、本発明では、1乃至複数のガス放出孔を設けたセラミックス部材をシャワープレートの複数の縦孔に装着する構成とした。すなわち、ガス放出孔をシャワープレートとは別体のセラミックス部材に形成し、このセラミックス部材をシャワープレートに開けた縦孔に装着する。このような構成とすることで、シャワープレートに孔加工によりガス放出孔を形成する場合に比べ、ガス放出孔の加工不良に伴うシャワープレートの歩留ロスがなくなり、本発明で規定するアスペクト比を有する微細で長いガス放出孔を容易に形成することができる。なお、ガス放出孔を設けたセラミックス部材は、射出成型や押し出し成型あるいは特殊な鋳込成型法等により形成することができる。
ガス放出孔の具体的な寸法としては、その孔径をシャワープレートの直下に形成されるプラズマのシース厚の2倍以下とし、かつその長さを処理室における電子の平均自由行程より大きくすることが好ましい。
そして、上述した本発明のシャワープレートを用いて、プラズマ励起用ガスをプラズマ処理装置内に供給し、供給されたプラズマ励起用ガスをマイクロ波で励起してプラズマを発生させ、該プラズマを用いて酸化、窒化、酸窒化、CVD、エッチング、プラズマ照射等を基板に処理することができる。
また、1孔以上のガス放出孔を有するセラミックス部材を縦孔に装着した本発明のシャワープレートは、原料粉末を成型して縦孔を加工形成したシャワープレートのグリーン体、脱脂体または仮焼結体の前記縦孔に、1孔以上のガス放出孔を有するセラミックス部材のグリーン体、脱脂体、仮焼結体または焼結体を装入後、同時に焼結することによって製造できる。また、前記セラミックス部材と同時に多孔質ガス流通体のグリーン体、脱脂体、仮焼結体または焼結体を装入後、同時に焼結することによっても製造ができる。
本発明によれば、シャワープレートの縦孔部分にプラズマが逆流することを防止でき、シャワープレート内部での異常放電やガスの堆積の発生を抑えることができるので、プラズマを励起するためのマイクロ波の伝送効率や歩留まりの劣化を防止することができる。
以下、実施例に基づき本発明の実施の形態を説明する。
図2に、本発明の第一実施例を示す。図2を参照すると、マイクロ波プラズマ処理装置が示されている。図示されたマイクロ波プラズマ処理装置は複数の排気ポート101を介して排気される処理室102を有し、処理室102中には被処理基板103を保持する保持台104が配置されている。処理室102を均一に排気するため、処理室102は保持台104の周囲にリング状の空間を規定しており、複数の排気ポート101は空間に連通するように等間隔で、すなわち、被処理基板103に対して軸対称に配列されている。この排気ポート101の配列により、処理室102を排気ポート101より均一に排気することができる。
処理室102の上部には、保持台104上の被処理基板103に対応する位置に、処理室102の外壁の一部として、直径が408mm、比誘電率が9.8で、かつ低マイクロ波誘電損失(誘電損失が9×10−4以下、より好ましくは5×10−4以下)である誘電体のアルミナからなり、多数(230個)の開口部、すなわち縦孔105が形成された板状のシャワープレート106が、シール用のOリング107を介して取り付けられている。さらに、処理室102には、シャワープレート106の上面側、すなわち、シャワープレート106に対して保持台104とは反対側に、アルミナからなるカバープレート108が、別のシール用のOリング109を介して取り付けられている。
図3は、シャワープレート106とカバープレート108の配置を示す斜視模式図である。図2及び図3を参照すると、シャワープレート106上面と、カバープレート108との間には、プラズマ励起用ガス供給ポート110から、シャワープレート106内に開けられた連通するガス供給孔111を介して供給されたプラズマ励起用ガスを充填する空間112が形成されている。換言すると、カバープレート108において、カバープレート108のシャワープレート106側の面の、縦孔105及びガス供給孔111に対応する位置にそれぞれが繋がるように溝が設けられ、シャワープレート106とカバープレート108の間に空間112が形成される。すなわち、縦孔105は空間112に連通するように配置されている。
図4に、縦孔105の詳細を示す。図4において、(a)は断面図、(b)、(c)は底面図である。縦孔105は、処理室102側に設けられた直径2.5mm、高さ1mmの第一の縦孔105aと、さらにその先(ガス導入側)に設けられた直径3mm、高さ8mmの第二の縦孔105bとからなり、この縦孔105にセラミックス部材113が装着されている。セラミックス部材113は、アルミナ系セラミックスの押し出し成型品からなり、第一の縦孔105aに装着される部分は外径2.5mm×長さ1mm、第二の縦孔105bに装着される部分は外径3mm×長さ7mm、全長が8mmであり、その内部に直径0.05mm×長さ8mmのガス放出孔113aが設けられている。すなわち、ガス放出孔113aのアスペクト比(長さ/孔径)は8/0.05=160である。ガス放出孔113aの個数はとくに限定されない。図4(b)、(c)には7〜3個の例を示しているが、より好ましくは個数をできる限り多くしてガス放出速度を遅くするのがよい。なお、この例のようにガス放出孔113aの直径を0.05mm程度まで小さくした場合は、セラミックス部材113の外径は1mm程度まで小さくすることもできる。
図5に、縦孔105の他の例を示す。図5において、(a)は断面図、(b)は底面図である。この例では、直径が0.2mmで長さが8〜10mmのガス放出孔113aを1個のみ設けている。
図6に、縦孔105のさらに他の例を示す。図6において、(a)は断面図、(b)は底面図である。図6において、縦孔105は、処理室102側から、直径5mm、高さ5mmの第一の縦孔105aと、直径10mm、高さ10mmの第二の縦孔105bからなり、この縦孔105に、6本の直径0.05mmのガス放出孔113aが形成された、総高さ8mmの円柱状のセラミックス部材113が装着されている。
また、図4〜図6に示した縦孔105においては、そのガス導入側の角部に、マイクロ波の電界が集中してプラズマ励起用ガスに着火してプラズマが自己発生するのを防止するために、面取り加工115が施されている。この面取り加工は、C面取り、より好ましくはR面取り加工とし、C面取り後にその角部をR面取り加工することもできる。
さらに、図6には、プラズマの逆流を防止する2重安全対策のために、あるいはまた、プラズマ励起用ガスに着火してプラズマが自己発生する空間を無くすために、セラミックス部材113のガス導入側に、ガス流通方向に連通した気孔を有する多孔質セラミックス焼結体114を設けた例を示している。
次に、図2を参照してプラズマ励起用ガスの処理室への導入方法を示す。ガス導入ポート110より導入されたプラズマ励起用ガスは、ガス供給孔111及び空間112を経由して縦孔105へ導入され、その先端部分に設けられたセラミックス部材113のガス放出孔113aから処理室102へ放出される。
シャワープレート106の上面を覆うカバープレート108の上面には、マイクロ波を放射するための、スリットが多数開いたラジアルラインスロットアンテナのスロット板116、マイクロ波を径方向に伝播させるための遅波板117、及びマイクロ波をアンテナヘ導入するための同軸導波管118が設置されている。また、遅波板117は、スロット板116と金属板119により挟みこまれている。金属板119には冷却用流路120が設けられている。
このような構成において、スロット板116から放射されたマイクロ波により、シャワープレート106から供給されたプラズマ励起用ガスを電離させることで、シャワープレート106の直下数ミリメートルの領域で高密度プラズマが生成される。生成されたプラズマは拡散により被処理基板103へ到達する。シャワープレート106からは、プラズマ励起用ガスのほかに、積極的にラジカルを生成させるガスとして、酸素ガスやアンモニアガスを導入してもよい。
図示されたプラズマ処理装置では、処理室102中、シャワープレート106と被処理基板103との間にアルミニウムやステンレス等の導体からなる下段シャワープレート121が配置されている。この下段シャワープレート121は、プロセスガス供給ポート122から供給されるプロセスガスを処理室102内の被処理基板103へ導入するための複数のガス流路121aを備え、プロセスガスはガス流路121aの被処理基板103に対応する面に形成された多数のノズル121bにより、下段シャワープレート121と被処理基板103との間の空間に放出される。ここでプロセスガスとしては、Plasma-Enhanced Chemical Vapor Deposition(PECVD)プロセスの場合、シリコン系の薄膜形成を行う場合はシランガスやジシランガス、低誘電率膜を形成する場合はCガスが導入される。またプロセスガスとして有機金属ガスを導入したCVDも可能である。また、Reactive Ion Etching(RIE)プロセスの場合、シリコン酸化膜エッチングの場合はCガスと酸素ガス、金属膜やシリコンのエッチングの場合は塩素ガスやHBrガスが導入される。エッチングする際にイオンエネルギーが必要な場合には前記保持台104内部に設置された電極にRF電源123をコンデンサを介して接続して、RF電力を印加することで自己バイアス電圧を被処理基板103上に発生させる。流すプロセスガスのガス種は上記に限定されることなく、プロセスにより流すガス、圧力を設定する。
下段シャワープレート121には、隣接するガス流路121aどうしの間に、下段シャワープレート121の上部でマイクロ波により励起されたプラズマを被処理基板103と下段シャワープレート121との間の空間に拡散により効率よく通過させるような大きさの開口部121cが形成されている。
また、高密度プラズマに晒されることでシャワープレート106へ流れ込む熱流は、スロット板116、遅波板117、及び金属板119を介して冷却用流路120に流されている水等の冷媒により排熱される。
ここで、再度図4を参照すると、図4に示すアルミナ材料からなる円柱状のセラミックス部材113に開けられた複数のガス放出孔113aは、上述のとおり直径0.05mmである。この数値は、1012cm−3の高密度プラズマのシース厚である0.04μmの2倍よりは小さいが、1013cm−3の高密度プラズマのシース厚である0.01μmの2倍よりは大きい。
なお、プラズマに接している物体表面に形成されるシースの厚みdは次式で与えられる。
Figure 0005463536
ここで、Vはプラズマと物体の電位差(単位はV)、Tは電子温度(単位はeV)であり、λは次式で与えられるデバイ長である。
Figure 0005463536
ここで、εは真空の透磁率、kはボルツマン定数、nはプラズマの電子密度である。
表1に示すとおり、プラズマの電子密度が上昇するとデバイ長は減少するため、プラズマの逆流を防ぐという観点からは、ガス放出孔113aの孔径はより小さいことが望ましいといえる。
Figure 0005463536
さらに、ガス放出孔113aの長さを電子が散乱されるまでの平均距離である平均自由行程より長くすることにより、プラズマの逆流を劇的に低減することが可能となる。表2に、電子の平均自由行程を示す。平均自由行程は圧力に反比例し、0.1Torrの時に4mmとなっている。実際にはガス放出孔113aのガス導入側は圧力が高いので平均自由行程は4mmよりも短くなるが、図4においては、0.05mm径のガス放出孔113aの長さを8mmとして、平均自由行程よりも長い値としている。
Figure 0005463536
ただし、平均自由行程はあくまで平均距離であるので、統計的にみるとさらに長い距離を散乱されずに進む電子が存在する可能性がある。よって、念のためプラズマの逆流をより完全に防ぐために、図6に示したように、ガス放出孔113aのガス導入側にガス流通方向に連通した気孔を有する多孔質セラミックス焼結体114を設置してもよい。
多孔質セラミックス焼結体114の気孔径の大きさは、気孔の中にプラズマが逆流し、第二の縦孔105bでの異常放電を抑制するために、シャワープレート106直下に形成される高密度プラズマのシース厚の2倍以下、望ましくはシース厚以下であることが好ましい。図6における多孔質セラミックス焼結体114の平均気孔径は10μm以下、より好ましくは5μm以下であり、1013cm−3の高密度プラズマのシース厚である10μmと同程度以下である。このようにすることによって、1013cm−3の高密度プラズマに対しても、本シャワープレートを用いることができる。
以上の構成を有するシャワープレート106によって、縦孔105のガス導入側にプラズマが逆流することを防止でき、シャワープレート105内部での異常放電やガスの堆積の発生を抑えることができるので、プラズマを励起するためのマイクロ波の伝送効率や歩留まりの劣化を防止することができるようになった。また、プラズマに接する面の平坦度を阻害することがなく、効率の良いプラズマ励起が可能となった。加えて、ガス放出孔113aは、シャワープレート105とは別体のセラミックス部材113に押し出し成型法等により形成されるので、シャワープレートに孔加工によりガス放出孔を形成する場合に比べ、微細で長いガス放出孔を容易に形成することができるようになった。
また、被処理基板103へ均一にプラズマ励起用ガス供給を行ない、さらに下段シャワープレート121からノズル121bを介してプロセスガスを被処理基板103へ放出するようにした結果、下段シャワープレート121に設けられたノズル121bから被処理基板103へ向かうプロセスガスの流れが均一に形成され、プロセスガスがシャワープレート106の上部へ戻る成分が少なくなった。結果として、高密度プラズマに晒されることによる過剰解離によるプロセスガス分子の分解が減少し、かつプロセスガスが堆積性ガスであってもシャワープレート106への堆積によるマイクロ波導入効率の劣化などが起こりづらくなったため、クリーニング時間の短縮とプロセス安定性と再現性を高めて生産性を向上させるとともに、高品質な基板処理が可能となった。
なお、以上の実施例において、第一の縦孔105a及び第二の縦孔105bの個数、直径及び長さ、セラミックス部材113に開けられるガス放出孔113aの個数、直径及び長さ等は、本実施例の数値に限られることは無い。
図7に、本発明の第二実施例を示す。図7を参照すると、マイクロ波プラズマ処理装置が示されている。第一実施例と重複する部分は同一の符号を付し説明を省略する。
本実施例においては、処理室102の上部には、保持台104上の被処理基板103に対応する位置に、処理室102の外壁の一部として、比誘電率が9.8で、かつ低マイクロ波誘電損失(誘電損失が9×10−4以下)である誘電体のアルミナからなるシャワープレート200が、シール用のOリング107を介して取り付けられている。また、処理室102を構成する壁面201において、シャワープレート200の側面に対応する位置に、2本のシール用のOリング202とシャワープレート200の側面とにより囲まれたリング状空間203が設けられている。リング状空間203はプラズマ励起用ガスを導入するガス導入ポート110と連通している。
一方、シャワープレート200の側面には横方向に直径1mmの多数の横孔204がシャワープレート200の中心方向に向かって開けられている。同時に、この横孔204と連通するように多数(230個)の縦孔205が処理室102へ連通して開けられている。
図8は、シャワープレート200の上面からみた横孔204と縦孔205の配置を示す。図9は、横孔204と縦孔205の配置を示す斜視模式図である。また、図10は、縦孔205の他の詳細例を示す。縦孔205は、処理室102側に設けられた直径10mm、深さ8mmの第一の縦孔205aと、さらにその先(ガス導入側)に設けられた直径1mmの第二の縦孔205bとからなり、横孔204に連通している。さらに、第一の縦孔205aには、処理室102側からみてアルミナ押し出し成型品からなり複数の直径0.05mmのガス放出孔113aが開けられた高さ6mmのセラミックス部材113と、直径10mm、高さ2mmの円柱状の、ガス流通方向に連通した気孔を有する多孔質セラミックス焼結体114が順番に装着されている。すなわち、本実施例におけるガス放出孔113aのアスペクト比(長さ/孔径)は6/0.05=120である。
本実施例において、ガス導入ポート110より導入されたプラズマ励起用ガスは、リング状空間203へ導入され、さらには横孔204、縦孔205を介して、最終的には縦孔205の先端部分に設けられたガス放出孔113aから処理室102へ導入される。
以上の本実施例においても、第一実施例と同様の効果が得られる。
なお、本実施例において、第一の縦孔205a及び第二の縦孔205bの個数、直径及び長さ、セラミックス部材113に開けられるガス放出孔113aの個数、直径及び長さ等は、実施例の数値に限られることは無い。また、ガス放出孔113aのガス導入側に設けた多孔質セラミックス焼結体は必ずしも必須構成要件とするものではない。
図11は、本発明のシャワープレートにおける縦孔の他の例を示す。上記第一実施例及び第二実施例に対応する構成には同一の符号を付して説明する。
図11の例では、第2の縦孔105b(または205b)に直径が0.05mmのガス放出孔113a’を6本設けた直径が1mmで長さ4mmのセラミックス部材113’を装着し、第1の縦孔105a(または205a)に外径が7mmで高さが2mmでしかも直径が0.05mmのガス放出孔113aを61本設けたセラミックス部材113を装着している。また、セラミックス部材113のガス導入側には直径が5mmで深さが0.2mmの凹部300が設けられており、6本のガス放出孔113a’から放出されたプラズマ励起用ガスがこの凹部300に拡散充満した後、61本のガス放出孔113aから放出される。すなわち、6本のガス放出孔113a’のガス流通速度に対して、61本のガス放出孔113aから放出されるガス速度は約1/10に低減されることになる結果、プラズマ励起用ガスが処理室102に向けてセラミックス部材113の広い面から緩やかに放出されるので、乱流現象のない均一なプラズマが形成される。なお、セラミックス部材113の代わりに、図6で使われたような多孔質セラミックス焼結体114を装着してもよい。
以上の各実施例で説明した、セラミックス部材(113,113’)を縦孔に装着したシャワープレートは以下の方法により製造できる。
(製造例1)
平均粉末粒子径が0.6μmで純度が99.99%のAl粉末100質量部に対して、押出成型用バインダー5質量部と水分15質量部とを配合し混練した後、所定の押出成型ノズルから押出して乾燥することにより、ガス放出孔の下孔(焼結後にガス放出孔となる孔)が形成されたセラミックス部材用グリーン体を得た。
このセラミックス部材用グリーン体を400〜600℃で焼成した脱脂体、600〜1200℃で焼成した仮焼結体、1200〜約1400℃(相対密度が95%に達する焼結温度)で焼結した予備焼結体、さらには相対密度が95%以上になるように焼結した焼結体を準備するとともに、それぞれの焼成温度(焼結温度)における焼成収縮率と焼成後の寸法を測定しておく。なお、シャワープレートの焼結温度と同じ温度で焼結した場合の焼結収縮率を測定した結果、グリーン体に対して18.8%であった。
一方、シャワープレート用材料として、平均粉末粒子径が0.6μmで純度が99.99%のAl粉末に3質量%のワックスを配合して得た平均粒子径70μmの噴霧乾燥造粒粉体を78〜147MPaの各種圧力でプレス成型した後、外径、厚み、横孔及び縦孔等を所定寸法に成形加工したシャワープレート用グリーン体を準備した。なお、このシャワープレート用グリーン体は、プレス成型圧力によって焼結収縮率が異なり、因みに78MPaの場合は焼結収縮率が19%で、147MPaの場合は16.2%であった。
ここで、78MPaの圧力でプレス成型したシャワープレート用グリーン体の縦孔(図4の第二の縦孔105bに対応する内径寸法が3.7mm)に、前記セラミックス部材用グリーン体(図4の第2の縦孔105bに対応する外径寸法が3.695mm)を装着して1500℃の温度で同時焼結することにより、実施例1の図4で示したシャワープレートを得た。
このとき、第2の縦孔105bの焼結後の寸法は、計算上、内径×(100%−19%)=3.7×0.81=2.997mmとなり、同様にセラミックス部材の第二の縦孔105b部分の外径寸法は、3.695×0.812=3.000mmとなる。この第二の縦孔105b部分の前記内径寸法と外径寸法の差0.003mmが相互間の焼締め力として作用して、相互間の焼結結合力が生じる結果、強固な装着固定が確保される。
(製造例2)
前記製造例1で準備したのと同じシャワープレート用グリーン体と、450℃で焼成して焼成収縮がほとんど発生していない脱脂体とを準備し、それぞれの縦孔に、製造例1で準備したセラミックス部材用の脱脂体、仮焼結体、予備焼結体及び焼結体を装着して同時焼結を行った。本製造例では前記製造例1と同様に、実施例1の図4に示した第二の縦孔105bに対応する内径寸法が3.7mmのシャワープレート用グリーン体と脱脂体を用いるとともに、縦孔105に装着するセラミックス部材の脱脂体、仮焼結体、予備焼結体及び焼結体の焼結収縮率と焼結後の寸法を予め測定しておき、これらのセラミックス部材の焼結後の第二の縦孔105bに対応する部分の外径寸法が第二の縦孔105bの内径寸法よりも1μm以上大きくなる寸法に相当するセラミックス部材を用いる。これにより、その寸法差が焼締め力として作用し、この焼締め力に相当する焼結結合力が大きくなるほど装着境界層の結晶粒子が一体化した連続相を形成するようになる。
因みに、第二の縦孔105bに相当する焼結体の外径寸法が3.1mmのセラミックス部材を縦孔に装着して同時焼結することにより生じた0.103mm(100μm以上)の寸法差に相当する焼締め応力は、その大部分がシャワープレート側に、構成結晶粒子のディスロケーションや拡散焼結やわずかな塑性流動によって吸収され、一部分がセラミックス部材に吸収される結果、シャワープレート及びセラミックス部材の双方ともに引張応力や圧縮応力に起因する破損やクラックも発生することなく強固に装着できる。
(製造例3)
前記製造例1及び2で準備し、また焼結寸法を調査した、プレス成型圧力147MPaで成型したシャワープレート用グリーン体を600〜1200℃で焼成した仮焼結体の縦孔に、焼締め力が1〜100μmの寸法差に相当するセラミックス部材の仮焼結体あるいは焼結体を装着して実施例1の図4に示したシャワープレートを製造した。
また、シャワープレート用グリーン体を相対密度が95〜97%の範囲に焼成した予備焼結体の縦孔に、セラミックス部材の焼結体を装着して、温度1450℃、不活性ガスの圧力1500kg/cmの雰囲気でHIP処理することにより、同時焼結された強固な装着を達成することもできる。
またさらに、シャワープレートの縦孔とセラミックス部材の寸法形状は、実施例2の図10に示したようなストレート形状、すなわちセラミックス部材の外径が円柱状となるように形成することにより、製造が簡単で装着及び同時焼結が容易となるので好都合である。
(製造例4)
多孔質ガス流通体に関しては、平均粉末粒子径が0.6μmで純度が99.99%のAl粉末に3質量%のワックスを配合して得た平均粒子径70μmの噴霧造粒粉体を粉体の状態で800℃で焼成して仮焼結粉体を得た後、前記シャワープレート用のAl粉末を3質量%添加混合してプレス成型して得たグリーン体を焼結することにより、連通した気孔によって形成されたガス流通経路における隘路の気孔径が2μm、誘電損失が2.5×10−4、平均結晶粒子径が1.5μm、最大結晶粒子径が3μm、気孔率が40%、平均気孔径が3μm、最大気孔径が5μm、曲げ強さが300MPaの多孔質ガス流通体用材料が得られる。
この多孔質ガス流通体用のグリーン体を1200℃以上の温度で焼結した仮焼結体あるいは焼結体の外径と厚みを所定寸法に加工した後、超音波洗浄した材料を準備しておき、前記製造例1〜3と同様の方法で、シャワープレート用グリーン体または脱脂体の縦孔に装着して同時焼結することにより図6及び図10で示したようなシャワープレートを得ることができる。
本発明のシャワープレートは、マイクロ波プラズマ処理装置のほか、平行平板型高周波励起プラズマ処理装置、誘導結合型プラズマ処理装置等、各種のプラズマ処理装置に利用可能である。
ガス放出孔のアスペクト比とプラズマの逆流の関係を示す説明図である。 本発明の第一実施例を示す。 図2に示したシャワープレートの横孔と縦孔の配置を示す。 図2に示したシャワープレートの縦孔の詳細を示す。 縦孔の他の例を示す。 縦孔のさらに他の例を示す。 本発明の第二実施例を示す。 図7に示したシャワープレートの上面からみた横孔と縦孔の配置を示す。 図7に示したシャワープレートとカバープレートの配置を示す 図7に示したシャワープレートの縦孔の詳細を示す。 本発明のシャワープレートにおける縦孔の他の例を示す。 従来のシャワープレートを示す。
符号の説明
101 排気ポート
102 処理室
103 被処理基板
104 保持台
105 縦孔
105a 第一の縦孔
105b 第二の縦孔
106 シャワープレート
107 シール用のOリング
108 カバープレート
109 シール用のOリング
110 ガス導入ポート
111 ガス供給孔
112 空間
113、113’ セラミックス部材
113a、113a’ ガス放出孔
114 多孔質セラミックス焼結体(多孔質ガス流通体)
115 面取り加工
116 スロット板
117 遅波板
118 同軸導波管
119 金属板
120 冷却用流路
121 下段シャワープレート
121a ガス流路
121b ノズル
121c 開口部
122 プロセスガス供給ポート
123 RF電源
200 シャワープレート
201 壁面
202 シール用のOリング
203 リング状空間
204 横孔
205 縦孔
205a 第一の縦孔
205b 第二の縦孔
300 凹部

Claims (20)

  1. プラズマ処理装置に配置され、前記プラズマ処理装置内にプラズマを発生させるためにプラズマ励起用ガスを放出する複数の開口部を備えたシャワープレートにおいて、
    前記開口部は、シャワープレートに開けた複数の縦孔と、前記縦孔の内部にそれぞれその縦孔を塞ぐように装着される少なくとも1孔以上のガス放出孔が設けられたセラミックス部材とを有しており、
    前記セラミックス部材は、前記縦孔のガス放出側の出口まで当該縦孔を塞いでおり、前記セラミックス部材のガス放出側の端面は、シャワープレートのガス放出側の面と略同一平面をなし、
    前記ガス放出孔の長さと孔径とのアスペクト比(長さ/孔径)が20以上であるシャワープレート。
  2. ガス放出孔の孔径がシャワープレートの直下に形成されるプラズマのシース厚の2倍以下で、しかも長さが前記処理室における電子の平均自由行程よりも長い請求項1に記載のシャワープレート。
  3. 前記縦孔は、ガス導入側の端部が面取りされている請求項1または請求項2に記載のシャワープレート。
  4. 前記縦孔は長さ方向に径が異なる請求項1から請求項3のいずれかに記載のシャワープレート。
  5. 前記縦孔のガス導入側の径がガス放出側の径より大きい請求項4に記載のシャワープレート。
  6. 前記縦孔のガス導入側の径がガス放出側の径より小さい請求項4に記載のシャワープレート。
  7. 前記セラミックス部材は前記縦孔の径大部と径小部の両方にわたって装着されている請求項4から請求項6のいずれかに記載のシャワープレート。
  8. 前記セラミックス部材のガス導入側の端面は、前記縦孔の内部にある請求項に記載のシャワープレート。
  9. 前記セラミックス部材のガス導入側の端面よりガス導入側で、かつ前記縦孔の内部に多孔質セラミックス部材が装着されている請求項に記載のシャワープレート。
  10. ガス放出孔は各セラミックス部材に複数設けられている請求項1から請求項のいずれかに記載のシャワープレート。
  11. 前記縦孔のガス導入側の径小部に第1のセラミックス部材が装着されると共に、前記縦孔のガス放出側の径大部に第2のセラミックス部材が装着されており、この第2のセラミックス部材のガス導入側に凹部が設けられ、前記第1のセラミックス部材のガス放出孔から放出されたプラズマ励起用ガスは、前記凹部に拡散充満した後、前記第2のセラミックス部材のガス放出孔からプラズマ処理装置内に放出されるようになっており、前記第2のセラミックス部材のガス放出孔の数が前記第1のセラミックス部材のガス放出孔の数より多い請求項6に記載のシャワープレート。
  12. 原料粉末を成型して縦孔を加工形成したシャワープレートのグリーン体、脱脂体または仮焼結体の前記縦孔に、1孔以上のガス放出孔を有するセラミックス部材のグリーン体、脱脂体、仮焼結体または焼結体を装入後、同時に焼結するシャワープレートの製造方法。
  13. 請求項1から請求項11のいずれかに記載のシャワープレートを配置したプラズマ処理装置。
  14. 請求項1から請求項11のいずれかに記載のシャワープレートを用いてプラズマ励起用ガスをプラズマ処理装置内に供給し、供給されたプラズマ励起用ガスをマイクロ波で励起してプラズマを発生させ、該プラズマを用いて酸化、窒化、酸窒化、CVD、エッチング、またはプラズマ照射を基板に対して施すプラズマ処理方法。
  15. 請求項14に記載のプラズマ処理方法によって基板を処理する工程を含む電子装置の製造方法。
  16. 処理装置に配置され、前記処理装置内にガスを放出する複数の開口部を備えたシャワープレートにおいて、
    前記開口部は、シャワープレートに開けた複数の縦孔と、前記縦孔の内部にそれぞれその縦孔を塞ぐように装着される少なくとも1孔以上のガス放出孔が設けられたセラミックス部材とを有し、
    前記セラミックス部材は、前記縦孔のガス放出側の出口まで当該縦孔を塞いでおり、前記セラミックス部材のガス放出側の端面は、シャワープレートのガス放出側の面と略同一平面をなすシャワープレート。
  17. 前記セラミックス部材が前記縦孔の内部に一体的に装着された請求項1または請求項16に記載のシャワープレート。
  18. 前記縦孔は、ガス導入側に形成された第1の縦孔と、前記第1の縦孔のガス放出側に形成され、前記第1の縦孔の径より小さい径の第2の縦孔とからなる請求項16または請求項17に記載のシャワープレート。
  19. 前記縦孔は、ガス導入側に形成された第1の縦孔と、前記第1の縦孔のガス放出側に形成され、前記第1の縦孔の径より大きい径の第2の縦孔とからなる請求項16または請求項17に記載のシャワープレート。
  20. 前記シャワープレートの上面に、当該シャワープレートとの間に空間が形成されるようにカバープレートが配置され、前記カバープレートに、前記開口部に対応するように溝が形成された請求項1及び請求項16から請求項19のいずれかに記載のシャワープレート。
JP2007182964A 2006-07-20 2007-07-12 シャワープレート及びその製造方法、並びにそのシャワープレートを用いたプラズマ処理装置、プラズマ処理方法及び電子装置の製造方法 Expired - Fee Related JP5463536B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2007182964A JP5463536B2 (ja) 2006-07-20 2007-07-12 シャワープレート及びその製造方法、並びにそのシャワープレートを用いたプラズマ処理装置、プラズマ処理方法及び電子装置の製造方法
PCT/JP2007/064191 WO2008010520A1 (fr) 2006-07-20 2007-07-18 panneau de douche, SON PROCÉDÉ DE FABRICATION, appareil de traitement au plasma utilisant le panneau de douche, PROCÉDÉ de traitement au plasma, et procédé de fabrication de dispositif électronique
US12/374,405 US20090311869A1 (en) 2006-07-20 2007-07-18 Shower plate and manufacturing method thereof, and plasma processing apparatus, plasma processing method and electronic device manufacturing method using the shower plate
TW096126207A TWI411360B (zh) 2006-07-20 2007-07-18 A shower plate and a method of manufacturing the same, and a plasma processing apparatus using the shower plate, a plasma processing method, and a manufacturing method of the electronic device
KR1020097002731A KR101094979B1 (ko) 2006-07-20 2007-07-18 샤워 플레이트 및 그 제조 방법, 그 샤워 플레이트를 이용한 플라즈마 처리 장치, 플라즈마 처리 방법 및 전자 장치의 제조 방법
CNA2007800270371A CN101491164A (zh) 2006-07-20 2007-07-18 喷淋板及其制造方法以及使用了该喷淋板的等离子体处理装置、等离子体处理方法及电子器件的制造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006198762 2006-07-20
JP2006198762 2006-07-20
JP2007182964A JP5463536B2 (ja) 2006-07-20 2007-07-12 シャワープレート及びその製造方法、並びにそのシャワープレートを用いたプラズマ処理装置、プラズマ処理方法及び電子装置の製造方法

Publications (2)

Publication Number Publication Date
JP2008047883A JP2008047883A (ja) 2008-02-28
JP5463536B2 true JP5463536B2 (ja) 2014-04-09

Family

ID=38956852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007182964A Expired - Fee Related JP5463536B2 (ja) 2006-07-20 2007-07-12 シャワープレート及びその製造方法、並びにそのシャワープレートを用いたプラズマ処理装置、プラズマ処理方法及び電子装置の製造方法

Country Status (6)

Country Link
US (1) US20090311869A1 (ja)
JP (1) JP5463536B2 (ja)
KR (1) KR101094979B1 (ja)
CN (1) CN101491164A (ja)
TW (1) TWI411360B (ja)
WO (1) WO2008010520A1 (ja)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3384795B2 (ja) * 1999-05-26 2003-03-10 忠弘 大見 プラズマプロセス装置
US20080254220A1 (en) * 2006-01-20 2008-10-16 Tokyo Electron Limited Plasma processing apparatus
JP2008047869A (ja) * 2006-06-13 2008-02-28 Hokuriku Seikei Kogyo Kk シャワープレート及びその製造方法、並びにそのシャワープレートを用いたプラズマ処理装置、プラズマ処理方法及び電子装置の製造方法
KR100782370B1 (ko) * 2006-08-04 2007-12-07 삼성전자주식회사 지연 전기장을 이용한 이온 에너지 분포 분석기에 근거한이온 분석 시스템
JP5010234B2 (ja) 2006-10-23 2012-08-29 北陸成型工業株式会社 ガス放出孔部材を一体焼結したシャワープレートおよびその製造方法
US20110059019A1 (en) * 2008-02-01 2011-03-10 Neurosearch A/S Novel aryl piperazine derivatives useful as modulators of dopamine and serotonin receptors
JP4590597B2 (ja) * 2008-03-12 2010-12-01 国立大学法人東北大学 シャワープレートの製造方法
DE102008024486B4 (de) * 2008-05-21 2011-12-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Plasmastempel, Plasmabehandlungsvorrichtung, Verfahren zur Plasmabehandlung und Herstellungsverfahren für einen Plasmastempel
CN101740298B (zh) * 2008-11-07 2012-07-25 东京毅力科创株式会社 等离子体处理装置及其构成部件
US9540731B2 (en) * 2009-12-04 2017-01-10 Applied Materials, Inc. Reconfigurable multi-zone gas delivery hardware for substrate processing showerheads
US9441295B2 (en) * 2010-05-14 2016-09-13 Solarcity Corporation Multi-channel gas-delivery system
US9240513B2 (en) 2010-05-14 2016-01-19 Solarcity Corporation Dynamic support system for quartz process chamber
JP5697389B2 (ja) * 2010-09-27 2015-04-08 東京エレクトロン株式会社 プラズマエッチング用の電極板及びプラズマエッチング処理装置
US10658161B2 (en) * 2010-10-15 2020-05-19 Applied Materials, Inc. Method and apparatus for reducing particle defects in plasma etch chambers
TWI420977B (zh) * 2010-11-09 2013-12-21 Univ Nat Taipei Technology 微波電漿燒結系統
JP5563522B2 (ja) * 2011-05-23 2014-07-30 東京エレクトロン株式会社 プラズマ処理装置
US9245717B2 (en) * 2011-05-31 2016-01-26 Lam Research Corporation Gas distribution system for ceramic showerhead of plasma etch reactor
TW201331408A (zh) * 2011-10-07 2013-08-01 Tokyo Electron Ltd 電漿處理裝置
US9245761B2 (en) 2013-04-05 2016-01-26 Lam Research Corporation Internal plasma grid for semiconductor fabrication
US10249511B2 (en) * 2014-06-27 2019-04-02 Lam Research Corporation Ceramic showerhead including central gas injector for tunable convective-diffusive gas flow in semiconductor substrate processing apparatus
EP3167493A4 (en) 2015-02-17 2017-10-04 Sierra Solar Power (Hangzhou) Co., Ltd. Method and system for improving solar cell manufacturing yield
US9972740B2 (en) 2015-06-07 2018-05-15 Tesla, Inc. Chemical vapor deposition tool and process for fabrication of photovoltaic structures
JP6671230B2 (ja) 2016-04-26 2020-03-25 東京エレクトロン株式会社 プラズマ処理装置およびガス導入機構
US9748434B1 (en) 2016-05-24 2017-08-29 Tesla, Inc. Systems, method and apparatus for curing conductive paste
US9954136B2 (en) 2016-08-03 2018-04-24 Tesla, Inc. Cassette optimized for an inline annealing system
JP6796450B2 (ja) * 2016-10-25 2020-12-09 東京エレクトロン株式会社 プラズマ処理装置
US10115856B2 (en) 2016-10-31 2018-10-30 Tesla, Inc. System and method for curing conductive paste using induction heating
US20190032211A1 (en) * 2017-07-28 2019-01-31 Lam Research Corporation Monolithic ceramic gas distribution plate
CN109427527B (zh) * 2017-08-24 2021-02-26 中微半导体设备(上海)股份有限公司 一种等离子体刻蚀设备及用于该设备的喷头
JP7077072B2 (ja) * 2018-03-08 2022-05-30 株式会社アルバック プラズマ処理装置、および、プラズマ処理方法
CN110391120B (zh) * 2018-04-17 2022-02-22 北京北方华创微电子装备有限公司 一种喷头和等离子体处理腔室
JP7307299B2 (ja) * 2018-06-29 2023-07-12 北陸成型工業株式会社 静電チャック
US11715652B2 (en) 2018-09-28 2023-08-01 Ngk Insulators, Ltd. Member for semiconductor manufacturing apparatus
CN113366145B (zh) * 2019-01-31 2024-10-11 朗姆研究公司 具有可调式气体出口的喷头
CN111613508A (zh) * 2019-02-25 2020-09-01 北京北方华创微电子装备有限公司 进气装置及反应腔室
JP7152970B2 (ja) * 2019-03-01 2022-10-13 株式会社ニューフレアテクノロジー 気相成長装置
CN110349830B (zh) * 2019-09-09 2020-02-14 北京北方华创微电子装备有限公司 等离子体系统以及应用于等离子体系统的过滤装置
CN111081525B (zh) * 2019-12-31 2021-06-08 江苏鲁汶仪器有限公司 一种阻挡工艺腔室等离子体反流保护进气结构的装置
JP7472393B2 (ja) 2021-10-20 2024-04-22 日本特殊陶業株式会社 保持装置
KR20240155282A (ko) * 2022-03-30 2024-10-28 교세라 가부시키가이샤 통기성 플러그 및 적재대

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH640571A5 (fr) * 1981-03-06 1984-01-13 Battelle Memorial Institute Procede et dispositif pour deposer sur un substrat une couche de matiere minerale.
JP2908912B2 (ja) * 1991-08-30 1999-06-23 日本電子株式会社 誘導プラズマ発生装置におけるプラズマ着火方法
US5996528A (en) * 1996-07-02 1999-12-07 Novellus Systems, Inc. Method and apparatus for flowing gases into a manifold at high potential
JP4124383B2 (ja) * 1998-04-09 2008-07-23 財団法人国際科学振興財団 マイクロ波励起プラズマ装置用のシャワープレート及びマイクロ波励起プラズマ装置
US6182603B1 (en) * 1998-07-13 2001-02-06 Applied Komatsu Technology, Inc. Surface-treated shower head for use in a substrate processing chamber
JP3668079B2 (ja) * 1999-05-31 2005-07-06 忠弘 大見 プラズマプロセス装置
JP2002343788A (ja) * 2001-05-21 2002-11-29 Toshiba Ceramics Co Ltd プラズマ処理装置のガスインレット部材
JP3748230B2 (ja) * 2002-02-20 2006-02-22 株式会社日立ハイテクノロジーズ プラズマエッチング装置及びシャワープレート
JP2003282462A (ja) * 2002-03-27 2003-10-03 Kyocera Corp シャワープレートとその製造方法及びそれを用いたシャワーヘッド
JP2004006581A (ja) * 2002-04-17 2004-01-08 Shin Etsu Chem Co Ltd プラズマ処理用シャワープレート及びその製造方法
JP4338355B2 (ja) * 2002-05-10 2009-10-07 東京エレクトロン株式会社 プラズマ処理装置
JP4540926B2 (ja) * 2002-07-05 2010-09-08 忠弘 大見 プラズマ処理装置
US20040261712A1 (en) * 2003-04-25 2004-12-30 Daisuke Hayashi Plasma processing apparatus
US6921437B1 (en) * 2003-05-30 2005-07-26 Aviza Technology, Inc. Gas distribution system
US20050103267A1 (en) * 2003-11-14 2005-05-19 Hur Gwang H. Flat panel display manufacturing apparatus
KR101172334B1 (ko) * 2003-12-26 2012-08-14 고에키자이단호진 고쿠사이카가쿠 신고우자이단 샤워 플레이트, 플라즈마 처리 장치, 및 제품의 제조방법
JP4532897B2 (ja) * 2003-12-26 2010-08-25 財団法人国際科学振興財団 プラズマ処理装置、プラズマ処理方法及び製品の製造方法
JP4707959B2 (ja) * 2004-02-20 2011-06-22 日本エー・エス・エム株式会社 シャワープレート、プラズマ処理装置及びプラズマ処理方法
JP2006186306A (ja) * 2004-09-30 2006-07-13 Toshiba Ceramics Co Ltd ガス拡散プレートおよびその製造方法
KR100766132B1 (ko) * 2005-08-31 2007-10-12 코바렌트 마테리얼 가부시키가이샤 가스 분산판 및 그 제조방법

Also Published As

Publication number Publication date
KR101094979B1 (ko) 2011-12-20
TW200822814A (en) 2008-05-16
KR20090037466A (ko) 2009-04-15
CN101491164A (zh) 2009-07-22
US20090311869A1 (en) 2009-12-17
TWI411360B (zh) 2013-10-01
WO2008010520A1 (fr) 2008-01-24
JP2008047883A (ja) 2008-02-28

Similar Documents

Publication Publication Date Title
JP5463536B2 (ja) シャワープレート及びその製造方法、並びにそのシャワープレートを用いたプラズマ処理装置、プラズマ処理方法及び電子装置の製造方法
JP5010234B2 (ja) ガス放出孔部材を一体焼結したシャワープレートおよびその製造方法
JP2008047869A (ja) シャワープレート及びその製造方法、並びにそのシャワープレートを用いたプラズマ処理装置、プラズマ処理方法及び電子装置の製造方法
JP5069427B2 (ja) シャワープレート、並びにそれを用いたプラズマ処理装置、プラズマ処理方法及び電子装置の製造方法
JP5604622B2 (ja) シャワープレートの製造方法
US9595425B2 (en) Antenna, dielectric window, plasma processing apparatus and plasma processing method
JP5004271B2 (ja) マイクロ波プラズマ処理装置、誘電体窓の製造方法およびマイクロ波プラズマ処理方法
JP4590597B2 (ja) シャワープレートの製造方法
WO2011021539A1 (ja) プラズマ処理装置とプラズマ処理方法
US20040094094A1 (en) Plasma processing device
US6344420B1 (en) Plasma processing method and plasma processing apparatus
US20080318431A1 (en) Shower Plate and Plasma Treatment Apparatus Using Shower Plate
WO2009087887A1 (ja) プラズマ処理装置
CN101467498A (zh) 喷淋板及其制造方法、和使用了它的等离子体处理装置、处理方法及电子装置的制造方法
JP5410881B2 (ja) プラズマ処理装置とプラズマ処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131225

R150 Certificate of patent or registration of utility model

Ref document number: 5463536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees