JP5401782B2 - Thermal storage device and manufacturing method thereof - Google Patents
Thermal storage device and manufacturing method thereof Download PDFInfo
- Publication number
- JP5401782B2 JP5401782B2 JP2007311784A JP2007311784A JP5401782B2 JP 5401782 B2 JP5401782 B2 JP 5401782B2 JP 2007311784 A JP2007311784 A JP 2007311784A JP 2007311784 A JP2007311784 A JP 2007311784A JP 5401782 B2 JP5401782 B2 JP 5401782B2
- Authority
- JP
- Japan
- Prior art keywords
- heat storage
- storage material
- chemical
- chemical heat
- molded body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Building Environments (AREA)
Description
本発明は、化学蓄熱材を成形した化学蓄熱材成形体を含んで構成された蓄熱装置、及びその製造方法に関する。 The present invention relates to a heat storage device including a chemical heat storage material molded body obtained by forming a chemical heat storage material, and a method for manufacturing the same.
粒径0.3mm〜4mmの範囲の結晶性の石灰石を850℃〜1100℃の範囲で所定時間加熱した後に、該石灰石を500℃〜600℃の範囲で所定時間加熱することで、表面から内部に向かう多数の気孔が形成された生石灰を得る技術が知られている(例えば、特許文献1参照)。また、内部空間の10〜60容量%の割合で粉体化学蓄熱材を収容したカプセルを、反応器又は反応塔に充填する技術が知られている(例えば、特許文献2、特許文献3参照)。さらに、溢汪管を具備した複数の蒸発皿を有する蒸発器と、冷媒液管流器と、凝縮器と、吸着剤容器と、これらを連通する連通管とを有する化学蓄熱型冷凍装置が知られている(例えば、特許文献4参照)。
しかしながら、特許文献1に記載のように、それ自体に気孔が形成された生石灰を粉体のまま化学蓄熱材として用いた場合、作動中、水和反応と脱水反応とが繰り返される。このため、この化学蓄熱材の粉体は、体積膨張、収縮の繰り返しによって他の粉体と擦れ合い、微粉化してしまい、蓄熱システムとしての反応性が低下する問題があった。また。特許文献2、3の構成では、カプセルの採用による熱伝導抵抗の増加や伝熱経路の複雑化によって、化学蓄熱材の発熱反応による熱を効率良く取り出すことができず、さらに蓄熱反応における熱を効率良く供給することができない問題があった。一方、特許文献4の構成は、複数の蒸発皿を用いることで蒸発器での冷媒の蒸発面積を確保することができるものの、熱交換媒体との熱交換面積が少なく、伝熱不足(律束)を起こす原因となる。 However, as described in Patent Document 1, when quick lime having pores formed therein is used as a chemical heat storage material in a powder form, the hydration reaction and the dehydration reaction are repeated during operation. For this reason, the powder of the chemical heat storage material rubs against other powders by repeated volume expansion and contraction, and is pulverized, resulting in a problem that the reactivity as the heat storage system is lowered. Also. In the configurations of Patent Documents 2 and 3, due to the increase in heat conduction resistance due to the use of capsules and the complexity of the heat transfer path, the heat due to the exothermic reaction of the chemical heat storage material cannot be taken out efficiently, and the heat in the heat storage reaction is further reduced. There was a problem that could not be supplied efficiently. On the other hand, although the structure of patent document 4 can ensure the evaporation area of the refrigerant | coolant in an evaporator by using several evaporating dishes, there are few heat exchange areas with a heat exchange medium, and heat transfer is insufficient (Rule control). ).
本発明は、上記事実を考慮して、粉体の化学蓄熱材を成形して成る化学蓄熱材成形体と壁体との間で良好な伝熱が行われる蓄熱装置、及び該蓄熱装置の製造方法を得ることが目的である。 In view of the above facts, the present invention provides a heat storage device in which good heat transfer is performed between a chemical heat storage material molded body formed by molding a powder chemical heat storage material and a wall, and the manufacture of the heat storage device The purpose is to obtain a method.
請求項1記載の発明に係る蓄熱装置は、粉体の化学蓄熱材を成形して成る化学蓄熱材成形体と、金属材にて構成され、前記化学蓄熱材成形体の表面に接触された壁体と、前記化学蓄熱材成形体よりも高密度でかつ前記化学蓄熱材成形体と同種の化学蓄熱材であるアルカリ土類金属化合物と、粘土鉱物とを含んで構成され、前記化学蓄熱材成形体と前記壁体との隙間を埋める伝熱層と、を備えている。 The heat storage device according to claim 1 is a chemical heat storage material molded body formed by molding a powder chemical heat storage material, and a wall made of a metal material and in contact with the surface of the chemical heat storage material molded body Body , an alkaline earth metal compound that is higher in density than the chemical heat storage material molded body and the same type of chemical heat storage material as the chemical heat storage material molded body, and a clay mineral, and the chemical heat storage material molding A heat transfer layer that fills a gap between the body and the wall .
請求項1記載の蓄熱装置では、化学蓄熱材成形体は、粉体状の化学蓄熱材が成形されることで、全体として、粉体(化学蓄熱材)間に隙間(拡散路)が形成されると共に全体として所定形状を有する多孔質構造体として形成されている。そして、化学蓄熱材成形体と壁体との間は、化学蓄熱材成形体よりも高密度(緻密な)化学蓄熱材より成る伝熱層にて埋められているので、該化学蓄熱材成形体と壁体との密着性が高い。また、伝熱層の存在により、化学蓄熱材成形体と壁体との付着強度が高く、上記良好な密着性が維持されやすい。これらにより、本蓄熱装置では、化学蓄熱材成形体と壁体との間の熱抵抗が小さく、化学蓄熱材成形体の蓄熱、放熱に伴う熱の授受が良好に行われる。 In the heat storage device according to claim 1, in the chemical heat storage material molded body, a powdery chemical heat storage material is formed, and as a whole, a gap (diffusion path) is formed between the powders (chemical heat storage material). And a porous structure having a predetermined shape as a whole. Since the space between the chemical heat storage material molded body and the wall body is filled with a heat transfer layer made of a chemical heat storage material having a higher density (dense) than the chemical heat storage material molded body, the chemical heat storage material molded body Adhesion between the wall and the body is high. Further, due to the presence of the heat transfer layer, the adhesion strength between the chemical heat storage material molded body and the wall body is high, and the good adhesion is easily maintained. As a result, in this heat storage device, the thermal resistance between the chemical heat storage material molded body and the wall body is small, and heat transfer and heat transfer associated with the chemical heat storage material molded body are performed well.
このように、請求項1記載の蓄熱装置では、粉体の化学蓄熱材を成形して成る化学蓄熱材成形体と壁体との間で良好な伝熱が行われる。また、伝熱層が化学蓄熱材にて構成されているので、蓄熱装置全体としての化学蓄熱材の密度が高く、蓄熱、放熱性能が良好である。 Thus, in the heat storage device according to the first aspect, good heat transfer is performed between the chemical heat storage material molded body formed by molding the powder chemical heat storage material and the wall body. Moreover, since the heat-transfer layer is comprised with the chemical heat storage material, the density of the chemical heat storage material as the whole heat storage apparatus is high, and heat storage and heat dissipation performance are favorable.
請求項2記載の発明に係る蓄熱装置は、粉体の化学蓄熱材を成形して成る化学蓄熱材成形体と、前記化学蓄熱材成形体を収容した蓄熱材収容部と、該蓄熱材収容部内との間が壁体にて仕切られると共に該壁体を介して前記化学蓄熱材成形体と熱交換するための熱交換媒体を流通させる熱交換媒体流通部とを含む、金属材にて構成された熱交換構造体と、前記化学蓄熱材成形体よりも高密度でかつ前記化学蓄熱材成形体と同種の化学蓄熱材であるアルカリ土類金属化合物と、粘土鉱物とを含んで構成され、前記化学蓄熱材成形体と前記壁体との隙間を埋める伝熱層と、を備えている。 A heat storage device according to the invention described in claim 2 is a chemical heat storage material molded body formed by molding a powder chemical heat storage material, a heat storage material storage section storing the chemical heat storage material molded body, and the heat storage material storage section. between the containing and heat exchange medium circulating unit for circulating a heat exchange medium for the chemical thermal storage medium molded body and the heat exchange through the wall member together are partitioned by walls, are composed of metal material A heat exchange structure , an alkaline earth metal compound that is higher in density than the chemical heat storage material molded body and the same type of chemical heat storage material as the chemical heat storage material molded body, and a clay mineral , A heat transfer layer that fills a gap between the chemical heat storage material molded body and the wall body .
請求項2記載の蓄熱装置では、化学蓄熱材成形体は、粉体状の化学蓄熱材が成形されることで、全体として、粉体(化学蓄熱材)間に隙間(拡散路)が形成されると共に全体として所定形状を有する多孔質構造体として形成されている。この本蓄熱装置では、壁体を介した熱交換媒体との熱交換によって化学蓄熱材成形体に蓄熱され、又は化学蓄熱材成形体の熱が取り出されるので、蓄熱反応及び放熱反応の少なくとも一方は、蓄熱又は放熱のための熱交換を蓄熱材収容部外の熱交換媒体との熱交換によって行うことができる。このため、反応に伴う反応物又は反応生成物の移動が蓄熱材収容部を流れる熱交換媒体との混合等によって阻害されることがなく、反応物又は反応生成物の移動速度が確保され、蓄熱又は放熱のための反応性が一層良好である。 In the heat storage device according to claim 2, a gap (diffusion path) is formed between the powder (chemical heat storage material) as a whole by forming the chemical heat storage material molded body into a powdery chemical heat storage material. And a porous structure having a predetermined shape as a whole. In this heat storage device, heat is stored in the chemical heat storage material molded body by heat exchange with the heat exchange medium via the wall body, or the heat of the chemical heat storage material molded body is taken out, so at least one of the heat storage reaction and the heat dissipation reaction is The heat exchange for heat storage or heat dissipation can be performed by heat exchange with a heat exchange medium outside the heat storage material accommodation unit. For this reason, the movement of the reactant or reaction product accompanying the reaction is not hindered by mixing with the heat exchange medium flowing through the heat storage material container, and the moving speed of the reactant or reaction product is ensured, and the heat storage Or the reactivity for heat dissipation is still better.
そして、本蓄熱装置では、多孔質構造体である化学蓄熱材成形体と熱交換構造体の壁体との間は、化学蓄熱材成形体よりも高密度(緻密な)化学蓄熱材より成る伝熱層にて埋められているので、該化学蓄熱材成形体と壁体との密着性が高い。また、伝熱層の存在により、化学蓄熱材成形体と壁体との界面付着強度が高く、上記良好な密着性が維持されやすい。これらにより、本蓄熱装置では、化学蓄熱材成形体と壁体との間の熱抵抗が小さく、化学蓄熱材成形体の蓄熱、放熱に伴う熱の授受が良好に行われる。すなわち、壁体を介した熱交換媒体と化学蓄熱材成形体との熱交換性能が良好である。 In this heat storage device, the gap between the chemical heat storage material molded body, which is a porous structure, and the wall of the heat exchange structure, is made of a chemical heat storage material having a higher density (dense) than the chemical heat storage material molded body. Since it is buried in the heat layer, the adhesion between the chemical heat storage material molded body and the wall body is high. Further, due to the presence of the heat transfer layer, the interfacial adhesion strength between the chemical heat storage material molded body and the wall body is high, and the good adhesion is easily maintained. As a result, in this heat storage device, the thermal resistance between the chemical heat storage material molded body and the wall body is small, and heat transfer and heat transfer associated with the chemical heat storage material molded body are performed well. That is, the heat exchange performance between the heat exchange medium and the chemical heat storage material molded body through the wall is good.
このように、請求項2記載の蓄熱装置では、粉体の化学蓄熱材を成形して成る化学蓄熱材成形体と壁体との間で良好な伝熱が行われる。また、伝熱層が化学蓄熱材にて構成されているので、蓄熱装置全体としての化学蓄熱材の密度が高く、蓄熱、放熱性能が良好である。 Thus, in the heat storage device according to claim 2, good heat transfer is performed between the chemical heat storage material molded body formed by molding the powder chemical heat storage material and the wall body. Moreover, since the heat-transfer layer is comprised with the chemical heat storage material, the density of the chemical heat storage material as the whole heat storage apparatus is high, and heat storage and heat dissipation performance are favorable.
また、請求項1、2記載の蓄熱装置では、伝熱層により、化学蓄熱材成形体と金属製の壁体との密着性、界面付着強度を確保することができる。 Moreover, in the heat storage apparatus of Claim 1, 2 , the adhesiveness of a chemical heat storage material molded object and a metal wall body and interface adhesion strength are securable by a heat-transfer layer.
また、請求項1、2記載の蓄熱装置では、化学蓄熱材成形体と伝熱層とが同種の化学蓄熱材にて構成されているので、化学蓄熱材成形体のシンタリング(緻密化)が抑制され、化学蓄熱材蓄熱体の蓄熱、放熱性能が維持されやすい。また、化学蓄熱材成形体と伝熱層との線膨張率の相違に起因する界面付着性の悪化が防止される。 In the heat storage device according to claims 1 and 2 , since the chemical heat storage material molded body and the heat transfer layer are formed of the same kind of chemical heat storage material, sintering (densification) of the chemical heat storage material molded body is performed. It is suppressed and the heat storage and heat dissipation performance of the chemical heat storage material heat storage body are easily maintained. Moreover, the deterioration of the interface adhesiveness resulting from the difference in the linear expansion coefficient between the chemical heat storage material molded body and the heat transfer layer is prevented.
また、請求項1、2記載の蓄熱装置では、伝熱層を構成する化学蓄熱材としてアルカリ土類金属化合物が採用されているので、例えば、アルカリ土類金属の塩を出発原料として、化学蓄熱材成形体に対し高密度な伝熱層を比較的容易に構成することができる。 Further, in the heat storage device according to claims 1 and 2 , since an alkaline earth metal compound is employed as the chemical heat storage material constituting the heat transfer layer, for example, a chemical heat storage using an alkaline earth metal salt as a starting material. A high-density heat transfer layer can be configured relatively easily with respect to the material molded body.
また、請求項1、2記載の蓄熱装置では、繊維構造を有する粘土鉱物が伝熱層に含まれるので、該粘土鉱物の繊維がアンカ効果を発揮し、化学蓄熱材成形体と壁面との付着強度が増す。 Further, in the heat storage device according to claims 1 and 2 , since the clay mineral having a fiber structure is included in the heat transfer layer, the fibers of the clay mineral exert an anchor effect, and the adhesion between the chemical heat storage material molded body and the wall surface Increases strength.
請求項3載の発明に係る蓄熱装置は、請求項1又は請求項2記載の蓄熱装置において、前記伝熱層は、脱水反応に伴い酸化され、水和反応に伴い水酸化される水和反応系化学蓄熱材を含み、350℃〜500℃の温度で焼成されて構成されている。 Heat storage device according to the invention of claim 3 the mounting, in the heat storage device according to claim 1 or claim 2, wherein the heat transfer layer is oxidized due to the dehydration reaction, hydration reaction that is hydroxylated with the hydration reaction It contains a system chemical heat storage material and is fired at a temperature of 350 ° C to 500 ° C.
請求項3記載の蓄熱装置では、水和反応系化学蓄熱材は、350℃〜500℃の温度で焼成されることで、伝熱層の化学蓄熱材マイクロクラックが生じ、該伝熱層の比表面積が大きくなる。この大きな比表面積は、蓄熱、放熱反応における反応速度向上に寄与するので、本蓄熱装置では、蓄熱、放熱の効率を向上することができる。 In the heat storage device according to claim 3 , the hydration reaction type chemical heat storage material is fired at a temperature of 350 ° C. to 500 ° C., thereby generating chemical heat storage material microcracks in the heat transfer layer, and the ratio of the heat transfer layer Increases surface area. Since this large specific surface area contributes to the improvement of the reaction speed in heat storage and heat dissipation reaction, in this heat storage device, the efficiency of heat storage and heat dissipation can be improved.
請求項4記載の発明に係る蓄熱装置は、請求項1〜請求項3の何れか1項記載の蓄熱装置において、前記化学蓄熱材成形体は、前記粉体の化学蓄熱材を分散保持する粘土鉱物を含んで構成されている。 The heat storage device according to a fourth aspect of the present invention is the heat storage device according to any one of the first to third aspects, wherein the chemical heat storage material molded body is a clay for dispersing and holding the powder chemical heat storage material. It is composed of minerals.
請求項4記載の蓄熱装置では、多孔質の粘土鉱物の骨格中に化学蓄熱材が分散保持されるので、上記した多孔質構造体としての強度が高く、該多孔質構造体としての構造が安定して維持され易い。 In the heat storage device according to claim 4 , since the chemical heat storage material is dispersed and held in the skeleton of the porous clay mineral, the strength as the porous structure described above is high, and the structure as the porous structure is stable. Easy to maintain.
請求項5記載の発明に係る蓄熱装置は、請求項4記載の蓄熱装置において、前記粘土鉱物として、層リボン構造を有する粘土鉱物が用いられている。 A heat storage device according to a fifth aspect of the present invention is the heat storage device according to the fourth aspect , wherein a clay mineral having a layer ribbon structure is used as the clay mineral.
請求項5記載の蓄熱装置では、化学蓄熱材成形体に混合される粘土鉱物及び伝熱層に混合される粘土鉱物の少なくとも一方の粘土鉱物が、多孔質で比表面積が大きい層リボン構造の繊維状形態を有するため、その繊維質、可塑性によって、化学蓄熱材成形体及び/又は伝熱層の化学蓄熱材を良好に組織化、構造化させることができる。 6. The heat storage device according to claim 5 , wherein at least one of the clay mineral mixed in the chemical heat storage material molded body and the clay mineral mixed in the heat transfer layer is porous and has a layer ribbon structure fiber having a large specific surface area. Since it has a shape, the chemical heat storage material molded body and / or the chemical heat storage material of the heat transfer layer can be well organized and structured by its fiber and plasticity.
請求項6記載の発明に係る蓄熱装置は、請求項5記載の蓄熱装置において、前記層リボン構造を有する粘土鉱物として、セピオライト又はパリゴルスカイトが用いられている。 A heat storage device according to a sixth aspect of the present invention is the heat storage device according to the fifth aspect , wherein sepiolite or palygorskite is used as the clay mineral having the layer ribbon structure.
請求項6記載の蓄熱装置では、粘土鉱物の少なくとも一部が層リボン構造を有するセピオライト又はパリゴルスカイト(アタパルジャイト)であるため、その繊維質、可塑性によって、化学蓄熱材成形体及び/又は伝熱層の化学蓄熱材を良好に組織化、構造化させることができる。 In the heat storage device according to claim 6 , since at least a part of the clay mineral is sepiolite or palygorskite (attapulgite) having a layer ribbon structure, the chemical heat storage material molded body and / or the heat transfer layer is formed depending on its fiber and plasticity. The chemical heat storage material can be well organized and structured.
請求項8記載の発明に係る蓄熱装置は、請求項4記載の蓄熱装置において、前記粘土鉱物として、ベントナイトが用いられている。 The heat storage device according to an eighth aspect of the present invention is the heat storage device according to the fourth aspect , wherein bentonite is used as the clay mineral.
請求項8記載の蓄熱装置では、化学蓄熱材成形体に混合される粘土鉱物及び伝熱層に混合される粘土鉱物の少なくとも一方の粘土鉱物として、接着力の強い粘土鉱物であるベントナイトを用いるため、この接着力によって、化学蓄熱材成形体及び/又は伝熱層の化学蓄熱材を良好組織化、構造化させることができる。 In the heat storage device according to claim 8 , bentonite which is a clay mineral having a strong adhesive force is used as at least one of the clay mineral mixed in the chemical heat storage material molded body and the clay mineral mixed in the heat transfer layer. By this adhesive force, the chemical heat storage material molded body and / or the chemical heat storage material of the heat transfer layer can be well organized and structured.
請求項9記載の発明に係る蓄熱装置は、請求項1〜請求項8の何れか1項記載の蓄熱装置において、前記粘土鉱物は、前記化学蓄熱材成形体を構成する化学蓄熱材の粒子径よりも細い繊維状を成している。 The heat storage device according to the invention of claim 9 is the heat storage device according to any one of claims 1 to 8 , wherein the clay mineral is a particle diameter of a chemical heat storage material constituting the chemical heat storage material molded body. It has a finer fiber shape.
請求項9記載の蓄熱装置では、化学蓄熱材成形体に混合される粘土鉱物及び伝熱層に混合される粘土鉱物の少なくとも一方の粘土鉱物が、微細な繊維径を有する繊維状を成すため、少量の粘土鉱物を用いて、化学蓄熱材成形体及び/又は伝熱層の化学蓄熱材の組織化、構造化を果たすことが可能である。これにより、化学蓄熱材成形体における質量当たり、体積当たりの化学蓄熱材の占有量が大きくすることができる。 In the heat storage device according to claim 9 , at least one of the clay mineral mixed in the chemical heat storage material molded body and the clay mineral mixed in the heat transfer layer has a fibrous shape having a fine fiber diameter. Using a small amount of clay mineral, the chemical heat storage material molded body and / or the chemical heat storage material of the heat transfer layer can be organized and structured. Thereby, the occupation amount of the chemical heat storage material per mass per mass in the chemical heat storage material molded body can be increased.
請求項10記載の発明に係る蓄熱装置は、請求項1〜請求項9の何れか1項記載の蓄熱装置において、前記化学蓄熱材成形体を構成する化学蓄熱材及び前記伝熱層を構成する化学蓄熱材の少なくとも一方は、微細なクラックを有する。 A heat storage device according to a tenth aspect of the present invention is the heat storage device according to any one of the first to ninth aspects, wherein the chemical heat storage material forming the chemical heat storage material molded body and the heat transfer layer are configured. At least one of the chemical heat storage materials has fine cracks.
請求項10記載の蓄熱装置では、微細なクラックを有する化学蓄熱材の比表面積が大きいので、化学蓄熱材成形体及び/又は伝熱層において、蓄熱、放熱反応における反応速度向上を示す。これにより、蓄熱、放熱の効率を向上することができる。 In the heat storage device according to the tenth aspect, since the specific surface area of the chemical heat storage material having fine cracks is large, the chemical heat storage material molded body and / or the heat transfer layer exhibit improved reaction rates in heat storage and heat release reactions. Thereby, the efficiency of heat storage and heat dissipation can be improved.
なお、請求項1、2において、化学蓄熱材成形体を構成する化学蓄熱材として、脱水反応に伴い吸熱し、水和反応に伴い放熱する水和反応系化学蓄熱材を用いると、水和反応、脱水(逆水和)反応に伴い水和反応系化学蓄熱材が体積膨張、収縮を繰り返すが、粘土鉱物を用いた構造における化学蓄熱材の組織化や隙間の形成によって、該化学蓄熱材の微粉化が効果的に抑制又は防止される。 In claims 1 and 2, when a hydration reaction type chemical heat storage material that absorbs heat during dehydration reaction and dissipates heat during hydration reaction is used as the chemical heat storage material constituting the chemical heat storage material molded body, The hydration reaction type chemical heat storage material repeats volume expansion and contraction with dehydration (reverse hydration) reaction, but the chemical heat storage material is finely divided by organizing the chemical heat storage material and forming gaps in the structure using clay mineral. Is effectively suppressed or prevented.
また、化学蓄熱材成形体を構成する化学蓄熱材として、脱水反応に伴い酸化され、水和反応に伴い水酸化される水和反応系化学蓄熱材を用いると、和反応、脱水(逆水和)反応に伴い水和反応系化学蓄熱材が体積膨張、収縮を繰り返すが、粘土鉱物を用いた構造における化学蓄熱材の組織化や隙間の形成によって、該化学蓄熱材の微粉化が効果的に抑制又は防止される。 Moreover, as a chemical heat storage material constituting the chemical heat storage material molded body, a hydration reaction type chemical heat storage material that is oxidized with dehydration reaction and hydroxylated with hydration reaction is used. Hydration reaction type chemical heat storage material repeats volume expansion and contraction with the reaction, but the chemical heat storage material is finely pulverized effectively by organization and formation of gaps in the structure using clay minerals. Or prevented.
また、化学蓄熱材として無機化合物を用いると、蓄熱、放熱反応(水和、脱水)に対する材料安定性が高い。このため、長期に亘り安定した蓄熱効果を得ることができる。 Further, when an inorganic compound is used as a chemical heat storage material, the heat storage, a material having high stability against heat radiation reaction (hydration, dehydration). For this reason, a stable heat storage effect can be obtained over a long period of time.
また、化学蓄熱材としてアルカリ土類金属化合物(水酸化物)を用いると、換言すれば、環境負荷の小さい材料を用いると、製造、使用、リサイクルを含めた安全性の確保が容易になる。また、粘土鉱物としてセピオライトを用いる構成では、水酸化物のアルカリ性が粘土鉱物(特に、上記した)との反応によるガラス化を助けるため、多孔質構造体の強度向上に寄与する。 Moreover, the use of alkaline earth metal compound (hydroxide) as the chemical thermal storage medium, in other words, the use of material having a low environmental load, manufacture, use, facilitates ensuring safety, including recycling. Further, in the configuration using sepiolite as the clay mineral, the alkalinity of the hydroxide helps vitrification by reaction with the clay mineral (especially described above), which contributes to improving the strength of the porous structure.
請求項7記載の発明に係る蓄熱装置は、請求項6記載の蓄熱装置において、前記化学蓄熱材成形体は、前記粉体のアルカリ土類金属化合物である化学蓄熱材と、前記粘土鉱物としてのセピオライトとを混練して所定の形状に成形したものを、350℃〜500℃の温度で焼成して成る。 The heat storage apparatus according to the invention of claim 7, wherein, in the heat storage device according to claim 6, wherein the chemical thermal storage medium molded body includes a chemical heat storage material is an alkaline earth metal compound of the powder, as the clay mineral What is kneaded with sepiolite and formed into a predetermined shape is fired at a temperature of 350 ° C. to 500 ° C.
請求項7記載の蓄熱装置は、水和反応系化学蓄熱材とセピオライトとが混練されている成形体を焼成することで、セピオライトが焼結されて、多孔質構造体として構成されている。無機化合物である水和反応系化学蓄熱材は、350℃〜500℃の温度で焼成されることで、マイクロクラックが生じ、比表面積が大きくなる。この大きな比表面積は、蓄熱、放熱反応における反応速度向上に寄与するので、本化学蓄熱材成形体では、蓄熱、放熱の効率を向上することができる。 The heat storage device according to claim 7 is configured as a porous structure by sintering a molded body in which a hydration reaction type chemical heat storage material and sepiolite are kneaded to sinter sepiolite. The hydration reaction type chemical heat storage material, which is an inorganic compound, is fired at a temperature of 350 ° C. to 500 ° C., thereby generating microcracks and increasing the specific surface area. Since this large specific surface area contributes to improving the reaction rate in heat storage and heat dissipation reactions, the chemical heat storage material molded body can improve the efficiency of heat storage and heat dissipation.
また、セピオライトの焼結温度が350℃〜400℃であるため、セピオライトの焼結と化学蓄熱材へのマイクロクラック生成とが同時に進行する。換言すれば、セピオライトの焼結と化学蓄熱材へのマイクロクラック生成とが、互いに悪影響を与えることがない。そして、セピオライトに分散保持された化学蓄熱材は、マイクロクラックにより微粉化することが抑制される。 Moreover, since the sintering temperature of sepiolite is 350 ° C. to 400 ° C., the sintering of sepiolite and the generation of microcracks in the chemical heat storage material proceed simultaneously. In other words, the sintering of sepiolite and the generation of microcracks in the chemical heat storage material do not adversely affect each other. The chemical heat storage material dispersed and held in sepiolite is suppressed from being pulverized by microcracks.
請求項11記載の発明に係る蓄熱装置の製造方法は、粉体の化学蓄熱材から化学蓄熱材成形体を得る成形工程と、互いに接触された前記化学蓄熱材成形体と金属材にて構成された壁体との間に、前記化学蓄熱材成形体と同種の化学蓄熱材の原料としてのアルカリ土類金属の塩の溶液と、粘土鉱物との混合物を供給する伝熱層原料供給工程と、前記伝熱層原料供給工程で前記化学蓄熱材成形体と壁体との間に供給された前記化学蓄熱材の原料と粘土鉱物との混合物を、前記化学蓄熱材成形体を構成する化学蓄熱材よりも高密度の化学蓄熱材より成る伝熱層に変化させる伝熱層生成工程と、を含む。 Method for producing a heat storage device according to the invention of claim 1 1, wherein the configuration at a molding step of obtaining a chemical thermal storage medium molded body from a powder of the chemical thermal storage medium, the chemical thermal storage medium molded body and the metal member which are in contact with each other A heat transfer layer raw material supply step for supplying a mixture of an alkaline earth metal salt solution as a raw material for the chemical heat storage material of the same type as the chemical heat storage material molded body and a clay mineral between the formed wall body, The chemical heat storage material forming body comprises a mixture of the chemical heat storage material raw material and the clay mineral supplied between the chemical heat storage material forming body and the wall body in the heat transfer layer raw material supply step. A heat transfer layer generating step of changing to a heat transfer layer made of a chemical heat storage material having a higher density than the material.
請求項11記載の蓄熱装置の製造方法では、成形工程で、粉体の化学蓄熱材を成形して化学蓄熱材成形体を得、その後、伝熱層原料供給工程に移行する。伝熱層原料供給工程では、互いに接触されている化学蓄熱材成形体と壁体との間(界面)に、化学蓄熱材の原料を供給し、伝熱層生成工程に移行する。伝熱層生成工程では、化学蓄熱材成形体と壁体との間の化学蓄熱材原料を化学蓄熱材より成る伝熱層に変化させる。これにより、化学蓄熱材成形体と壁体との間に、化学蓄熱材成形体よりも高密度(緻密)な化学蓄熱材より成る伝熱層が形成される。 In the method of manufacturing the heat storage device of claim 1 1, wherein, in the forming step, to give the chemical thermal storage medium molded body by molding a powder of the chemical thermal storage medium, then, it proceeds to the heat transfer layer feed step. In the heat transfer layer raw material supply step, the chemical heat storage material is supplied between the chemical heat storage material molded body and the wall body that are in contact with each other (interface), and the process proceeds to the heat transfer layer generation step. In the heat transfer layer generating step, the chemical heat storage material raw material between the chemical heat storage material molded body and the wall is changed to a heat transfer layer made of the chemical heat storage material. Thereby, a heat transfer layer made of a chemical heat storage material having a higher density (dense) than the chemical heat storage material molded body is formed between the chemical heat storage material molded body and the wall body.
このように製造された蓄熱装置では、化学蓄熱材成形体は、粉体状の化学蓄熱材が成形されることで、全体として、粉体(化学蓄熱材)間に隙間(拡散路)が形成されると共に全体として所定形状を有する多孔質構造体として形成されている。そして、化学蓄熱材成形体と壁体との間は、化学蓄熱材成形体よりも高密度(緻密な)化学蓄熱材より成る伝熱層にて埋められているので、該化学蓄熱材成形体と壁体との密着性が高い。また、伝熱層の存在により、化学蓄熱材成形体と壁体との付着強度が高く、上記良好な密着性が維持されやすい。これらにより、本蓄熱装置では、化学蓄熱材成形体と壁体との間の熱抵抗が小さく、化学蓄熱材成形体の蓄熱、放熱に伴う熱の授受が良好に行われる。 In the heat storage device manufactured in this way, the chemical heat storage material molded body is formed with a powdery chemical heat storage material, and as a whole, a gap (diffusion path) is formed between the powders (chemical heat storage material). In addition, it is formed as a porous structure having a predetermined shape as a whole. Since the space between the chemical heat storage material molded body and the wall body is filled with a heat transfer layer made of a chemical heat storage material having a higher density (dense) than the chemical heat storage material molded body, the chemical heat storage material molded body Adhesion between the wall and the body is high. Further, due to the presence of the heat transfer layer, the adhesion strength between the chemical heat storage material molded body and the wall body is high, and the good adhesion is easily maintained. As a result, in this heat storage device, the thermal resistance between the chemical heat storage material molded body and the wall body is small, and heat transfer and heat transfer associated with the chemical heat storage material molded body are performed well.
このように、請求項11記載の蓄熱装置の製造方法では、粉体の化学蓄熱材を成形して成る化学蓄熱材成形体と壁体との間で良好な熱伝達が行われる蓄熱装置を製造することができる。また、伝熱層を化学蓄熱材にて構成するので、製造される蓄熱装置全体としての化学蓄熱材の密度を高く、蓄熱、放熱性能を良好にすることが可能である。 Thus, in the manufacturing method of the heat storage apparatus according to claim 1 1, wherein the heat storage device good heat transfer between the formed by molding a powder of the chemical thermal storage medium chemical thermal storage medium molded body and the wall are carried out Can be manufactured. Moreover, since a heat-transfer layer is comprised with a chemical heat storage material, it is possible to make the density of the chemical heat storage material as the whole heat storage apparatus manufactured high, and to make heat storage and heat dissipation performance favorable.
請求項12記載の発明に係る蓄熱装置の製造方法は、粉体の化学蓄熱材を用いて、熱交換構造体の蓄熱材収容部に挿入し得る外形を有する化学蓄熱材成形体を成形する成形工程と、前記成形工程で成形された化学蓄熱材成形体を、金属材にて構成された前記熱交換構造体における熱交換媒体流とは壁体によって仕切られた蓄熱材収容部に挿入する挿入工程と、前記挿入工程で前記熱交換構造体の蓄熱材収容部に挿入された前記化学蓄熱材成形体と前記壁体との間に、前記化学蓄熱材成形体と同種の化学蓄熱材の原料としてのアルカリ土類金属の塩の溶液と、粘土鉱物との混合物を供給する伝熱層原料供給工程と、前記伝熱層原料供給工程で前記化学蓄熱材成形体と壁体との間に供給された前記化学蓄熱材の原料と粘土鉱物との混合物を、前記化学蓄熱材成形体を構成する化学蓄熱材よりも高密度の化学蓄熱材より成る伝熱層に変化させる伝熱層生成工程と、を含む。 The manufacturing method of the heat storage device according to the invention of claim 12 is a method of forming a chemical heat storage material molded body having an outer shape that can be inserted into a heat storage material accommodation portion of a heat exchange structure using a powdered chemical heat storage material. Inserting the chemical heat storage material molded body formed in the process and the forming step into a heat storage material accommodation section partitioned by a wall body from the heat exchange medium flow in the heat exchange structure formed of a metal material Raw material of the chemical heat storage material of the same type as the chemical heat storage material molded body between the chemical heat storage material molded body and the wall body inserted into the heat storage material housing portion of the heat exchange structure in the insertion step A heat transfer layer raw material supply step for supplying a mixture of an alkaline earth metal salt solution and a clay mineral, and supply between the chemical heat storage material molded body and the wall body in the heat transfer layer raw material supply step the mixture of the raw material and the clay mineral of the chemical heat storage material which is the Including a heat transfer layer forming step of changing the heat transfer layer made of a high density of the chemical heat storage material than the chemical heat storage material constituting the academic thermal storage medium molded body.
請求項12記載の蓄熱装置の製造方法では、成形工程で、粉体の化学蓄熱材を熱交換構造体の蓄熱材収容部の挿入し得る形状及び流路を有する化学蓄熱材成形体に成形し、その後、挿入工程に移行する。挿入工程では、化学蓄熱材成形体を熱交換構造体の蓄熱材収容部の挿入し、その後、伝熱層原料供給工程に移行する。伝熱層原料供給工程では、接触されている化学蓄熱材成形体と壁体との間(界面)に、化学蓄熱材の原料を供給し、伝熱層生成工程に移行する。伝熱層生成工程では、化学蓄熱材成形体と壁体との間の化学蓄熱材原料を化学蓄熱材より成る伝熱層に変化させる。これにより、熱交換構造体の蓄熱材収容部内には、多孔質構造体である化学蓄熱材成形体が設けられ、かつ、この化学蓄熱材成形体と壁体との間には、化学蓄熱材成形体よりも高密度(緻密)な化学蓄熱材より成る伝熱層が形成される。 In the method for manufacturing a heat storage device according to claim 12 , in the forming step, the powder chemical heat storage material is formed into a chemical heat storage material molded body having a shape and a flow path into which the heat storage material housing portion of the heat exchange structure can be inserted. Then, the process proceeds to the insertion process. In the insertion step, the chemical heat storage material molded body is inserted into the heat storage material accommodation portion of the heat exchange structure, and then the process proceeds to the heat transfer layer material supply step. In the heat transfer layer raw material supply step, the chemical heat storage material is supplied between the contacted chemical heat storage material molded body and the wall (interface), and the process proceeds to the heat transfer layer generation step. In the heat transfer layer generating step, the chemical heat storage material raw material between the chemical heat storage material molded body and the wall is changed to a heat transfer layer made of the chemical heat storage material. Thus, a chemical heat storage material molded body that is a porous structure is provided in the heat storage material accommodating portion of the heat exchange structure, and a chemical heat storage material is provided between the chemical heat storage material molded body and the wall body. A heat transfer layer made of a chemical heat storage material having a higher density (dense) than the molded body is formed.
このように製造された蓄熱装置では熱交換媒体との熱交換によって化学蓄熱材成形体に蓄熱され、又は化学蓄熱材成形体の熱が取り出されるので、蓄熱反応及び放熱反応の少なくとも一方は、蓄熱又は放熱のための熱交換を蓄熱材収容部外の熱交換媒体との熱交換によって行うことができる。このため、反応に伴う反応物又は反応生成物の移動が蓄熱材収容部を流れる熱交換媒体との混合等によって阻害されることがなく、反応物又は反応生成物の移動速度が確保され、蓄熱又は放熱のための反応性が一層良好である。 In the heat storage device manufactured in this way, heat is stored in the chemical heat storage material molded body by heat exchange with the heat exchange medium, or the heat of the chemical heat storage material molded body is taken out, so at least one of the heat storage reaction and the heat dissipation reaction is heat storage. Alternatively, heat exchange for heat dissipation can be performed by heat exchange with a heat exchange medium outside the heat storage material accommodation unit. For this reason, the movement of the reactant or reaction product accompanying the reaction is not hindered by mixing with the heat exchange medium flowing through the heat storage material container, and the moving speed of the reactant or reaction product is ensured, and the heat storage Or the reactivity for heat dissipation is still better.
そして、本蓄熱装置では、多孔質構造体である化学蓄熱材成形体と熱交換構造体の壁体との間は、化学蓄熱材成形体よりも高密度(緻密な)化学蓄熱材より成る伝熱層にて埋められているので、該化学蓄熱材成形体と壁体との密着性が高い。また、伝熱層の存在により、化学蓄熱材成形体と壁体との界面付着強度が高く、上記良好な密着性が維持されやすい。これらにより、本蓄熱装置では、化学蓄熱材成形体と壁体との間の熱抵抗が小さく、化学蓄熱材成形体の蓄熱、放熱に伴う熱の授受が良好に行われる。すなわち、壁体を介した熱交換媒体と化学蓄熱材成形体との熱交換性能が良好である。 In this heat storage device, the gap between the chemical heat storage material molded body, which is a porous structure, and the wall of the heat exchange structure, is made of a chemical heat storage material having a higher density (dense) than the chemical heat storage material molded body. Since it is buried in the heat layer, the adhesion between the chemical heat storage material molded body and the wall body is high. Further, due to the presence of the heat transfer layer, the interfacial adhesion strength between the chemical heat storage material molded body and the wall body is high, and the good adhesion is easily maintained. As a result, in this heat storage device, the thermal resistance between the chemical heat storage material molded body and the wall body is small, and heat transfer and heat transfer associated with the chemical heat storage material molded body are performed well. That is, the heat exchange performance between the heat exchange medium and the chemical heat storage material molded body through the wall is good.
このように、請求項12記載の蓄熱装置の製造方法では、粉体の化学蓄熱材を成形して成る化学蓄熱材成形体と壁体との間で良好な伝熱が行われる蓄熱装置を得ることができる。 Thus, in the method for manufacturing a heat storage device according to claim 12, a heat storage device is obtained in which good heat transfer is performed between the chemical heat storage material molded body formed by molding a powder chemical heat storage material and the wall body. be able to.
請求項13記載の発明に係る蓄熱装置の製造方法は、請求項11又は請求項12記載の蓄熱装置の製造方法において、前記成形工程では、前記化学蓄熱材に所定の割合で粘土鉱物を混練した混練物を用いて、前記化学蓄熱材成形体を成形する。 Method for producing a heat storage device according to the invention of claim 13, wherein the kneading method of manufacturing a heat storage device according to claim 1 1 or claim 12, wherein, in the forming step, the clay mineral in a predetermined ratio to the chemical thermal storage medium The said chemical heat storage material molded object is shape | molded using the kneaded material.
請求項13記載の蓄熱装置の製造方法では、化学蓄熱材を粘土鉱物と混合することで、多孔質の粘土鉱物の骨格中に化学蓄熱材を分散保持させることができる。これにより、上記した多孔質構造体としての強度が高く、該多孔質構造体としての構造が安定した化学蓄熱材成形体、すなわち蓄熱装置を得ることができる。 In the method for manufacturing a heat storage device according to claim 13 , the chemical heat storage material can be dispersed and held in the skeleton of the porous clay mineral by mixing the chemical heat storage material with the clay mineral. As a result, a chemical heat storage material molded body having a high strength as the above-described porous structure and a stable structure as the porous structure, that is, a heat storage device can be obtained.
また、請求項11、12記載の蓄熱装置の製造方法では、伝熱層原料供給工程で、化学蓄熱材の原料と粘土鉱物との混合物を化学蓄熱材成形体と壁体との間に供給するので、粘土鉱物の繊維質を含む伝熱壁が形成される。このため、該粘土鉱物の繊維のアンカ効果により、化学蓄熱材成形体と壁面との付着強度が増す。 Moreover, in the manufacturing method of the heat storage apparatus of Claim 11, 12 , the mixture of the raw material of a chemical heat storage material and a clay mineral is supplied between a chemical heat storage material molded object and a wall body at a heat-transfer layer raw material supply process. Thus, a heat transfer wall containing the clay mineral fiber is formed. For this reason, the adhesion strength between the chemical heat storage material molded body and the wall surface is increased by the anchor effect of the fibers of the clay mineral.
また、請求項11、12記載の蓄熱装置の製造方法では、化学蓄熱材の原料としてアルカリ土類金属の塩の溶液を化学蓄熱材成形体と壁体との間に供給するので、化学蓄熱材成形体と壁体との間を良好に埋める高密度の伝熱層を得ることができる。 Moreover, in the manufacturing method of the heat storage apparatus of Claim 11, 12, since the solution of the alkaline earth metal salt is supplied between the chemical heat storage material molded body and the wall body as the raw material of the chemical heat storage material, the chemical heat storage material It is possible to obtain a high-density heat transfer layer that satisfactorily fills the space between the molded body and the wall body.
請求項14記載の発明に係る蓄熱装置の製造方法は、請求項11〜請求項13の何れか1項記載の蓄熱装置の製造方法において、前記粘土鉱物として、層リボン構造を有する粘土鉱物を用いる。 Method for producing a heat storage device according to the invention of claim 1 4, wherein, in the manufacturing method of the heat storage apparatus according to any one of claims 1 1 to claim 1 3, as the clay mineral, clay having a layered ribbon structure Use minerals.
請求項14記載の蓄熱装置の製造方法では、化学蓄熱材成形体に混合される粘土鉱物及び伝熱層に混合される粘土鉱物の少なくとも一方の粘土鉱物が、多孔質で比表面積が大きい繊維状形態を成すため、その繊維質、可塑性を利用して、化学蓄熱材成形体及び/又は伝熱層の化学蓄熱材を良好に組織化、構造化することができる。 14. The method of manufacturing a heat storage device according to claim 14, wherein at least one of the clay mineral mixed in the chemical heat storage material molded body and the clay mineral mixed in the heat transfer layer is porous and has a large specific surface area. Therefore, the chemical heat storage material formed body and / or the chemical heat storage material of the heat transfer layer can be well organized and structured using the fiber and plasticity.
請求項15記載の発明に係る蓄熱装置の製造方法は、請求項14記載の蓄熱装置の製造方法において、前記層リボン構造を有する粘土鉱物として、セピオライト又はパリゴルスカイトを用いる。 Method for producing a heat storage device according to the invention of claim 1 5, wherein, in the method for manufacturing a heat storage device according to claim 1 4, wherein, as a clay mineral having a layer ribbon structure, using sepiolite or palygorskite.
請求項15記載の蓄熱装置の製造方法では、粘土鉱物の少なくとも一部として層リボン構造を有するセピオライト又はパリゴルスカイト(アタパルジャイト)を用いるため、その繊維質、可塑性を利用して、化学蓄熱材成形体及び/又は伝熱層の化学蓄熱材を良好に組織化、構造化することができる。 The method for producing a heat storage device according to claim 15, wherein sepiolite or palygorskite (attapulgite) having a layered ribbon structure is used as at least a part of the clay mineral. And / or the chemical heat storage material of the heat transfer layer can be well organized and structured.
請求項16記載の発明に係る蓄熱装置の製造方法は、請求項11〜請求項13の何れか1項記載の蓄熱装置の製造方法において、前記粘土鉱物として、ベントナイトを用いる。 Method for producing a heat storage device according to the invention of claim 1 6, wherein, in the manufacturing method of claim 1 1 to claim 1 3 heat storage device according to any one of, as the clay mineral, using bentonite.
請求項16記載の蓄熱装置の製造方法では、化学蓄熱材成形体に混合される粘土鉱物及び伝熱層に混合される粘土鉱物の少なくとも一方の粘土鉱物として、接着力の強い粘土鉱物であるベントナイトを用いるため、この接着力によって、化学蓄熱材成形体及び/又は伝熱層の化学蓄熱材を良好に組織化、構造化することができる。 In the method of manufacturing the heat storage device according to claim 1 6, wherein, as at least one of clay mineral clay minerals to be mixed with the clay mineral and the heat transfer layer is mixed in the chemical thermal storage medium molded body, is strong adhesion clay mineral Since bentonite is used, the chemical heat storage material molded body and / or the chemical heat storage material of the heat transfer layer can be well organized and structured by this adhesive force.
請求項17記載の発明に係る蓄熱装置の製造方法は、請求項11〜請求項16の何れか1項記載の蓄熱装置の製造方法において、前記成形工程では、前記化学蓄熱材の粒子径よりも細い繊維状を成す前記粘土鉱物を用いる。 Method for producing a heat storage device according to the invention of claim 1 7, wherein, in the manufacturing method of the heat storage apparatus according to any one of claims 1 1 to claim 1 6, wherein in the molding process, particles of the chemical thermal storage medium The clay mineral having a fiber shape thinner than the diameter is used.
請求項17記載の蓄熱装置の製造方法では、化学蓄熱材成形体に混合される粘土鉱物及び伝熱層に混合される粘土鉱物の少なくとも一方の粘土鉱物の粘土鉱物が、微細な繊維径を有する繊維状を成すため、少量の粘土鉱物を混合工程で混合することにより化学蓄熱材成形体及び/又は伝熱層の化学蓄熱材の組織化、構造化を果たすことができる。これにより、質量当たり、体積当たりの化学蓄熱材の占有量が大きい化学蓄熱材成形体を得ることが可能になる。 In the method of manufacturing the heat storage device according to claim 1 7, wherein, the clay minerals of at least one clay mineral clay minerals to be mixed with the clay mineral and the heat transfer layer is mixed in the chemical thermal storage medium molded body, a fine fiber diameter In order to form a fibrous form, a small amount of clay mineral is mixed in the mixing step, whereby the chemical heat storage material formed body and / or the chemical heat storage material of the heat transfer layer can be organized and structured. Thereby, it becomes possible to obtain a chemical heat storage material molded body having a large occupation amount of the chemical heat storage material per mass and per volume.
請求項18記載の発明に係る蓄熱装置の製造方法は、請求項11〜請求項17の何れか1項記載の蓄熱装置の製造方法において、前記アルカリ土類金属の化学蓄熱材として、脱水反応に伴い吸熱し、水和反応に伴い放熱する水和反応系化学蓄熱材が用いられており、前記成形工程では、水和状態の前記化学蓄熱材を前記粘土鉱物と混練する。 Method for producing a heat storage device according to the invention of claim 1 8 wherein, in the manufacturing method of the heat storage apparatus according to any one of claims 1 1 to claim 1 7, as a chemical heat storage material of the alkaline earth metals, A hydration reaction-type chemical heat storage material that absorbs heat with a dehydration reaction and dissipates heat with a hydration reaction is used. In the molding step, the hydrated chemical heat storage material is kneaded with the clay mineral.
請求項18記載の蓄熱装置の製造方法では、成形工程において、水和状態の化学蓄熱材を粘土鉱物と混練するため、脱水状態の化学蓄熱材を用いる場合に懸念される水との反応が生じることがない。このため、成形工程において、混練の際のバインダとして水を用いることができる。 In the claims 1 8 production method of the heat storage apparatus described in the molding process, since the chemical thermal storage medium in a hydrated state a kneading and clay mineral, react with water of concern when using a chemical heat storage material is dehydrated is It does not occur. For this reason, water can be used as a binder during kneading in the molding step.
請求項19記載の発明に係る蓄熱装置の製造方法は、請求項11〜請求項18の何れか1項記載の蓄熱装置の製造方法において、前記アルカリ土類金属の化学蓄熱材として、脱水反応に伴い酸化され、水和反応に伴い水酸化される水和反応系化学蓄熱材が用いられており、前記成形工程では、水酸化物の状態である前記化学蓄熱材を前記粘土鉱物と混練する。 Method for producing a heat storage device according to the invention of claim 1 9, wherein, in the manufacturing method of the heat storage apparatus according to any one of claims 1 1 to claim 1 8, as a chemical heat storage material of the alkaline earth metals, is oxidized with the dehydration reaction, hydration is hydroxylated with the hydration reaction reaction chemical thermal storage medium is used and in the forming step, the clay mineral the chemical thermal storage medium in the state of hydroxide And knead.
請求項19記載の蓄熱装置の製造方法では、成形工程において、水酸化物の状態の化学蓄熱材を粘土鉱物と混練するため、脱水状態の化学蓄熱材を用いる場合に懸念される水との反応が生じることがない。このため、混練工程において、混練の際のバインダとして水を用いることができる。 In the method of manufacturing the heat storage device according to claim 1 9, wherein, in the molding process, for mixing with the clay mineral to a chemical heat storage material of the hydroxide state, with water of concern when using a chemical heat storage material is dehydrated There is no reaction. For this reason, water can be used as a binder during kneading in the kneading step.
なお、請求項11、12において、化学蓄熱材として無機化合物を用いると、製造された化学蓄熱材成形体は、蓄熱、放熱反応(水和、脱水)に対する材料安定性が高い。このため、長期に亘り安定した蓄熱効果を得ることができる。 Incidentally, in claim 11, when an inorganic compound is used as a chemical heat storage material, the chemical heat storage material moldings produced, the heat storage, a material having high stability against heat radiation reaction (hydration, dehydration). For this reason, a stable heat storage effect can be obtained over a long period of time.
また、化学蓄熱材としてアルカリ土類金属化合物(水酸化物)を用いるため、製造時の安全性の確保が容易になる。また、製品(化学蓄熱材成形体)の使用時、リサイクル時を含め、安全性の確保が容易になる。また、粘土鉱物としてセピオライトを用いる構成では、水酸化物のアルカリ性が粘土鉱物(特に、上記した)との反応によるガラス化を助けるため、多孔質構造体の強度向上に寄与する。 Moreover, since an alkaline earth metal compound (hydroxide) is used as the chemical heat storage material, it is easy to ensure safety during production. In addition, it is easy to ensure safety, including when the product (chemical heat storage material molded body) is used and recycled. Further, in the configuration using sepiolite as the clay mineral, the alkalinity of the hydroxide helps vitrification by reaction with the clay mineral (especially described above), which contributes to improving the strength of the porous structure.
請求項20記載の発明に係る蓄熱装置の製造方法は、請求項11〜請求項19の何れか1項記載の蓄熱装置の製造方法において、前記伝熱層原料供給工程では、前記伝熱層生成工程において、脱水反応に伴い酸化され、水和反応に伴い水酸化される水和反応系化学蓄熱材を得るための前記化学蓄熱材の原料溶液が前記化学蓄熱材成形体と壁体との間に供給され、前記伝熱層生成工程は、前記化学蓄熱材成形体と壁体との間に供給された前記化学蓄熱材の原料を焼成して水和反応系化学蓄熱材の酸化物に変化させる工程を含む。 The method for manufacturing a heat storage device according to claim 20 is the method for manufacturing a heat storage device according to any one of claims 11 to 19 , wherein the heat transfer layer generation is performed in the heat transfer layer material supply step. In the process, a raw material solution of the chemical heat storage material is obtained between the chemical heat storage material molded body and the wall body in order to obtain a hydration reaction type chemical heat storage material that is oxidized with a dehydration reaction and hydroxylated with a hydration reaction. In the heat transfer layer generating step, the raw material of the chemical heat storage material supplied between the chemical heat storage material molded body and the wall body is baked to change into an oxide of a hydration reaction type chemical heat storage material. Including the step of
請求項20記載の蓄熱装置の製造方法では、伝熱層原料供給工程で化学蓄熱材成形体と壁体との間に供給された原料溶液が、伝熱層生成工程において焼成されることで、酸化物の状態の水和反応系化学蓄熱材にて伝熱層が構成される。これにより、化学蓄熱材成形体に対し高密度の化学蓄熱材より成る伝熱層を容易に形成することができる。 In the heat storage device manufacturing method according to claim 20, the raw material solution supplied between the chemical heat storage material molded body and the wall body in the heat transfer layer raw material supply step is baked in the heat transfer layer generation step. The heat transfer layer is composed of a hydration reaction type chemical heat storage material in an oxide state. Thereby, the heat-transfer layer which consists of a high-density chemical heat storage material can be easily formed with respect to a chemical heat storage material molded object.
請求項21記載の発明に係る蓄熱装置の製造方法は、請求項20記載の蓄熱装置の製造方法において、前記伝熱層生成工程では、前記化学蓄熱材に微細なクラックが形成される温度で焼成する。 A method for manufacturing a heat storage device according to claim 21 is the method for manufacturing a heat storage device according to claim 20 , wherein, in the heat transfer layer generation step, firing is performed at a temperature at which fine cracks are formed in the chemical heat storage material. To do.
請求項21記載の蓄熱装置の製造方法では、伝熱層生成工程を経ることで、少なくとも伝熱層を構成する化学蓄熱材に微細なクラックが形成されるので、化学蓄熱材の比表面積を大きくすることができ、蓄熱、放熱反応率の向上に寄与する。特に、化学蓄熱材成形体を構成する化学蓄熱材に微細なクラックが形成される温度で焼成を行うようにすれば、蓄熱装置全体として化学蓄熱材の比表面積を大きくすることができるので、蓄熱、放熱反応率の向上に一層寄与する。 In the method for manufacturing a heat storage device according to claim 21 , since a fine crack is formed at least in the chemical heat storage material constituting the heat transfer layer through the heat transfer layer generation step, the specific surface area of the chemical heat storage material is increased. Can contribute to the improvement of heat storage and heat dissipation reaction rate. In particular, if firing is performed at a temperature at which fine cracks are formed in the chemical heat storage material constituting the chemical heat storage material molded body, the specific surface area of the chemical heat storage material can be increased as the entire heat storage device. This contributes to the improvement of the heat dissipation reaction rate.
請求項22記載の発明に係る蓄熱装置の製造方法は、請求項11〜請求項21の何れか1項記載の蓄熱装置の製造方法において、前記伝熱層原料供給工程の前に行われ、前記化学蓄熱材が酸化物とされない温度で前記化学蓄熱材成形体を焼成する予備焼成工程をさらに含む。 The method for manufacturing a heat storage device according to the invention of claim 22 is performed before the heat transfer layer material supply step in the method of manufacturing a heat storage device according to any one of claims 11 to 21 , It further includes a preliminary firing step of firing the chemical heat storage material molded body at a temperature at which the chemical heat storage material is not converted to an oxide.
予備焼成工程では、化学蓄熱材成形体の化学蓄熱材が水酸化物の状態に維持されるので、伝熱層原料供給工程で化学蓄熱材成形体と壁体との間に供給される原料溶液を水溶液とすることができる。 In the preliminary firing step, the chemical heat storage material of the chemical heat storage material molded body is maintained in a hydroxide state, so that the raw material solution supplied between the chemical heat storage material molded body and the wall body in the heat transfer layer raw material supply step Can be made into an aqueous solution.
以上説明したように本発明に係る蓄熱装置は、化学蓄熱材に効率的に蓄熱又は放熱させることができるという優れた効果を有する。 As described above, the heat storage device according to the present invention has an excellent effect that the chemical heat storage material can efficiently store or dissipate heat.
本発明の実施形態に係る蓄熱装置としての熱交換型蓄熱放熱装置10、及びその製造方法について、図1〜図5に基づいて説明する。 A heat exchange type heat storage and heat dissipation device 10 as a heat storage device according to an embodiment of the present invention and a manufacturing method thereof will be described with reference to FIGS.
図2には、熱交換型蓄熱放熱装置10の概略構成が模式的な斜視図にて示されている。この図に示される如く、熱交換型蓄熱放熱装置10は、熱交換構造体としての熱交換器本体20と、該熱交換器本体20に設けられた化学蓄熱材複合物成形体11とを備えている。熱交換器本体20は、シェル(外壁)22と、シェル22内を複数の空間に区画する壁体としての隔壁24とを有する。これにより、熱交換器本体20の内部は、化学蓄熱材複合物成形体11が収容される蓄熱材収容部25と、該化学蓄熱材複合物成形体11との間で熱交換を行う熱交換媒体としての流体が流通する流体流路26とが交互に配置されている。 FIG. 2 is a schematic perspective view showing a schematic configuration of the heat exchange type heat storage and heat dissipation device 10. As shown in this figure, the heat exchange heat storage and heat dissipation device 10 includes a heat exchanger body 20 as a heat exchange structure, and a chemical heat storage material composite formed body 11 provided in the heat exchanger body 20. ing. The heat exchanger body 20 includes a shell (outer wall) 22 and a partition wall 24 as a wall body that divides the inside of the shell 22 into a plurality of spaces. Thereby, the inside of the heat exchanger main body 20 is heat exchange which performs heat exchange between the heat storage material accommodating part 25 in which the chemical heat storage material composite molded body 11 is stored and the chemical heat storage material composite molded body 11. Fluid flow paths 26 through which a fluid as a medium flows are alternately arranged.
この実施形態では、蓄熱材収容部25、流体流路26は、それぞれ隔壁24が長辺とされる扁平矩形状の開口端を有する角柱状空間とされている。この実施形態では、熱交換器本体20は、蓄熱材収容部25、流体流路26が断面の扁平方向に隣接され、かつ該隣接方向の両端に流体流路26が配置される構成とされている。この実施形態では、熱交換器本体20は、例えばステンレス鋼やアルミニウム(アルミニウム合金を含む)等の金属材料にて構成されている。 In this embodiment, the heat storage material accommodating part 25 and the fluid flow path 26 are each a prismatic space having a flat rectangular opening end in which the partition wall 24 has a long side. In this embodiment, the heat exchanger main body 20 is configured such that the heat storage material accommodating portion 25 and the fluid channel 26 are adjacent to each other in the flat direction of the cross section, and the fluid channel 26 is disposed at both ends in the adjacent direction. Yes. In this embodiment, the heat exchanger body 20 is made of a metal material such as stainless steel or aluminum (including an aluminum alloy).
図2に示される如く、化学蓄熱材複合物成形体11は、蓄熱材収容部25に対応した扁平角柱状(正確には、後述するようにハニカム状)に形成されており、その外周面が蓄熱材収容部25の内周面に接触又は極近接(以下、単に接触という)されるように該蓄熱材収容部25内に収容されている。すなわち、化学蓄熱材複合物成形体11の扁平方向両端面は、それぞれ隔壁24に接触されている。 As shown in FIG. 2, the chemical heat storage material composite formed body 11 is formed in a flat prismatic shape (exactly, a honeycomb shape as will be described later) corresponding to the heat storage material accommodating portion 25, and its outer peripheral surface is The heat storage material storage unit 25 is accommodated in the heat storage material storage unit 25 so as to be in contact with or in close proximity to the inner peripheral surface (hereinafter simply referred to as contact). That is, both end surfaces in the flat direction of the chemical heat storage material composite molded body 11 are in contact with the partition walls 24.
図3には、化学蓄熱材複合物成形体11の模式的な断面図が示されている。この図に示される如く、化学蓄熱材複合物成形体11は、多数の粉体化学蓄熱材12が組織化、構造化されたものであって、該多数の粉体化学蓄熱材12間には細孔14が形成されている。したがって、この実施形態に係る化学蓄熱材複合物成形体11は、多孔質構造体(多孔体)として把握され、かつ細孔14の内面に粉体化学蓄熱材12が露出して構成されているものとして把握されるものである。 FIG. 3 shows a schematic cross-sectional view of the chemical heat storage material composite molded body 11. As shown in this figure, the chemical heat storage material composite formed body 11 is a structure in which a large number of powder chemical heat storage materials 12 are organized and structured. A pore 14 is formed. Therefore, the chemical heat storage material composite formed body 11 according to this embodiment is configured as a porous structure (porous body) and the powder chemical heat storage material 12 is exposed on the inner surfaces of the pores 14. It is grasped as a thing.
この化学蓄熱材複合物成形体11は、多数の粉体化学蓄熱材12に絡まるように粘土鉱物であるセピオライト16が多数の粉体化学蓄熱材12間に介在している。換言すれば、化学蓄熱材複合物成形体11は、多孔質を成すセピオライト16の骨格中に多数の粉体化学蓄熱材12が分散保持された構造として把握される。これにより、化学蓄熱材複合物成形体11では、多数の粉体化学蓄熱材12間に細孔14が形成された多孔質構造体としての構造がセピオライト16によって保持(補強)されるようになっている。 In this chemical heat storage material composite molded body 11, sepiolite 16, which is a clay mineral, is interposed between a large number of powder chemical heat storage materials 12 so as to be entangled with a large number of powder chemical heat storage materials 12. In other words, the chemical heat storage material composite molded body 11 is grasped as a structure in which a large number of powder chemical heat storage materials 12 are dispersedly held in the skeleton of the sepiolite 16 that is porous. Thereby, in the chemical heat storage material composite molded body 11, the structure as a porous structure in which pores 14 are formed between a large number of powder chemical heat storage materials 12 is held (reinforced) by the sepiolite 16. ing.
この実施形態では、粉体化学蓄熱材12は、水酸化カルシウム(Ca(OH)2)とされており、脱水に伴って蓄熱(吸熱)し、水和(水酸化カルシウムへの復原)に伴って放熱(発熱)する構成とされている。すなわち、多数の粉体化学蓄熱材12は、以下に示す反応で蓄熱、放熱を可逆的に繰り返し得る構成とされている
Ca(OH)2 ⇔ CaO + H2O
In this embodiment, the powder chemical heat storage material 12 is made of calcium hydroxide (Ca (OH) 2 ), stores heat (absorbs heat) along with dehydration, and accompanies hydration (restoration to calcium hydroxide). Heat dissipation (heat generation). That is, a large number of powder chemical heat storage materials 12 are configured to reversibly repeat heat storage and heat release by the reactions shown below. Ca (OH) 2 Ca CaO + H 2 O
この式に蓄熱量、発熱量Qを併せて示すと、
Ca(OH)2 + Q → CaO + H2O
CaO + H2O → Ca(OH)2 + Q
となる。
When the heat storage amount and the heat generation amount Q are shown together in this equation,
Ca (OH) 2 + Q → CaO + H 2 O
CaO + H 2 O → Ca (OH) 2 + Q
It becomes.
セピオライト16は、層リボン構造の粘土鉱物、より具体的には輝石に似た単鎖が複数本結合して四面体リボンを形成している粘土鉱物の1つとして把握される。セピオライト16は、例えば、Mg8S1i12O30(OH)4(OH2)4・8H2Oの化学式で表すことができる含水マグネシウム珪酸塩であり、それ自体が多孔質でありかつ比表面積が大きい繊維状を成している。なお、この実施形態では、上記化学式で表されるものの変種についてもセピオライト16に含まれるものとしている。 Sepiolite 16 is grasped as a clay mineral having a layered ribbon structure, more specifically, one of clay minerals in which a plurality of single chains resembling pyroxene are combined to form a tetrahedral ribbon. Sepiolite 16 is a hydrous magnesium silicate that can be represented by the chemical formula Mg 8 S1i 12 O 30 (OH) 4 (OH 2 ) 4 · 8H 2 O, for example, and is itself porous and has a specific surface area. Made of large fibers. In this embodiment, variants of those represented by the above chemical formula are also included in the sepiolite 16.
そして、熱交換型蓄熱放熱装置10は、図2に示される如く、蓄熱の際に反応生成物としての水蒸気を排出し、放熱の際に反応物としての水蒸気を供給するための流路(パス)15を有する。流路15は、熱交換型蓄熱放熱装置10の内部を所定方向に貫通して形成されており、細孔14に対し十分に大きな代表寸法を有する。この実施形態では、流路15の開口縁は略矩形状を成しており、その一辺(最も短い辺)の長さである代表寸法が細孔14の平均径、粉体化学蓄熱材12の平均粒径に対して十分に大とされている。なお、この実施形態では、例えば、流路15の代表寸法は略1mm、粉体化学蓄熱材12の平均粒子径、細孔14の平均径は、それぞれは数十μmとされている。 As shown in FIG. 2, the heat exchange type heat storage and heat dissipation device 10 discharges water vapor as a reaction product during heat storage, and supplies a flow path (path) for supplying water vapor as a reaction during heat dissipation. ) 15. The flow path 15 is formed so as to penetrate through the inside of the heat exchange type heat storage and heat dissipation device 10 in a predetermined direction, and has a sufficiently large representative dimension with respect to the pores 14. In this embodiment, the opening edge of the flow path 15 has a substantially rectangular shape, and the representative dimension which is the length of one side (shortest side) is the average diameter of the pores 14, the powder chemical heat storage material 12. It is sufficiently large with respect to the average particle diameter. In this embodiment, for example, the representative dimension of the flow path 15 is approximately 1 mm, the average particle diameter of the powder chemical heat storage material 12, and the average diameter of the pores 14 are each several tens of μm.
また、化学蓄熱材複合物成形体11は、複数の流路15を有している。この実施形態では、化学蓄熱材複合物成形体11は、図2に示される如く、多数の流路15を有するハニカム状(格子状)に形成されている。そして、化学蓄熱材複合物成形体11では、その隣り合う流路15間を仕切る区画壁部の厚みが8mm以下とされている。この実施形態では、区画壁部の厚みは、4mm以下である略1.5mmとされている。さらに、熱交換型蓄熱放熱装置10では、流路15と外周面(隔壁24との接触面)との間に位置する周壁部の厚みが4mm以下とされている。この実施形態では、周壁部の厚みは、2mm以下である略1.5mmとされている。 In addition, the chemical heat storage material composite formed body 11 has a plurality of flow paths 15. In this embodiment, the chemical heat storage material composite molded body 11 is formed in a honeycomb shape (lattice shape) having a large number of flow paths 15 as shown in FIG. And in the chemical heat storage material composite molded object 11, the thickness of the partition wall part which partitions off between the adjacent flow paths 15 is 8 mm or less. In this embodiment, the thickness of the partition wall is about 1.5 mm which is 4 mm or less. Furthermore, in the heat exchange type heat storage and heat dissipation device 10, the thickness of the peripheral wall part located between the flow path 15 and the outer peripheral surface (contact surface with the partition wall 24) is 4 mm or less. In this embodiment, the thickness of the peripheral wall portion is approximately 1.5 mm which is 2 mm or less.
以上説明した化学蓄熱材複合物成形体11では、粉体化学蓄熱材12が水酸化カルシウムの状態で熱が供給されると、該熱を反応熱として粉体化学蓄熱材12が酸化されるようになっている。すなわち、熱交換型蓄熱放熱装置10では、粉体化学蓄熱材12は、細孔14を通じて又は直接的に流路15から水蒸気を排出しつつ脱水反応により酸化カルシウムとされ、上記反応熱相当の熱を蓄熱する構成とされている。一方、熱交換型蓄熱放熱装置10は、酸化カルシウムの状態の粉体化学蓄熱材12に対し、流路15から直接的又は細孔14を通じて(拡散により)水蒸気が供給されると、粉体化学蓄熱材12は、水和反応により水酸化されつつ放熱するようになっている。 In the chemical heat storage material composite molded body 11 described above, when the powder chemical heat storage material 12 is supplied with calcium hydroxide in the state of calcium hydroxide, the powder chemical heat storage material 12 is oxidized using the heat as reaction heat. It has become. That is, in the heat exchange type heat storage and heat dissipation device 10, the powder chemical heat storage material 12 is converted into calcium oxide by dehydration while discharging water vapor from the flow path 15 through the pores 14 or directly, and the heat corresponding to the reaction heat. It is set as the structure which stores heat. On the other hand, the heat exchange type heat storage / heat dissipating device 10, when water vapor is supplied to the powder chemical heat storage material 12 in the calcium oxide state directly or through the pores 14 (by diffusion), from the powder chemistry, The heat storage material 12 dissipates heat while being hydroxylated by a hydration reaction.
そして、熱交換型蓄熱放熱装置10では、蓄熱材収容部25内の化学蓄熱材複合物成形体11に対する蓄熱時の熱供給は、流体流路26を流通する流体(ガス)との隔壁24を介した熱交換によって行われる構成とされている。また、熱交換型蓄熱放熱装置10では、化学蓄熱材複合物成形体11が放熱した熱は、隔壁24を介した熱交換によって流体流路26を流通する流体(ガス)に受熱されるようになっている。 In the heat exchange type heat storage and heat dissipation device 10, the heat supply during the heat storage to the chemical heat storage material composite molded body 11 in the heat storage material accommodation unit 25 is performed through the partition wall 24 with the fluid (gas) flowing through the fluid flow path 26. It is set as the structure performed by the heat exchange via. Further, in the heat exchange type heat storage and heat dissipation device 10, the heat radiated by the chemical heat storage material composite molded body 11 is received by the fluid (gas) flowing through the fluid flow path 26 by heat exchange via the partition wall 24. It has become.
一方、熱交換型蓄熱放熱装置10では、化学蓄熱材複合物成形体11の流路15に連通する蓄熱材収容部25(に連通する流路)は、化学蓄熱材複合物成形体11が蓄熱反応に伴い生じる反応生成物としての水蒸気を排出し、化学蓄熱材複合物成形体11に放熱反応を生じさせる際に反応物としての水蒸気を供給するための反応用流路として用いられる構成である。 On the other hand, in the heat exchange type heat storage / heat dissipating device 10, the chemical heat storage material composite molded body 11 stores heat in the heat storage material accommodating portion 25 (flow path connected to) the flow path 15 of the chemical heat storage material composite molded body 11. It is a configuration used as a reaction channel for supplying water vapor as a reactant when the water vapor as a reaction product generated by the reaction is discharged and a heat release reaction is caused in the chemical heat storage material composite molded body 11. .
ここで、図1に示される如く、熱交換型蓄熱放熱装置10は、接触して配置されている化学蓄熱材複合物成形体11と隔壁24との間に形成された伝熱層40を有する。なお、図1では、セピオライト16の図示を省略している。伝熱層40は、粉体化学蓄熱材12に対し十分に細かい(サブミクロンオーダーの)粒子42を高密度で組織化、構造化して構成されており、その一部が化学蓄熱材複合物成形体11の表面側に位置する(開口する)細孔14内に入り込まされている。この伝熱層40によって、熱交換型蓄熱放熱装置10では、化学蓄熱材複合物成形体11と隔壁24との密着されている。換言すれば、伝熱層40は、化学蓄熱材複合物成形体11と隔壁24との間の伝熱経路を形成してるものとして把握することができる。 Here, as shown in FIG. 1, the heat exchange type heat storage and heat dissipation device 10 includes a heat transfer layer 40 formed between the chemical heat storage material composite molded body 11 and the partition wall 24 arranged in contact with each other. . In FIG. 1, the sepiolite 16 is not shown. The heat transfer layer 40 is formed by organizing and structuring sufficiently fine (submicron order) particles 42 with respect to the powder chemical heat storage material 12 at a high density, and a part thereof is formed by chemical heat storage material composite molding. It is inserted into the pore 14 located (opened) on the surface side of the body 11. With the heat transfer layer 40, the chemical heat storage material composite molded body 11 and the partition wall 24 are in close contact with each other in the heat exchange type heat storage and heat dissipation device 10. In other words, the heat transfer layer 40 can be understood as forming a heat transfer path between the chemical heat storage material composite formed body 11 and the partition wall 24.
また、この実施形態では、伝熱層40を構成する粒子42は、水和系化学蓄熱材であるアルカリ土類金属の化合物で構成されている。具体的には、粒子42は、粉体化学蓄熱材12と同種の化学蓄熱材である水酸化カルシウム(酸化カルシウム)とされている。したがって、熱交換型蓄熱放熱装置10では、粉体化学蓄熱材12と、粉体化学蓄熱材12間の細孔14に一部入り込む粒子42とで線膨張係数が同等である構成とされている。 Moreover, in this embodiment, the particle | grains 42 which comprise the heat-transfer layer 40 are comprised with the compound of the alkaline-earth metal which is a hydration type chemical heat storage material. Specifically, the particles 42 are calcium hydroxide (calcium oxide) which is a chemical heat storage material of the same type as the powder chemical heat storage material 12. Therefore, in the heat exchange type heat storage and heat dissipation device 10, the powder chemical heat storage material 12 and the particles 42 partially entering the pores 14 between the powder chemical heat storage material 12 have the same linear expansion coefficient. .
以下、熱交換型蓄熱放熱装置10の製造方法を説明する。 Hereinafter, a method for manufacturing the heat exchange type heat storage and heat dissipation device 10 will be described.
図4には、熱交換型蓄熱放熱装置10の製造方法が模式的に示されている。熱交換型蓄熱放熱装置10を製造するにあたっては、先ず、図4(A)〜図4(D)に示される成形体成形工程にて化学蓄熱材複合物成形体11を成形(製造)する。具体的には、先ず、図4(A)に示される如く、化学蓄熱材複合物成形体11の原料である粉体化学蓄熱材12、セピオライト16を用意する。 FIG. 4 schematically shows a method for manufacturing the heat exchange type heat storage and heat dissipation device 10. In manufacturing the heat exchange type heat storage and heat dissipation device 10, first, the chemical heat storage material composite formed body 11 is formed (manufactured) in the formed body forming step shown in FIGS. 4 (A) to 4 (D). Specifically, first, as shown in FIG. 4A, a powder chemical heat storage material 12 and a sepiolite 16 which are raw materials of the chemical heat storage material composite formed body 11 are prepared.
粉体化学蓄熱材12としては、例えば平均粒子径D=10μm(レーザー回析式測定法、島津製作所製SALD−2000Aによる)のものが用いられ、セピオライト16としては、水に懸濁した場合の繊維径が粉体化学蓄熱材12の平均粒子径Dよりも小さい繊維状を成すものが用いられている。具体的には、セピオライト16は、その線径(繊維径)が1μm以下、その長さ(繊維長)が200μm以下のものを用いることが望ましい。この実施形態では、線径が略0.01μmで長さが略数十μmのトルコ産のセピオライトを用いている。なお、トルコ産のセピオライトに代えて、例えば線径が略0.1μmで長さが略100μmのスペイン産のセピオライトを用いることもできる。また、この実施形態では、粉体化学蓄熱材12に対するセピオライト16の混合比は、例えば5〜10質量%程度とされている。 As the powder chemical heat storage material 12, for example, a material having an average particle diameter D = 10 μm (laser diffraction measurement method, by SALD-2000A manufactured by Shimadzu Corporation) is used, and sepiolite 16 is used when suspended in water. A fiber having a fiber diameter smaller than the average particle diameter D of the powder chemical heat storage material 12 is used. Specifically, it is desirable to use the sepiolite 16 having a wire diameter (fiber diameter) of 1 μm or less and a length (fiber length) of 200 μm or less. In this embodiment, Turkish sepiolite having a wire diameter of about 0.01 μm and a length of about several tens of μm is used. Instead of Turkish sepiolite, for example, Spanish sepiolite having a wire diameter of approximately 0.1 μm and a length of approximately 100 μm can be used. Moreover, in this embodiment, the mixing ratio of the sepiolite 16 with respect to the powder chemical heat storage material 12 is about 5-10 mass%, for example.
次いで、混合工程に移行する。混合工程では、図4(B)に示される如く、それぞれ乾粉状態の粉体化学蓄熱材12とセピオライト16とを、混合容器28に容れて均一に混合する。次いで、混練工程に移行する。混練工程では、図4(C)に示される如く、粉体化学蓄熱材12とセピオライト16との混合物を混練機29に入れ、バインダとしての水を徐々に加えながら練り込み(混練し)増粘化させる。これにより、粉体化学蓄熱材12とセピオライト16との混練物Mが生成される。この混練物Mは、全体として粘土状態を示す。また、この実施形態では、滑剤、バインダとして有機系バインダ(例えば、CMC(カルボキシルメチルセルロール)等)を混合、混練する。この有機系バインダは、後述する400℃以上での焼成工程において消失し、成形品中には残留しない。この有機系バインダは、のりの働きを示し、構造体成形時における精度、密度の向上に効果を示す。 Next, the process proceeds to the mixing step. In the mixing step, as shown in FIG. 4B, the powder chemical heat storage material 12 and sepiolite 16 in the dry powder state are respectively mixed in the mixing container 28 and uniformly mixed. Next, the process proceeds to the kneading step. In the kneading step, as shown in FIG. 4C, the mixture of the powder chemical heat storage material 12 and sepiolite 16 is put into a kneading machine 29, and kneading (kneading) thickening while gradually adding water as a binder. Make it. Thereby, the kneaded material M of the powder chemical heat storage material 12 and the sepiolite 16 is produced | generated. This kneaded material M shows a clay state as a whole. In this embodiment, an organic binder (for example, CMC (carboxyl methylcellulose)) is mixed and kneaded as a lubricant and a binder. This organic binder disappears in a baking step at 400 ° C. or higher, which will be described later, and does not remain in the molded product. This organic binder exhibits a glue function and is effective in improving accuracy and density at the time of forming a structure.
次いで、図4(D)に示される成形工程に移行する。成形工程では、上記の通り混練工程で増粘化された粉体化学蓄熱材12とセピオライト16との混練物Mを押し出し型30に移し、押し出し成形する。これにより、上記混練物Mは、押し出し型30の形状に応じた所定形状、すなわち熱交換器本体20の蓄熱材収容部25に対応した扁平ハニカム状に形成される。これにより、化学蓄熱材複合物成形体11が成形される。 Next, the process proceeds to the molding step shown in FIG. In the molding step, the kneaded product M of the powder chemical heat storage material 12 and sepiolite 16 thickened in the kneading step as described above is transferred to the extrusion die 30 and extruded. Thereby, the kneaded material M is formed in a predetermined shape corresponding to the shape of the extrusion die 30, that is, in a flat honeycomb shape corresponding to the heat storage material accommodation portion 25 of the heat exchanger body 20. Thereby, the chemical heat storage material composite molded body 11 is molded.
次いで、図4(E)に示される如く、挿入工程に移行する。挿入工程では、化学蓄熱材複合物成形体11を熱交換器本体20の蓄熱材収容部25に圧挿する。この際、焼成前の柔軟な化学蓄熱材複合物成形体11は、熱交換器本体20の蓄熱材収容部25内面になじみながら該流体流路26内に挿入される。 Next, as shown in FIG. 4E, the process proceeds to the insertion step. In the insertion step, the chemical heat storage material composite molded body 11 is press-inserted into the heat storage material accommodation portion 25 of the heat exchanger body 20. Under the present circumstances, the flexible chemical heat storage material composite molded object 11 before baking is inserted in this fluid flow path 26, adjusting to the inner surface of the heat storage material accommodating part 25 of the heat exchanger main body 20. FIG.
次いで、図4(F)に示される如く、予備焼成工程に移行する。予備焼成工程では、化学蓄熱材複合物成形体11が挿入された熱交換器本体20を焼成炉32に容れ、所定の温度で所定の時間だけ化学蓄熱材複合物成形体11を焼成する。これにより、熱交換器本体20の蓄熱材収容部25内で化学蓄熱材複合物成形体11が固化され、化学蓄熱材複合物成形体11が熱交換器本体20に一体化される。この予備焼成工程での焼成温度は、300℃以下の範囲内とされている。この予備焼成温度は、セピオライト16が焼結される下限温度以上で、かつ粉体化学蓄熱材12の脱水(酸化)が生じる下限温度未満の範囲に設定されている。 Next, as shown in FIG. 4 (F), the process proceeds to a preliminary firing step. In the preliminary firing step, the heat exchanger body 20 into which the chemical heat storage material composite molded body 11 is inserted is placed in a firing furnace 32, and the chemical heat storage material composite molded body 11 is fired at a predetermined temperature for a predetermined time. Thereby, the chemical heat storage material composite molded body 11 is solidified in the heat storage material accommodating portion 25 of the heat exchanger main body 20, and the chemical heat storage material composite molded body 11 is integrated with the heat exchanger main body 20. The firing temperature in this preliminary firing step is in the range of 300 ° C. or lower. This pre-baking temperature is set to a range not lower than the lower limit temperature at which the sepiolite 16 is sintered and lower than the lower limit temperature at which dehydration (oxidation) of the powder chemical heat storage material 12 occurs.
次いで、図4(G)に示される如く、伝熱層40の原料として、アルカリ土類金属の塩である硝酸カルシウムの水溶液44、及びセピオライト16を用意する。次いで、伝熱層原料混合工程に移行する。伝熱層原料混合工程では、図4(H)に示される如く、水溶液44とセピオライト16とを混合容器34に容れ、該水溶液44とセピオライト16とを混合して混合スラリSとする。 Next, as shown in FIG. 4G, an aqueous solution 44 of calcium nitrate, which is an alkaline earth metal salt, and sepiolite 16 are prepared as raw materials for the heat transfer layer 40. Next, the process proceeds to the heat transfer layer raw material mixing step. In the heat transfer layer raw material mixing step, as shown in FIG. 4 (H), the aqueous solution 44 and sepiolite 16 are placed in a mixing vessel 34, and the aqueous solution 44 and sepiolite 16 are mixed to form a mixed slurry S.
次いで、図4(I)に示される如く、伝熱層原料供給工程に移行する。伝熱層原料供給工程では、熱交換器本体20の蓄熱材収容部25内の化学蓄熱材複合物成形体11と、該蓄熱材収容部25の内面すなわち隔壁24及びシェル22との間に、混合スラリSを供給する。この際、例えば図5に示される如く、化学蓄熱材複合物成形体11の角隅部に面取り11Aを形成しておくことで、高粘度の混合スラリSを化学蓄熱材複合物成形体11の面取り11Aと蓄熱材収容部25の内面との間に容易に供給することができる。このように供給された混合スラリSは、化学蓄熱材複合物成形体11と隔壁24、シェル22との間に位置する隙間(細孔14)による毛管力にて、該化学蓄熱材複合物成形体11と隔壁24、シェル22との間に略均一に供給される。 Next, as shown in FIG. 4I, the process proceeds to a heat transfer layer raw material supply step. In the heat transfer layer raw material supply step, between the chemical heat storage material composite molded body 11 in the heat storage material container 25 of the heat exchanger main body 20 and the inner surface of the heat storage material container 25, that is, the partition wall 24 and the shell 22, Supply mixed slurry S. At this time, for example, as shown in FIG. 5, by forming chamfers 11 </ b> A at corners of the chemical heat storage material composite molded body 11, the highly viscous mixed slurry S is converted into the chemical heat storage material composite molded body 11. It can be easily supplied between the chamfer 11 </ b> A and the inner surface of the heat storage material accommodation unit 25. The mixed slurry S thus supplied is molded into the chemical heat storage material composite by the capillary force generated by the gap (pore 14) located between the chemical heat storage material composite formed body 11, the partition wall 24, and the shell 22. It is supplied substantially uniformly between the body 11, the partition wall 24, and the shell 22.
次いで、図4(J)に示される如く、焼成工程に移行する。焼成工程では、蓄熱材収容部25の挿入された化学蓄熱材複合物成形体11との間に混合スラリSが供給された熱交換器本体20を焼成炉32に容れ、所定の温度で所定の時間だけ化学蓄熱材複合物成形体11、混合スラリSを焼成する。この焼成温度は、混合スラリS中の硝酸カルシウムが酸化されて酸化カルシウムに変化される温度280℃〜300℃以上の400℃〜500℃のとされている。 Next, as shown in FIG. 4J, the process proceeds to the firing step. In the firing step, the heat exchanger body 20 to which the mixed slurry S is supplied between the chemical heat storage material composite molded body 11 in which the heat storage material accommodating portion 25 is inserted is placed in the firing furnace 32, and a predetermined temperature is set. The chemical heat storage material composite molded body 11 and the mixed slurry S are fired for the time. This firing temperature is set to 400 ° C. to 500 ° C., which is a temperature of 280 ° C. to 300 ° C. or higher, at which calcium nitrate in the mixed slurry S is oxidized and converted to calcium oxide.
これにより、熱交換型蓄熱放熱装置10の製造方法では、混合スラリS中の硝酸カルシウムが酸化カルシウムに変化されて、化学蓄熱材複合物成形体11と隔壁24、シェル22との間に伝熱層40が形成される。以上により、熱交換型蓄熱放熱装置10の製造が終了される。 Thereby, in the manufacturing method of the heat exchange type heat storage and heat dissipation device 10, the calcium nitrate in the mixed slurry S is changed to calcium oxide, and heat is transferred between the chemical heat storage material composite molded body 11, the partition wall 24, and the shell 22. Layer 40 is formed. With the above, the manufacture of the heat exchange type heat storage and heat dissipation device 10 is completed.
さらに、この焼成温度は、化学蓄熱材複合物成形体11を構成する粉体化学蓄熱材12すなわち水酸化カルシウムの脱水温度(脱水温度は、雰囲気水蒸気圧力により異なるが、略400℃〜450℃)以上であるため、粉体化学蓄熱材12は、製造直後には、酸化カルシウムの状態で化学蓄熱材複合物成形体11を構成している。すなわち、化学蓄熱材複合物成形体11は、製造時点で、水分(水蒸気)の供給により放熱可能な蓄熱状態とされている。また、焼成工程における400℃〜500℃の範囲の焼成温度は、粉体化学蓄熱材12(酸化カルシウム)にマイクロクラックが形成される温度であり、これにより、化学蓄熱材複合物成形体11を構成する多数の粉体化学蓄熱材12は、それぞれ図2に示される如く、マイクロクラックを有する。これにより、粉体化学蓄熱材12は、焼成工程を経ることで比表面積が増大されている。 Further, this firing temperature is the dehydration temperature of the powder chemical heat storage material 12 constituting the chemical heat storage material composite molded body 11, that is, calcium hydroxide (the dehydration temperature varies depending on the atmospheric water vapor pressure, but is approximately 400 ° C to 450 ° C). Since it is above, the powder chemical heat storage material 12 comprises the chemical heat storage material composite molded object 11 in the state of calcium oxide immediately after manufacture. That is, the chemical heat storage material composite molded body 11 is in a heat storage state in which heat can be dissipated by supplying moisture (water vapor) at the time of manufacture. Moreover, the baking temperature in the range of 400 ° C. to 500 ° C. in the baking step is a temperature at which microcracks are formed in the powder chemical heat storage material 12 (calcium oxide), and thus the chemical heat storage material composite molded body 11 is formed. Each of the many powder chemical heat storage materials 12 is composed of microcracks as shown in FIG. Thereby, the specific surface area of the powder chemical heat storage material 12 is increased by passing through a baking process.
以上のように製造された熱交換型蓄熱放熱装置10では、化学蓄熱材複合物成形体11の内部に流路15が形成されているので、蓄熱時に化学蓄熱材複合物成形体11の各粉体化学蓄熱材12で生成される水蒸気の排出経路、放熱時に化学蓄熱材複合物成形体11の各粉体化学蓄熱材12に供給することが要求される水蒸気の供給経路が確保される。すなわち、熱交換型蓄熱放熱装置10では、多数の粉体化学蓄熱材12間に細孔14が形成されている多孔質構造体である化学蓄熱材複合物成形体11の内部に該細孔14よりも大きな流路15が形成されているので、全体として粉体化学蓄熱材12の充填度の高い多孔質構造体を形成しながら、流路15を通じて水蒸気の速やかな排出、供給が可能とされている。 In the heat exchange type heat storage / heat dissipating device 10 manufactured as described above, since the flow path 15 is formed inside the chemical heat storage material composite formed body 11, each powder of the chemical heat storage material composite formed body 11 during heat storage. A discharge path of water vapor generated by the body chemical heat storage material 12 and a water supply path required to be supplied to each powder chemical heat storage material 12 of the chemical heat storage material composite molded body 11 during heat dissipation are ensured. That is, in the heat exchange type heat storage and heat dissipation device 10, the pores 14 are formed inside the chemical heat storage material composite molded body 11, which is a porous structure in which pores 14 are formed between a large number of powder chemical heat storage materials 12. Since the larger flow path 15 is formed, it is possible to quickly discharge and supply water vapor through the flow path 15 while forming a porous structure having a high filling degree of the powder chemical heat storage material 12 as a whole. ing.
このため、熱交換型蓄熱放熱装置10では、粉体化学蓄熱材12の高充填度(高密度)による単位体積、質量当たりの蓄熱容量の確保(向上)と、放熱、蓄熱反応に要求される排出水蒸気、供給水蒸気の移動速度の確保との両立が図られる。そして、熱交換型蓄熱放熱装置10では、化学蓄熱材複合物成形体11から排出され又は化学蓄熱材複合物成形体11に供給される水蒸気の流路を構成する蓄熱材収容部25が、化学蓄熱材複合物成形体11に放熱又は化学蓄熱材複合物成形体11から受熱する流体が流通する流体流路26と区画されているため、化学蓄熱材複合物成形体11と熱交換を行うための流体が上記した排出水蒸気、供給水蒸気の移動速度に影響を与えることがない。 For this reason, the heat exchange type heat storage and heat dissipation device 10 is required for ensuring (improving) the heat storage capacity per unit volume and mass due to the high filling degree (high density) of the powder chemical heat storage material 12, and for heat dissipation and heat storage reaction. It is possible to achieve compatibility with ensuring the moving speed of the discharged steam and the supplied steam. And in the heat exchange type heat storage and heat dissipation device 10, the heat storage material accommodating portion 25 constituting the flow path of water vapor discharged from the chemical heat storage material composite formed body 11 or supplied to the chemical heat storage material composite formed body 11 In order to exchange heat with the chemical heat storage material composite molded body 11 because the heat storage material composite molded body 11 is partitioned from the fluid flow path 26 through which the fluid that receives heat from the heat dissipation or chemical heat storage material composite molded body 11 flows. This fluid does not affect the moving speed of the discharged steam and the supplied steam.
これにより、熱交換型蓄熱放熱装置10では、流体流路26を流れる流体からの受熱によって、蓄熱材収容部25から水蒸気を排出しつつ効率良く蓄熱を行うことができ、また、蓄熱材収容部25から供給を受ける水蒸気によって効率良く放熱して該熱を流体流路26を流れる流体に熱交換させることができる。 Thereby, in the heat exchange type heat storage and heat dissipation device 10, heat can be efficiently stored while discharging water vapor from the heat storage material storage unit 25 by receiving heat from the fluid flowing through the fluid flow path 26, and the heat storage material storage unit It is possible to efficiently dissipate heat by the water vapor supplied from 25 and exchange heat with the fluid flowing through the fluid flow path 26.
ここで、熱交換型蓄熱放熱装置10では、化学蓄熱材複合物成形体11の外表面と、蓄熱材収容部25と流体流路26とを隔てる隔壁24との間に伝熱層40が形成されているため、該化学蓄熱材複合物成形体11(多孔質構造体)と隔壁24(金属表面)との界面密着性が良好である。これにより、熱交換型蓄熱放熱装置10では、化学蓄熱材複合物成形体11と隔壁24との伝熱層40を介した実質的な接触面積が大きくなるので、該化学蓄熱材複合物成形体11と隔壁24との付着強度が高い。すなわち、上記した良好な界面密着性が維持されやすい。 Here, in the heat exchange type heat storage / heat dissipating device 10, the heat transfer layer 40 is formed between the outer surface of the chemical heat storage material composite molded body 11 and the partition wall 24 that separates the heat storage material accommodating portion 25 and the fluid flow path 26. Therefore, the interfacial adhesion between the chemical heat storage material composite molded body 11 (porous structure) and the partition wall 24 (metal surface) is good. Thereby, in the heat exchange type heat storage and heat dissipation device 10, since the substantial contact area through the heat transfer layer 40 between the chemical heat storage material composite formed body 11 and the partition wall 24 becomes large, the chemical heat storage material composite formed body 11 and the partition wall 24 have high adhesion strength. That is, the above-mentioned good interface adhesion is easily maintained.
これらにより、熱交換型蓄熱放熱装置10では、流体流路26を流れる流体と化学蓄熱材複合物成形体11との隔壁24を介した熱交換性能が良好である。すなわち、熱交換型蓄熱放熱装置10では、流体流路26を流れる流体と化学蓄熱材複合物成形体11との間で高い熱輸送を実現することができる。 Accordingly, in the heat exchange type heat storage and heat dissipation device 10, the heat exchange performance through the partition wall 24 between the fluid flowing through the fluid flow path 26 and the chemical heat storage material composite molded body 11 is good. That is, in the heat exchange type heat storage and heat dissipation device 10, high heat transport can be realized between the fluid flowing through the fluid flow path 26 and the chemical heat storage material composite molded body 11.
例えば、単に粉体化学蓄熱材を充填した化学蓄熱反応部では、該粉体化学蓄熱材の充填度を高くすることができるものの十分な水蒸気の排出及び供給がなされず、粉体化学蓄熱材の充填度に基づく蓄熱容量に対する蓄熱量が小さくなってしまう。また、このような構成では、水蒸気及び熱交換媒体流体の流通経路が共通であるため、蓄熱、放熱反応性と熱交換性能との両立を図ることが困難である。すなわち例えば、放熱の際に熱交換媒体流体の流通によって供給水蒸気の分圧が低下して反応性が低下したり、熱交換媒体流体として循環流体を用いる場合に該循環流体の一部が蓄熱に伴う発生蒸気と共に系外に排出されたりすることで蓄熱性能が低下したりすることが懸念される。 For example, in a chemical heat storage reaction part simply filled with a powder chemical heat storage material, the filling degree of the powder chemical heat storage material can be increased, but sufficient discharge and supply of water vapor is not performed. The amount of heat storage with respect to the heat storage capacity based on the degree of filling is reduced. Further, in such a configuration, since the flow paths of the water vapor and the heat exchange medium fluid are common, it is difficult to achieve both heat storage and heat release reactivity and heat exchange performance. That is, for example, when the heat exchange medium fluid is radiated, the partial pressure of the supplied water vapor decreases to reduce the reactivity, or when a circulating fluid is used as the heat exchange medium fluid, a part of the circulating fluid stores heat. There is concern that the heat storage performance may be reduced by being discharged out of the system together with the generated steam.
これに対して熱交換型蓄熱放熱装置10では、上記の通り化学蓄熱材複合物成形体11に15が設けられると共に蓄熱材収容部25が流体流路26に対し区画されることで蓄熱、放熱反応性が確保され、かつ蓄熱材収容部25が流体流路26に対し区画されると共に化学蓄熱材複合物成形体11が隔壁24に密着されることで流体流路26を流れる流体と化学蓄熱材複合物成形体11との熱交換性能が確保される。すなわち、熱交換型蓄熱放熱装置10では、水蒸気の移動量の不足(拡散律束)の解消及び化学蓄熱材複合物成形体11から熱交換媒体流体への伝熱不足(伝熱律束)の解消の両立が図られるので、蓄熱性能の向上及び蓄熱した熱の回収(利用)率の向上が図れる。 On the other hand, in the heat exchange type heat storage and heat dissipation device 10, the chemical heat storage material composite molded body 11 is provided with 15 as described above, and the heat storage material storage portion 25 is partitioned from the fluid flow path 26 to store heat and release heat. Reactivity is ensured, and the heat storage material container 25 is partitioned with respect to the fluid flow path 26 and the chemical heat storage material composite molded body 11 is brought into close contact with the partition wall 24 so that the fluid flowing through the fluid flow path 26 and the chemical heat storage The heat exchange performance with the material composite molded body 11 is ensured. That is, in the heat exchange type heat storage and heat dissipation device 10, the shortage of the amount of movement of water vapor (diffusion rule) is solved and the heat transfer from the chemical heat storage material composite compact 11 to the heat exchange medium fluid (heat transfer rule) is reduced. Since coexistence can be achieved, the heat storage performance can be improved and the recovery (utilization) rate of the stored heat can be improved.
さらに、熱交換型蓄熱放熱装置10では、化学蓄熱材複合物成形体11が複数の流路15を有し、かつ該化学蓄熱材複合物成形体11における流路15間の区画壁部の厚みが8mm以下(近い方の流路15から4mm以下)、流路15と外周面との間の周壁部の厚みが4mm以下とされているため、流路15から粉体化学蓄熱材12に水蒸気を供給し又は粉体化学蓄熱材12から流路15に水蒸気を排出するための拡散路が短い。 Further, in the heat exchange type heat storage and heat dissipation device 10, the chemical heat storage material composite molded body 11 has a plurality of flow paths 15, and the thickness of the partition wall between the flow paths 15 in the chemical heat storage material composite molded body 11. Is 8 mm or less (4 mm or less from the closer flow path 15), and the thickness of the peripheral wall portion between the flow path 15 and the outer peripheral surface is 4 mm or less. Or a diffusion path for discharging water vapor from the powder chemical heat storage material 12 to the flow path 15 is short.
このため、熱交換型蓄熱放熱装置10を構成する比較的に大型(肉厚)の化学蓄熱材複合物成形体11において、各部(粉体化学蓄熱材12)に対し所要の蓄熱、放熱反応に要する水蒸気移動量が確保される。特に、この実施形態では、流路15間の区画壁部の厚みが4mm以下、流路15と外周面との間の周壁部の厚みが2mm以下とされているので、上記した水蒸気移動量が一層良好に確保される。また、複数の流路15を有する化学蓄熱材複合物成形体11では、流路15間の区画壁部が化学蓄熱材複合物成形体11内の伝熱経路としても機能するので、上記の通り比較的肉厚な構成において、内部での放熱した熱が隔壁24に効率的に伝達される。 For this reason, in the comparatively large (thickness) chemical heat storage material composite molded body 11 constituting the heat exchange type heat storage and heat dissipation device 10, the required heat storage and heat release reaction for each part (powder chemical heat storage material 12). The required amount of water vapor movement is ensured. In particular, in this embodiment, the thickness of the partition wall portion between the flow channels 15 is 4 mm or less, and the thickness of the peripheral wall portion between the flow channel 15 and the outer peripheral surface is 2 mm or less. It is secured even better. Moreover, in the chemical heat storage material composite molded body 11 having a plurality of flow paths 15, the partition wall portion between the flow paths 15 also functions as a heat transfer path in the chemical heat storage material composite molded body 11. In a relatively thick structure, the heat dissipated inside is efficiently transmitted to the partition wall 24.
さらに、熱交換型蓄熱放熱装置10では、伝熱層40が蓄熱材であるため、全体として単位体積、質量当たりの蓄熱材の密度が高くなり、蓄熱、放熱性能が向上する。しかも、熱交換型蓄熱放熱装置10では、化学蓄熱材複合物成形体11の粉体化学蓄熱材12と伝熱層40の粒子42とが同種の化学蓄熱材であるため、伝熱層40と化学蓄熱材複合物成形体11との温度上昇に伴う膨張率の差異を最小化することができ、例えば温度変化範囲が大きい用途においても上記した界面密着性が維持される。また、同種の化学蓄熱材で構成された化学蓄熱材複合物成形体11と伝熱層40とは、例えば異種のアルカリ土類金属を用いた場合に懸念されるシンタリングの恐れがなく、適正な大きさの細孔14を確保することができる。 Furthermore, in the heat exchange type heat storage and heat dissipation device 10, since the heat transfer layer 40 is a heat storage material, the density of the heat storage material per unit volume and mass as a whole increases, and heat storage and heat dissipation performance are improved. Moreover, in the heat exchange type heat storage and heat dissipation device 10, the powder chemical heat storage material 12 of the chemical heat storage material composite molded body 11 and the particles 42 of the heat transfer layer 40 are the same type of chemical heat storage material. The difference in expansion coefficient accompanying the temperature rise with the chemical heat storage material composite molded body 11 can be minimized, and for example, the above-mentioned interface adhesion is maintained even in applications where the temperature change range is large. In addition, the chemical heat storage material composite formed body 11 and the heat transfer layer 40 made of the same type of chemical heat storage material have no fear of sintering, for example, when different types of alkaline earth metals are used. It is possible to secure a pore 14 having a large size.
またここで、熱交換型蓄熱放熱装置10の製造方法では、アルカリ土類金属の塩である硝酸カルシウムの水溶液44を伝熱層40の出発原料として用いるため、粉体化学蓄熱材12に対し十分に小さい粒子42が高密度で組織化されて成る伝熱層40を形成することができる。これにより、上記の如く化学蓄熱材複合物成形体11と隔壁24との界面密着性の向上、維持に寄与する。 Here, in the manufacturing method of the heat exchange type heat storage and heat dissipation device 10, the aqueous solution 44 of calcium nitrate, which is an alkaline earth metal salt, is used as the starting material of the heat transfer layer 40. It is possible to form the heat transfer layer 40 in which small particles 42 are organized with high density. This contributes to improvement and maintenance of the interfacial adhesion between the chemical heat storage material composite molded body 11 and the partition wall 24 as described above.
さらに、熱交換型蓄熱放熱装置10の製造方法では、硝酸カルシウムの水溶液44にセピオライト16を混合した混合スラリSにより伝熱層40を形成するため、セピオライト16の繊維構造によって、稠密膜である伝熱層40の膜強度、蒸気の界面密着性が向上される。すなわち、伝熱層40にセピオライト16が含まれている熱交換型蓄熱放熱装置10では、伝熱層40の強度が高く、該伝熱層40による隔壁24と化学蓄熱材複合物成形体11との付着強度も高い。 Furthermore, in the manufacturing method of the heat exchange type heat storage and heat dissipation device 10, the heat transfer layer 40 is formed by the mixed slurry S in which the sepiolite 16 is mixed with the calcium nitrate aqueous solution 44, so that the heat transfer layer 40 is a dense film due to the fiber structure of the sepiolite 16. The film strength of the thermal layer 40 and the interfacial adhesion of the vapor are improved. That is, in the heat exchange type heat storage and heat dissipation device 10 in which the sepiolite 16 is included in the heat transfer layer 40, the strength of the heat transfer layer 40 is high, and the partition wall 24 and the chemical heat storage material composite molded body 11 by the heat transfer layer 40 are High adhesion strength.
またさらに、化学蓄熱材複合物成形体11を成形するための成形体成形工程の混練工程において、多孔質でかつ比表面積が大きいセピオライト16で所定の割合で粉体化学蓄熱材12に混練するため、該セピオライト16の揺変性(チキソトロピ)によって、該セピオライト16を粉体化学蓄熱材12及び水と共に撹拌することで増粘効果を呈する。これにより、粉体化学蓄熱材12をベースとした化学蓄熱材複合物成形体11の成形をより高精度、高密度で行うことができる。 Furthermore, in the kneading step of the molded body molding step for molding the chemical heat storage material composite molded body 11, the powder chemical heat storage material 12 is kneaded at a predetermined ratio with the sepiolite 16 which is porous and has a large specific surface area. The sepiolite 16 is stirred with the powder chemical heat storage material 12 and water by thixotropy of the sepiolite 16 to exhibit a thickening effect. Thereby, the chemical heat storage material composite formed body 11 based on the powder chemical heat storage material 12 can be molded with higher accuracy and higher density.
そして、セピオライト16の繊維質(結晶化後の多孔質)を利用した粉体化学蓄熱材12の組織化、セピオライト16の可塑性を利用した多数の粉体化学蓄熱材12の構造化が果たされる。すなわち、粉体化学蓄熱材12に所定割合でセピオライト16を混練することで、多数の粉体化学蓄熱材12間に、蓄熱、放熱に伴う水蒸気を放出又は導入するための細孔14を形成しつつ、多数の粉体化学蓄熱材12を1つの構造体である化学蓄熱材複合物成形体11とし、かつ化学蓄熱材複合物成形体11であることを維持することが実現された。同様に、伝熱層40を成形するための伝熱層原料混合工程において、硝酸カルシウムの水溶液44にセピオライト16を混合するため、伝熱層40においても粒子42間に細孔が形成され、水蒸気の拡散経路が確保される。 Then, organization of the powder chemical heat storage material 12 using the fiber of the sepiolite 16 (porous after crystallization) and structuring of the many powder chemical heat storage materials 12 using the plasticity of the sepiolite 16 are achieved. That is, by mixing the sepiolite 16 with the powder chemical heat storage material 12 at a predetermined ratio, pores 14 for releasing or introducing water vapor accompanying heat storage and heat dissipation are formed between the many powder chemical heat storage materials 12. On the other hand, it was realized that a large number of powder chemical heat storage materials 12 were made into a chemical heat storage material composite formed body 11 as one structure, and the chemical heat storage material composite formed body 11 was maintained. Similarly, in the heat transfer layer raw material mixing step for forming the heat transfer layer 40, the sepiolite 16 is mixed with the calcium nitrate aqueous solution 44, so that pores are formed between the particles 42 in the heat transfer layer 40, A diffusion path is secured.
また、以上のように製造された化学蓄熱材複合物成形体11は、多数の粉体化学蓄熱材12が互いの間に細孔14が形成されるように組織化、構造化されているので、粉体化学蓄熱材12の水和、脱水反応に伴う体積膨張、収縮が他の粉体化学蓄熱材12に干渉することが防止又は著しく抑制される。このため、粉体化学蓄熱材12の体積膨張、収縮に起因する微粉化が防止され、換言すれば、粉体化学蓄熱材12に対する水蒸気の放出、導入が滞ることがなくなり、蓄熱、放熱の反応性の低下が防止又は著しく抑制される。同様に、伝熱層40において粒子42間に細孔が形成されるので、粒子42の微粉化が防止され、上記した化学蓄熱材複合物成形体11と隔壁24との界面密着性が維持される。 Further, the chemical heat storage material composite molded body 11 manufactured as described above is organized and structured so that a large number of powder chemical heat storage materials 12 are formed with pores 14 therebetween. Further, the hydration of the powder chemical heat storage material 12 and the volume expansion and contraction accompanying the dehydration reaction are prevented or significantly suppressed from interfering with the other powder chemical heat storage material 12. For this reason, pulverization resulting from the volume expansion and contraction of the powder chemical heat storage material 12 is prevented. In other words, the release and introduction of water vapor into the powder chemical heat storage material 12 is not delayed, and the reaction of heat storage and heat dissipation. Deterioration is prevented or markedly suppressed. Similarly, since pores are formed between the particles 42 in the heat transfer layer 40, the pulverization of the particles 42 is prevented, and the above-described interfacial adhesion between the chemical heat storage material composite molded body 11 and the partition wall 24 is maintained. The
さらに、化学蓄熱材複合物成形体11では、比表面積が大きく多孔質であるセピオライト16の吸着性によって、余剰の水蒸気がセピオライト16(の微孔)に吸着される。これにより、例えば、化学蓄熱材複合物成形体11が適用された蓄熱システムが停止されている低温状態の場合(粉体化学蓄熱材12が酸化カルシウムである場合)に該粉体化学蓄熱材12が吸水して化学蓄熱材複合物成形体11内が液水化されることが防止又は抑制される。同様に、伝熱層40において粒子42間に細孔が形成されるので、伝熱層40における液水化が防止又は抑制される。 Furthermore, in the chemical heat storage material composite molded body 11, surplus water vapor is adsorbed to the sepiolite 16 (micropores) by the adsorptivity of the sepiolite 16 having a large specific surface area and being porous. Thereby, for example, when the heat storage system to which the chemical heat storage material composite molded body 11 is applied is in a low temperature state (when the powder chemical heat storage material 12 is calcium oxide), the powder chemical heat storage material 12 Is prevented or suppressed by absorbing water and liquefying the chemical heat storage material composite molded body 11. Similarly, since pores are formed between the particles 42 in the heat transfer layer 40, liquefaction in the heat transfer layer 40 is prevented or suppressed.
またここで、熱交換型蓄熱放熱装置10の製造方法では、化学蓄熱材複合物成形体11を成形するための成形体成形工程において、水に懸濁した状態で粉体化学蓄熱材12の平均粒子径Dよりも繊維径が微細な繊維状を成すセピオライト16を用いるため、少量のセピオライト16で粉体化学蓄熱材12間に細孔14が形成された多孔質構造体を補強した化学蓄熱材複合物成形体11を得ることができる。したがって、化学蓄熱材複合物成形体11は、単位質量、単位体積当たりに占める粉体化学蓄熱材12の量を多くすることができる。すなわち、蓄熱容量の大きい化学蓄熱材複合物成形体11を得ることができる。しかも、化学蓄熱材複合物成形体11では、粉体化学蓄熱材12自体が化学蓄熱材複合物成形体11の主要構造を成しているので、伝熱経路が単純で蓄熱効率、蓄熱した熱の利用効率が高い。 Moreover, here, in the manufacturing method of the heat exchange type heat storage and heat dissipation device 10, the average of the powder chemical heat storage material 12 in a state of being suspended in water in the molded body forming step for forming the chemical heat storage material composite formed body 11. Since the sepiolite 16 having a finer fiber diameter than the particle diameter D is used, a chemical heat storage material in which a porous structure in which pores 14 are formed between the powder chemical heat storage material 12 with a small amount of sepiolite 16 is used. A composite molded body 11 can be obtained. Therefore, the chemical heat storage material composite molded body 11 can increase the amount of the powder chemical heat storage material 12 occupying per unit mass and unit volume. That is, the chemical heat storage material composite molded body 11 having a large heat storage capacity can be obtained. Moreover, in the chemical heat storage material composite molded body 11, since the powder chemical heat storage material 12 itself forms the main structure of the chemical heat storage material composite molded body 11, the heat transfer path is simple, the heat storage efficiency, and the heat stored. Use efficiency is high.
しかも、熱交換型蓄熱放熱装置10の製造方法では、伝熱層40を構成するセピオライト16についても水に懸濁した状態で粉体化学蓄熱材12の平均粒子径Dよりも繊維径が微細な繊維状を成すものを用いるので、このセピオライト16が化学蓄熱材複合物成形体11内に延びてアンカ効果を発揮し、該化学蓄熱材複合物成形体11と伝熱層40すなわち隔壁24との界面付着力の向上に寄与する。さらに、セピオライト16の構造化により、伝熱層40の膜強度向上をも両立することができる。 Moreover, in the method for manufacturing the heat exchange type heat storage and heat dissipation device 10, the fiber diameter of the sepiolite 16 constituting the heat transfer layer 40 is finer than the average particle diameter D of the powder chemical heat storage material 12 in a state suspended in water. Since a fiber-like material is used, this sepiolite 16 extends into the chemical heat storage material composite molded body 11 and exhibits an anchor effect, and the chemical heat storage material composite molded body 11 and the heat transfer layer 40, that is, the partition wall 24. Contributes to improved interfacial adhesion. Further, the structure of the sepiolite 16 can improve both the film strength of the heat transfer layer 40.
さらに、化学蓄熱材複合物成形体11では、粉体化学蓄熱材12として無機化合物である水酸化カルシウムを用いているため、蓄熱、放熱反応(水和、脱水)に対する材料安定性が高い。特に、水酸化カルシウムは、水酸化マグネシウム等に対しても可逆性が高い(ほぼ100%の水和、脱水反応率を有する)ため、長期間に亘り安定した蓄熱効果を得ることができる。また、水酸化カルシウムは、水酸化マグネシウム等に対して不純物に対する感度が低いので、この点でも長期安定運転に寄与する。また特に、粉体化学蓄熱材12としてアルカリ土類金属化合物である水酸化カルシウムを用いているため、換言すれば、環境負荷の小さい材料を用いるため、化学蓄熱材複合物成形体11の製造、使用、リサイクルを含めた安全性の確保が容易になる。 Furthermore, since the chemical heat storage material composite molded body 11 uses calcium hydroxide, which is an inorganic compound, as the powder chemical heat storage material 12, the material stability against heat storage and heat dissipation reactions (hydration and dehydration) is high. In particular, since calcium hydroxide is highly reversible with respect to magnesium hydroxide and the like (having almost 100% hydration and dehydration rate), a stable heat storage effect can be obtained over a long period of time. Further, since calcium hydroxide has low sensitivity to impurities with respect to magnesium hydroxide and the like, this point also contributes to long-term stable operation. In particular, since calcium hydroxide which is an alkaline earth metal compound is used as the powder chemical heat storage material 12, in other words, since a material with a small environmental load is used, the production of the chemical heat storage material composite molded body 11, Ensures safety including use and recycling.
さらにここで、熱交換型蓄熱放熱装置10の製造方法では、水酸化物である水酸化カルシウムの粉体を用いて化学蓄熱材複合物成形体11を製造するため、混練工程で粉体化学蓄熱材12とセピオライト16とを混練、増粘させるためのバインダとして水を用いることができる。これにより、簡単かつ安価な方法で化学蓄熱材複合物成形体11を得ることができる。例えば、酸化カルシウムを出発物質とした場合には、該酸化カルシウムは水に反応するために水(水を含む液体)をバインダとして用いることができない。また例えば、炭酸カルシウムを出発原料として粉体化学蓄熱材12(水酸化カルシウム)を得る場合には、脱炭酸工程で950℃〜1000℃程度の高温焼成が要求される。 Furthermore, in the manufacturing method of the heat exchange type heat storage and heat dissipation device 10, since the chemical heat storage material composite molded body 11 is manufactured using calcium hydroxide powder which is a hydroxide, the powder chemical heat storage is performed in the kneading step. Water can be used as a binder for kneading and thickening the material 12 and sepiolite 16. Thereby, the chemical heat storage material composite molded body 11 can be obtained by a simple and inexpensive method. For example, when calcium oxide is used as a starting material, water (a liquid containing water) cannot be used as a binder because the calcium oxide reacts with water. For example, when obtaining the powder chemical heat storage material 12 (calcium hydroxide) using calcium carbonate as a starting material, high-temperature firing at about 950 ° C. to 1000 ° C. is required in the decarbonation step.
これに対して熱交換型蓄熱放熱装置10の製造方法では、上記の通り水酸化カルシウムを出発原料として熱交換型蓄熱放熱装置10を製造するため、水をバインダとしてセピオライト16と混練することで増粘効果が得られ、成形性が向上する。また、焼成温度を低くすることができるため、使用材料、工程(製造装置の材料等を含む)の自由度が増す。さらに、化学蓄熱材複合物成形体11では、アルカリ性の水酸化カルシウムをセピオライトに混練するため、セピオライトはアルカリと僅かに反応にしてガラス質へと変化する。このため、ガラス化したセピオライト16と粉体化学蓄熱材12との混練物Mを焼結して成る焼結構造体である化学蓄熱材複合物成形体11は、その強度が向上される。 On the other hand, in the manufacturing method of the heat exchange type heat storage and heat dissipation device 10, since the heat exchange type heat storage and heat dissipation device 10 is manufactured using calcium hydroxide as a starting material as described above, it is increased by kneading with sepiolite 16 using water as a binder. A sticky effect is obtained and moldability is improved. In addition, since the firing temperature can be lowered, the degree of freedom of materials used and processes (including materials for manufacturing equipment) is increased. Furthermore, in the chemical heat storage material composite molded body 11, since alkaline calcium hydroxide is kneaded into sepiolite, sepiolite slightly reacts with alkali and changes to glassy. For this reason, the strength of the chemical heat storage material composite formed body 11 which is a sintered structure formed by sintering the kneaded material M of the vitrified sepiolite 16 and the powder chemical heat storage material 12 is improved.
さらに、熱交換型蓄熱放熱装置10の製造方法では、伝熱層40の出発原料として硝酸カルシウムの水溶液44を用いるため、比較的低温での焼成により伝熱層40の形成(280℃〜300℃での酸化カルシウムへの変化)が果たされる。すなわち、本熱交換型蓄熱放熱装置10の製造方法では、例えば炭酸カルシウムを出発原料として伝熱層40を得る構成のように950℃〜1000℃程度の高温での焼成を経ることなく伝熱層40を得ることができる。 Furthermore, in the manufacturing method of the heat exchange type heat storage and heat dissipation device 10, since the aqueous solution 44 of calcium nitrate is used as a starting material for the heat transfer layer 40, the heat transfer layer 40 is formed by firing at a relatively low temperature (280 ° C to 300 ° C). Change to calcium oxide). That is, in the manufacturing method of the heat exchange type heat storage and heat dissipation device 10, for example, the heat transfer layer is not subjected to firing at a high temperature of about 950 ° C. to 1000 ° C. as in the configuration in which the heat transfer layer 40 is obtained using calcium carbonate as a starting material. 40 can be obtained.
一方、熱交換型蓄熱放熱装置10の製造方法では、焼成温度として400℃〜500℃を採用しているので、粉体化学蓄熱材12、セピオライト16の構造化(固定化)を図りつつ、粉体化学蓄熱材12の脱水反応、水溶液44の脱水、酸化を進行させることができる。そして、400℃〜500℃の焼成温度によって、粉体化学蓄熱材12にマイクロクラックが形成されると共に粒子42に図示しないマイクロクラックが形成されるので、化学蓄熱材複合物成形体11の製造方法では、粉体化学蓄熱材12の組織化、構造化と比表面積の増大とを同時に果たすことができる。 On the other hand, in the manufacturing method of the heat exchange type heat storage / heat dissipating device 10, since the firing temperature is 400 ° C. to 500 ° C., the powder chemical heat storage material 12 and the sepiolite 16 are structured (fixed) The dehydration reaction of the body chemical heat storage material 12, the dehydration of the aqueous solution 44, and the oxidation can be advanced. And since the microcrack is formed in the particle | grains 42 and the microcrack which is not illustrated in the particle | grains 42 with the calcination temperature of 400 to 500 degreeC, the manufacturing method of the chemical heat storage material composite molded object 11 Then, the organization and structuring of the powder chemical heat storage material 12 and the increase of the specific surface area can be achieved at the same time.
なお、酸化カルシウムとなった粉体化学蓄熱材12、粒子42にマイクロクラックを生じさせる焼成温度としては、450℃程度が最も好ましい。焼成温度が400℃以下では、マイクロクラック等の生成が少なく、500℃以上では、粉体化学蓄熱材12や粒子42の割れの確率が高くなること及びシンタリングにより粉体化学蓄熱材12や粒子42の比表面積が減少することが確かめられている。なお、この温度範囲は、酸化カルシウムに比べやや低温化するものの、例えば酸化マグネシウム(水酸化マグネシウムが脱水されたもの)についても、マイクロクラックを生じさせる焼成温度として用いることができる。なお、水酸化マグネシウムの脱水温度は、雰囲気水蒸気圧力により異なるが、水酸化カルシウムの脱水温度よりも若干低い略350℃〜400℃)である。 In addition, about 450 degreeC is the most preferable as a calcination temperature which produces the micro chemical crack in the powder chemical thermal storage material 12 and particle | grains 42 which became calcium oxide. When the firing temperature is 400 ° C. or lower, the generation of microcracks and the like is small, and when the firing temperature is 500 ° C. or higher, the probability of cracking of the powder chemical heat storage material 12 and particles 42 is increased and the powder chemical heat storage material 12 and particles are sintered. It has been confirmed that the specific surface area of 42 is reduced. Although this temperature range is slightly lower than that of calcium oxide, for example, magnesium oxide (dehydrated magnesium hydroxide) can also be used as a firing temperature for generating microcracks. In addition, although the dehydration temperature of magnesium hydroxide changes with atmospheric water vapor pressures, it is a little lower than the dehydration temperature of calcium hydroxide (about 350 to 400 degreeC).
なお、上記した実施形態では、粘土鉱物として層リボン構造を有する粘土鉱物としてのセピオライトを用いた例を示したが、本発明はこれに限定されず、例えば、層リボン構造を有する粘土鉱物であるパリゴルスカイト(アタパルジャイト)を用いても良く、層リボン構造を有する粘土鉱物には属しないベントナイトを用いても良い。なお、ベントナイトについて補足すると、ベントナイトは、層リボン構造を有する粘土鉱物と比較して接着力が強い粘土鉱物であり、強固な多孔質構造体を得ることができ、また、例えば金属壁への接合強度を向上することに寄与する。このベントナイトを用いた化学蓄熱材複合物成形体11においても、多数の粉体化学蓄熱材12間に細孔14が形成された多孔質構造体を成す。一方、層リボン構造を有する粘土鉱物は、ベントナイトと比較してシンタリング(緻密化)が少ないメリットがある。特に、セピオライトは、上記の通り粉体化学蓄熱材12の脱水温度(マイクロクラックが生成される温度)と近い温度で焼結され、該温度ではシンタリングによる比表面積の減少が少ない(マイクロクラックによる比表面積の増加が上回る)メリットがある。化学蓄熱材複合物成形体11の製造に用いる粘土鉱物は、これらのメリットを考慮して用途等に応じて決めれば良い。 In the above-described embodiment, an example in which sepiolite as a clay mineral having a layer ribbon structure is used as the clay mineral is shown. However, the present invention is not limited thereto, and for example, a clay mineral having a layer ribbon structure is used. Palygorskite (attapulgite) may be used, and bentonite that does not belong to the clay mineral having a layer ribbon structure may be used. Note that when bentonite is supplemented, bentonite is a clay mineral that has a stronger adhesive strength than a clay mineral having a layered ribbon structure, and can obtain a strong porous structure, for example, bonding to a metal wall. Contributes to improving strength. The chemical heat storage material composite molded body 11 using bentonite also forms a porous structure in which pores 14 are formed between a large number of powder chemical heat storage materials 12. On the other hand, clay minerals having a layered ribbon structure have the advantage of less sintering (densification) compared to bentonite. In particular, sepiolite is sintered at a temperature close to the dehydration temperature (the temperature at which microcracks are generated) of the powder chemical heat storage material 12 as described above, and the specific surface area is less reduced by sintering at that temperature (due to microcracks). The increase in specific surface area is advantageous). What is necessary is just to determine the clay mineral used for manufacture of the chemical heat storage material composite molded object 11 according to a use etc. in consideration of these merit.
また、上記した実施形態では、粉体化学蓄熱材12として水和系化学蓄熱材である水酸化カルシウム(Ca(OH)2)を用いた例を示したが、本発明はこれに限定されず、例えば、アルカリ土類金属の無機化合物である水酸化マグネシウム(Mg(OH)2)を粉体化学蓄熱材12として用いても良い。同様に、アルカリ土類金属の無機化合物であるBa(OH)2やBa(OH)2・H2Oを粉体化学蓄熱材12として用いても良く、アルカリ土類金属以外の無機化合物であるLiOH・H2O、Al2O3・3H2O等を粉体化学蓄熱材12として用いても良い。さらに、水和、脱水反応により発熱、蓄熱する水和形の粉体化学蓄熱材12に代えて、他の反応を利用した粉体化学蓄熱材12を用いても良い。 In the above-described embodiment, an example in which calcium hydroxide (Ca (OH) 2 ), which is a hydrated chemical heat storage material, is used as the powder chemical heat storage material 12, but the present invention is not limited thereto. For example, magnesium hydroxide (Mg (OH) 2 ), which is an inorganic compound of an alkaline earth metal, may be used as the powder chemical heat storage material 12. Similarly, Ba (OH) 2 and Ba (OH) 2 .H 2 O, which are inorganic compounds of alkaline earth metals, may be used as the powder chemical heat storage material 12 and are inorganic compounds other than alkaline earth metals. LiOH.H 2 O, Al 2 O 3 .3H 2 O, or the like may be used as the powder chemical heat storage material 12. Furthermore, instead of the hydrated powder chemical heat storage material 12 that generates and stores heat by hydration and dehydration reactions, a powder chemical heat storage material 12 using other reactions may be used.
さらに、上記した実施形態では、化学蓄熱材複合物成形体11が複数の流路15を有する例を示したが、本発明はこれに限定されず、熱交換型蓄熱放熱装置10の寸法形状や要求される伝熱(蓄熱)性能に応じて、単一の流路15を有する化学蓄熱材複合物成形体11を用いて熱交換型蓄熱放熱装置10を構成しても良い。 Furthermore, in the above-described embodiment, an example in which the chemical heat storage material composite molded body 11 has a plurality of flow paths 15 has been shown, but the present invention is not limited to this, and the dimensions and shape of the heat exchange heat storage and heat dissipation device 10 Depending on the required heat transfer (heat storage) performance, the heat exchange type heat storage and heat dissipation device 10 may be configured using the chemical heat storage material composite molded body 11 having a single flow path 15.
またさらに、化学蓄熱材複合物成形体11に形成される流路は、該化学蓄熱材複合物成形体11を水蒸気の流れ方向に貫通する流路15に限定されることはなく、流路の少なくとも一部を、細孔14よりも流路断面の大きい粉体化学蓄熱材12の粒子間距離として設定することも可能である。例えば、粉体化学蓄熱材12を組織化、構造化して粒状の一次粒子に成形し、さらに多数の一次粒子を二次的に組織化、構造化することで、一次粒子内の細孔14よりも大きな流路(隙間)を有する二次成形体を形成し、該二次成形体を用いて熱交換型蓄熱放熱装置10を構成しても良い。 Furthermore, the flow path formed in the chemical heat storage material composite molded body 11 is not limited to the flow path 15 penetrating the chemical heat storage material composite molded body 11 in the flow direction of water vapor. It is also possible to set at least a part as the interparticle distance of the powder chemical heat storage material 12 having a larger flow path cross section than the pores 14. For example, the powder chemical heat storage material 12 is organized and structured to form granular primary particles, and a number of primary particles are secondarily organized and structured, so that the pores 14 in the primary particles Alternatively, a secondary molded body having a large flow path (gap) may be formed, and the heat exchange type heat storage and heat dissipation device 10 may be configured using the secondary molded body.
また、上記した実施形態では、化学蓄熱材複合物成形体11の蓄熱時、放熱時共に該化学蓄熱材複合物成形体11が流体流路26を流れる流体と熱交換を行う例を示したが、本発明はこれに限定されず、例えば、蓄熱材収容部25(流路15)を流れる高温ガスによって、化学蓄熱材複合物成形体11に蓄熱反応を生じさせる構成とすることができる。この構成は、例えば排気ガス等の大気放出される熱源の熱を用いる構成に適用することができる。 In the above-described embodiment, the chemical heat storage material composite molded body 11 performs heat exchange with the fluid flowing through the fluid flow path 26 both when the chemical heat storage material composite molded body 11 stores heat and when heat is released. The present invention is not limited to this, and for example, a heat storage reaction can be caused in the chemical heat storage material composite molded body 11 by the high-temperature gas flowing through the heat storage material accommodation unit 25 (flow path 15). This configuration can be applied to a configuration that uses heat from a heat source that is released into the atmosphere, such as exhaust gas.
さらに、上記した実施形態(図2)では、熱交換器本体20における蓄熱材収容部25と流体流路26との開口方向が同じ対向流又は並行流型の熱交換器本体20を例示しているが、例えば、図6に示される如く、直交流型の熱交換器本体20を用いて熱交換型蓄熱放熱装置10を構成しても良い。 Furthermore, in the above-described embodiment (FIG. 2), the counterflow or parallel flow type heat exchanger body 20 in which the opening directions of the heat storage material accommodation portion 25 and the fluid flow path 26 in the heat exchanger body 20 are the same is illustrated. However, for example, as shown in FIG. 6, the heat exchange type heat storage and heat dissipation device 10 may be configured using a cross flow type heat exchanger body 20.
またさらに、上記した実施形態では、熱交換型蓄熱放熱装置10に本発明が適用された例を示したが、本発明はこれに限定されず、各種形状の化学蓄熱材複合物成形体11と、金属等により成る壁体とを密着させるためのあらゆる用途に本発明を適用することができる。したがって例えば、円柱状やブロック状を成す化学蓄熱材複合物成形体11(流路15の有無は寸法形状に応じて決めれば良い)を金属板にて被覆したホットプローブ等に本発明を適用しても良い。ホットプローブは、例えば、内燃機関の排気管に設けられた触媒コンバータに内蔵され、内燃機関の運転時に排気ガスの排気熱を蓄熱し、内燃機関の低温始動時に水蒸気が供給されることで触媒コンバータを早期に(短時間で)暖機するために用いられる蓄熱装置として把握することができる。 Furthermore, in the above-described embodiment, an example in which the present invention is applied to the heat exchange type heat storage and heat dissipation device 10 is shown, but the present invention is not limited to this, and the chemical heat storage material composite molded body 11 of various shapes and The present invention can be applied to all uses for bringing a wall body made of metal or the like into close contact. Therefore, for example, the present invention is applied to a hot probe or the like in which a chemical heat storage material composite formed body 11 having a cylindrical shape or a block shape (the presence or absence of the flow path 15 may be determined according to the size and shape) is covered with a metal plate. May be. The hot probe is built in, for example, a catalytic converter provided in an exhaust pipe of an internal combustion engine, stores the exhaust heat of the exhaust gas during operation of the internal combustion engine, and is supplied with water vapor when the internal combustion engine is started at a low temperature, so that the catalytic converter Can be grasped as a heat storage device used to warm up early (in a short time).
さらに、上記実施形態では、伝熱層40が粘土鉱物としてのセピオライト16を含んで構成された例を示したが、本発明はこれに限定されず、例えば、伝熱層40は、蓄熱材粒子42のみで構成されても良い。 Furthermore, in the said embodiment, although the heat transfer layer 40 showed the example comprised including the sepiolite 16 as a clay mineral, this invention is not limited to this, For example, the heat transfer layer 40 is heat storage material particle | grains. Only 42 may be comprised.
10 熱交換型蓄熱放熱装置(蓄熱装置)
11 化学蓄熱材複合物成形体(化学蓄熱材成形体)
12 粉体化学蓄熱材(化学蓄熱材)
12A マイクロクラック(微小なクラック)
15 流路
16 セピオライト(粘土鉱物)
20 熱交換構造体(熱交換器本体)
24 隔壁(壁体)
26 流体流路(熱交換媒体流路)
25 蓄熱材収容部
40 伝熱層
42 粒子(高密度の化学蓄熱材)
44 硝酸カルシウムの水溶液(伝熱層を構成する化学蓄熱材の原料)
M 混練物
S 混合スラリ
10 Heat exchange type heat storage and heat dissipation device (heat storage device)
11 Chemical heat storage material composite molded body (Chemical heat storage material molded body)
12 Powder chemical heat storage material (chemical heat storage material)
12A micro crack (micro crack)
15 Channel 16 Sepiolite (clay mineral)
20 Heat exchange structure (heat exchanger body)
24 Bulkhead (wall)
26 Fluid flow path (heat exchange medium flow path)
25 Heat storage material accommodating part 40 Heat transfer layer 42 Particles (high-density chemical heat storage material)
44 Aqueous solution of calcium nitrate (raw material of chemical heat storage material constituting heat transfer layer)
M Kneaded material S Mixed slurry
Claims (22)
金属材にて構成され、前記化学蓄熱材成形体の表面に接触された壁体と、
前記化学蓄熱材成形体よりも高密度でかつ前記化学蓄熱材成形体と同種の化学蓄熱材であるアルカリ土類金属化合物と、粘土鉱物とを含んで構成され、前記化学蓄熱材成形体と前記壁体との隙間を埋める伝熱層と、
を備えた蓄熱装置。 Chemical heat storage material molded body formed by molding powder chemical heat storage material,
A wall body made of a metal material and in contact with the surface of the chemical heat storage material molded body,
An alkaline earth metal compound that is higher in density than the chemical heat storage material molded body and is the same type of chemical heat storage material as the chemical heat storage material molded body, and a clay mineral, is configured, and the chemical heat storage material molded body and the A heat transfer layer that fills the gap with the wall ,
A heat storage device.
前記化学蓄熱材成形体を収容した蓄熱材収容部と、該蓄熱材収容部内との間が壁体にて仕切られると共に該壁体を介して前記化学蓄熱材成形体と熱交換するための熱交換媒体を流通させる熱交換媒体流通部とを含む、金属材にて構成された熱交換構造体と、
前記化学蓄熱材成形体よりも高密度でかつ前記化学蓄熱材成形体と同種の化学蓄熱材であるアルカリ土類金属化合物と、粘土鉱物とを含んで構成され、前記化学蓄熱材成形体と前記壁体との隙間を埋める伝熱層と、
を備えた蓄熱装置。 Chemical heat storage material molded body formed by molding powder chemical heat storage material,
Heat for exchanging heat with the chemical heat storage material molded body is partitioned between the heat storage material storage section storing the chemical heat storage material molded body and the heat storage material storage section with a wall body. A heat exchange structure composed of a metal material , including a heat exchange medium distribution part for distributing the exchange medium;
An alkaline earth metal compound that is higher in density than the chemical heat storage material molded body and is the same type of chemical heat storage material as the chemical heat storage material molded body, and a clay mineral, is configured, and the chemical heat storage material molded body and the A heat transfer layer that fills the gap with the wall ,
A heat storage device.
互いに接触された前記化学蓄熱材成形体と金属材にて構成された壁体との間に、前記化学蓄熱材成形体と同種の化学蓄熱材の原料としてのアルカリ土類金属の塩の溶液と、粘土鉱物との混合物を供給する伝熱層原料供給工程と、
前記伝熱層原料供給工程で前記化学蓄熱材成形体と壁体との間に供給された前記化学蓄熱材の原料と粘土鉱物との混合物を、前記化学蓄熱材成形体を構成する化学蓄熱材よりも高密度の化学蓄熱材より成る伝熱層に変化させる伝熱層生成工程と、
を含む蓄熱装置の製造方法。 A molding process for obtaining a chemical heat storage material molded body from powder chemical heat storage material;
A solution of an alkaline earth metal salt as a raw material for the chemical heat storage material of the same type as the chemical heat storage material formed body, between the chemical heat storage material formed body and the wall made of a metal material in contact with each other; A heat transfer layer raw material supply process for supplying a mixture with clay minerals,
The chemical heat storage material constituting the chemical heat storage material molded body is a mixture of the chemical heat storage material raw material and the clay mineral supplied between the chemical heat storage material molded body and the wall body in the heat transfer layer material supply step. A heat transfer layer generation process for changing to a heat transfer layer made of a higher-density chemical heat storage material,
A method for manufacturing a heat storage device.
前記成形工程で成形された化学蓄熱材成形体を、金属材にて構成された前記熱交換構造体における熱交換媒体流とは壁体によって仕切られた蓄熱材収容部に挿入する挿入工程と、
前記挿入工程で前記熱交換構造体の蓄熱材収容部に挿入された前記化学蓄熱材成形体と前記壁体との間に、前記化学蓄熱材成形体と同種の化学蓄熱材の原料としてのアルカリ土類金属の塩の溶液と、粘土鉱物との混合物を供給する伝熱層原料供給工程と、
前記伝熱層原料供給工程で前記化学蓄熱材成形体と壁体との間に供給された前記化学蓄熱材の原料と粘土鉱物との混合物を、前記化学蓄熱材成形体を構成する化学蓄熱材よりも高密度の化学蓄熱材より成る伝熱層に変化させる伝熱層生成工程と、
を含む蓄熱装置の製造方法。 A molding step of molding a chemical heat storage material molded body having an outer shape that can be inserted into the heat storage material housing portion of the heat exchange structure, using a powder chemical heat storage material,
Inserting the chemical heat storage material molded body formed in the forming step into a heat storage material accommodation section partitioned by a wall body from the heat exchange medium flow in the heat exchange structure formed of a metal material, and
Alkali as a raw material for the chemical heat storage material of the same kind as the chemical heat storage material molded body between the chemical heat storage material molded body and the wall body inserted in the heat storage material accommodating portion of the heat exchange structure in the insertion step A heat transfer layer raw material supplying step for supplying a mixture of a salt solution of an earth metal and a clay mineral;
The chemical heat storage material constituting the chemical heat storage material molded body is a mixture of the chemical heat storage material raw material and the clay mineral supplied between the chemical heat storage material molded body and the wall body in the heat transfer layer material supply step. A heat transfer layer generation process for changing to a heat transfer layer made of a higher-density chemical heat storage material,
A method for manufacturing a heat storage device.
前記成形工程では、水和状態の前記化学蓄熱材を前記粘土鉱物と混練する請求項11〜請求項17の何れか1項記載の蓄熱装置の製造方法。 As the alkaline earth metal chemical heat storage material, a hydration reaction type chemical heat storage material that absorbs heat with a dehydration reaction and dissipates heat with a hydration reaction is used,
Wherein in the forming step, the manufacturing method of the heat storage device according to any one of claims 1 1 to claim 17, kneaded with the clay mineral the chemical thermal storage medium in a hydrated state.
前記成形工程では、前記化学蓄熱材が水酸化物の状態で前記粘土鉱物と混練する請求項11〜請求項18の何れか1項記載の蓄熱装置の製造方法。 As the alkaline earth metal chemical heat storage material, a hydration reaction type chemical heat storage material that is oxidized with a dehydration reaction and hydroxylated with a hydration reaction is used,
The method for manufacturing a heat storage device according to any one of claims 11 to 18, wherein in the molding step, the chemical heat storage material is kneaded with the clay mineral in a hydroxide state .
前記伝熱層生成工程は、前記化学蓄熱材成形体と壁体との間に供給された前記化学蓄熱材の原料を焼成して水和反応系化学蓄熱材の酸化物に変化させる工程を含む請求項11〜請求項19の何れか1項記載の蓄熱装置の製造方法。 In the heat transfer layer raw material supply step, the raw material of the chemical heat storage material for obtaining a hydration reaction type chemical heat storage material that is oxidized in the heat transfer layer generation step and is hydroxylated in accordance with the hydration reaction. A solution is supplied between the chemical heat storage material molded body and the wall body,
The heat transfer layer generating step includes a step of firing the raw material of the chemical heat storage material supplied between the chemical heat storage material molded body and the wall body to change it to an oxide of a hydration reaction type chemical heat storage material. The manufacturing method of the thermal storage apparatus in any one of Claims 11-19 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007311784A JP5401782B2 (en) | 2007-11-30 | 2007-11-30 | Thermal storage device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007311784A JP5401782B2 (en) | 2007-11-30 | 2007-11-30 | Thermal storage device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009133589A JP2009133589A (en) | 2009-06-18 |
JP5401782B2 true JP5401782B2 (en) | 2014-01-29 |
Family
ID=40865628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007311784A Expired - Fee Related JP5401782B2 (en) | 2007-11-30 | 2007-11-30 | Thermal storage device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5401782B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5417075B2 (en) * | 2009-07-24 | 2014-02-12 | 株式会社豊田中央研究所 | Chemical heat storage device |
JP6136673B2 (en) * | 2013-07-09 | 2017-05-31 | 株式会社豊田自動織機 | Method for producing chemical heat storage molded body and chemical heat storage device |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54142401A (en) * | 1978-04-28 | 1979-11-06 | Iwane Fujii | Heating unit conversion apparatus |
JPS60165689U (en) * | 1984-04-06 | 1985-11-02 | 住友精密工業株式会社 | thermal storage heat exchanger |
JPH06102149B2 (en) * | 1986-08-30 | 1994-12-14 | 株式会社豊田中央研究所 | Oxidizing composition |
JPH0236295A (en) * | 1988-07-26 | 1990-02-06 | Erugu:Kk | Solid heating unit and production thereof |
JP2603539B2 (en) * | 1989-06-02 | 1997-04-23 | 株式会社豊田中央研究所 | Clay mineral sintered body and method for producing the same |
JPH09241624A (en) * | 1996-03-08 | 1997-09-16 | Yoshinobu Yamaguchi | Material for storage of cryogenic energy |
WO2000056550A1 (en) * | 1999-03-19 | 2000-09-28 | Seiko Instruments Inc. | Method of manufacturing thermal head |
JP2001322872A (en) * | 1999-10-21 | 2001-11-20 | Tennex Corp | Molded activated carbon and method for manufacturing the same |
JP3590835B2 (en) * | 2000-11-27 | 2004-11-17 | 独立行政法人産業技術総合研究所 | Heat storage plate and method for manufacturing the same |
JP2004156793A (en) * | 2002-11-01 | 2004-06-03 | Ip:Kk | Heat storage device |
JP4567996B2 (en) * | 2003-06-09 | 2010-10-27 | パナソニック株式会社 | Thermal storage heat pump system |
JP2005127694A (en) * | 2003-09-29 | 2005-05-19 | Matsushita Electric Ind Co Ltd | Heat storage type solar panel, solar system, heat storage type solar heat pump system, and operating method for heat storage type solar heat pump system |
JP5048926B2 (en) * | 2004-02-04 | 2012-10-17 | エスケー化研株式会社 | Thermal insulation |
JP4597628B2 (en) * | 2004-10-06 | 2010-12-15 | エスケー化研株式会社 | Floor heating structure |
JP2007077199A (en) * | 2005-09-12 | 2007-03-29 | Tokyo Institute Of Technology | Water vapor sorption / desorption type heat storage material and method for producing the same |
JP4938323B2 (en) * | 2006-03-14 | 2012-05-23 | 大阪瓦斯株式会社 | Method for producing heat exchange reactor |
-
2007
- 2007-11-30 JP JP2007311784A patent/JP5401782B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009133589A (en) | 2009-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4911002B2 (en) | Heat exchange type heat utilization apparatus and manufacturing method thereof | |
JP5223314B2 (en) | Heat storage device | |
JP5277621B2 (en) | Chemical heat storage material molded body and manufacturing method thereof | |
JP5547896B2 (en) | CHEMICAL HEAT STORAGE REACTOR AND METHOD FOR PRODUCING CHEMICAL HEAT STORAGE MATERIAL WITH FILTER | |
JP5785932B2 (en) | Chemical heat storage material structure, manufacturing method thereof, and chemical heat storage | |
JP5300307B2 (en) | Chemical heat storage material molded body and manufacturing method thereof | |
JP5297669B2 (en) | Chemical heat storage material composite and its manufacturing method | |
JP5232521B2 (en) | Method for producing chemical heat storage material composite | |
JP5374683B2 (en) | Chemical heat storage material molded body and manufacturing method thereof | |
JPWO2018163676A1 (en) | Porous honeycomb thermal storage structure | |
JP2009256517A (en) | Chemical heat storage material and production method thereof | |
JP5749049B2 (en) | Chemical regenerator and manufacturing method thereof | |
JP2009256520A (en) | Chemical thermal storage medium composite and method for producing the same | |
JP5401782B2 (en) | Thermal storage device and manufacturing method thereof | |
JP5232510B2 (en) | Manufacturing method of chemical heat storage material molded body | |
JP2009256519A (en) | Chemical thermal storage medium composite and method for producing the same | |
JP5231077B2 (en) | Chemical heat storage material composite and its manufacturing method | |
JP7202560B2 (en) | Thermal storage reactor | |
JP5276865B2 (en) | Heat storage device using chemical heat storage material composite and manufacturing method thereof | |
JP5277138B2 (en) | Regenerator and method for manufacturing the same | |
JP5554103B2 (en) | Heat accumulator | |
JP5303159B2 (en) | Chemical heat storage material composite | |
JP5719649B2 (en) | Chemical regenerator and manufacturing method thereof | |
CN113227311A (en) | Plate-shaped chemical heat accumulator | |
JP2009203443A (en) | Chemical heat accumulation material molded article and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20101008 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120517 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120522 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120717 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130205 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131001 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131014 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5401782 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |