[go: up one dir, main page]

JP5547896B2 - CHEMICAL HEAT STORAGE REACTOR AND METHOD FOR PRODUCING CHEMICAL HEAT STORAGE MATERIAL WITH FILTER - Google Patents

CHEMICAL HEAT STORAGE REACTOR AND METHOD FOR PRODUCING CHEMICAL HEAT STORAGE MATERIAL WITH FILTER Download PDF

Info

Publication number
JP5547896B2
JP5547896B2 JP2009022826A JP2009022826A JP5547896B2 JP 5547896 B2 JP5547896 B2 JP 5547896B2 JP 2009022826 A JP2009022826 A JP 2009022826A JP 2009022826 A JP2009022826 A JP 2009022826A JP 5547896 B2 JP5547896 B2 JP 5547896B2
Authority
JP
Japan
Prior art keywords
heat storage
storage material
chemical heat
porous
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009022826A
Other languages
Japanese (ja)
Other versions
JP2010181051A (en
Inventor
宏之 三井
孝 志満津
博昭 若山
哲 井上
卓哉 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Central R&D Labs Inc
Original Assignee
Denso Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Central R&D Labs Inc filed Critical Denso Corp
Priority to JP2009022826A priority Critical patent/JP5547896B2/en
Publication of JP2010181051A publication Critical patent/JP2010181051A/en
Application granted granted Critical
Publication of JP5547896B2 publication Critical patent/JP5547896B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、化学蓄熱材を成形した化学蓄熱材成形体を含んで構成された化学蓄熱反応器、及びフィルタ付化学蓄熱材成形体の製造方法に関する。   The present invention relates to a chemical heat storage reactor configured to include a chemical heat storage material molded body obtained by molding a chemical heat storage material, and a method for producing a chemical heat storage material molded body with a filter.

粒径0.3mm〜4mmの範囲の結晶性の石灰石を850℃〜1100℃の範囲で所定時間加熱した後に、該石灰石を500℃〜600℃の範囲で所定時間加熱することで、表面から内部に向かう多数の気孔が形成された生石灰を得る技術が知られている(例えば、特許文献1参照)。また、内部空間の10〜60容量%の割合で粉体化学蓄熱材を収容したカプセルを、反応器又は反応塔に充填する技術が知られている(例えば、特許文献2、特許文献3参照)。   After heating the crystalline limestone having a particle size of 0.3 mm to 4 mm within a range of 850 ° C. to 1100 ° C. for a predetermined time, the limestone is heated within a range of 500 ° C. to 600 ° C. for a predetermined time, so that There is known a technique for obtaining quicklime in which a large number of pores toward the surface are formed (see, for example, Patent Document 1). Moreover, the technique which fills the reactor or reaction tower with the capsule which accommodated the powder chemical thermal storage material in the ratio of 10-60 volume% of internal space is known (for example, refer patent document 2, patent document 3). .

特開平1−225686号公報JP-A-1-225686 特公平6−80395号公報Japanese Patent Publication No. 6-80395 特公平6−80394号公報Japanese Patent Publication No. 6-80394 特開平7−332788号公報JP-A-7-332788

しかしながら、特許文献1に記載のように、それ自体に気孔が形成された生石灰を粉体のまま化学蓄熱材として用いた場合、作動中、水和反応と脱水反応とが繰り返される。このため、この化学蓄熱材の粉体は、体積膨張、収縮の繰り返しによって他の粉体と擦れ合い、微粉化してしまい、蓄熱システムとしての反応性が低下する問題があった。また、特許文献2、3の構成では、カプセルの採用による熱伝導抵抗の増加や接触経路の複雑化によって、化学蓄熱材の発熱反応による熱を効率良く取り出すことができず、さらに蓄熱反応における熱を効率良く供給することができない問題があった。   However, as described in Patent Document 1, when quick lime having pores formed therein is used as a chemical heat storage material in a powder form, the hydration reaction and the dehydration reaction are repeated during operation. For this reason, the powder of the chemical heat storage material rubs against other powders by repeated volume expansion and contraction, and is pulverized, resulting in a problem that the reactivity as the heat storage system is lowered. Further, in the configurations of Patent Documents 2 and 3, due to the increase in heat conduction resistance due to the use of capsules and the complexity of the contact path, heat due to the exothermic reaction of the chemical heat storage material cannot be efficiently extracted, and further the heat in the heat storage reaction. There was a problem that could not be supplied efficiently.

本発明は、上記事実を考慮して、化学蓄熱材成形体の粉体化を抑制することができると共に、化学蓄熱材成形体に対する伝熱経路を確保することができる化学蓄熱反応器、及びフィルタ付化学蓄熱材成形体の製造方法を得ることが目的である。   In consideration of the above facts, the present invention can suppress pulverization of a chemical heat storage material molded body, and can secure a heat transfer path to the chemical heat storage material molded body, and a filter. It is an object to obtain a method for producing an attached chemical heat storage material molded body.

請求項1記載の発明に係る化学蓄熱反応器は、脱水反応に伴い吸熱し水和反応に伴い放熱する粉体化学蓄熱材と、該粉体化学蓄熱材と混合された粘土鉱物とを含む化学蓄熱材成形体と、前記化学蓄熱材成形体が配置されると共に水蒸気が流通するための水蒸気流路が設けられた化学蓄熱材室、及び前記化学蓄熱材成形体との間で熱交換を行う熱交換媒体が流通する流路を有し、前記化学蓄熱材室に配置された前記化学蓄熱材成形体における前記水蒸気流路とは反対側の面及び側面が前記化学蓄熱材室の内面に密着された容器と、前記化学蓄熱材成形体における水蒸気流路に面する部分に設けられ、前記粉体化学蓄熱材の粒子径よりも小さくかつ水蒸気の流通を許容する孔径の多孔質部分を有するフィルタ部と、を備えている。 The chemical heat storage reactor according to the invention of claim 1 is a chemical containing a powder chemical heat storage material that absorbs heat with dehydration and dissipates heat with a hydration reaction, and a clay mineral mixed with the powder chemical heat storage material. Heat exchange is performed between the heat storage material molded body, the chemical heat storage material molded body in which the chemical heat storage material molded body is disposed, and the chemical heat storage material chamber provided with a water vapor channel for circulating water vapor. The chemical heat storage material molded body disposed in the chemical heat storage material chamber has a flow path through which a heat exchange medium flows, and a surface and a side opposite to the water vapor flow path are in close contact with the inner surface of the chemical heat storage material chamber And a filter having a porous portion having a pore diameter smaller than the particle diameter of the powder chemical heat storage material and allowing passage of water vapor, provided in a portion facing the water vapor flow path in the chemical heat storage material molded body And a section.

請求項1記載の化学蓄熱反応器では、化学蓄熱材成形体は、粉体状の化学蓄熱材が多孔質の粘土鉱物の骨格中に分散保持されて、全体として、粉体(化学蓄熱材)間に隙間(拡散路)が形成されると共に全体として所定形状を有する多孔質構造体として形成されている。そして、この化学蓄熱材成形体は、水蒸気流路を通じて水蒸気を排出しつつ脱水反応(吸熱)し、水蒸気流路を通じて水蒸気の供給を受けて水和反応(放熱)する。この熱は、例えば、容器における化学蓄熱材室と熱交換媒体との隔壁や、容器が固定又は一体化された固体熱源等を通じて伝達される。   In the chemical heat storage reactor according to claim 1, the chemical heat storage material molded body has a powdered chemical heat storage material dispersed and held in a porous clay mineral skeleton, and as a whole, a powder (chemical heat storage material) A gap (diffusion path) is formed between them, and a porous structure having a predetermined shape as a whole is formed. And this chemical heat storage material molded object carries out dehydration reaction (heat absorption), discharging | emitting water vapor | steam through a water vapor channel, receives supply of water vapor | steam through a water vapor channel, and carries out a hydration reaction (heat radiation). This heat is transmitted through, for example, a partition wall between the chemical heat storage material chamber and the heat exchange medium in the container, a solid heat source in which the container is fixed or integrated, and the like.

ここで、本化学蓄熱反応器では、化学蓄熱材成形体における水蒸気流路に面する部分にフィルタ部が設けられているため、化学蓄熱材の膨張、収縮による化学蓄熱材成形体の崩壊が抑制される。また、化学蓄熱材成形体の一部が脱落(崩落)された場合でも、孔径が粉体化学蓄熱材の粒子径よりも小さいフィルタ部によって、該粉体化学蓄熱材が水蒸気流路に飛散することが防止又は効果的に抑制される。さらに、水蒸気流路以外の部分(例えば容器の壁部に接する部分)は、フィルタ部が不要であるため、該フィルタ部によって伝熱が阻害され難い。   Here, in this chemical heat storage reactor, since the filter part is provided in the part facing the water vapor flow path in the chemical heat storage material molded body, the collapse of the chemical heat storage material molded body due to the expansion and contraction of the chemical heat storage material is suppressed. Is done. Further, even when a part of the chemical heat storage material molded body is dropped (collapsed), the powder chemical heat storage material is scattered in the water vapor flow path by the filter portion whose pore diameter is smaller than the particle diameter of the powder chemical heat storage material. Is prevented or effectively suppressed. Furthermore, since a filter part is unnecessary for parts other than the water vapor flow path (for example, a part in contact with the wall part of the container), heat transfer is not easily inhibited by the filter part.

このように、請求項1記載の化学蓄熱反応器では、化学蓄熱材成形体の粉体化を抑制することができると共に、化学蓄熱材成形体に対する伝熱経路を確保することができる。   Thus, in the chemical heat storage reactor according to claim 1, powdering of the chemical heat storage material molded body can be suppressed, and a heat transfer path to the chemical heat storage material molded body can be secured.

請求項2記載の発明に係る化学蓄熱反応器は、請求項1記載の化学蓄熱反応器において、前記フィルタ部は、前記粉体化学蓄熱材の粒子径よりも小さくかつ水蒸気の流通を許容する孔径を有する第1の多孔体層と、前記第1の多孔体層と前記化学蓄熱材成形体との間に設けられ、前記粉体化学蓄熱材の粒子径よりも大きな孔径を有する第2の多孔体層と、を含んで構成され、かつ、前記化学蓄熱材成形体と焼結体として一体化されている。 A chemical heat storage reactor according to a second aspect of the present invention is the chemical heat storage reactor according to the first aspect, wherein the filter portion is smaller than the particle diameter of the powder chemical heat storage material and allows a water vapor to flow. A first porous body layer having a pore diameter larger than a particle diameter of the powder chemical heat storage material, which is provided between the first porous body layer and the chemical heat storage material molded body. A body layer , and integrated with the chemical heat storage material molded body and the sintered body .

請求項2記載の化学蓄熱反応器では、フィルタ部が第1、第2の多孔体層を含む2層以上の層構造とされている。このうち、最も化学蓄熱材成形体側に位置する第2多孔体層は、粉体化学蓄熱材の粒子径よりも大きな孔径を有する。このため、第2の多孔体層には、粉体化学蓄熱材の一部や粘土鉱物の一部が入り込み、フィルタ部と化学蓄熱材成形体との密着性(接合強度)が高い。そして、粉体化学蓄熱材の粒子径よりも小さくかつ水蒸気の流通を許容する孔径を有する第1の多孔体層によって水蒸気の出入りを確保しつつ、化学蓄熱材の粉体化を抑制することができると共に、フィルタ部の部分的設置によって化学蓄熱材に対する伝熱経路を確保することができる。   In the chemical heat storage reactor according to claim 2, the filter part has a layer structure of two or more layers including the first and second porous body layers. Among these, the 2nd porous body layer located in the most chemical heat storage material molded object side has a larger hole diameter than the particle diameter of a powder chemical heat storage material. For this reason, a part of powder chemical heat storage material and a part of clay mineral enter into the 2nd porous body layer, and the adhesiveness (joining strength) of a filter part and a chemical heat storage material molded object is high. And suppressing the pulverization of the chemical heat storage material while ensuring the entrance and exit of the water vapor by the first porous layer having a pore size smaller than the particle diameter of the powder chemical heat storage material and allowing the flow of water vapor. In addition, the heat transfer path for the chemical heat storage material can be secured by partially installing the filter unit.

請求項3記載の発明に係る化学蓄熱反応器は、請求項2記載の化学蓄熱反応器において、前記第1の多孔体層と第2の多孔体層とは、同種の金属材料にて構成されている。   The chemical heat storage reactor according to a third aspect of the present invention is the chemical heat storage reactor according to the second aspect, wherein the first porous body layer and the second porous body layer are made of the same kind of metal material. ing.

請求項3記載の化学蓄熱反応器では、同種の金属材料より成る第1の多孔体層と第2の多孔体層とを、例えば焼結等によって容易に一体化することができる。特に、化学蓄熱材成形体の焼結温度にて焼結可能な金属材料にて第1の多孔体層と第2の多孔体層とが構成された例では、化学蓄熱材成形体とフィルタ部との高い密着性が得られると共に、密着工程の簡素化が図られる。一方、化学蓄熱材成形体を焼結せずに乾燥する例では、上記した第2の多孔体層による化学蓄熱材成形体への密着効果によって、乾燥に伴う化学蓄熱材成形体の収縮を抑制することができる。   In the chemical heat storage reactor according to the third aspect, the first porous body layer and the second porous body layer made of the same kind of metal material can be easily integrated by, for example, sintering. In particular, in the example in which the first porous body layer and the second porous body layer are made of a metal material that can be sintered at the sintering temperature of the chemical heat storage material molded body, the chemical heat storage material molded body and the filter section The adhesion process can be simplified. On the other hand, in the example where the chemical heat storage material molded body is dried without sintering, the shrinkage of the chemical heat storage material molded body due to drying is suppressed by the adhesion effect to the chemical heat storage material molded body by the second porous body layer described above. can do.

請求項4記載の発明に係る化学蓄熱反応器は、請求項2記載の化学蓄熱反応器において、前記第1の多孔体層と第2の多孔体層とは、同種の無機リボン状繊維物質にて構成されている。   A chemical heat storage reactor according to a fourth aspect of the present invention is the chemical heat storage reactor according to the second aspect, wherein the first porous body layer and the second porous body layer are made of the same kind of inorganic ribbon fiber material. Configured.

請求項4記載の化学蓄熱反応器では、同種の無機リボン状繊維物質より成る第1の多孔体層と第2の多孔体層とを、例えば焼結等によって容易に一体化することができる。また、化学蓄熱材成形体を焼結せずに乾燥する例では、上記した第2の多孔体層による化学蓄熱材成形体への密着効果によって、乾燥に伴う化学蓄熱材成形体の収縮を抑制することができる。   In the chemical heat storage reactor according to the fourth aspect, the first porous body layer and the second porous body layer made of the same kind of inorganic ribbon fiber material can be easily integrated by, for example, sintering. Moreover, in the example which dries a chemical heat storage material molded object without sintering, the shrinkage | contraction of the chemical heat storage material molded object accompanying drying is suppressed by the contact | adherence effect to the chemical heat storage material molded object by the above-mentioned 2nd porous body layer. can do.

請求項5記載の発明に係るフィルタ付化学蓄熱材成形体の製造方法は、脱水反応に伴い吸熱し水和反応に伴い放熱する粉体化学蓄熱材と、該粉体化学蓄熱材と混合された粘土鉱物とを含む化学蓄熱材成形体の表面の一部に、前記粉体化学蓄熱材の粒子径よりも小さくかつ水蒸気の流通を許容するフィルタ部が設けられたフィルタ付化学蓄熱材成形体の製造方法であって、粉体化学蓄熱材と粘土鉱物とをバインダと共に混合、攪拌して増粘化された混合蓄熱材を得る第1工程と、前記粉体化学蓄熱材の粒子径よりも小さくかつ水蒸気の流通を許容する孔径を有する第1の多孔体層を構成するための第1の多孔体原料と、前記粉体化学蓄熱材の粒子径よりも大きな孔径を有する第2の多孔体層を構成するための第2の多孔体原料とを積層して前記フィルタ部を成す複合多孔体層を得る第2工程と、前記第1工程で増粘化された混合蓄熱材と前記複合多孔体層とを、該増粘化された混合蓄熱材に前記第2の多孔体層が接触するように型内にセットして、該増粘化された混合蓄熱材を所定の形状に圧縮成形する第3工程と、を含む。   The method for producing a molded chemical heat storage material with a filter according to the invention of claim 5 is obtained by mixing a powder chemical heat storage material that absorbs heat with a dehydration reaction and dissipates heat with a hydration reaction, and the powder chemical heat storage material. A part of the surface of a chemical heat storage material molded body containing clay mineral, a filter-attached chemical heat storage material molded body provided with a filter part that is smaller than the particle diameter of the powder chemical heat storage material and allows water vapor to flow. 1st process which is a manufacturing method, and mixes and stirs a powder chemical heat storage material and clay mineral with a binder, and stiffens and obtains the mixed heat storage material, and is smaller than the particle diameter of the said powder chemical heat storage material And a first porous material for forming a first porous material layer having a pore size that allows water vapor to flow, and a second porous material layer having a pore size larger than the particle size of the powder chemical heat storage material Layered with a second porous material for constituting A second step of obtaining a composite porous body layer forming a filter portion, the mixed heat storage material thickened in the first step, and the composite porous body layer into the thickened mixed heat storage material; And a third step of setting the thickened mixed heat storage material into a predetermined shape by compression in a mold so that the porous body layer is in contact therewith.

請求項5記載のフィルタ付化学蓄熱材成形体の製造方法では、第1工程において粉体化学蓄熱材と粘土鉱物とをバインダ(例えば水)と共に混合、攪拌(混練)し、増粘化された混合蓄熱材を得る。一方、第2工程で、第1の多孔体層を構成する第1の多孔体原料と第2の多孔体層を構成する第2の多孔体原料とを積層して複合多孔体層を得る。第1工程と第2工程とは、何れを先に行っても良く、同時に(並列的に)行っても良い。次いで、第3工程で、複合多孔体層の第2の多孔体層が増粘化された混合蓄熱材に面するように、該複合多孔体層及び増粘化された混合蓄熱材を型内にセットし、増粘化された混合蓄熱材を所定の形状に圧縮成形する。これにより、複合多孔体層における第2の多孔体層を構成する部分には、化学蓄熱材成形体を成す粉体化学蓄熱材、粘土鉱物の一部が入り込む。この状態から例えば化学蓄熱材成形体を乾燥乃至焼結等すると、該化学蓄熱材成形体に複合多孔体層より成るフィルタ部が強固に一体化される。   In the method for producing a chemical heat storage material with a filter according to claim 5, the powder chemical heat storage material and the clay mineral are mixed with a binder (for example, water), stirred (kneaded), and thickened in the first step. A mixed heat storage material is obtained. On the other hand, in the second step, the first porous material constituting the first porous material layer and the second porous material constituting the second porous material layer are laminated to obtain a composite porous material layer. Either the first step or the second step may be performed first, or may be performed simultaneously (in parallel). Next, in the third step, the composite porous layer and the thickened mixed heat storage material are placed in the mold so that the second porous body layer of the composite porous layer faces the thickened mixed heat storage material. And the thickened mixed heat storage material is compression-molded into a predetermined shape. Thereby, the part which comprises the 2nd porous body layer in a composite porous body layer contains the powder chemical heat storage material which comprises a chemical heat storage material molded object, and a part of clay mineral. When the chemical heat storage material molded body is dried or sintered from this state, for example, the filter portion formed of the composite porous body layer is firmly integrated with the chemical heat storage material molded body.

以上により製造されたフィルタ付化学蓄熱材成形体は、化学蓄熱材成形体における水蒸気流路に面する部分にフィルタ部が設けられているため、化学蓄熱材の膨張、収縮による崩壊が抑制される。また、化学蓄熱材成形体の一部が脱落(崩落)された場合でも、粉体化学蓄熱材の粒子径よりも小さく水蒸気の流通を許容する孔径の第1の多孔体層を有するフィルタ部によって、該粉体化学蓄熱材が水蒸気流路に飛散することが防止又は効果的に抑制される。さらに、水蒸気流路以外の部分(例えば容器の壁部に接する部分)は、フィルタ部が不要であるため、該フィルタ部によって伝熱が阻害され難い。なお、第1の多孔体層の孔径は、製造完了の際に、粉体化学蓄熱材の粒子径よりも小さく水蒸気の流通を許容するようになれば良く、第2工程の完了後に第1の多孔体層を構成する部分が粉体化学蓄熱材の粒子径と同等以上の孔径を有していても良い。   In the chemical heat storage material molded body with a filter manufactured as described above, the filter portion is provided in the portion facing the water vapor flow path in the chemical heat storage material molded body, so that the collapse due to the expansion and contraction of the chemical heat storage material is suppressed. . Further, even when a part of the chemical heat storage material molded body is dropped (collapsed), the filter portion having the first porous body layer having a pore diameter smaller than the particle diameter of the powder chemical heat storage material and allowing the flow of water vapor. The powder chemical heat storage material is prevented or effectively suppressed from being scattered in the water vapor channel. Furthermore, since a filter part is unnecessary for parts other than the water vapor flow path (for example, a part in contact with the wall part of the container), heat transfer is not easily inhibited by the filter part. The pore diameter of the first porous body layer may be smaller than the particle diameter of the powder chemical heat storage material at the time of completion of production, and it is only necessary to allow the flow of water vapor. The portion constituting the porous body layer may have a pore diameter equal to or larger than the particle diameter of the powder chemical heat storage material.

このように、請求項5記載のフィルタ付化学蓄熱材成形体の製造方法では、化学蓄熱材成形体の粉体化を抑制することができると共に、化学蓄熱材成形体に対する伝熱経路を確保することができるフィルタ付化学蓄熱材成形体が得られる。   Thus, in the manufacturing method of the chemical heat storage material molded body with a filter according to claim 5, pulverization of the chemical heat storage material molded body can be suppressed and a heat transfer path to the chemical heat storage material molded body is ensured. A chemical heat storage material molded body with a filter that can be obtained is obtained.

請求項6記載の発明に係るフィルタ付化学蓄熱材成形体の製造方法は、請求項5記載のフィルタ付化学蓄熱材成形体の製造方法において、前記第2の工程では、前記第1の多孔体原料としての第1の金属材料と、該第1の金属材料と同種金属より成る前記第2の多孔体原料としての第2の金属材料とを圧縮することで、前記第1の多孔体層を構成する部分と前記第2の多孔体層を構成する部分とが積層された前記複合多孔体層を得、前記第3工程で所定の形状に形成された前記混合蓄熱材と該混合蓄熱材に積層された前記複合多孔体層とを一体焼結する第4工程をさらに含む。   The method for producing a chemical heat storage material with filter according to the invention described in claim 6 is the method for producing a chemical heat storage material with filter according to claim 5, wherein in the second step, the first porous body is provided. The first porous material layer is compressed by compressing the first metal material as a raw material and the second metal material as the second porous material made of the same metal as the first metal material. The composite porous body layer in which the constituent part and the part constituting the second porous body layer are laminated is obtained, and the mixed heat storage material formed into a predetermined shape in the third step and the mixed heat storage material It further includes a fourth step of integrally sintering the laminated composite porous body layer.

請求項6記載のフィルタ付化学蓄熱材成形体の製造方法では、第2の工程において、第1の金属材料と同種金属より成る第2の金属材料とを圧縮することで、第1の多孔体層と第2の多孔体層とが積層(仮に一体化)された複合多孔体層を得る。さらに、第3工程で圧縮成形された化学蓄熱材成形体を、第4工程において、複合多孔体層と共に一体焼結する。すると、化学蓄熱材成形体自体が焼結により固化されて第2の多孔体層と強固に密着されると共に、第1、第2の多孔体層が焼結により一体化される。   In the manufacturing method of the chemical heat storage material with filter according to claim 6, in the second step, the first porous body is formed by compressing the first metal material and the second metal material made of the same metal. A composite porous body layer in which the layer and the second porous body layer are laminated (temporarily integrated) is obtained. Furthermore, the chemical heat storage material molded body compression-molded in the third step is integrally sintered together with the composite porous body layer in the fourth step. Then, the chemical heat storage material molded body itself is solidified by sintering and firmly adhered to the second porous body layer, and the first and second porous body layers are integrated by sintering.

請求項7記載の発明に係るフィルタ付化学蓄熱材成形体の製造方法は、請求項5記載のフィルタ付化学蓄熱材成形体の製造方法において、前記第2の工程では、前記第1の多孔体原料としての第1の金属材料と、該第1の金属材料と同種金属より成る前記第2の多孔体原料としての第2の金属材料とを圧縮すると共に焼結することで、前記第1の多孔体層を構成する部分と前記第2の多孔体層を構成する部分とが固定的に積層された前記複合多孔体層を得、前記第3工程で所定の形状に形成された前記混合蓄熱材を、該混合蓄熱材に積層された前記複合多孔体層と共に乾燥する第4工程をさらに含む。   The method for producing a chemical heat storage material with filter according to the invention described in claim 7 is the method for producing a chemical heat storage material with filter according to claim 5, wherein in the second step, the first porous body is provided. By compressing and sintering the first metal material as a raw material and the second metal material as the second porous material made of the same metal as the first metal material, the first metal material is compressed. Obtaining the composite porous body layer in which a part constituting the porous body layer and a part constituting the second porous body layer are fixedly laminated, and the mixed heat storage formed into a predetermined shape in the third step A fourth step of drying the material together with the composite porous body layer laminated on the mixed heat storage material is further included.

請求項7記載のフィルタ付化学蓄熱材成形体の製造方法では、第2の工程において、第1の金属材料と同種金属より成る第2の金属材料とを圧縮、焼結することで、第1の多孔体層と第2の多孔体層とが強固に積層(一体化)された複合多孔体層を得る。さらに、第3工程で圧縮成形された化学蓄熱材成形体を、第4工程において、複合多孔体層と共に乾燥する。すると、化学蓄熱材成形体自体が固化されて第2の多孔体層と強固に密着される。この際、化学蓄熱材成形体の収縮が複合多孔体層より成るフィルタ部にて抑制され、製造時における化学蓄熱材成形体の変形が抑制される。   In the manufacturing method of the chemical heat storage material with a filter according to claim 7, in the second step, the first metal material and the second metal material made of the same kind of metal are compressed and sintered. A composite porous body layer in which the porous body layer and the second porous body layer are firmly laminated (integrated) is obtained. Furthermore, the chemical heat storage material molded body compression-molded in the third step is dried together with the composite porous body layer in the fourth step. Then, the chemical heat storage material molded body itself is solidified and firmly adhered to the second porous body layer. At this time, the shrinkage of the chemical heat storage material molded body is suppressed by the filter portion formed of the composite porous body layer, and the deformation of the chemical heat storage material molded body during manufacturing is suppressed.

請求項8記載の発明に係るフィルタ付化学蓄熱材成形体の製造方法は、請求項5記載のフィルタ付化学蓄熱材成形体の製造方法において、前記第2の工程では、前記第1の多孔体原料としての第1の無機リボン状繊維物質と、該第1の無機リボン状繊維物質と同種の無機リボン状繊維物質より成る前記第2の多孔体原料としての第2の無機リボン状繊維物質とを圧縮すると共に焼結することで、前記第1の多孔体層を構成する部分と前記第2の多孔体層を構成する部分とが固定的に積層された前記複合多孔体層を得、前記第3工程で所定の形状に形成された前記混合蓄熱材を、該混合蓄熱材に積層された前記複合多孔体層と共に乾燥する第4工程をさらに含む。   The method for producing a chemical heat storage material with filter according to an invention according to claim 8 is the method for producing a chemical heat storage material with filter according to claim 5, wherein in the second step, the first porous body is provided. A first inorganic ribbon-like fiber material as a raw material, and a second inorganic ribbon-like fiber material as the second porous material comprising the same inorganic ribbon-like fiber material as the first inorganic ribbon-like fiber material, By compressing and sintering the composite porous body layer in which the portion constituting the first porous body layer and the portion constituting the second porous body layer are fixedly laminated, It further includes a fourth step of drying the mixed heat storage material formed into a predetermined shape in the third step together with the composite porous body layer laminated on the mixed heat storage material.

請求項8記載のフィルタ付化学蓄熱材成形体の製造方法では、第2の工程において、第1の無機リボン状繊維物質と同種の無機リボン状繊維物質より成る第2の無機リボン状繊維物質とを圧縮、焼結することで、第1の多孔体層と第2の多孔体層とが強固に積層(一体化)された複合多孔体層を得る。さらに、第3工程で圧縮成形された化学蓄熱材成形体を、第4工程において、複合多孔体層と共に乾燥する。すると、化学蓄熱材成形体自体が固化されて第2の多孔体層と強固に密着される。この際、化学蓄熱材成形体の収縮が複合多孔体層より成るフィルタ部にて抑制され、製造時における化学蓄熱材成形体の変形が抑制される。   In the manufacturing method of the chemical heat storage material with a filter according to claim 8, in the second step, the second inorganic ribbon-like fiber material comprising the same inorganic ribbon-like fiber material as the first inorganic ribbon-like fiber material; Is compressed and sintered to obtain a composite porous body layer in which the first porous body layer and the second porous body layer are firmly laminated (integrated). Furthermore, the chemical heat storage material molded body compression-molded in the third step is dried together with the composite porous body layer in the fourth step. Then, the chemical heat storage material molded body itself is solidified and firmly adhered to the second porous body layer. At this time, the shrinkage of the chemical heat storage material molded body is suppressed by the filter portion formed of the composite porous body layer, and the deformation of the chemical heat storage material molded body during manufacturing is suppressed.

以上説明したように本発明に係る化学蓄熱反応器、及びフィルタ付化学蓄熱材成形体の製造方法で製造されたフィルタ付化学蓄熱材成形体は、化学蓄熱材成形体の粉体化を抑制することができると共に、化学蓄熱材成形体に対する伝熱経路を確保することができる。   As described above, the chemical heat storage material molded body with a filter manufactured by the chemical heat storage reactor according to the present invention and the method for manufacturing a chemical heat storage material molded body with a filter suppresses pulverization of the chemical heat storage material molded body. And a heat transfer path for the chemical heat storage material molded body can be secured.

本発明の第1の実施形態に係る熱交換型蓄熱放熱装置の概略構成を示す斜視図である。It is a perspective view showing a schematic structure of a heat exchange type heat storage and heat dissipation apparatus according to the first embodiment of the present invention. 本発明の第1の実施形態に係る熱交換型蓄熱放熱装置の製造方法のうち、工程A〜工程Fを示す模式図である。It is a schematic diagram which shows the process A-the process F among the manufacturing methods of the heat exchange type | mold thermal storage heat dissipation apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る熱交換型蓄熱放熱装置の製造方法のうち、工程G及び完成図を示す模式図である。It is a schematic diagram which shows process G and a completion figure among the manufacturing methods of the heat exchange type | mold thermal storage heat dissipation apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る熱交換型蓄熱放熱装置を構成するフィルタ付化学蓄熱材成形体の一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of chemical heat storage material molded body with a filter which comprises the heat exchange type | mold heat storage and heat radiation apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る熱交換型蓄熱放熱装置を構成する化学蓄熱材複合物成形体の内部構造を模式的に示す断面図である。It is sectional drawing which shows typically the internal structure of the chemical heat storage material composite molded object which comprises the heat exchange type | mold thermal storage heat dissipation apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る熱交換型蓄熱放熱装置の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the heat exchange type | mold thermal storage heat dissipation apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る熱交換型蓄熱放熱装置の製造方法のうち、工程A〜工程Fを示す模式図である。It is a schematic diagram which shows the process A-the process F among the manufacturing methods of the heat exchange type | mold thermal storage heat dissipation apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る熱交換型蓄熱放熱装置の製造方法のうち、工程G及び完成図を示す模式図である。It is a schematic diagram which shows process G and a completion figure among the manufacturing methods of the heat exchange type | formula heat storage and heat dissipation apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る熱交換型蓄熱放熱装置の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the heat exchange type | formula thermal storage heat dissipation apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る熱交換型蓄熱放熱装置の製造方法のうち、工程A〜工程Fを示す模式図である。It is a schematic diagram which shows the process A-the process F among the manufacturing methods of the heat exchange type | mold thermal storage heat dissipation apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る熱交換型蓄熱放熱装置の製造方法のうち、工程G及び完成図を示す模式図である。It is a schematic diagram which shows process G and a completion figure among the manufacturing methods of the heat exchange type | formula thermal storage heat dissipation apparatus which concerns on the 3rd Embodiment of this invention. 本発明の実施形態の変形例に係る熱交換型蓄熱放熱装置の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the heat exchange type | formula thermal storage heat dissipation apparatus which concerns on the modification of embodiment of this invention.

本発明の第1の実施形態に係る化学蓄熱反応器としての熱交換型蓄熱放熱装置10、及びその製造方法について、図1〜図4に基づいて説明する。   A heat exchange type heat storage and heat dissipation device 10 as a chemical heat storage reactor according to a first embodiment of the present invention and a manufacturing method thereof will be described with reference to FIGS.

図1には、熱交換型蓄熱放熱装置10の概略構成が模式的な斜視図にて示されている。この図に示される如く、熱交換型蓄熱放熱装置10は、容器としての熱交換器本体18と、該熱交換器本体18に設けられた化学蓄熱材複合物成形体11とを備えている。熱交換器本体18は、シェル(外壁)20と、シェル20内を複数の空間に区画する壁体としての隔壁22とを有する。   FIG. 1 is a schematic perspective view showing a schematic configuration of a heat exchange type heat storage and heat dissipation device 10. As shown in this figure, the heat exchange type heat storage and heat dissipation device 10 includes a heat exchanger body 18 as a container and a chemical heat storage material composite molded body 11 provided in the heat exchanger body 18. The heat exchanger body 18 includes a shell (outer wall) 20 and a partition wall 22 as a wall body that divides the inside of the shell 20 into a plurality of spaces.

これにより、熱交換器本体18の内部は、化学蓄熱材複合物成形体11が収容される化学蓄熱材室としての蓄熱材収容部24と、該化学蓄熱材複合物成形体11との間で熱交換を行う熱交換媒体としての流体が流通する流体流路26とが、隔壁22を挟んで交互に配置されている。   Thereby, the inside of the heat exchanger main body 18 is between the heat storage material accommodating part 24 as a chemical heat storage material chamber in which the chemical heat storage material composite formed body 11 is stored, and the chemical heat storage material composite formed body 11. Fluid flow paths 26 through which a fluid as a heat exchange medium for performing heat exchange circulates alternately with the partition wall 22 interposed therebetween.

この実施形態では、蓄熱材収容部24、流体流路26は、それぞれ隔壁22が長辺とされる扁平矩形状の開口端を有する角柱状空間とされている。この実施形態では、熱交換器本体18は、蓄熱材収容部24、流体流路26が断面の扁平方向に隣接され、かつ該隣接方向の両端に流体流路26が配置される構成とされている。この実施形態では、熱交換器本体18は、例えばステンレス鋼やアルミニウム(アルミニウム合金を含む)等の金属材料にて構成されている。   In this embodiment, the heat storage material accommodating portion 24 and the fluid flow path 26 are each a prismatic space having a flat rectangular opening end in which the partition wall 22 is a long side. In this embodiment, the heat exchanger main body 18 is configured such that the heat storage material accommodating portion 24 and the fluid flow path 26 are adjacent to each other in the flat direction of the cross section, and the fluid flow paths 26 are disposed at both ends in the adjacent direction. Yes. In this embodiment, the heat exchanger body 18 is made of a metal material such as stainless steel or aluminum (including an aluminum alloy).

図1に示される如く、化学蓄熱材複合物成形体11は、各蓄熱材収容部24に偏平方向対向して各2つずつ配設されている。熱交換型蓄熱放熱装置10では、蓄熱材収容部24内の空間における該蓄熱材収容部24に配設された一対の化学蓄熱材複合物成形体11間の部分が水蒸気流路28とされている。各化学蓄熱材複合物成形体11は、水蒸気流路28とは反対側の面が隔壁22に密着(接触)されると共に、側面(厚み部分)がシェル20の内面に密着(接触)されている。   As shown in FIG. 1, the chemical heat storage material composite molded body 11 is disposed two by two facing each heat storage material accommodating portion 24 in the flat direction. In the heat exchange type heat storage / heat dissipating device 10, a portion between the pair of chemical heat storage material composite molded bodies 11 disposed in the heat storage material accommodation portion 24 in the space in the heat storage material accommodation portion 24 is the water vapor flow path 28. Yes. Each chemical heat storage material composite molded body 11 has a surface opposite to the water vapor channel 28 in close contact (contact) with the partition wall 22 and a side surface (thickness portion) in close contact (contact) with the inner surface of the shell 20. Yes.

そして、熱交換型蓄熱放熱装置10を構成する化学蓄熱材複合物成形体11は、それぞれ水蒸気流路28に面する面に、フィルタ部30が設けられている。図3に一部拡大して示される如く、フィルタ部30は、第1多孔体層32と第2多孔体層34との2層構造とされている。この実施形態では、第1多孔体層32は、第2多孔体層34を挟んで化学蓄熱材複合物成形体11とは反対側に位置している。すなわち、フィルタ部30は、第2多孔体層34において化学蓄熱材複合物成形体11に接合されている。以下、具体的に説明する。   The chemical heat storage material composite molded body 11 constituting the heat exchange type heat storage and heat dissipation device 10 is provided with a filter unit 30 on the surface facing the water vapor flow path 28. As shown in a partially enlarged view in FIG. 3, the filter unit 30 has a two-layer structure of a first porous body layer 32 and a second porous body layer 34. In this embodiment, the first porous body layer 32 is located on the opposite side to the chemical heat storage material composite molded body 11 with the second porous body layer 34 interposed therebetween. That is, the filter part 30 is joined to the chemical heat storage material composite molded body 11 in the second porous body layer 34. This will be specifically described below.

先ず、化学蓄熱材複合物成形体11について補足する。図4には、化学蓄熱材複合物成形体11の模式的な断面図が示されている。この図に示される如く、化学蓄熱材複合物成形体11は、多数の粉体化学蓄熱材12が組織化、構造化されたものであって、これら多数の粉体化学蓄熱材12間には細孔14が形成されている。したがって、この実施形態に係る化学蓄熱材複合物成形体11は、多孔質構造体(多孔体)として把握され、かつ細孔14の内面に粉体化学蓄熱材12が露出して構成されているものとして把握されるものである。   First, the chemical heat storage material composite molded body 11 will be supplemented. FIG. 4 shows a schematic cross-sectional view of the chemical heat storage material composite molded body 11. As shown in this figure, the chemical heat storage material composite molded body 11 is a structure in which a large number of powder chemical heat storage materials 12 are organized and structured. A pore 14 is formed. Therefore, the chemical heat storage material composite formed body 11 according to this embodiment is configured as a porous structure (porous body) and the powder chemical heat storage material 12 is exposed on the inner surfaces of the pores 14. It is grasped as a thing.

この化学蓄熱材複合物成形体11は、多数の粉体化学蓄熱材12に絡まるように粘土鉱物であるセピオライト16が多数の粉体化学蓄熱材12間に介在している。換言すれば、化学蓄熱材複合物成形体11は、多孔質を成すセピオライト16の骨格中に多数の粉体化学蓄熱材12が分散保持された構造として把握される。これにより、化学蓄熱材複合物成形体11では、多数の粉体化学蓄熱材12間に細孔14が形成された多孔質構造体としての構造がセピオライト16によって保持(補強)されるようになっている。   In this chemical heat storage material composite molded body 11, sepiolite 16, which is a clay mineral, is interposed between a large number of powder chemical heat storage materials 12 so as to be entangled with a large number of powder chemical heat storage materials 12. In other words, the chemical heat storage material composite molded body 11 is grasped as a structure in which a large number of powder chemical heat storage materials 12 are dispersedly held in the skeleton of the sepiolite 16 that is porous. Thereby, in the chemical heat storage material composite molded body 11, the structure as a porous structure in which pores 14 are formed between a large number of powder chemical heat storage materials 12 is held (reinforced) by the sepiolite 16. ing.

この実施形態では、粉体化学蓄熱材12は、水酸化カルシウム(Ca(OH))とされており、脱水に伴って蓄熱(吸熱)し、水和(水酸化カルシウムへの復原)に伴って放熱(発熱)する構成とされている。すなわち、多数の粉体化学蓄熱材12は、以下に示す反応で蓄熱、放熱を可逆的に繰り返し得る構成とされている
Ca(OH) ⇔ CaO + H
In this embodiment, the powder chemical heat storage material 12 is made of calcium hydroxide (Ca (OH) 2 ), stores heat (absorbs heat) along with dehydration, and accompanies hydration (restoration to calcium hydroxide). Heat dissipation (heat generation). That is, a large number of powder chemical heat storage materials 12 are configured to reversibly repeat heat storage and heat release by the reactions shown below. Ca (OH) 2 Ca CaO + H 2 O

この式に蓄熱量、発熱量Qを併せて示すと、
Ca(OH) + Q → CaO + H
CaO + HO → Ca(OH) + Q
となる。
When the heat storage amount and the heat generation amount Q are shown together in this equation,
Ca (OH) 2 + Q → CaO + H 2 O
CaO + H 2 O → Ca (OH) 2 + Q
It becomes.

セピオライト16は、層リボン構造の粘土鉱物、より具体的には輝石に似た単鎖が複数本結合して四面体リボンを形成している粘土鉱物の1つとして把握される。セピオライト16は、例えば、MgSi1230(OH)(OH・8HOの化学式で表すことができる含水マグネシウム珪酸塩であり、それ自体が多孔質でありかつ比表面積が大きい繊維状を成している。なお、この実施形態では、上記化学式で表されるものの変種についてもセピオライト16に含まれるものとしている。 Sepiolite 16 is grasped as a clay mineral having a layered ribbon structure, more specifically, one of clay minerals in which a plurality of single chains resembling pyroxene are combined to form a tetrahedral ribbon. Sepiolite 16 is a hydrous magnesium silicate that can be represented by the chemical formula Mg 8 Si 12 O 30 (OH) 4 (OH 2 ) 4 · 8H 2 O, for example, and is itself porous and has a specific surface area. Made of large fibers. In this embodiment, variants of those represented by the above chemical formula are also included in the sepiolite 16.

この実施形態では、粉体化学蓄熱材12としては、例えば平均粒子径D≒10μm(レーザー回析式測定法、島津製作所製SALD−2000Aによる)のものが用いられ、セピオライト16としては、水に懸濁した場合の繊維径が粉体化学蓄熱材12の平均粒子径Dよりも小さい繊維状を成すものが用いられている。具体的には、セピオライト16は、その線径(繊維径)が略1μm以下、その長さ(繊維長)が略200μm以下のものを用いることが望ましい。この実施形態では、線径が略0.01μmで長さが略数十μmのトルコ産のセピオライトを用いている。なお、トルコ産のセピオライトに代えて、例えば線径が略0.1μmで長さが略100μmのスペイン産のセピオライトを用いることもできる。また、この実施形態では、粉体化学蓄熱材12に対するセピオライト16の混合比は、例えば略5〜10質量%程度とされている。   In this embodiment, the powder chemical heat storage material 12 is, for example, one having an average particle diameter D≈10 μm (laser diffraction measurement method, SALD-2000A manufactured by Shimadzu Corporation), and the sepiolite 16 is water. A fiber in which the fiber diameter when suspended is smaller than the average particle diameter D of the powder chemical heat storage material 12 is used. Specifically, it is desirable to use sepiolite 16 having a wire diameter (fiber diameter) of approximately 1 μm or less and a length (fiber length) of approximately 200 μm or less. In this embodiment, Turkish sepiolite having a wire diameter of about 0.01 μm and a length of about several tens of μm is used. Instead of Turkish sepiolite, for example, Spanish sepiolite having a wire diameter of approximately 0.1 μm and a length of approximately 100 μm can be used. Moreover, in this embodiment, the mixing ratio of the sepiolite 16 with respect to the powder chemical heat storage material 12 is about 5-10 mass%, for example.

そして、上記構成の化学蓄熱材複合物成形体11に密着(固着)されたフィルタ部30では、第1多孔体層32は、第2多孔体層34に対し孔径が小さく設定されている。具体的には、第1多孔体層32は、その平均孔径が、粉体化学蓄熱材12の平均粒径よりも小とされ、かつ水蒸気の流通(厚み方向の出入り)を阻害しないように設定されている。一方、第2多孔体層34は、その平均粒径が、粉体化学蓄熱材12の平均粒径よりも大とされている。   And in the filter part 30 closely_contact | adhered (adhered) to the chemical heat storage material composite molded object 11 of the said structure, the 1st porous body layer 32 sets the hole diameter small with respect to the 2nd porous body layer 34. FIG. Specifically, the first porous body layer 32 is set so that the average pore diameter is smaller than the average particle diameter of the powder chemical heat storage material 12 and does not hinder the flow of water vapor (in and out in the thickness direction). Has been. On the other hand, the average particle size of the second porous body layer 34 is larger than the average particle size of the powder chemical heat storage material 12.

上記の通りセピオライト16の線径は粉体化学蓄熱材12の平均粒径よりも小であり、第2多孔体層34は、その多孔内に粉体化学蓄熱材12と共にセピオライト16が進入されている。この実施形態では、第1多孔体層32、第2多孔体層34は同種金属である銅(銅を主成分とする合金)より成り、第2多孔体層34内に進入した粉体化学蓄熱材12、セピオライト16を介して化学蓄熱材複合物成形体11に固定的に接合されている。   As described above, the wire diameter of the sepiolite 16 is smaller than the average particle diameter of the powder chemical heat storage material 12, and the sepiolite 16 enters the second porous layer 34 together with the powder chemical heat storage material 12 into the pores. Yes. In this embodiment, the first porous body layer 32 and the second porous body layer 34 are made of copper (alloy having copper as a main component), which is the same kind of metal, and enter into the second porous body layer 34 to store powder chemical heat. The material 12 and the sepiolite 16 are fixedly bonded to the chemical heat storage material composite molded body 11.

次に、熱交換型蓄熱放熱装置10の作用を説明する。   Next, the operation of the heat exchange type heat storage and heat dissipation device 10 will be described.

熱交換型蓄熱放熱装置10の化学蓄熱材複合物成形体11に蓄熱する際には、流体流路26に熱源からの熱媒を流通させる。すると、熱媒からの熱によって化学蓄熱材複合物成形体11が脱水反応を生じ、この熱が化学蓄熱材複合物成形体11に蓄熱される。この際、化学蓄熱材複合物成形体11から脱水された水蒸気は、フィルタ部30、水蒸気流路28を通じて排出される。   When heat is stored in the chemical heat storage material composite molded body 11 of the heat exchange type heat storage and heat dissipation device 10, a heat medium from a heat source is circulated through the fluid flow path 26. Then, the chemical heat storage material composite formed body 11 undergoes a dehydration reaction due to heat from the heat medium, and this heat is stored in the chemical heat storage material composite formed body 11. At this time, the water vapor dehydrated from the chemical heat storage material composite molded body 11 is discharged through the filter unit 30 and the water vapor channel 28.

一方、熱交換型蓄熱放熱装置10に蓄熱された熱を放熱する際には、熱交換型蓄熱放熱装置10は、図示しない蒸発器等からの水蒸気が水蒸気流路28を通じて熱交換型蓄熱放熱装置10内の化学蓄熱材複合物成形体11内の細孔14に供給される。これにより、化学蓄熱材複合物成形体11を構成する粉体化学蓄熱材12は、水和反応を生じつつ放熱する。この熱は、流体流路26を流通する熱輸送媒体によって加熱対象に輸送され、加熱対象の加熱に供される。   On the other hand, when radiating the heat stored in the heat exchange type heat storage and heat dissipation device 10, the heat exchange type heat storage and heat dissipation device 10 is configured such that water vapor from an evaporator (not shown) passes through the water vapor flow path 28. 10 is supplied to the pores 14 in the chemical heat storage material composite molded body 11. Thereby, the powder chemical heat storage material 12 constituting the chemical heat storage material composite molded body 11 dissipates heat while causing a hydration reaction. This heat is transported to the object to be heated by the heat transport medium flowing through the fluid flow path 26 and is used for heating the object to be heated.

次に、熱交換型蓄熱放熱装置10の製造方法を説明する。   Next, a manufacturing method of the heat exchange type heat storage and heat dissipation device 10 will be described.

図2には、熱交換型蓄熱放熱装置10の製造方法が模式的に示されている。熱交換型蓄熱放熱装置10を製造するにあたっては、先ず、図2−1に示される化学蓄熱材複合物成形体11側の材料準備工程である工程Aで、原料である粉体化学蓄熱材12、セピオライト16、及びバインダである水Wを用意する。次いで、混合攪拌工程である工程Bで、粉体化学蓄熱材12、セピオライト16、水を混合攪拌容器36内で混合、攪拌(混練)する。これにより、形状を保持し得るように増粘化された混合蓄熱材38が得られる。   FIG. 2 schematically shows a method for manufacturing the heat exchange type heat storage and heat dissipation device 10. In manufacturing the heat exchange type heat storage / heat dissipating device 10, first, the powder chemical heat storage material 12 which is the raw material in the process A which is the material preparation step on the chemical heat storage material composite molded body 11 side shown in FIG. 2A. Sepiolite 16 and water W as a binder are prepared. Next, in Step B, which is a mixing and stirring step, the powder chemical heat storage material 12, sepiolite 16 and water are mixed and stirred (kneaded) in the mixing and stirring vessel 36. Thereby, the mixed heat storage material 38 thickened so that a shape can be hold | maintained is obtained.

一方、図2−1に示されるフィルタ部30側の材料準備工程である工程Cで、第1の多孔体原料、第1の金属材料としての銅粉40、及び第2の多孔体原料、第2の金属材料としての平板状の銅発泡体42を用意する。銅粉40は、平均粒径が略100〜200μmのものを用いた。なお、銅粉40に代えて、平均線径が略100〜200μmの銅繊維を用いても良い。また、銅発泡体42は、平均孔径が粉体化学蓄熱材12の平均粒径よりも大きいものを用いる。この実施形態では、平均孔径が略300〜600μmの銅発泡体42を用いた。これら銅粉40の平均粒径、銅発泡体42の平均孔径は、後述する圧縮工程、焼結工程を経た後の第1多孔体層32の平均孔径が略5〜10μm、第2多孔体層34の平均孔径が略50〜100μmとなるように調整している。   On the other hand, in the process C which is the material preparation process on the filter unit 30 side shown in FIG. 2A, the first porous material, the copper powder 40 as the first metal material, and the second porous material, A flat copper foam 42 as the metal material 2 is prepared. The copper powder 40 having an average particle diameter of about 100 to 200 μm was used. Instead of the copper powder 40, copper fibers having an average wire diameter of approximately 100 to 200 μm may be used. Further, the copper foam 42 having an average pore diameter larger than the average particle diameter of the powder chemical heat storage material 12 is used. In this embodiment, a copper foam 42 having an average pore diameter of approximately 300 to 600 μm was used. The average particle diameter of the copper powder 40 and the average pore diameter of the copper foam 42 are approximately 5 to 10 μm in the average pore diameter of the first porous layer 32 after the compression process and the sintering process described later, and the second porous layer. The average pore diameter of 34 is adjusted to be approximately 50 to 100 μm.

次いで、フィルタ圧縮工程である工程Dで、図示しない金型内に銅発泡体42、銅粉40をこの順でセットし、該銅発泡体42、銅粉40を厚み方向に圧縮する。これにより、仮に一体化されたフィルタ用多孔板44が形成される。この段階でフィルタ用多孔板44が多数の銅粉40にて形成された第1多孔体層32、銅発泡体42より成る第2多孔体層34を有するように、工程Dが行われる。工程C、Dは、工程A、Bに対する実行順は問わない。   Next, in step D, which is a filter compression step, the copper foam 42 and the copper powder 40 are set in this order in a mold (not shown), and the copper foam 42 and the copper powder 40 are compressed in the thickness direction. Thereby, the porous plate 44 for filters integrated temporarily is formed. At this stage, the process D is performed so that the filter porous plate 44 has the first porous body layer 32 formed of a large number of copper powders 40 and the second porous body layer 34 made of the copper foam 42. The order of execution of the processes C and D with respect to the processes A and B is not limited.

そして、成型工程である工程Eで、工程Bで得た混合蓄熱材38と工程Dで得たフィルタ用多孔板44とを用いて、所定形状(この実施形態では略矩形平板状)の圧縮成形体46を形成する。具体的には、図示しない金型(工程Dで用いたものとは別の金型)内に混合蓄熱材38をセットすると共に、該金型内の混合蓄熱材38上にフィルタ用多孔板44を載せ、圧縮成形することで、圧縮成形体46を得る。この圧縮成形によって、フィルタ用多孔板44の第2多孔体層34の多孔内には、混合蓄熱材38すなわち粉体化学蓄熱材12及びセピオライト16の一部が浸透して(入り込んで)いる。   Then, in step E, which is a molding step, compression molding of a predetermined shape (substantially rectangular flat plate in this embodiment) using the mixed heat storage material 38 obtained in step B and the filter porous plate 44 obtained in step D. A body 46 is formed. Specifically, the mixed heat storage material 38 is set in a mold (not shown) (mold different from that used in the step D), and the filter porous plate 44 is placed on the mixed heat storage material 38 in the mold. The compression molded body 46 is obtained by carrying out compression molding. By this compression molding, a part of the mixed heat storage material 38, that is, the powder chemical heat storage material 12 and the sepiolite 16 penetrates (enters) into the pores of the second porous layer 34 of the filter porous plate 44.

さらに、焼結工程である工程Fで、圧縮成形体46を焼結炉Fs内にセットし、該圧縮成形体46を焼結することで、化学蓄熱材複合物成形体11とフィルタ部30とが一体化された焼結体であるフィルタ付化学蓄熱材成形体48を得る。このフィルタ付化学蓄熱材成形体48では、化学蓄熱材複合物成形体11が固化されると共に、第1多孔体層32と第2多孔体層34とが固着されている。そして、化学蓄熱材複合物成形体11とフィルタ部30とは、第2多孔体層34の多孔内に入り込んだ粉体化学蓄熱材12とセピオライト16との混合物が固化されることで、強固に密着されている。   Furthermore, in step F, which is a sintering step, the compression molded body 46 is set in the sintering furnace Fs, and the compression molded body 46 is sintered, so that the chemical heat storage material composite molded body 11 and the filter unit 30 are A filter-added chemical heat storage material molded body 48 is obtained, which is a sintered body integrated with the. In the chemical heat storage material molded body with filter 48, the chemical heat storage material composite molded body 11 is solidified, and the first porous body layer 32 and the second porous body layer 34 are fixed. And the chemical heat storage material composite molded body 11 and the filter part 30 are solidified by solidifying the mixture of the powder chemical heat storage material 12 and the sepiolite 16 that have entered the pores of the second porous body layer 34. It is in close contact.

この実施形態では、工程Fでの焼結温度は略600℃とした。これは、粉体化学蓄熱材12すなわち水酸化カルシウムの脱水温度(脱水温度は、雰囲気水蒸気圧力により異なるが、略400℃〜450℃)以上で、かつ、銅の焼結が可能な下限に近い温度として設定されている。このため、フィルタ付化学蓄熱材成形体48の化学蓄熱材複合物成形体11は、製造時点で、酸化カルシウム(CaO)とされており、水分(水蒸気)の供給により放熱可能な蓄熱状態とされている。   In this embodiment, the sintering temperature in the process F was set to about 600 ° C. This is equal to or higher than the dehydration temperature of the powder chemical heat storage material 12, that is, calcium hydroxide (dehydration temperature varies depending on the atmospheric water vapor pressure, but approximately 400 ° C. to 450 ° C.) and is close to the lower limit at which copper can be sintered. It is set as temperature. For this reason, the chemical heat storage material composite formed body 11 of the filter-attached chemical heat storage material formed body 48 is made of calcium oxide (CaO) at the time of manufacture, and is in a heat storage state in which heat can be dissipated by supplying moisture (water vapor). ing.

ここで、銅の焼結温度は、通常は850〜900℃であるが、焼結後のフィルタ部30に高い強度(化学蓄熱材複合物成形体との密着強度を越えるような強度)が要求されないこと、及び、高温での焼結による化学蓄熱材複合物成形体11の焼きしまりによる劣化を抑制(防止)することを考慮すると、700℃以下で圧縮成形体46を焼結することが好ましいとの知見に基づき、この実施形態では上記の焼結温度を採用している。この焼結温度で第1多孔体層32と第2多孔体層34との焼結を担保するため、焼結時間を略1〜3時間として圧縮成形体46をゆっくりと焼結させた。   Here, although the sintering temperature of copper is usually 850 to 900 ° C., the sintered filter part 30 is required to have high strength (strength exceeding the adhesion strength with the chemical heat storage material composite molded body). In consideration of not being performed and suppressing deterioration of the chemical heat storage material composite molded body 11 due to sintering due to sintering at a high temperature, it is preferable to sinter the compression molded body 46 at 700 ° C. or lower. In this embodiment, the above-described sintering temperature is employed. In order to ensure the sintering of the first porous body layer 32 and the second porous body layer 34 at this sintering temperature, the compression molded body 46 was slowly sintered with a sintering time of approximately 1 to 3 hours.

そして、図2−2に示される組付工程である工程Gで、熱交換器本体18の各蓄熱材収容部24内で一対のフィルタ付化学蓄熱材成形体48がフィルタ部30を向き合わせるように、蓄熱材収容部24内にフィルタ付化学蓄熱材成形体48を装填(セット)し、固定することで熱交換型蓄熱放熱装置10の製造が完了する。フィルタ付化学蓄熱材成形体48の化学蓄熱材複合物成形体11は、フィルタ部30が密着された面及び蓄熱材収容部24の開放端に臨む端面を除く表面が、シェル20の内面、隔壁22に接触(密着)された状態で、接着や機械的結合構造等によって、熱交換器本体18に固定されている。   And in the process G which is an assembly | attachment process shown by FIGS. 2-2, a pair of chemical heat storage material molded body 48 with a filter will face the filter part 30 in each heat storage material accommodating part 24 of the heat exchanger main body 18. FIG. In addition, the filter-added chemical heat storage material molded body 48 is loaded (set) in the heat storage material storage portion 24 and fixed, whereby the manufacture of the heat exchange type heat storage and heat dissipation device 10 is completed. The chemical heat storage material composite formed body 11 of the chemical heat storage material formed body 48 with a filter has a surface excluding the surface to which the filter unit 30 is closely attached and the end surface facing the open end of the heat storage material accommodation unit 24, the inner surface of the shell 20, the partition wall In a state of being in contact with (contacted with) 22, it is fixed to the heat exchanger body 18 by adhesion, a mechanical coupling structure or the like.

ここで、熱交換型蓄熱放熱装置10では、化学蓄熱材複合物成形体11における水蒸気流路28に面する側の略全面に亘ってフィルタ部30が設けられているため、水和、脱水反応の繰り返しに伴って膨張、収縮を繰り返しても化学蓄熱材複合物成形体11の崩壊が防止又は効果的に抑制される。また、仮に化学蓄熱材複合物成形体11の一部が崩落した場合でも、該崩落部分(がさらに粉体化されたもの)が水蒸気流路28に飛散することが、フィルタ部30の第1多孔体層32によって防止又は効果的に抑制される。そして、熱交換型蓄熱放熱装置10では、水蒸気の流通を許容するフィルタ部30によって、化学蓄熱材複合物成形体11の反応性を確保しつつ、上記の化学蓄熱材複合物成形体11の崩壊防止及び水蒸気流路28への粉体化学蓄熱材12の飛散防止が図られる効果(以下、「フィルタ効果」という)効果を得ることができる。   Here, in the heat exchange type heat storage and heat dissipation device 10, the filter unit 30 is provided over substantially the entire surface of the chemical heat storage material composite molded body 11 facing the water vapor channel 28. Even if the expansion and contraction are repeated with the repetition of the above, the collapse of the chemical heat storage material composite molded body 11 is prevented or effectively suppressed. In addition, even if a part of the chemical heat storage material composite molded body 11 collapses, the collapsed part (which is further pulverized) is scattered in the water vapor flow path 28, so that the first of the filter unit 30. It is prevented or effectively suppressed by the porous body layer 32. And in the heat exchange type heat storage and heat dissipation device 10, the chemical heat storage material composite molded body 11 is collapsed while ensuring the reactivity of the chemical heat storage material composite molded body 11 by the filter unit 30 that allows the circulation of water vapor. It is possible to obtain an effect (hereinafter referred to as “filter effect”) that prevents the powder chemical heat storage material 12 from being scattered and prevented from scattering into the water vapor channel 28.

しかも、熱交換型蓄熱放熱装置10では、フィルタ部30が化学蓄熱材複合物成形体11における水蒸気流路28に面する部分にのみ設けられているので、化学蓄熱材複合物成形体11と流体流路26を流れる熱交換媒体との伝熱経路が確保される。例えば粉体化学蓄熱材12を充填した多数のカプセルを蓄熱材収容部24に収容した構成では、カプセル間の熱抵抗が大きく、伝熱律束となりやすい。これに対して熱交換型蓄熱放熱装置10では、フィルタ部30が熱抵抗を増加させることがなく、良好な伝熱性(低熱抵抗)が得られる。   Moreover, in the heat exchange type heat storage / heat dissipating device 10, the filter part 30 is provided only in the portion facing the water vapor flow path 28 in the chemical heat storage material composite molded body 11, so the chemical heat storage material composite molded body 11 and the fluid A heat transfer path with the heat exchange medium flowing through the flow path 26 is secured. For example, in a configuration in which a large number of capsules filled with the powder chemical heat storage material 12 are stored in the heat storage material storage unit 24, the thermal resistance between the capsules is large, and heat transfer regulation tends to occur. On the other hand, in the heat exchange type heat storage and heat dissipation device 10, the filter unit 30 does not increase the thermal resistance, and good heat transfer properties (low thermal resistance) are obtained.

そして、熱交換型蓄熱放熱装置10では、フィルタ部30が、粉体化学蓄熱材12の平均粒径よりも小さい孔径を有すると共に水蒸気の流通を許容する第1多孔体層32と、粉体化学蓄熱材12の平均粒径よりも大きい孔径を有する第2多孔体層34との2層構造とされている。このため、上記のフィルタ効果を得るための第1多孔体層32を、多孔内に粉体化学蓄熱材12とセピオライト16との混合物を入り込ませた第2多孔体層34を介して強固に密着させることができる。   In the heat exchange type heat storage / heat dissipating device 10, the filter portion 30 has a pore size smaller than the average particle size of the powder chemical heat storage material 12 and allows the water vapor to flow, and the powder chemistry. The heat storage material 12 has a two-layer structure including a second porous body layer 34 having a pore diameter larger than the average particle diameter. For this reason, the first porous body layer 32 for obtaining the above filter effect is firmly adhered to the first porous body layer 34 through the second porous body layer 34 in which the mixture of the powder chemical heat storage material 12 and the sepiolite 16 is introduced into the pores. Can be made.

また、熱交換型蓄熱放熱装置10では、上記の通りフィルタ部30が化学蓄熱材複合物成形体11に強固に密着されるため、該フィルタ部30によって化学蓄熱材複合物成形体11の膨張、収縮自体が抑制され(膨張、収縮量が小さく抑えられ)、より高いフィルタ効果を得ることができる。   Further, in the heat exchange type heat storage / heat dissipating device 10, since the filter part 30 is firmly adhered to the chemical heat storage material composite molded body 11 as described above, the expansion of the chemical heat storage material composite molded body 11 by the filter part 30, Shrinkage itself is suppressed (the amount of expansion and contraction is kept small), and a higher filter effect can be obtained.

以上説明したように、第1の実施形態に係る熱交換型蓄熱放熱装置10、すなわち図2に示す製造方法で製造されたフィルタ付化学蓄熱材成形体48を備えて構成された熱交換型蓄熱放熱装置10は、化学蓄熱材複合物成形体11の粉体化を抑制することができると共に、化学蓄熱材複合物成形体11に対する伝熱経路を確保することができる。   As described above, the heat exchange type heat storage and heat dissipation device 10 according to the first embodiment, that is, the heat exchange type heat storage material configured to include the filter-equipped chemical heat storage material molded body 48 manufactured by the manufacturing method shown in FIG. The heat dissipation device 10 can suppress powdering of the chemical heat storage material composite molded body 11 and can secure a heat transfer path to the chemical heat storage material composite molded body 11.

次に、本発明の他の実施形態について説明する。なお、上記第1の実施形態又は前出の構成と基本的に同一の部品、部分については、上記第1の実施形態又は前出の構成同一の符号を付して説明を省略し、また図示を省略する場合がある。   Next, another embodiment of the present invention will be described. Note that parts and portions that are basically the same as those in the first embodiment or the previous configuration are denoted by the same reference numerals as those in the first embodiment or the previous configuration, and the description thereof is omitted. May be omitted.

(第2の実施形態)
図5には、本発明の第2の実施形態に係る熱交換型蓄熱放熱装置50の概略構成が模式的な斜視図にて示されている。この図に示される如く、熱交換型蓄熱放熱装置50は、フィルタ付化学蓄熱材成形体48に代えて、フィルタ付化学蓄熱材成形体52を備えて構成されている点で、第1の実施形態に係る熱交換型蓄熱放熱装置10とは異なる。
(Second Embodiment)
FIG. 5 is a schematic perspective view showing a schematic configuration of a heat exchange type heat storage and heat dissipation device 50 according to the second embodiment of the present invention. As shown in this figure, the heat exchange type heat storage / heat dissipating device 50 is provided with a chemical heat storage material molded body 52 with a filter instead of the chemical heat storage material molded body 48 with a filter. It differs from the heat exchange type heat storage and heat dissipation device 10 according to the embodiment.

熱交換型蓄熱放熱装置50を構成するフィルタ付化学蓄熱材成形体52は、フィルタ部30が銅に代えてステンレス鋼にて構成されている点で、熱交換型蓄熱放熱装置10を構成するフィルタ付化学蓄熱材成形体48とは異なる。以下、熱交換型蓄熱放熱装置50の製造方法と共に該熱交換型蓄熱放熱装置50(フィルタ付化学蓄熱材成形体52)の構成について説明することとする。なお、熱交換型蓄熱放熱装置50の製造方法における熱交換型蓄熱放熱装置10の製造方法と共通する部分は、説明を省略又は簡略化する。   The filter-containing chemical heat storage material molded body 52 constituting the heat exchange type heat storage and heat dissipation device 50 is a filter constituting the heat exchange type heat storage and heat dissipation device 10 in that the filter part 30 is made of stainless steel instead of copper. It differs from the attached chemical heat storage material molded body 48. Hereinafter, the structure of the heat exchange type heat storage and heat dissipation device 50 (chemical heat storage material with filter 52) will be described together with the manufacturing method of the heat exchange type heat storage and heat dissipation device 50. In addition, description is abbreviate | omitted or simplified about the part which is common in the manufacturing method of the heat exchange type heat storage and heat dissipation apparatus 10 in the manufacturing method of the heat exchange type heat storage and heat dissipation apparatus 50.

図6には、熱交換型蓄熱放熱装置50の製造方法が模式的に示されている。熱交換型蓄熱放熱装置50を製造するにあたっては、図6−1に示されるフィルタ部30側の材料準備工程である工程Cで、第1の多孔体原料、第1の金属材料としてのステンレス金網54を数枚、及び第2の多孔体原料、第2の金属材料としての平板状のステンレス発泡体56を用意する。ステンレス金網54は、スウェージング工程である工程Dで、厚み方向に重ねて押し潰し、金網積層体58を得る。金網積層体58は、目の開きが10〜30μmと成るように、ステンレス金網54の目や重ね合わせ枚数、スウェージング量が調整されている。   FIG. 6 schematically shows a method for manufacturing the heat exchange type heat storage and heat dissipation device 50. In manufacturing the heat exchange type heat storage and heat dissipation device 50, the first porous material and the stainless metal mesh as the first metal material in the process C which is the material preparation process on the filter part 30 side shown in FIG. Several sheets 54, a flat porous foam 56 as a second porous material and a second metal material are prepared. The stainless wire mesh 54 is overlapped in the thickness direction and crushed in the process D, which is a swaging process, to obtain a wire mesh laminate 58. In the metal mesh laminate 58, the mesh of the stainless steel mesh 54, the number of overlapping layers, and the swaging amount are adjusted so that the opening of the mesh is 10 to 30 μm.

なお、ステンレス発泡体56は、平均孔径が略300〜600μmのものを用いた。これら金網積層体58(ステンレス金網54の目、重ね合わせ枚数、スウェージング量)の平均孔径、ステンレス発泡体56の平均孔径は、後述する圧縮工程、焼結工程後の第1多孔体層32の平均孔径が略5〜10μm、第2多孔体層34の平均孔径が略50〜100μmとなるように調整している。   As the stainless steel foam 56, one having an average pore diameter of about 300 to 600 μm was used. The average pore diameter of these wire mesh laminates 58 (the meshes of the stainless steel mesh 54, the number of layers, the amount of swaging) and the average pore diameter of the stainless steel foam 56 are the same as those of the first porous body layer 32 after the compression step and the sintering step described later. The average pore diameter is adjusted to be approximately 5 to 10 μm, and the average pore diameter of the second porous body layer 34 is adjusted to be approximately 50 to 100 μm.

次いで、フィルタ圧縮工程である工程Eで、図示しない金型内にステンレス発泡体56、金網積層体58をこの順でセットし、該ステンレス発泡体56、金網積層体58を厚み方向に圧縮する。これにより、仮に一体化されたフィルタ用多孔板60が形成される。さらに、焼結肯定である工程Fで、フィルタ用多孔板60を焼結炉Fs内にセットし、略1200℃の焼結温度でフィルタ用多孔板60を焼結する。これにより、金網積層体58より成る第1多孔体層32とステンレス発泡体56より成る第2多孔体層34とが強固に一体化されたフィルタ焼結体62を得る。   Next, in step E, which is a filter compression step, the stainless steel foam 56 and the wire mesh laminate 58 are set in this order in a mold (not shown), and the stainless steel foam 56 and the wire mesh laminate 58 are compressed in the thickness direction. Thereby, the porous plate 60 for filters integrated integrally is formed. Further, in step F, which is positive for sintering, the filter porous plate 60 is set in the sintering furnace Fs, and the filter porous plate 60 is sintered at a sintering temperature of approximately 1200 ° C. As a result, a filter sintered body 62 is obtained in which the first porous body layer 32 made of the wire mesh laminate 58 and the second porous body layer 34 made of the stainless steel foam 56 are firmly integrated.

成型工程である工程Gでは、工程A及び工程Bで得た混合蓄熱材38と工程Fで得たフィルタ焼結体62とを用いて、所定形状(この実施形態では略矩形平板状)の圧縮成形体64を形成する。具体的には、図示しない金型(工程Eで用いたものとは別の金型)内に混合蓄熱材38をセットすると共に、該金型内の混合蓄熱材38上にフィルタ用多孔板60を載せ、圧縮成形することで、圧縮成形体64を得る。この圧縮成形によって、フィルタ焼結体62の第2多孔体層34の多孔内には、混合蓄熱材38すなわち粉体化学蓄熱材12及びセピオライト16の一部が入り込んでいる。   In step G, which is a molding step, compression of a predetermined shape (substantially rectangular flat plate in this embodiment) is performed using the mixed heat storage material 38 obtained in step A and step B and the filter sintered body 62 obtained in step F. Formed body 64 is formed. Specifically, the mixed heat storage material 38 is set in a mold (not shown) (mold different from that used in the step E), and the filter porous plate 60 is placed on the mixed heat storage material 38 in the mold. The compression molded body 64 is obtained by carrying out compression molding. By this compression molding, a part of the mixed heat storage material 38, that is, the powder chemical heat storage material 12 and the sepiolite 16 enter the pores of the second porous layer 34 of the filter sintered body 62.

次いで、図6−2に示される組付工程である工程Hで、熱交換器本体18の各蓄熱材収容部24内で一対の圧縮成形体64がフィルタ部30を向き合わせるように、蓄熱材収容部24内に圧縮成形体64を装填(セット)する。この状態では、圧縮成形体64は、混合蓄熱材38(化学蓄熱材複合物成形体11)における(フィルタ焼結体62)フィルタ部30が密着された面及び蓄熱材収容部24の開放端に臨む端面を除く表面が熱交換器本体18のシェル20、隔壁22に密着されている。   Next, in step H, which is an assembling step shown in FIG. 6B, the heat storage material so that the pair of compression molded bodies 64 face the filter unit 30 in each heat storage material accommodation portion 24 of the heat exchanger body 18. The compression molded body 64 is loaded (set) in the accommodating portion 24. In this state, the compression molded body 64 is formed on the surface of the mixed heat storage material 38 (chemical heat storage material composite molded body 11) (filter sintered body 62) where the filter unit 30 is in close contact and the open end of the heat storage material storage unit 24. The surface excluding the facing end face is in close contact with the shell 20 and the partition wall 22 of the heat exchanger body 18.

そして、乾燥工程である工程Iで、圧縮成形体64が装填されている熱交換器本体18を乾燥炉Fdに内にセットし、該熱交換器本体18内の圧縮成形体64(のうち混合蓄熱材38より成る部分)を乾燥し、熱交換型蓄熱放熱装置50の製造が完了する。この熱交換型蓄熱放熱装置50における熱交換器本体18の蓄熱材収容部24内に位置する化学蓄熱材複合物成形体11とフィルタ部30とが密着された構造体が、上記したフィルタ付化学蓄熱材成形体52とされる。フィルタ付化学蓄熱材成形体52は、必要に応じて、例えば乾燥工程で固化された接着剤によって又は機械的な保持構造によって、熱交換器本体18に保持される。   Then, in Step I, which is a drying step, the heat exchanger body 18 loaded with the compression molded body 64 is set in the drying furnace Fd, and the compression molded body 64 (mixing of the compression molded bodies 64 in the heat exchanger body 18 is mixed). The portion of the heat storage material 38) is dried, and the manufacture of the heat exchange type heat storage and heat dissipation device 50 is completed. The structure in which the chemical heat storage material composite molded body 11 and the filter unit 30 located in the heat storage material accommodating portion 24 of the heat exchanger body 18 in the heat exchange type heat storage and heat dissipation device 50 are in close contact with each other is the above-described chemical with filter. The heat storage material molded body 52 is used. If necessary, the chemical heat storage material with filter 52 is held in the heat exchanger main body 18 by, for example, an adhesive solidified in a drying process or by a mechanical holding structure.

なお、この実施形態における乾燥工程での乾燥温度は、略110℃とされている。このため、フィルタ付化学蓄熱材成形体52の化学蓄熱材複合物成形体11は、製造時点で、水分に反応し難く安定な水酸化カルシウム(Ca(OH))とされている。 Note that the drying temperature in the drying step in this embodiment is approximately 110 ° C. For this reason, the chemical heat storage material composite formed body 11 of the filter-attached chemical heat storage material formed body 52 is made of stable calcium hydroxide (Ca (OH) 2 ) that does not easily react with moisture at the time of manufacture.

以上説明した熱交換型蓄熱放熱装置50は、化学蓄熱材複合物成形体11における水蒸気流路28に面する略全面に亘ってフィルタ部30が設けられている。このため、熱交換型蓄熱放熱装置50では、熱交換型蓄熱放熱装置10と同様に、フィルタ部30によるフィルタ効果、フィルタ部30の部分的設置による低熱抵抗化、フィルタ部30の2層多孔体構造による化学蓄熱材複合物成形体11とフィルタ部30との強固な密着、及び該強固な密着によるより高いフィルタ効果の実現等の各作用効果を良好に奏する。   In the heat exchange type heat storage and heat dissipation device 50 described above, the filter unit 30 is provided over substantially the entire surface facing the water vapor channel 28 in the chemical heat storage material composite molded body 11. For this reason, in the heat exchange type heat storage and heat dissipation device 50, similarly to the heat exchange type heat storage and heat dissipation device 10, the filter effect by the filter unit 30, the low thermal resistance by partial installation of the filter unit 30, and the two-layer porous body of the filter unit 30 Each of the functions and effects such as the strong adhesion between the chemical heat storage material composite molded body 11 and the filter portion 30 due to the structure and the realization of a higher filter effect due to the strong adhesion are satisfactorily achieved.

また、熱交換型蓄熱放熱装置50、より具体的には熱交換型蓄熱放熱装置50を構成するフィルタ付化学蓄熱材成形体52の製造方法では、混合蓄熱材38を乾燥する乾燥工程を含む。この乾燥によって、混合蓄熱材38より成る化学蓄熱材複合物成形体11は収縮する。ここで、フィルタ付化学蓄熱材成形体52の製造方法では、フィルタ部30の第2多孔体層34の多孔内に、混合蓄熱材38の粉体化学蓄熱材12、セピオライト16が浸透した(入り込んだ)状態で、圧縮成形体64が乾燥されるので、乾燥工程の進行に伴い混合蓄熱材38にフィルタ部30が強固に密着される。このため、熱交換型蓄熱放熱装置50では、乾燥時の収縮の偏りに起因する化学蓄熱材複合物成形体11の変形が抑制される。   Moreover, in the manufacturing method of the heat exchange type heat storage and heat dissipation device 50, more specifically, the chemical heat storage material with filter 52 formed in the heat exchange type heat storage and heat dissipation device 50, a drying step of drying the mixed heat storage material 38 is included. By this drying, the chemical heat storage material composite formed body 11 made of the mixed heat storage material 38 contracts. Here, in the manufacturing method of the chemical heat storage material with filter 52, the powder chemical heat storage material 12 and the sepiolite 16 of the mixed heat storage material 38 have penetrated (entered) into the pores of the second porous layer 34 of the filter unit 30. In this state, the compression molded body 64 is dried, so that the filter unit 30 is firmly adhered to the mixed heat storage material 38 as the drying process proceeds. For this reason, in the heat exchange type heat storage and heat dissipation device 50, the deformation of the chemical heat storage material composite molded body 11 due to the uneven shrinkage during drying is suppressed.

また、熱交換型蓄熱放熱装置50では、ステンレス金網54を重ねてスウェージングすることで第1多孔体層32を形成する(孔径を調整する)ため、孔径の調整が容易であり、また厚み方向に直線的に貫通した孔を得ることができる。このため熱交換型蓄熱放熱装置50における第1多孔体層32は、水蒸気の流動抵抗を低減することができる。   Moreover, in the heat exchange type heat storage and heat dissipation device 50, since the first porous body layer 32 is formed by adjusting the stainless wire mesh 54 and swaging, the hole diameter can be easily adjusted and the thickness direction can be adjusted. A hole penetrating linearly can be obtained. For this reason, the first porous body layer 32 in the heat exchange type heat storage and heat dissipation device 50 can reduce the flow resistance of water vapor.

(第3の実施形態)
図7には、本発明の第3の実施形態に係る熱交換型蓄熱放熱装置70の概略構成が模式的な斜視図にて示されている。この図に示される如く、熱交換型蓄熱放熱装置70は、フィルタ付化学蓄熱材成形体48に代えて、フィルタ付化学蓄熱材成形体72を備えて構成されている点で、第2の実施形態に係る熱交換型蓄熱放熱装置50とは異なる。
(Third embodiment)
FIG. 7 is a schematic perspective view showing a schematic configuration of a heat exchange type heat storage and heat dissipation device 70 according to the third embodiment of the present invention. As shown in this figure, the heat exchange type heat storage / heat dissipating device 70 is provided with a chemical heat storage material molded body 72 with a filter instead of the chemical heat storage material molded body 48 with a filter. It is different from the heat exchange heat storage and heat dissipation device 50 according to the embodiment.

熱交換型蓄熱放熱装置70を構成するフィルタ付化学蓄熱材成形体72は、フィルタ部30が金属材料に代えて無機リボン上繊維物質にて構成されている点で、熱交換型蓄熱放熱装置10、50を構成するフィルタ付化学蓄熱材成形体48、52とは異なる。以下、熱交換型蓄熱放熱装置70の製造方法と共に該熱交換型蓄熱放熱装置70(フィルタ付化学蓄熱材成形体72)の構成について説明することとする。なお、熱交換型蓄熱放熱装置70の製造方法における熱交換型蓄熱放熱装置50の製造方法と共通する部分は、説明を省略又は簡略化する。   The chemical heat storage material molded body 72 with a filter constituting the heat exchange type heat storage and heat dissipation device 70 is that the filter unit 30 is made of a fiber material on an inorganic ribbon instead of a metal material. , 50 are different from the filter-equipped chemical heat storage material molded bodies 48 and 52. Hereinafter, the structure of the heat exchange type heat storage and heat dissipation device 70 (chemical heat storage material with filter 72) will be described together with the manufacturing method of the heat exchange type heat storage and heat dissipation device 70. Note that the description of the part common to the method of manufacturing the heat exchange type heat storage and heat dissipation device 50 in the method of manufacturing the heat exchange type heat storage and heat dissipation device 70 is omitted or simplified.

図8には、熱交換型蓄熱放熱装置70の製造方法が模式的に示されている。熱交換型蓄熱放熱装置70を製造するにあたっては、図8−1に示されるフィルタ部30側の材料準備工程である工程Cで、第1の多孔体原料、第1の無機リボン状繊維物質としてのシリカ粉末74及び第2の多孔体原料、第2の無機リボン状繊維物質としての平板状のセラミック多孔板76を用意する。これらシリカ粉末74の平均粒径、セラミック多孔板76の平均孔径は、後述する圧縮工程、焼結工程後の第1多孔体層32の平均孔径が略5〜10μm、第2多孔体層34の平均孔径が略50〜100μmとなるように調整している。   FIG. 8 schematically shows a method for manufacturing the heat exchange type heat storage and heat dissipation device 70. In manufacturing the heat exchange type heat storage and heat dissipation device 70, as the first porous material and the first inorganic ribbon fiber material in the process C which is the material preparation process on the filter part 30 side shown in FIG. A flat ceramic porous plate 76 as a silica powder 74, a second porous material, and a second inorganic ribbon fiber material is prepared. The average particle size of the silica powder 74 and the average pore size of the ceramic porous plate 76 are such that the average pore size of the first porous layer 32 after the compression step and the sintering step, which will be described later, is approximately 5 to 10 μm. The average pore diameter is adjusted to be approximately 50 to 100 μm.

次いで、フィルタ圧縮工程である工程Dで、図示しない金型内にセラミック多孔板76、シリカ粉末74をこの順でセットし、該セラミック多孔板76、シリカ粉末74を厚み方向に圧縮する。これにより、仮に一体化されたフィルタ用多孔板78が形成される。さらに、焼結肯定である工程Eで、フィルタ用多孔板60を図示しない焼結炉内にセットし、略1200℃の焼結温度でフィルタ用多孔板78を焼結する。これにより、シリカ粉末74の焼結体より成る第1多孔体層32とセラミック多孔板76より成る第2多孔体層34とが強固に一体化されたフィルタ焼結体80を得る。   Next, in step D, which is a filter compression step, the ceramic porous plate 76 and the silica powder 74 are set in this order in a mold (not shown), and the ceramic porous plate 76 and the silica powder 74 are compressed in the thickness direction. Thereby, the porous plate 78 for filters integrated integrally is formed. Further, in step E, which is positive for sintering, the filter porous plate 60 is set in a sintering furnace (not shown), and the filter porous plate 78 is sintered at a sintering temperature of approximately 1200 ° C. As a result, a filter sintered body 80 is obtained in which the first porous body layer 32 made of a sintered body of silica powder 74 and the second porous body layer 34 made of a ceramic porous plate 76 are firmly integrated.

成型工程である工程Fでは、工程A及び工程Bで得た混合蓄熱材38と工程Fで得たフィルタ焼結体80とを用いて、第2の実施形態の工程Gと同様にして、所定形状(この実施形態では略矩形平板状)の圧縮成形体82を形成する。さらに、図8−2に示される組付工程である工程Gで、第2の実施形態の工程Hと同様にして、蓄熱材収容部24内に圧縮成形体82を装填(セット)する。   In the process F, which is a molding process, using the mixed heat storage material 38 obtained in the process A and the process B and the filter sintered body 80 obtained in the process F, a predetermined process is performed in the same manner as in the process G of the second embodiment. A compression molded body 82 having a shape (in this embodiment, a substantially rectangular flat plate shape) is formed. Further, in step G, which is the assembling step shown in FIG. 8B, the compression molded body 82 is loaded (set) in the heat storage material accommodating portion 24 in the same manner as in step H of the second embodiment.

そして、乾燥工程である工程Hで、第2の実施形態の工程Iと同様にして、熱交換器本体18内の圧縮成形体82(のうち混合蓄熱材38より成る部分)を乾燥し、熱交換型蓄熱放熱装置70の製造が完了する。この熱交換型蓄熱放熱装置70における熱交換器本体18の蓄熱材収容部24内に位置する化学蓄熱材複合物成形体11とフィルタ部30とが密着された構造体が、上記したフィルタ付化学蓄熱材成形体72とされる。   Then, in step H, which is a drying step, in the same manner as in step I of the second embodiment, the compression molded body 82 in the heat exchanger main body 18 (the portion made of the mixed heat storage material 38) is dried and heated. The manufacture of the exchange-type heat storage and heat dissipation device 70 is completed. The structure in which the chemical heat storage material composite molded body 11 and the filter unit 30 located in the heat storage material accommodating portion 24 of the heat exchanger main body 18 in the heat exchange type heat storage and heat dissipation device 70 are in close contact with each other is the above-described chemical with filter. The heat storage material molded body 72 is used.

以上説明したように、熱交換型蓄熱放熱装置70を構成するフィルタ付化学蓄熱材成形体72は、主にフィルタ部30の材料が熱交換型蓄熱放熱装置50を構成するフィルタ付化学蓄熱材成形体52とは異なり、これに起因して一部工程(スウェージング工程)が存在しないが、他の点は構成、製造方法とも第2の実施形態に係る熱交換型蓄熱放熱装置50と共通する。   As described above, the filter-equipped chemical heat storage material molded body 72 constituting the heat exchange type heat storage and heat dissipation device 70 is mainly formed of a filter chemical heat storage material formed by the material of the filter unit 30 constituting the heat exchange type heat storage and heat dissipation device 50. Unlike the body 52, there is no part of the process (swaging process) due to this, but the other points are the same as the heat exchange heat storage and heat dissipation device 50 according to the second embodiment in both configuration and manufacturing method. .

したがって、第3の実施形態に係る熱交換型蓄熱放熱装置70によっても、第1の多孔体原料としてステンレス金網54を用いることによる効果を除いて、基本的に第2の実施形態に係る熱交換型蓄熱放熱装置50と同様の作用によって同様の効果を得ることができる。   Therefore, the heat exchange heat storage and heat dissipation device 70 according to the third embodiment also basically performs the heat exchange according to the second embodiment, except for the effect obtained by using the stainless wire mesh 54 as the first porous material. The same effect can be obtained by the same operation as the mold heat storage and heat dissipation device 50.

なお、上記した実施形態では、粘土鉱物として層リボン構造を有する粘土鉱物としてのセピオライトを用いた例を示したが、本発明はこれに限定されず、例えば、層リボン構造を有する粘土鉱物であるパリゴルスカイト(アタパルジャイト)又はカオリナイトを用いても良く、層リボン構造を有する粘土鉱物には属しないベントナイトを用いても良い。   In the above-described embodiment, an example in which sepiolite as a clay mineral having a layer ribbon structure is used as the clay mineral is shown. However, the present invention is not limited thereto, and for example, a clay mineral having a layer ribbon structure is used. Palygorskite (attapulgite) or kaolinite may be used, and bentonite that does not belong to the clay mineral having a layered ribbon structure may be used.

また、上記した実施形態では、粉体化学蓄熱材12として水和系化学蓄熱材である水酸化カルシウム(Ca(OH))を用いた例を示したが、本発明はこれに限定されず、例えば、アルカリ土類金属の無機化合物である水酸化マグネシウム(Mg(OH))を粉体化学蓄熱材12として用いても良い。同様に、アルカリ土類金属の無機化合物であるBa(OH)やBa(OH)・HOを粉体化学蓄熱材12として用いても良く、アルカリ土類金属以外の無機化合物であるLiOH・HO、Al・3HO等を粉体化学蓄熱材12として用いても良い。 In the above-described embodiment, an example in which calcium hydroxide (Ca (OH) 2 ), which is a hydrated chemical heat storage material, is used as the powder chemical heat storage material 12, but the present invention is not limited thereto. For example, magnesium hydroxide (Mg (OH) 2 ), which is an inorganic compound of an alkaline earth metal, may be used as the powder chemical heat storage material 12. Similarly, Ba (OH) 2 and Ba (OH) 2 .H 2 O, which are inorganic compounds of alkaline earth metals, may be used as the powder chemical heat storage material 12 and are inorganic compounds other than alkaline earth metals. LiOH.H 2 O, Al 2 O 3 .3H 2 O, or the like may be used as the powder chemical heat storage material 12.

さらに、上記した各実施形態では、熱交換器本体18における蓄熱材収容部24と流体流路26との開口方向が同じ対向流又は並行流型の構成を例示しているが、例えば、図9に示される如く、直交流型の熱交換器本体18を用いて熱交換型蓄熱放熱装置10、50、70を構成しても良い。   Furthermore, in each above-mentioned embodiment, although the opening direction of the thermal storage material accommodating part 24 and the fluid flow path 26 in the heat exchanger main body 18 has illustrated the structure of the opposite flow or parallel flow type, for example, FIG. As shown in FIG. 2, the heat exchange type heat storage and heat dissipation devices 10, 50, and 70 may be configured using a cross flow type heat exchanger body 18.

またさらに、上記した各実施形態では、フィルタ部30が2層構造である例を示したが、本発明はこれに限定されず、例えば、第1多孔体層32と第2多孔体層34との間に中間層が設けられた多層構造としても良い。   Furthermore, in each of the above-described embodiments, the example in which the filter unit 30 has a two-layer structure has been shown. However, the present invention is not limited to this, and for example, the first porous layer 32 and the second porous layer 34 A multilayer structure in which an intermediate layer is provided between them may be used.

10 熱交換型蓄熱放熱装置(化学蓄熱材反応器)
11 化学蓄熱材複合物成形体(化学蓄熱材成形体)
12 粉体化学蓄熱材
16 セピオライト(粘土鉱物)
18 熱交換器本体(容器)
24 蓄熱材収容部(化学蓄熱材室)
28 水蒸気流路
30 フィルタ部
32 第1多孔体層
34 第2多孔体層
38 混合蓄熱材
40 銅粉(第1の多孔体原料、第1の金属材料)
42 銅発泡体(第2の多孔体原料、第2の金属材料)
44 フィルタ用多孔板(複合多孔体層)
48 フィルタ付化学蓄熱材成形体
50・70 熱交換型蓄熱放熱装置
52・72 フィルタ付化学蓄熱材成形体
54 ステンレス金網(第1の多孔体原料、第1の金属材料)
56 ステンレス発泡体(第2の多孔体原料、第2の金属材料)
60 フィルタ用多孔板(複合多孔体層)
62 フィルタ焼結体(複合多孔体層)
74 シリカ粉末(第1の多孔体原料、第1の無機リボン状繊維物質)
76 セラミック多孔板(第2の多孔体原料、第2の無機リボン状繊維物質)
78 フィルタ用多孔板(複合多孔体層)
10 Heat exchange type heat storage and heat dissipation device (chemical heat storage material reactor)
11 Chemical heat storage material composite molded body (Chemical heat storage material molded body)
12 Powder chemical heat storage material 16 Sepiolite (clay mineral)
18 Heat exchanger body (container)
24 Heat storage material storage (Chemical heat storage material room)
28 Water vapor flow path 30 Filter part 32 1st porous body layer 34 2nd porous body layer 38 Mixed heat storage material 40 Copper powder (1st porous body raw material, 1st metal material)
42 Copper foam (second porous material, second metal material)
44 Porous plate for filter (composite porous body layer)
48 Chemical Heat Storage Material Molded Body with Filter 50/70 Heat Exchange Type Thermal Storage Heat Dissipator 52/72 Chemical Heat Storage Material Molded Body with Filter 54 Stainless Steel Wire Mesh (First Porous Material, First Metal Material)
56 Stainless steel foam (second porous material, second metal material)
60 Perforated plate for filters (composite porous layer)
62 Filter sintered body (composite porous body layer)
74 Silica powder (first porous material, first inorganic ribbon fiber material)
76 Ceramic porous plate (second porous material, second inorganic ribbon fiber material)
78 Perforated plate for filter (composite porous body layer)

Claims (8)

脱水反応に伴い吸熱し水和反応に伴い放熱する粉体化学蓄熱材と、該粉体化学蓄熱材と混合された粘土鉱物とを含む化学蓄熱材成形体と、
前記化学蓄熱材成形体が配置されると共に水蒸気が流通するための水蒸気流路が設けられた化学蓄熱材室、及び前記化学蓄熱材成形体との間で熱交換を行う熱交換媒体が流通する流路を有し、前記化学蓄熱材室に配置された前記化学蓄熱材成形体における前記水蒸気流路とは反対側の面及び側面が前記化学蓄熱材室の内面に密着された容器と、
前記化学蓄熱材成形体における水蒸気流路に面する部分に設けられ、前記粉体化学蓄熱材の粒子径よりも小さくかつ水蒸気の流通を許容する孔径の多孔質部分を有するフィルタ部と、
を備えた化学蓄熱反応器。
A chemical heat storage material molded body comprising a powder chemical heat storage material that absorbs heat with a dehydration reaction and dissipates heat with a hydration reaction, and a clay mineral mixed with the powder chemical heat storage material,
The chemical heat storage material molded body is disposed and a chemical heat storage material chamber provided with a steam channel for circulating water vapor and a heat exchange medium for exchanging heat between the chemical heat storage material molded body are distributed. A container having a flow path, and a surface and a side opposite to the water vapor flow path in the chemical heat storage material molded body disposed in the chemical heat storage material chamber, the container being in close contact with the inner surface of the chemical heat storage material chamber ;
A filter part having a porous part with a pore size that is provided in a portion facing the water vapor flow path in the chemical heat storage material molded body and smaller than the particle diameter of the powder chemical heat storage material and allows the flow of water vapor;
Chemical heat storage reactor equipped with.
前記フィルタ部は、
前記粉体化学蓄熱材の粒子径よりも小さくかつ水蒸気の流通を許容する孔径を有する第1の多孔体層と、
前記第1の多孔体層と前記化学蓄熱材成形体との間に設けられ、前記粉体化学蓄熱材の粒子径よりも大きな孔径を有する第2の多孔体層と、
を含んで構成され
かつ、前記化学蓄熱材成形体と焼結体として一体化されている請求項1記載の化学蓄熱反応器。
The filter unit is
A first porous body layer having a pore size smaller than the particle size of the powder chemical heat storage material and allowing water vapor to flow;
A second porous body layer provided between the first porous body layer and the chemical heat storage material molded body and having a pore diameter larger than the particle diameter of the powder chemical heat storage material;
It is configured to include a,
The chemical heat storage reactor according to claim 1 , wherein the chemical heat storage material molded body and the sintered body are integrated .
前記第1の多孔体層と第2の多孔体層とは、同種の金属材料にて構成されている請求項2記載の化学蓄熱反応器。   The chemical heat storage reactor according to claim 2, wherein the first porous body layer and the second porous body layer are made of the same metal material. 前記第1の多孔体層と第2の多孔体層とは、同種の無機リボン状繊維物質にて構成されている請求項2記載の化学蓄熱反応器。   The chemical heat storage reactor according to claim 2, wherein the first porous body layer and the second porous body layer are composed of the same kind of inorganic ribbon fiber material. 脱水反応に伴い吸熱し水和反応に伴い放熱する粉体化学蓄熱材と、該粉体化学蓄熱材と混合された粘土鉱物とを含む化学蓄熱材成形体の表面の一部に、前記粉体化学蓄熱材の粒子径よりも小さくかつ水蒸気の流通を許容するフィルタ部が設けられたフィルタ付化学蓄熱材成形体の製造方法であって、
粉体化学蓄熱材と粘土鉱物とをバインダと共に混合、攪拌して増粘化された混合蓄熱材を得る第1工程と、
前記粉体化学蓄熱材の粒子径よりも小さくかつ水蒸気の流通を許容する孔径を有する第1の多孔体層を構成するための第1の多孔体原料と、前記粉体化学蓄熱材の粒子径よりも大きな孔径を有する第2の多孔体層を構成するための第2の多孔体原料とを積層して前記フィルタ部を成す複合多孔体層を得る第2工程と、
前記第1工程で増粘化された混合蓄熱材と前記複合多孔体層とを、該増粘化された混合蓄熱材に前記第2の多孔体層が接触するように型内にセットして、該増粘化された混合蓄熱材を所定の形状に圧縮成形する第3工程と、
を含むフィルタ付化学蓄熱材成形体の製造方法。
The powder on a part of the surface of a chemical heat storage material molded body containing a powder chemical heat storage material that absorbs heat with a dehydration reaction and dissipates heat with a hydration reaction, and a clay mineral mixed with the powder chemical heat storage material. A method for producing a filter-equipped chemical heat storage material formed with a filter portion that is smaller than the particle size of the chemical heat storage material and allows the circulation of water vapor,
A first step of obtaining a mixed heat storage material obtained by mixing and stirring a powder chemical heat storage material and a clay mineral together with a binder;
A first porous material for forming a first porous layer having a pore size smaller than the particle size of the powder chemical heat storage material and allowing water vapor to flow, and the particle size of the powder chemical heat storage material A second step of obtaining a composite porous body layer constituting the filter part by laminating a second porous body material for constituting a second porous body layer having a larger pore diameter,
The mixed heat storage material thickened in the first step and the composite porous material layer are set in a mold so that the second porous material layer is in contact with the thickened mixed heat storage material. A third step of compression-molding the thickened mixed heat storage material into a predetermined shape;
A method of manufacturing a chemical heat storage material molded body with a filter including
前記第2の工程では、前記第1の多孔体原料としての第1の金属材料と、該第1の金属材料と同種金属より成る前記第2の多孔体原料としての第2の金属材料とを圧縮することで、前記第1の多孔体層を構成する部分と前記第2の多孔体層を構成する部分とが積層された前記複合多孔体層を得、
前記第3工程で所定の形状に形成された前記混合蓄熱材と該混合蓄熱材に積層された前記複合多孔体層とを一体焼結する第4工程をさらに含む請求項5記載のフィルタ付化学蓄熱材成形体の製造方法。
In the second step, a first metal material as the first porous material and a second metal material as the second porous material made of the same metal as the first metal material By compressing, to obtain the composite porous body layer in which the portion constituting the first porous body layer and the portion constituting the second porous body layer are laminated,
6. The chemical chemistry with filter according to claim 5, further comprising a fourth step of integrally sintering the mixed heat storage material formed in a predetermined shape in the third step and the composite porous material layer laminated on the mixed heat storage material. Manufacturing method of heat storage material molded body.
前記第2の工程では、前記第1の多孔体原料としての第1の金属材料と、該第1の金属材料と同種金属より成る前記第2の多孔体原料としての第2の金属材料とを圧縮すると共に焼結することで、前記第1の多孔体層を構成する部分と前記第2の多孔体層を構成する部分とが固定的に積層された前記複合多孔体層を得、
前記第3工程で所定の形状に形成された前記混合蓄熱材を、該混合蓄熱材に積層された前記複合多孔体層と共に乾燥する第4工程をさらに含む請求項5記載のフィルタ付化学蓄熱材成形体の製造方法。
In the second step, a first metal material as the first porous material and a second metal material as the second porous material made of the same metal as the first metal material By compressing and sintering, the composite porous body layer in which the portion constituting the first porous body layer and the portion constituting the second porous body layer are fixedly laminated is obtained.
6. The chemical heat storage material with a filter according to claim 5, further comprising a fourth step of drying the mixed heat storage material formed in a predetermined shape in the third step together with the composite porous body layer laminated on the mixed heat storage material. Manufacturing method of a molded object.
前記第2の工程では、前記第1の多孔体原料としての第1の無機リボン状繊維物質と、該第1の無機リボン状繊維物質と同種の無機リボン状繊維物質より成る前記第2の多孔体原料としての第2の無機リボン状繊維物質とを圧縮すると共に焼結することで、前記第1の多孔体層を構成する部分と前記第2の多孔体層を構成する部分とが固定的に積層された前記複合多孔体層を得、
前記第3工程で所定の形状に形成された前記混合蓄熱材を、該混合蓄熱材に積層された前記複合多孔体層と共に乾燥する第4工程をさらに含む請求項5記載のフィルタ付化学蓄熱材成形体の製造方法。
In the second step, the second porous material comprises the first inorganic ribbon-like fiber material as the first porous material, and the same inorganic ribbon-like fiber material as the first inorganic ribbon-like fiber material. By compressing and sintering the second inorganic ribbon-like fiber material as the body material, the portion constituting the first porous body layer and the portion constituting the second porous body layer are fixed. To obtain the composite porous body layer laminated on
6. The chemical heat storage material with a filter according to claim 5, further comprising a fourth step of drying the mixed heat storage material formed in a predetermined shape in the third step together with the composite porous body layer laminated on the mixed heat storage material. Manufacturing method of a molded object.
JP2009022826A 2009-02-03 2009-02-03 CHEMICAL HEAT STORAGE REACTOR AND METHOD FOR PRODUCING CHEMICAL HEAT STORAGE MATERIAL WITH FILTER Expired - Fee Related JP5547896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009022826A JP5547896B2 (en) 2009-02-03 2009-02-03 CHEMICAL HEAT STORAGE REACTOR AND METHOD FOR PRODUCING CHEMICAL HEAT STORAGE MATERIAL WITH FILTER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009022826A JP5547896B2 (en) 2009-02-03 2009-02-03 CHEMICAL HEAT STORAGE REACTOR AND METHOD FOR PRODUCING CHEMICAL HEAT STORAGE MATERIAL WITH FILTER

Publications (2)

Publication Number Publication Date
JP2010181051A JP2010181051A (en) 2010-08-19
JP5547896B2 true JP5547896B2 (en) 2014-07-16

Family

ID=42762747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009022826A Expired - Fee Related JP5547896B2 (en) 2009-02-03 2009-02-03 CHEMICAL HEAT STORAGE REACTOR AND METHOD FOR PRODUCING CHEMICAL HEAT STORAGE MATERIAL WITH FILTER

Country Status (1)

Country Link
JP (1) JP5547896B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5724302B2 (en) * 2010-11-04 2015-05-27 アイシン精機株式会社 Chemical heat storage device and chemical heat storage device
JP5719649B2 (en) * 2011-03-18 2015-05-20 株式会社豊田中央研究所 Chemical regenerator and manufacturing method thereof
JP5719660B2 (en) * 2011-03-30 2015-05-20 株式会社豊田中央研究所 Chemical regenerator and manufacturing method thereof
JP5554276B2 (en) * 2011-03-31 2014-07-23 株式会社豊田中央研究所 Reactor
JP5742547B2 (en) * 2011-07-27 2015-07-01 株式会社豊田中央研究所 Chemical heat storage reactor
JP5821834B2 (en) * 2012-12-26 2015-11-24 株式会社豊田中央研究所 Chemical heat storage reactor, chemical heat storage system
JP6045413B2 (en) * 2013-03-21 2016-12-14 株式会社豊田中央研究所 Adsorption heat pump
JP6540267B2 (en) * 2015-06-24 2019-07-10 株式会社豊田中央研究所 Reactor and heat storage system
JP2018059681A (en) * 2016-10-06 2018-04-12 株式会社豊田自動織機 Chemical heat storage device
CN111425865B (en) * 2020-05-07 2022-03-11 山东群峰重工科技股份有限公司 Efficient energy-saving device for garbage disposal
CN115854553A (en) * 2022-11-10 2023-03-28 中国船舶重工集团公司第七0三研究所 Device with high-efficiency solid-state heat storage device online performance and safety detection function and implementation method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161693A (en) * 1983-03-04 1984-09-12 Hitachi Zosen Corp heat storage device
JPS60165689U (en) * 1984-04-06 1985-11-02 住友精密工業株式会社 thermal storage heat exchanger
JPH0680394B2 (en) * 1986-03-14 1994-10-12 三井研削砥石株式会社 Chemical heat storage capsule
JP2503472B2 (en) * 1987-01-21 1996-06-05 大同特殊鋼株式会社 Hydrogen storage metal container
JPH0283031U (en) * 1988-12-17 1990-06-27
JP3080420B2 (en) * 1991-03-08 2000-08-28 千代田化工建設株式会社 Adsorbent packed bed divider
JPH07293367A (en) * 1994-04-28 1995-11-07 Toyota Autom Loom Works Ltd Intake device for internal combustion engine
JP4656959B2 (en) * 2004-02-04 2011-03-23 エスケー化研株式会社 Floor heating structure

Also Published As

Publication number Publication date
JP2010181051A (en) 2010-08-19

Similar Documents

Publication Publication Date Title
JP5547896B2 (en) CHEMICAL HEAT STORAGE REACTOR AND METHOD FOR PRODUCING CHEMICAL HEAT STORAGE MATERIAL WITH FILTER
JP4911002B2 (en) Heat exchange type heat utilization apparatus and manufacturing method thereof
JP5223314B2 (en) Heat storage device
JP5277621B2 (en) Chemical heat storage material molded body and manufacturing method thereof
US10393449B2 (en) Heat storage member
JP5374683B2 (en) Chemical heat storage material molded body and manufacturing method thereof
JP5232521B2 (en) Method for producing chemical heat storage material composite
JP5297669B2 (en) Chemical heat storage material composite and its manufacturing method
JP5327729B2 (en) Chemical heat storage material and manufacturing method thereof
JP5300307B2 (en) Chemical heat storage material molded body and manufacturing method thereof
JP5232510B2 (en) Manufacturing method of chemical heat storage material molded body
JP2012197966A (en) Chemical heat accumulator, and method for producing the same
JP2009256520A (en) Chemical thermal storage medium composite and method for producing the same
JP2009256519A (en) Chemical thermal storage medium composite and method for producing the same
JP5277138B2 (en) Regenerator and method for manufacturing the same
US10948242B2 (en) Heat storage reactor
JP5231077B2 (en) Chemical heat storage material composite and its manufacturing method
JP5401782B2 (en) Thermal storage device and manufacturing method thereof
JP2014185782A (en) Filter, chemical heat storage reactor, and chemical heat storage system
JP2011196661A (en) Heat accumulator
JP2009203444A (en) Chemical heat accumulation material composite body
JP6613931B2 (en) Reactor body manufacturing method
JP5749050B2 (en) Chemical regenerator and manufacturing method thereof
JP5719649B2 (en) Chemical regenerator and manufacturing method thereof
JP5719660B2 (en) Chemical regenerator and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130612

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130814

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140516

R150 Certificate of patent or registration of utility model

Ref document number: 5547896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees