[go: up one dir, main page]

JP5370834B2 - Continuous steam heating method for food and continuous steam heating apparatus for food - Google Patents

Continuous steam heating method for food and continuous steam heating apparatus for food Download PDF

Info

Publication number
JP5370834B2
JP5370834B2 JP2009158675A JP2009158675A JP5370834B2 JP 5370834 B2 JP5370834 B2 JP 5370834B2 JP 2009158675 A JP2009158675 A JP 2009158675A JP 2009158675 A JP2009158675 A JP 2009158675A JP 5370834 B2 JP5370834 B2 JP 5370834B2
Authority
JP
Japan
Prior art keywords
steam
flow rate
measured
limit value
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009158675A
Other languages
Japanese (ja)
Other versions
JP2011010926A (en
Inventor
隆 丸山
昌彦 佐々木
俊一 住岡
優 岡村
雄一郎 荒木
匠 平賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamazaki Baking Co ltd
Original Assignee
Yamazaki Baking Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamazaki Baking Co ltd filed Critical Yamazaki Baking Co ltd
Priority to JP2009158675A priority Critical patent/JP5370834B2/en
Publication of JP2011010926A publication Critical patent/JP2011010926A/en
Application granted granted Critical
Publication of JP5370834B2 publication Critical patent/JP5370834B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Confectionery (AREA)
  • Commercial Cooking Devices (AREA)

Description

本発明は、例えば、饅頭,蒸しパン,和風中華菓子などの食品を蒸気で加熱する方法及び装置に係り、特に、蒸し機内部で食品を運行しながら蒸し機内部に蒸気を供給し食品を連続的に蒸気加熱する食品の連続蒸気加熱方法及び食品の連続蒸気加熱装置に関する。   The present invention relates to a method and apparatus for heating food such as buns, steamed bread, Japanese-style Chinese confectionery with steam, and in particular, supplying steam to the inside of the steamer while operating the food inside the steamer. TECHNICAL FIELD The present invention relates to a method for continuously steaming food that is steam-heated and a continuous steam heating apparatus for food.

従来、この種の食品の連続蒸気加熱装置としては、例えば、本願出願人の提案に係る特許文献1(特許第3545703号公報)に掲載された技術が知られている。これは、図11に示すように、運行式の蒸し機100の内部で食品を運行させながら蒸気供給手段の吐出部から所定温度の蒸気を供給して連続的に蒸気加熱するトンネル式とバーチカル式の複合スチーマーである。蒸し機100は、トレー103を介して搬送される食品を低温蒸しするトンネル式の前室104及び前室104から搬送された食品を高温蒸しするバーチカル式の本体105とを備えている。前室104においては、トレー103を水平方向に搬送する運行手段としてのコンベア102Aを備え、本体105においては、トレー103を垂直方向に上昇させた後下降させ、再びコンベア102Aに受け渡して出口から排出させる運行手段としてのコンベア102Bを備えている。   Conventionally, as a continuous steam heating apparatus for this type of food, for example, a technique described in Patent Document 1 (Japanese Patent No. 3545703) related to the proposal of the present applicant is known. As shown in FIG. 11, this is a tunnel type and vertical type in which steam is continuously heated by supplying steam at a predetermined temperature from the discharge part of the steam supply means while operating the food inside the operation-type steamer 100. Is a combined steamer. The steamer 100 includes a tunnel-type front chamber 104 that steams food conveyed via the tray 103 at a low temperature and a vertical-type main body 105 that steams food conveyed from the front chamber 104 at a high temperature. The front chamber 104 is provided with a conveyor 102A as an operation means for transporting the tray 103 in the horizontal direction. In the main body 105, the tray 103 is moved up in the vertical direction and then lowered, delivered again to the conveyor 102A, and discharged from the outlet. A conveyor 102B is provided as operating means.

前室104において、コンベア102Aの下方にはそれぞれ複数個の蒸気の吐出管101が設けられており、各吐出管101からの蒸気供給量はバルブ(図示せず)の開度を調節することにより変更可能に構成されている。吐出管101は、コンベア102Aの走行方向に沿って3個配設されている。また、前室104には前室104内の蒸気を冷却し製品の急激な温度上昇を防止する空気を供給する空気管106が設けられている。
本体105において、下方及び上方には複数個の蒸気の吐出管101が設けられており、各吐出管101からの蒸気供給量はバルブ(図示せず)の開度を調節することにより変更可能に構成されている。吐出管101は、下方に2個並設され、上方に1個配設されている。
In the front chamber 104, a plurality of steam discharge pipes 101 are provided below the conveyor 102A, and the amount of steam supplied from each discharge pipe 101 is adjusted by adjusting the opening of a valve (not shown). It is configured to be changeable. Three discharge pipes 101 are arranged along the traveling direction of the conveyor 102A. The front chamber 104 is provided with an air pipe 106 that supplies air that cools the vapor in the front chamber 104 and prevents a rapid temperature rise of the product.
The main body 105 is provided with a plurality of steam discharge pipes 101 below and above, and the amount of steam supplied from each discharge pipe 101 can be changed by adjusting the opening of a valve (not shown). It is configured. Two discharge pipes 101 are juxtaposed in the lower part and one in the upper part.

この従来の連続蒸気加熱装置において、蒸し機により大量の食品を運行しながら蒸気加熱する場合には、熟練者(人)が製造現場で蒸し機内部の温度変化を見たり、目視により食品の蒸され具合を確認しながら、また、食品毎の特性を考慮しながら、複数の蒸気供給量調整用のバルブを人手で開閉させて蒸気供給量を微妙に増減させることにより調整を行っている。   In this conventional continuous steam heating device, when steam heating is performed while operating a large amount of food with a steamer, a skilled person (person) sees the temperature change inside the steamer at the manufacturing site or visually checks the steaming of the food. While confirming the condition, and taking into account the characteristics of each food, adjustment is performed by manually opening and closing a plurality of steam supply amount adjusting valves to slightly increase or decrease the steam supply amount.

また、従来においては、例えば特許文献2(特公平64−1128号公報)に記載された技術もある。この技術も、上記と同様に、バルブの開閉操作は人手で行ない、あるいは、予めバルブの開閉条件を蒸し製品毎に記憶装置に記憶させておき、蒸し製品の選択にもとづきバルブ設定を行なっている。しかしながら、この特許文献2には、各食品に適した蒸気加熱条件を安定的に維持するための蒸気供給を行えるようなバルブ開閉制御について全く開示がない。   Conventionally, for example, there is a technique described in Patent Document 2 (Japanese Patent Publication No. 64-1128). In this technique, the valve opening / closing operation is manually performed as described above, or the valve opening / closing conditions are stored in advance in a storage device for each steamed product, and the valve is set based on the selection of the steamed product. . However, this Patent Document 2 does not disclose any valve opening / closing control capable of supplying steam for stably maintaining steam heating conditions suitable for each food.

そのため、供給蒸気流量を調整するための具体的なバルブ開閉制御を検討する必要がある。従来においては、蒸し機により供給蒸気流量を調整して蒸気加熱する方法としては、例えば、特許文献3(特開昭63−254320号公報)に記載された技術がある。これは、蒸し機内部の温度(=食品の雰囲気温度)が一定となるように、蒸し機内部の温度変化に応じて、蒸気ヒータをオン,オフして自動的に蒸気供給を行ったり、停止させたりすることが開示されている。   Therefore, it is necessary to examine specific valve opening / closing control for adjusting the supply steam flow rate. Conventionally, as a method of steam heating by adjusting the supply steam flow rate with a steamer, for example, there is a technique described in Patent Document 3 (Japanese Patent Laid-Open No. 63-254320). In order to keep the temperature inside the steamer (= atmosphere temperature of the food) constant, the steam heater is automatically turned on and off according to the temperature change inside the steamer, and steam supply is automatically stopped or stopped. Is disclosed.

特許第3545703号公報Japanese Patent No. 3545703 特公平64−1128号No. 64-1128 特開昭63−254320号公報JP-A-63-254320

しかしながら、上記従来(特許文献3)の温度制御においては、温度のみを検知して、蒸気供給量を調整しているが、一般に、製造ラインにより連続的に蒸気加熱する場合には、蒸し機内部の温度(=食品の加熱雰囲気温度)のみを検知することにより、当該食品に適した蒸気加熱条件となっているか(=当該食品に作用する蒸気の熱量となっているか)を把握することは困難であるという問題がある。例えば、熱風だけで加熱して温度が95℃の場合と蒸気加熱により温度が95℃の場合では、内部の加熱状況が全く異なり、後者の方がかなり多くの熱量で加熱することができる。
又、上記特許文献3の蒸気ヒータはオン,オフの制御なので、製造ラインにより連続的に蒸気加熱する場合には、蒸気供給量が不足したり、あるいは、過剰になってしまうことがあり、そのため、例えば、供給量が不足する場合には、蒸し機内全体について適正な加熱状態となるまでに時間がかかり、また、蒸し機内で蒸される食品を全て同様の蒸気加熱条件で蒸気加熱し続けることが困難になる場合が出てきて好ましくないという問題もあった。
そして、これらの問題は、搬送される食品が多いほど、深刻となる。例えば、大量の食品が運び込まれた場合に、蒸し機内の温度が急激に低下する。また、運行しながらの蒸気加熱なので、運行される食品と一緒に、一定量の蒸気も移動され、特定の場所に一定の熱量を維持することは容易ではないことになる。
However, in the above conventional temperature control (Patent Document 3), only the temperature is detected and the steam supply amount is adjusted. In general, when steam is continuously heated by the production line, the inside of the steamer It is difficult to know whether the steam heating conditions are appropriate for the food (= the amount of heat of steam acting on the food) by detecting only the temperature (= the heating atmosphere temperature of the food) There is a problem that. For example, when the temperature is 95 ° C. by heating only with hot air and when the temperature is 95 ° C. by steam heating, the internal heating state is completely different, and the latter can be heated with a considerably larger amount of heat.
Moreover, since the steam heater of the above-mentioned patent document 3 is on / off control, the steam supply amount may be insufficient or excessive when steam is continuously heated by the production line. For example, when the supply amount is insufficient, it takes time until the whole steamer is properly heated, and all the foods steamed in the steamer are steam-heated under the same steam heating conditions. There is also a problem that it is not preferable because it may become difficult.
And these problems become more serious as more food is transported. For example, when a large amount of food is brought in, the temperature in the steamer rapidly decreases. In addition, since the steam is heated during operation, a certain amount of steam is moved along with the food to be operated, and it is not easy to maintain a certain amount of heat in a specific place.

また、温度のみを検知して蒸気量を調整しようとしても、蒸し機の規模が大きくなるほど、蒸気加熱を一定化させることが難しく、少なくとも一時的に過剰に加熱される食品や、逆に加熱不足となる食品が必ず相当量発生する。たとえ一時的とはいえ、過剰に加熱される場合も、加熱不足となる場合であっても、蒸し食品の品質に大きなダメージを与え、その商品価値が大きく損なわれてしまう。それ故、上述したとおり、これまでは熟練者(人)が製造現場に常駐して目視により蒸気加熱後の食品の蒸され具合を確認して、事後的に人手で蒸気供給量を微妙に増減させることにより調整をしていたのである。   Also, even if it is attempted to adjust the amount of steam only by detecting the temperature, the larger the steamer, the more difficult it is to make the steam heating constant. At least temporarily, food that is excessively heated, or conversely, insufficient heating A considerable amount of food will be generated. Even if it is temporary, even if it is overheated or underheated, the quality of the steamed food will be greatly damaged, and its commercial value will be greatly impaired. Therefore, as described above, until now, a skilled person (person) stays at the manufacturing site and visually confirms the steamed state of the food after steam heating. It was adjusted by doing.

本発明は、これらの課題に鑑みてなされたもので、蒸し機により複数の食品を運行しながら連続的に蒸気加熱する場合に、熟練者が現場にいる必要がない、自動的な食品の連続蒸気加熱方法及び装置を提供することを目的とするものである。また、追加的な大がかりで複雑な設備やコストを要することもなく、自動的に蒸気量を調整して極端な加熱状態の変化を抑制して、一定の熱量をすべての食品に同様に付与し続けることが可能な、食品の連続蒸気加熱方法及び装置を提供することを目的とするものである。   The present invention has been made in view of these problems, and it is not necessary for a skilled person to be in the field when continuous steam heating is performed while operating a plurality of foods by a steamer. An object of the present invention is to provide a steam heating method and apparatus. In addition, the amount of steam is automatically adjusted to prevent changes in extreme heating conditions without requiring additional scale and complicated equipment and costs, and a constant amount of heat is similarly applied to all foods. It is an object of the present invention to provide a continuous steam heating method and apparatus for food that can be continued.

このような目的を達成するための本発明の食品の連続蒸気加熱方法は、運行式の蒸し機内部で食品を運行させながら蒸気供給手段の吐出部から所定温度の蒸気を供給して連続的に蒸気加熱する方法において、
前記蒸し機内部の加熱雰囲気温度及び前記蒸気供給手段の吐出部から供給される蒸気流量を連続的に測定しながら、該温度及び蒸気流量の測定値に対応して、該蒸気供給手段により供給する蒸気流量を自動的に連続して調整する構成としている。
In order to achieve such an object, the continuous steam heating method for food according to the present invention continuously supplies steam at a predetermined temperature from the discharge part of the steam supply means while operating the food inside the operation steamer. In the method of steam heating,
While the heating atmosphere temperature inside the steamer and the flow rate of steam supplied from the discharge part of the steam supply means are continuously measured, the steam supply means supplies the temperature and the flow rate of the steam corresponding to the measured values. The steam flow rate is automatically and continuously adjusted.

これにより、蒸し機で食品が連続的に蒸気加熱されると、蒸し機内部の加熱雰囲気温度及び蒸気供給手段の吐出部から供給される供給蒸気流量が連続的に測定され、温度及び蒸気流量の測定値に対応して、蒸気供給手段により供給する蒸気流量が自動的に調整され、制御され、蒸し機内で蒸される食品を全て同様の適切な蒸気加熱条件で蒸気加熱し続けることができ、品質の維持を図ることができるようになる。特に、多数の食品を運行しながら連続的に蒸気加熱する場合に、好適である。   Thereby, when food is continuously steam-heated by the steamer, the heating atmosphere temperature inside the steamer and the supply steam flow rate supplied from the discharge part of the steam supply means are continuously measured, and the temperature and steam flow rate Corresponding to the measured value, the steam flow supplied by the steam supply means is automatically adjusted and controlled, and all the food steamed in the steamer can be continuously steam-heated under the same appropriate steam heating conditions, The quality can be maintained. In particular, it is suitable when steam is continuously heated while operating a large number of foods.

そして、必要に応じ、予め、前記加熱雰囲気温度の最適値範囲を設定し、又、前記蒸気流量の基準値を設定するとともに、当該蒸気流量の基準値を基準にして上限値及び下限値を設定し、当該加熱雰囲気温度の測定値がその最適値範囲にあるか否か、及び測定蒸気流量がその下限値から上限値までの範囲にあるか否かに応じて、前記雰囲気温度測定値が前記最適値範囲内になるように、且つ、前記測定蒸気流量が下限値から上限値までの範囲内になるように、前記蒸気供給手段により供給する蒸気流量を調整する構成としている。
これにより、例えば、測定温度が最適値範囲より高く、蒸気流量を減少させる場合には、前記従来の技術では、蒸気流量を繰り返し減少させ、減少させすぎて蒸気量が不足する事態が生じるおそれがあるが、本発明では、蒸気流量が下限値以上になるように蒸気流量を調整するので、測定温度が最適値範囲より高いときに蒸気流量を減少させる場合であっても、蒸気流量を減少させすぎない範囲で制御するか、又はこれを維持するような制御を行なうことができるようになり、蒸気流量が不足する事態が未然に防止され、蒸し機内で蒸される食品を全て同様の適切な蒸気加熱条件で蒸気加熱し続けることができ、品質の維持を図ることができるようになる。
また、逆に、測定温度が最適値範囲より低く、蒸気流量を増加させる場合には、前記従来の技術では、蒸気流量を繰り返し増加させ、増加させすぎて蒸気量が過剰になる事態が生じるおそれがあるが、本発明では、蒸気流量が上限値以下になるように蒸気流量を調整するので、測定温度が最適値範囲より低いときに蒸気流量を増加させる場合であっても、蒸気流量を増加させすぎない範囲で制御するか、又はこれを維持するような制御を行なうことができるようになり、蒸気流量が過剰になる事態が未然に防止され、蒸し機内で蒸される食品を全て同様の適切な蒸気加熱条件で蒸気加熱し続けることができ、品質の維持を図ることができるようになる。
なお、本発明において「下限値から上限値まで」の「下限値から」とは、「下限値以上」又は「下限値より多い」ことを意味し、また、「上限値まで」とは、「上限値以下」又は「上限値より少ない」ことを意味する。すなわち、蒸気流量の測定値が上限値又は下限値と同じときを「下限値から上限値まで」に含むように制御するか、「下限値から上限値まで」に含まないように制御するかは任意である。さらに、上限値又は下限値のどちらか一方だけを「下限値から上限値まで」に含めてもよく、例えば、下限値よりも多く上限値以下となるように(上限値のみを「下限値から上限値まで」に含めて)制御してもよい。
Then, if necessary, an optimum value range of the heating atmosphere temperature is set in advance, a reference value of the steam flow rate is set, and an upper limit value and a lower limit value are set based on the reference value of the steam flow rate. Depending on whether the measured value of the heating ambient temperature is in the optimum value range and whether the measured steam flow rate is in the range from the lower limit value to the upper limit value, the measured ambient temperature value is The steam flow supplied by the steam supply means is adjusted so that the measured steam flow rate falls within the range from the lower limit value to the upper limit value so as to be within the optimum value range.
Thereby, for example, when the measured temperature is higher than the optimum value range and the steam flow rate is decreased, the conventional technique may repeatedly reduce the steam flow rate and cause a situation where the steam amount becomes insufficient due to excessive decrease. However, in the present invention, since the steam flow rate is adjusted so that the steam flow rate is equal to or higher than the lower limit value, even when the steam flow rate is decreased when the measured temperature is higher than the optimum value range, the steam flow rate is reduced. It is possible to control within a range that is not too much, or control to maintain this, so that the situation where the steam flow rate is insufficient is prevented, and all foods that are steamed in the steamer are similarly appropriate. Steam heating can be continued under steam heating conditions, and quality can be maintained.
Conversely, when the measured temperature is lower than the optimum value range and the steam flow rate is increased, the conventional technique may repeatedly increase the steam flow rate, and may increase the steam amount excessively. However, in the present invention, since the steam flow rate is adjusted so that the steam flow rate is not more than the upper limit value, the steam flow rate is increased even when the steam flow rate is increased when the measured temperature is lower than the optimum value range. It will be possible to control within a range that does not allow too much or to maintain this, and it will be possible to prevent the situation where the steam flow becomes excessive, and all the foods steamed in the steamer will be similar. Steam heating can be continued under appropriate steam heating conditions, and quality can be maintained.
In the present invention, “from the lower limit value” of “from the lower limit value to the upper limit value” means “more than the lower limit value” or “more than the lower limit value”, and “up to the upper limit value” means “ It means “below the upper limit value” or “less than the upper limit value”. That is, whether the measured value of the steam flow rate is the same as the upper limit value or the lower limit value is controlled to include “from the lower limit value to the upper limit value” or not to be included in “from the lower limit value to the upper limit value”. Is optional. Furthermore, only one of the upper limit value and the lower limit value may be included in “from the lower limit value to the upper limit value”. For example, the upper limit value is changed from the lower limit value to the upper limit value more than the lower limit value. It may be controlled (including “up to the upper limit”).

また、具体的な蒸気流量の調整方法として、必要に応じ、A)測定蒸気流量が下限値より少ない場合、B)測定蒸気流量が下限値に等しく、且つ、測定温度が最適値下限より低い場合、C)測定蒸気流量が下限値に等しく、且つ、測定温度が最適値上限より高い場合、D)測定蒸気流量が下限値に等しく、且つ、測定温度が測定温度が最適値範囲内にある場合、E)測定蒸気流量が上限値より多い場合、F)測定蒸気流量が上限値に等しく、且つ、測定温度が最適値下限より低い場合、G)測定蒸気流量が上限値に等しく、且つ、測定温度が最適値上限より高い場合、H)測定蒸気流量が上限値に等しく、且つ、測定温度が測定温度が最適値範囲内にある場合、I)測定蒸気流量が下限値より多く、上限値より少ない範囲内にあり、且つ、測定温度が最適値下限より低い場合、J)測定蒸気流量が下限値より多く、上限値より少ない範囲内にあり、且つ、測定温度が最適値上限より高い場合、K)測定蒸気流量が下限値より多く、上限値より少ない範囲内にあり、且つ、測定温度が最適値範囲内にある場合、の各場合のうち、C)、D)、F)、H)又はK)の場合、その時点の蒸気流量を維持し、A)、B)又はI)の場合、蒸気流量を所定量増加させ、E)、G)又はJ)の場合、蒸気流量を所定量減少させるように、前記蒸気流量の調整を一定時間ごとに行い、これを繰り返す構成としている。
これにより、蒸気流量が下限値から上限値までの範囲に維持されるように、上記の蒸気流量の調整を行い、測定温度が最適値上限よりも高い場合に蒸気流量を減少させすぎて蒸気流量が不足する事態が未然に防止され、かつ、測定温度が最適値下限よりも低い場合に蒸気流量を増加させすぎて蒸気流量が過剰になる事態が未然に防止され、確実に蒸し機内の食品全体を均一かつ適正な蒸気量で蒸気加熱し続けることができ、品質の維持を図ることができるようになる。
なお、より具体的には、前記蒸気流量の調整を以下のI)、II)のように行うとよい。
Also, as a specific method for adjusting the steam flow rate, if necessary, A) When the measured steam flow rate is less than the lower limit value, B) When the measured steam flow rate is equal to the lower limit value, and the measurement temperature is lower than the optimum lower limit value C) When the measured steam flow rate is equal to the lower limit value and the measured temperature is higher than the optimum upper limit value, D) When the measured steam flow rate is equal to the lower limit value, and the measured temperature is within the optimum value range E) When the measured steam flow rate is higher than the upper limit value, F) When the measured steam flow rate is equal to the upper limit value, and when the measurement temperature is lower than the lower limit optimum value, G) The measured steam flow rate is equal to the upper limit value and measured. If the temperature is higher than the upper limit of the optimum value H) If the measured steam flow rate is equal to the upper limit value and the measured temperature is within the optimum value range, I) If the measured steam flow rate is greater than the lower limit value, Within a small range and When the temperature is lower than the optimum lower limit, J) When the measured steam flow rate is within the range lower than the upper limit value and lower than the upper limit value, and when the measured temperature is higher than the optimum upper limit value, K) The measured steam flow rate is lower than the lower limit value. In the case of C), D), F), H) or K) among the cases where there are many and within the range lower than the upper limit value and the measured temperature is within the optimum value range, In the case of A), B) or I), the steam flow rate is increased by a predetermined amount, and in the case of E), G) or J), the steam flow rate is decreased so as to decrease by a predetermined amount. Adjustment is performed at regular intervals, and this is repeated.
As a result, the steam flow rate is adjusted so that the steam flow rate is maintained in the range from the lower limit value to the upper limit value, and when the measured temperature is higher than the optimum upper limit value, the steam flow rate is reduced too much. When the measured temperature is lower than the lower limit of the optimum value, it is possible to prevent the situation where the steam flow rate is excessively increased and the steam flow rate becomes excessive. The steam can be continuously heated with a uniform and appropriate amount of steam, and the quality can be maintained.
More specifically, the steam flow rate may be adjusted as in the following I) and II).

I)
i)測定流量が下限値以上か否かについて、下限値より少ないと判断した場合、
ii)先ず、測定流量が下限値以上か否かについて、下限値以上と判断し、次に、測定流量が下限値と等しいか否かについて、下限値と等しいと判断し、その次に、測定温度が最適値下限以上か否かについて、最適値下限よりも低いと判断した場合、
iii)先ず、測定流量が下限値以上か否かについて、下限値以上と判断し、次に、測定流量が下限値と等しいか否かについて、下限値と等しいと判断し、その次に、測定温度が最適値下限以上か否かについて、最適値下限以上と判断し、その次に、測定温度が最適値上限以下か否かについて、最適値上限よりも高いと判断した場合、
iv)先ず、測定流量が下限値以上か否かについて、下限値以上と判断し、次に、測定流量が下限値と等しいか否かについて、下限値と等しいと判断し、その次に、測定温度が最適値下限以上か否かについて、最適値下限以上と判断し、その次に、測定温度が最適値上限以下か否かについて、最適値上限以下と判断した場合、
v)先ず、測定流量が下限値以上か否かについて、下限値以上と判断し、次に、測定流量が下限値と等しいか否かについて、下限値と等しくないと判断し、その次に、測定流量が上限値以下か否かについて、上限値より多いと判断した場合、
vi)先ず、測定流量が下限値以上か否かについて、下限値以上と判断し、次に、測定流量が下限値と等しいか否かについて、下限値と等しくないと判断し、その次に、測定流量が上限値以下か否かについて、上限値以下と判断し、その次に、測定流量が上限値と等しいか否かについて、上限値と等しいと判断し、その次に、測定温度が最適値下限以上か否かについて、最適値下限よりも低いと判断した場合、
vii)先ず、測定流量が下限値以上か否かについて、下限値以上と判断し、次に、測定流量が下限値と等しいか否かについて、下限値と等しくないと判断し、その次に、測定流量が上限値以下か否かについて、上限値以下と判断し、その次に、測定流量が上限値と等しいか否かについて、上限値と等しいと判断し、その次に、測定温度が最適値下限以上か否かについて、最適値下限以上と判断し、その次に、測定温度が最適値上限以下か否かについて、最適値上限よりも高いと判断した場合、
viii)先ず、測定流量が下限値以上か否かについて、下限値以上と判断し、次に、測定流量が下限値と等しいか否かについて、下限値と等しくないと判断し、その次に、測定流量が上限値以下か否かについて、上限値以下と判断し、その次に、測定流量が上限値と等しいか否かについて、上限値と等しいと判断し、その次に、測定温度が最適値下限以上か否かについて、最適値下限以上と判断し、その次に、測定温度が最適値上限以下か否かについて、最適値上限以下と判断した場合、
ix)先ず、測定流量が下限値以上か否かについて、下限値以上と判断し、次に、測定流量が下限値と等しいか否かについて、下限値と等しくないと判断し、その次に、測定流量が上限値以下か否かについて、上限値以下と判断し、その次に、測定流量が上限値と等しいか否かについて、上限値と等しくないと判断し、その次に、測定温度が最適値下限以上か否かについて、最適値下限よりも低いと判断した場合、
x)先ず、測定流量が下限値以上か否かについて、下限値以上と判断し、次に、測定流量が下限値と等しいか否かについて、下限値と等しくないと判断し、その次に、測定流量が上限値以下か否かについて、上限値以下と判断し、その次に、測定流量が上限値と等しいか否かについて、上限値と等しくないと判断し、その次に、測定温度が最適値下限以上か否かについて、最適値下限以上と判断し、その次に、測定温度が最適値上限以下か否かについて、最適値上限よりも高いと判断した場合、
xi)先ず、測定流量が下限値以上か否かについて、下限値以上と判断し、次に、測定流量が下限値と等しいか否かについて、下限値と等しくないと判断し、その次に、測定流量が上限値以下か否かについて、上限値以下と判断し、その次に、測定流量が上限値と等しいか否かについて、上限値と等しくないと判断し、その次に、測定温度が最適値下限以上か否かについて、最適値下限以上と判断し、その次に、測定温度が最適値上限以下か否かについて、最適値上限以下と判断した場合、
iii)、iv)、vi)、viii)又はxi)の場合、その時点の蒸気流量を維持し、
i)、ii)、ix)、の場合、蒸気流量を所定量増加させ、
v)、vii)、x)の場合、蒸気流量を所定量減少させるように、
前記蒸気流量の調整を一定時間ごとに行い、これを繰り返す構成(図5(ア)及び図6に示すフローチャート参照)。
I)
i) If it is determined that the measured flow rate is less than or equal to the lower limit value,
ii) First, whether or not the measured flow rate is equal to or higher than the lower limit value is determined to be equal to or higher than the lower limit value. Next, whether or not the measured flow rate is equal to the lower limit value is determined to be equal to the lower limit value. If it is determined that the temperature is lower than the optimum lower limit,
iii) First, whether or not the measured flow rate is equal to or greater than the lower limit value is determined to be equal to or greater than the lower limit value, and then whether or not the measured flow rate is equal to the lower limit value is determined to be equal to the lower limit value. If it is determined that the temperature is equal to or higher than the lower limit of the optimum value, whether the temperature is equal to or higher than the lower limit of the optimum value.
iv) First, whether or not the measured flow rate is equal to or greater than the lower limit value is determined to be equal to or greater than the lower limit value, and then whether or not the measured flow rate is equal to the lower limit value is determined to be equal to the lower limit value. If it is determined that the temperature is not less than the optimum lower limit, whether the temperature is not less than the optimum lower limit, and then whether the measured temperature is not more than the optimum upper limit,
v) First, whether or not the measured flow rate is equal to or greater than the lower limit value is determined to be equal to or greater than the lower limit value, and then whether or not the measured flow rate is equal to the lower limit value is determined to be not equal to the lower limit value. If it is determined that the measured flow rate is less than or equal to the upper limit value,
vi) First, whether or not the measured flow rate is equal to or greater than the lower limit value is determined to be equal to or greater than the lower limit value, and then whether or not the measured flow rate is equal to the lower limit value is determined to be not equal to the lower limit value. Whether the measured flow rate is less than or equal to the upper limit value is determined to be less than or equal to the upper limit value, and then whether or not the measured flow rate is equal to the upper limit value is determined to be equal to the upper limit value, and then the measured temperature is optimal If it is determined that the value is lower than the lower limit of the optimal value,
vii) First, whether or not the measured flow rate is equal to or greater than the lower limit value is determined to be equal to or greater than the lower limit value, and then whether or not the measured flow rate is equal to the lower limit value is determined to be not equal to the lower limit value. Whether the measured flow rate is less than or equal to the upper limit value is determined to be less than or equal to the upper limit value, and then whether or not the measured flow rate is equal to the upper limit value is determined to be equal to the upper limit value, and then the measured temperature is optimal If it is determined that the temperature is lower than the lower limit, whether it is higher than the lower limit, and then whether the measured temperature is lower than the upper limit of the optimal value,
viii) First, whether or not the measured flow rate is equal to or greater than the lower limit value is determined to be equal to or greater than the lower limit value, and then whether or not the measured flow rate is equal to the lower limit value is determined to be not equal to the lower limit value. Whether the measured flow rate is less than or equal to the upper limit value is determined to be less than or equal to the upper limit value, and then whether or not the measured flow rate is equal to the upper limit value is determined to be equal to the upper limit value, and then the measured temperature is optimal If it is determined that the temperature is lower than the lower limit, whether it is equal to or lower than the lower limit, and then whether the measured temperature is lower than the upper limit,
ix) First, whether or not the measured flow rate is equal to or greater than the lower limit value is determined to be equal to or greater than the lower limit value, and then whether or not the measured flow rate is equal to the lower limit value is determined to be not equal to the lower limit value. Whether or not the measured flow rate is less than or equal to the upper limit value is determined to be less than or equal to the upper limit value, and then whether or not the measured flow rate is equal to the upper limit value is determined to be not equal to the upper limit value, and then the measured temperature is If it is determined that the value is lower than the optimum lower limit,
x) First, whether or not the measured flow rate is equal to or greater than the lower limit value is determined to be equal to or greater than the lower limit value, and then whether or not the measured flow rate is equal to the lower limit value is determined to be not equal to the lower limit value. Whether or not the measured flow rate is less than or equal to the upper limit value is determined to be less than or equal to the upper limit value, and then whether or not the measured flow rate is equal to the upper limit value is determined to be not equal to the upper limit value, and then the measured temperature is If it is determined whether or not the optimum value lower limit is exceeded or not, then if the measured temperature is less than or equal to the optimum value upper limit, it is determined that the measured temperature is higher than the optimum value upper limit.
xi) First, whether or not the measured flow rate is equal to or greater than the lower limit value is determined to be equal to or greater than the lower limit value, and then whether or not the measured flow rate is equal to the lower limit value is determined to be not equal to the lower limit value. Whether or not the measured flow rate is less than or equal to the upper limit value is determined to be less than or equal to the upper limit value, and then whether or not the measured flow rate is equal to the upper limit value is determined to be not equal to the upper limit value, and then the measured temperature is If it is determined that the optimum value is lower than the optimum value lower limit or not, and then whether the measurement temperature is less than the optimum value upper limit or not is judged to be less than the optimum value upper limit,
In the case of iii), iv), vi), viii) or xi), maintain the current steam flow rate,
i), ii), ix), the steam flow rate is increased by a predetermined amount,
In the case of v), vii), x), the steam flow rate is decreased by a predetermined amount,
A configuration in which the steam flow rate is adjusted at regular intervals and this is repeated (see the flowcharts shown in FIGS. 5A and 6).

II)
i)測定流量が上限値以下か否かについて、上限値より多いと判断した場合、
ii)先ず、測定流量が上限値以下か否かについて、上限値以下と判断し、次に、測定流量が上限値と等しいか否かについて、上限値と等しいと判断し、その次に、測定温度が最適値下限以上か否かについて、最適値下限よりも低いと判断した場合、
iii)先ず、測定流量が上限値以下か否かについて、上限値以下と判断し、次に、測定流量が上限値と等しいか否かについて、上限値と等しいと判断し、その次に、測定温度が最適値下限以上か否かについて、最適値下限以上と判断し、その次に、測定温度が最適値上限以下か否かについて、最適値上限よりも高いと判断した場合、
iv)先ず、測定流量が上限値以下か否かについて、上限値以下と判断し、次に、測定流量が上限値と等しいか否かについて、上限値と等しいと判断し、その次に、測定温度が最適値下限以上か否かについて、最適値下限以上と判断し、その次に、測定温度が最適値上限以下か否かについて、最適値上限以下と判断した場合、
v)先ず、測定流量が上限値以下か否かについて、上限値以下と判断し、次に、測定流量が上限値と等しいか否かについて、上限値と等しくないと判断し、その次に、測定流量が上限値以下か否かについて、上限値より多いと判断した場合、
vi)先ず、測定流量が上限値以下か否かについて、上限値以下と判断し、次に、測定流量が上限値と等しいか否かについて、上限値と等しくないと判断し、その次に、測定流量が下限値以下か否かについて、下限値以下と判断し、その次に、測定流量が下限値と等しいか否かについて、下限値と等しいと判断し、その次に、測定温度が最適値下限以上か否かについて、最適値下限よりも低いと判断した場合、
vii)先ず、測定流量が上限値以下か否かについて、上限値以下と判断し、次に、測定流量が上限値と等しいか否かについて、上限値と等しくないと判断し、その次に、測定流量が下限値以下か否かについて、下限値以下と判断し、その次に、測定流量が下限値と等しいか否かについて、下限値と等しいと判断し、その次に、測定温度が最適値下限以上か否かについて、最適値下限以上と判断し、その次に、測定温度が最適値上限以下か否かについて、最適値上限よりも高いと判断した場合、
viii)先ず、測定流量が上限値以下か否かについて、上限値以下と判断し、次に、測定流量が上限値と等しいか否かについて、上限値と等しくないと判断し、その次に、測定流量が下限値以下か否かについて、下限値以下と判断し、その次に、測定流量が下限値と等しいか否かについて、下限値と等しいと判断し、その次に、測定温度が最適値下限以上か否かについて、最適値下限以上と判断し、その次に、測定温度が最適値上限以下か否かについて、最適値上限以下と判断した場合、
ix)先ず、測定流量が上限値以下か否かについて、上限値以下と判断し、次に、測定流量が上限値と等しいか否かについて、上限値と等しくないと判断し、その次に、測定流量が下限値以下か否かについて、下限値以下と判断し、その次に、測定流量が下限値と等しいか否かについて、下限値と等しくないと判断し、その次に、測定温度が最適値下限以上か否かについて、最適値下限よりも低いと判断した場合、
x)先ず、測定流量が上限値以下か否かについて、上限値以下と判断し、次に、測定流量が上限値と等しいか否かについて、上限値と等しくないと判断し、その次に、測定流量が下限値以下か否かについて、下限値以下と判断し、その次に、測定流量が下限値と等しいか否かについて、下限値と等しくないと判断し、その次に、測定温度が最適値下限以上か否かについて、最適値下限以上と判断し、その次に、測定温度が最適値上限以下か否かについて、最適値上限よりも高いと判断した場合、
xi)先ず、測定流量が上限値以下か否かについて、上限値以下と判断し、次に、測定流量が上限値と等しいか否かについて、上限値と等しくないと判断し、その次に、測定流量が下限値以下か否かについて、下限値以下と判断し、その次に、測定流量が下限値と等しいか否かについて、下限値と等しくないと判断し、その次に、測定温度が最適値下限以上か否かについて、最適値下限以上と判断し、その次に、測定温度が最適値上限以下か否かについて、最適値上限以下と判断した場合、
ii)、iv)、vii)、viii)又はxi)の場合、その時点の蒸気流量を維持し、
v)、vi)、ix)、の場合、蒸気流量を所定量増加させ、
i)、iii)、x)の場合、蒸気流量を所定量減少させるように、
前記蒸気流量の調整を一定時間ごとに行い、これを繰り返す構成(図7(イ)に示すフローチャート参照)。
II)
i) If it is determined that the measured flow rate is less than or equal to the upper limit value,
ii) First, whether or not the measured flow rate is equal to or lower than the upper limit value is determined to be equal to or lower than the upper limit value. Next, whether or not the measured flow rate is equal to the upper limit value is determined to be equal to the upper limit value. If it is determined that the temperature is lower than the optimum lower limit,
iii) First, whether or not the measured flow rate is equal to or lower than the upper limit value is determined to be equal to or lower than the upper limit value. Next, whether or not the measured flow rate is equal to the upper limit value is determined to be equal to the upper limit value. If it is determined that the temperature is equal to or higher than the lower limit of the optimum value, whether the temperature is equal to or higher than the lower limit of the optimum value.
iv) First, whether or not the measured flow rate is equal to or lower than the upper limit value is determined to be equal to or lower than the upper limit value. Next, whether or not the measured flow rate is equal to the upper limit value is determined to be equal to the upper limit value. If it is determined that the temperature is not less than the optimum lower limit, whether the temperature is not less than the optimum lower limit, and then whether the measured temperature is not more than the optimum upper limit,
v) First, whether or not the measured flow rate is equal to or lower than the upper limit value is determined to be equal to or lower than the upper limit value. Next, whether or not the measured flow rate is equal to the upper limit value is determined to be not equal to the upper limit value. If it is determined that the measured flow rate is less than or equal to the upper limit value,
vi) First, whether or not the measured flow rate is equal to or lower than the upper limit value is determined to be equal to or lower than the upper limit value. Next, whether or not the measured flow rate is equal to the upper limit value is determined to be not equal to the upper limit value. Whether or not the measured flow rate is less than or equal to the lower limit value is determined to be less than or equal to the lower limit value, and then whether or not the measured flow rate is equal to the lower limit value is determined to be equal to the lower limit value, and then the measurement temperature is optimal If it is determined that the value is lower than the lower limit of the optimal value,
vii) First, whether or not the measured flow rate is equal to or lower than the upper limit value is determined to be equal to or lower than the upper limit value. Next, whether or not the measured flow rate is equal to the upper limit value is determined to be not equal to the upper limit value. Whether or not the measured flow rate is less than or equal to the lower limit value is determined to be less than or equal to the lower limit value, and then whether or not the measured flow rate is equal to the lower limit value is determined to be equal to the lower limit value, and then the measurement temperature is optimal If it is determined that the temperature is lower than the lower limit, whether it is higher than the lower limit, and then whether the measured temperature is lower than the upper limit of the optimal value,
viii) First, whether or not the measured flow rate is equal to or lower than the upper limit value is determined to be equal to or lower than the upper limit value. Next, whether or not the measured flow rate is equal to the upper limit value is determined to be not equal to the upper limit value. Whether or not the measured flow rate is less than or equal to the lower limit value is determined to be less than or equal to the lower limit value, and then whether or not the measured flow rate is equal to the lower limit value is determined to be equal to the lower limit value, and then the measurement temperature is optimal If it is determined that the temperature is lower than the lower limit, whether it is equal to or lower than the lower limit, and then whether the measured temperature is lower than the upper limit,
ix) First, whether or not the measured flow rate is equal to or lower than the upper limit value is determined to be equal to or lower than the upper limit value. Next, whether or not the measured flow rate is equal to the upper limit value is determined to be not equal to the upper limit value. Whether or not the measured flow rate is less than or equal to the lower limit value is determined to be less than or equal to the lower limit value, and then whether or not the measured flow rate is equal to the lower limit value is determined to be not equal to the lower limit value, and then the measured temperature is If it is determined that the value is lower than the optimum lower limit,
x) First, whether or not the measured flow rate is equal to or lower than the upper limit value is determined to be equal to or lower than the upper limit value. Next, whether or not the measured flow rate is equal to the upper limit value is determined to be not equal to the upper limit value. Whether or not the measured flow rate is less than or equal to the lower limit value is determined to be less than or equal to the lower limit value, and then whether or not the measured flow rate is equal to the lower limit value is determined to be not equal to the lower limit value, and then the measured temperature is If it is determined whether or not the optimum value lower limit is exceeded or not, then if the measured temperature is less than or equal to the optimum value upper limit, it is determined that the measured temperature is higher than the optimum value upper limit.
xi) First, whether or not the measured flow rate is equal to or lower than the upper limit value is determined to be equal to or lower than the upper limit value. Next, whether or not the measured flow rate is equal to the upper limit value is determined to be not equal to the upper limit value. Whether or not the measured flow rate is less than or equal to the lower limit value is determined to be less than or equal to the lower limit value, and then whether or not the measured flow rate is equal to the lower limit value is determined to be not equal to the lower limit value, and then the measured temperature is If it is determined that the optimum value is lower than the optimum value lower limit or not, and then whether the measurement temperature is less than the optimum value upper limit or not is judged to be less than the optimum value upper limit,
In the case of ii), iv), vii), viii) or xi), maintain the current steam flow rate;
v), vi), ix), increase the steam flow rate by a predetermined amount,
In the case of i), iii) and x), the steam flow rate is decreased by a predetermined amount,
The steam flow rate is adjusted at regular intervals, and this is repeated (see the flowchart shown in FIG. 7A).

また、必要に応じ、前記蒸気供給手段の吐出部を前記蒸し機内部の複数箇所に設け、該複数箇所の吐出部を予め複数グループに分け、該グループ毎に加熱雰囲気温度の最適値範囲及び前記供給蒸気流量の基準値を設定して、前記供給手段により供給する蒸気流量を調整する構成としている。蒸し機内部の必要箇所毎に蒸気流量の調整ができるので、蒸し機内の食品に対する蒸気加熱環境をより細かく設定することができ、それだけ、確実に食品の品質の維持、向上を図ることができるようになる。   Further, if necessary, the steam supply means discharge portions are provided at a plurality of locations inside the steamer, the discharge portions at the plurality of locations are divided into a plurality of groups in advance, and an optimum value range of the heating atmosphere temperature for each group and the A reference value for the supply steam flow rate is set, and the steam flow rate supplied by the supply means is adjusted. Since the steam flow rate can be adjusted for each required location inside the steamer, the steam heating environment for the food in the steamer can be set in more detail, and the quality and quality of the food can be reliably maintained and improved. become.

更に、必要に応じ、前記供給蒸気流量の上限値を基準値の110%〜200%の範囲で、かつ、下限値を基準値の50〜90%の範囲で設定する構成としている。望ましくは、前記供給蒸気流量の上限値を基準値の120%〜180%の範囲で、かつ、下限値を基準値の70〜85%の範囲で設定する構成としている。蒸気流量の上限値から下限値までの範囲が適正になり、蒸し機内で蒸される食品が全て同様の適切な蒸気加熱条件で蒸気加熱し続けることができ、品質の維持を図ることができるようになる。   Furthermore, if necessary, the upper limit value of the supply steam flow rate is set in the range of 110% to 200% of the reference value, and the lower limit value is set in the range of 50 to 90% of the reference value. Preferably, the upper limit value of the supply steam flow rate is set in a range of 120% to 180% of a reference value, and the lower limit value is set in a range of 70 to 85% of the reference value. The range from the upper limit value to the lower limit value of the steam flow rate becomes appropriate, and all the foods steamed in the steamer can be continuously steam-heated under the same appropriate steam heating conditions, so that the quality can be maintained. become.

また、必要に応じ、前記加熱雰囲気温度の最適値範囲を100℃未満とする構成としている。すなわち、本発明の連続蒸気加熱方法は前記加熱雰囲気温度の最適値範囲を100℃未満とする場合に好適であり、例えば、比重が1未満、とりわけ0.3〜0.8の蒸し菓子生地を蒸気加熱して蒸し菓子を製造するために、85℃〜98℃、とりわけ90℃〜96℃の範囲で加熱雰囲気温度の最適値を設定して蒸気加熱する場合に特に好適である。   Moreover, it is set as the structure which makes the optimal value range of the said heating atmosphere temperature less than 100 degreeC as needed. That is, the continuous steam heating method of the present invention is suitable when the optimum range of the heating atmosphere temperature is less than 100 ° C. For example, a steamed confectionery dough having a specific gravity of less than 1, particularly 0.3 to 0.8. In order to produce steamed confectionery by steam heating, it is particularly suitable when steam heating is performed by setting an optimum value of the heating atmosphere temperature in the range of 85 ° C to 98 ° C, particularly 90 ° C to 96 ° C.

更にまた、必要に応じ、前記蒸し機の蒸気を該蒸し機内から蒸し機外へ流出させて加熱雰囲気温度を調整する蒸気流出調整モードを備えた構成としている。これにより、蒸し機の蒸気を蒸し機内から短時間で流出させて、蒸し機内の温度を急速に大きく下げることを行なうことができ、そのため、例えば、取り扱う食品の種類を変えるときなどは、単に蒸気の供給を減少させ、又は停止して調整するよりも効率的に蒸し機内の温度や蒸気加熱条件を変えたい場合に、例えば、蒸し機内の温度を急速に下げたい場合に、温度・蒸気流量等の設定変えを迅速に行うことができ、それだけ、製造効率が向上させられる。
また、必要に応じ、上述した食品の連続蒸気加熱方法による本制御モードと、該本制御モードに先立って蒸気流量を前記下限値から上限値までの範囲内に設定する予備制御モードとを備えた構成としている。予備制御モードにおいて、予め、蒸気流量を下限値から上限値までの範囲内に設定するので、その後の本制御モードにおいて、蒸気流量を下限値から上限値までの範囲内になるように制御しやすくすることができる。
Furthermore, it is configured to have a steam outflow adjustment mode for adjusting the heating atmosphere temperature by allowing the steam of the steamer to flow out of the steamer to the outside of the steamer as required. This allows steam in the steamer to flow out of the steamer in a short time and rapidly lowers the temperature in the steamer. For example, when changing the type of food to be handled, for example, If you want to change the temperature in the steamer or the steam heating conditions more efficiently than reducing or stopping the supply of steam, for example, if you want to rapidly reduce the temperature in the steamer, temperature, steam flow, etc. It is possible to change the setting quickly, and the manufacturing efficiency is improved accordingly.
In addition, the present control mode according to the above-described continuous steam heating method for food as necessary, and a preliminary control mode for setting the steam flow rate within the range from the lower limit value to the upper limit value prior to the main control mode. It is configured. In the preliminary control mode, the steam flow rate is set in the range from the lower limit value to the upper limit value in advance, so in the subsequent control mode, it is easy to control the steam flow rate to be in the range from the lower limit value to the upper limit value. can do.

また、上記の目的を達成するための本発明の食品の連続蒸気加熱装置は、食品を蒸す蒸し機と、該蒸し機内で食品を連続的に運行する食品運行手段と、前記蒸し機内に蒸気を供給する蒸気供給装置とを備える食品の連続蒸気加熱装置において、
前記蒸気供給装置を、所定温度の蒸気を発生させる蒸気発生器と、該蒸気発生器により発生した蒸気を蒸し機内に送給する蒸気送給管と、前記蒸し機内で蒸気送給管により送給された蒸気を吐出する吐出管と、該吐出管から吐出される蒸気流量を調整するための制御弁とを備えて構成し、
前記吐出管から吐出される蒸気量を測定する蒸気流量計を備え、
前記蒸し機内に、該蒸し機内部の加熱雰囲気温度を測定する温度センサを備え、
前記温度センサによる温度の測定値及び前記蒸気流量計による蒸気流量の測定値に対応して自動的に前記制御弁を開閉制御して蒸気流量を調整する流量制御装置を備えた構成としている。
The continuous steam heating apparatus for food of the present invention for achieving the above object includes a steamer for steaming food, a food operating means for continuously operating the food in the steamer, and steam in the steamer. In a continuous steam heating apparatus for food comprising a steam supply apparatus for supplying,
The steam supply device includes a steam generator that generates steam at a predetermined temperature, a steam feed pipe that feeds steam generated by the steam generator into the steamer, and a steam feed pipe that feeds the steam generated in the steamer. A discharge pipe that discharges the generated steam, and a control valve for adjusting the flow rate of the steam discharged from the discharge pipe,
A steam flow meter for measuring the amount of steam discharged from the discharge pipe;
In the steamer, provided with a temperature sensor for measuring the heating atmosphere temperature inside the steamer,
In accordance with the measured value of the temperature by the temperature sensor and the measured value of the steam flow rate by the steam flow meter, the control valve is automatically opened and closed to adjust the steam flow rate.

これにより、食品運行手段により食品が連続的に運行され、蒸気発生器により発生した蒸気を蒸気送給管により送給して蒸し機内において吐出管から蒸気が吐出され、食品が蒸気加熱されると、温度センサにより蒸し機内部の加熱雰囲気温度が測定されるとともに、蒸気流量計により吐出管から供給される供給蒸気流量が連続的に測定され、流量制御装置において、温度センサによる温度の測定値及び蒸気流量計による蒸気流量の測定値に対応して自動的に制御弁が開閉制御され、蒸気流量が調整されて制御される。従って、蒸し機内の食品全体を均一かつ適正な蒸気量で蒸気加熱し続けることができ、品質の維持を図ることができるようになる。特に、多数の食品を運行しながら連続的に蒸気加熱する場合に、好適である。   Thereby, when food is operated continuously by the food operation means, the steam generated by the steam generator is supplied by the steam supply pipe, the steam is discharged from the discharge pipe in the steamer, and the food is steam heated. In addition, the temperature sensor measures the heating atmosphere temperature inside the steamer, and the steam flow meter continuously measures the supply steam flow supplied from the discharge pipe. The control valve is automatically controlled to open and close in response to the measured value of the steam flow rate by the steam flow meter, and the steam flow rate is adjusted and controlled. Therefore, the whole food in the steamer can be continuously heated with a uniform and appropriate amount of steam, and the quality can be maintained. In particular, it is suitable when steam is continuously heated while operating a large number of foods.

そして、必要に応じ、前記流量制御装置は、予め設定された加熱雰囲気温度の最適値範囲を記憶する温度条件記憶手段と、予め設定された蒸気流量の基準値を記憶するとともに、該蒸気流量の基準値を基準にして設定された上限値及び下限値を記憶する蒸気流量条件記憶手段と、前記温度センサが測定した測定温度が前記温度条件記憶手段が記憶した温度の最適値範囲内にあるか否かを判断する温度範囲判断手段と、前記蒸気流量計による蒸気流量の測定値が前記蒸気流量条件記憶手段が記憶した上限値及び下限値と比較して、これらの数値との関係を判断する蒸気流量判断手段と、前記温度範囲判断手段と前記蒸気流量判断手段による判断結果に従って、制御弁の開度を開側若しくは閉側に所定幅変更し、又は維持する制御弁開閉手段とを備えた構成としている。   Then, if necessary, the flow rate control device stores temperature condition storage means for storing a preset optimum value range of the heating atmosphere temperature, a preset reference value of the steam flow rate, and the steam flow rate Steam flow condition storage means for storing an upper limit value and a lower limit value set with reference to a reference value, and whether the measured temperature measured by the temperature sensor is within the optimum value range of the temperature stored by the temperature condition storage means Temperature range determination means for determining whether or not the measured value of the steam flow rate by the steam flow meter is compared with the upper limit value and the lower limit value stored in the steam flow condition storage means, and the relationship between these values is determined. A steam flow determining means; and a control valve opening / closing means for changing or maintaining the opening degree of the control valve to a predetermined width according to a determination result by the temperature range determining means and the steam flow determining means. Is the example was constructed.

これにより、食品運行手段により食品が連続的に運行され、蒸気発生器により発生した蒸気を蒸気送給管により送給して蒸し機内において吐出管から蒸気が吐出され、食品が蒸気加熱されると、温度センサにより蒸し機内部の加熱雰囲気温度が測定されるとともに、蒸気流量計により吐出管から供給される供給蒸気流量が連続的に測定される。
この状態においては、温度範囲判断手段が、温度センサが測定した測定温度が温度条件記憶手段が記憶した温度の最適値範囲内にあるか最適値範囲外にあるかを判断し、また、蒸気流量判断手段が、蒸気流量計が測定した蒸気流量の測定値が蒸気流量条件記憶手段が記憶した上限値及び下限値と比較して、これらの数値との関係を判断する。
これにより、例えば、測定温度が最適値範囲より高い場合に、従来技術のように測定温度のみを基準として蒸気流量を調整しようとすると、蒸気流量を繰り返し減少させ、減少させすぎて蒸気量が不足する事態が生じるおそれがあるが、本発明では、蒸気流量をも測定して、当該測定値が予め設定した蒸気流量の下限値以上の、又は該下限値より多い範囲で蒸気流量を制御して調整するので、測定温度が最適値範囲より高くても蒸気流量が下限値より更に減少することがなく、そのため、蒸気流量が不足する事態が防止され、蒸し機内で蒸される食品を全て同様の適切な蒸気加熱条件で蒸気加熱し続けることができ、品質の維持、向上を図ることができるようになる。
また、この際、例えば、測定温度が最適範囲より低い場合に、従来技術のように測定温度のみを基準として蒸気流量を調整しようとすると、蒸気流量を繰り返し増加させ、増加させすぎて蒸気量が過剰になる事態が生じるおそれがあるが、本発明では、蒸気流量をも測定して、当該測定値が予め設定した蒸気流量の上限値以下の、又は該上限値より少ない範囲で蒸気流量を制御して調整するので、測定温度が最適値範囲より低くても蒸気流量が上限値より更に増加することがなく、そのため、蒸気流量が上限値より多くなって過剰になる事態が防止され、蒸し機内で蒸される食品を全て同様の適切な蒸気加熱条件で蒸気加熱し続けることができ、品質の維持、向上を図ることができるようになる。
Thereby, when food is operated continuously by the food operation means, the steam generated by the steam generator is supplied by the steam supply pipe, the steam is discharged from the discharge pipe in the steamer, and the food is steam heated. The heating atmosphere temperature inside the steamer is measured by the temperature sensor, and the supply steam flow rate supplied from the discharge pipe is continuously measured by the steam flow meter.
In this state, the temperature range determination means determines whether the measured temperature measured by the temperature sensor is within the optimum value range of the temperature stored by the temperature condition storage means or outside the optimum value range, and the steam flow rate The determination means compares the measured value of the steam flow measured by the steam flow meter with the upper limit value and the lower limit value stored by the steam flow condition storage means, and determines the relationship between these values.
As a result, for example, when the measured temperature is higher than the optimum value range, when trying to adjust the steam flow based on only the measured temperature as in the prior art, the steam flow is repeatedly reduced, and the steam amount is insufficient due to excessive reduction. However, in the present invention, the steam flow rate is also measured, and the steam flow rate is controlled in a range in which the measured value is greater than or equal to the preset lower limit value of the steam flow rate or greater than the lower limit value. Since the adjustment is made, the steam flow rate will not be further reduced below the lower limit even if the measured temperature is higher than the optimum value range, so that the situation where the steam flow rate is insufficient is prevented, and all the foods steamed in the steamer are the same. Steam heating can be continued under appropriate steam heating conditions, and quality can be maintained and improved.
At this time, for example, when the measured temperature is lower than the optimum range, if it is attempted to adjust the steam flow rate based only on the measured temperature as in the prior art, the steam flow rate is repeatedly increased and excessively increased. However, in the present invention, the steam flow rate is also measured, and the steam flow rate is controlled within a range where the measured value is less than or less than the preset upper limit value of the steam flow rate. Therefore, even if the measured temperature is lower than the optimum value range, the steam flow rate does not increase further than the upper limit value. All the foods steamed in can be kept steam-heated under the same appropriate steam heating conditions, and the quality can be maintained and improved.

また、具体的には、必要に応じ、A)蒸気流量判断手段が測定蒸気流量が下限値より少ないと判断した場合、B)蒸気流量判断手段が測定蒸気流量が下限値に等しいと判断し、且つ、温度範囲判断手段が測定温度が最適値下限より低いと判断した場合、C)蒸気流量判断手段が測定蒸気流量が下限値に等しいと判断し、且つ、温度範囲判断手段が測定温度が最適値上限より高いと判断した場合、D)蒸気流量判断手段が測定蒸気流量が下限値に等しいと判断し、且つ、温度範囲判断手段が測定温度が測定温度が最適値範囲内にあると判断した場合、E)蒸気流量判断手段が測定蒸気流量が上限値より多いと判断した場合、F)蒸気流量判断手段が測定蒸気流量が上限値に等しいと判断し、且つ、温度範囲判断手段が測定温度が最適値下限より低いと判断した場合、G)蒸気流量判断手段が測定蒸気流量が上限値に等しいと判断し、且つ、温度範囲判断手段が測定温度が最適値上限より高いと判断した場合、H)蒸気流量判断手段が測定蒸気流量が上限値に等しいと判断し、且つ、温度範囲判断手段が測定温度が測定温度が最適値範囲内にあると判断した場合、I)蒸気流量判断手段が測定蒸気流量が下限値より多く、上限値より少ない範囲内にあると判断し、且つ、温度範囲判断手段が測定温度が最適値下限より低いと判断した場合、J)蒸気流量判断手段が測定蒸気流量が下限値より多く、上限値より少ない範囲内にあると判断し、且つ、温度範囲判断手段が測定温度が最適値上限より高いと判断した場合、K)蒸気流量判断手段が測定蒸気流量が下限値より多く、上限値より少ない範囲内にあると判断し、且つ、温度範囲判断手段が測定温度が最適値範囲内にあると判断した場合、の各場合のうち、C)、D)、F)、H)又はK)の場合、その時点の制御弁の開度を維持し、A)、B)又はI)の場合、制御弁を所定幅、開側に変更し、E)、G)又はJ)の場合、制御弁を所定幅、閉側に変更するように、前記制御弁開閉手段が前記蒸気流量の調整を一定時間ごとに行い、これを繰り返す構成としている。
そして、より具体的には、必要に応じ、以下のI)、II)のような構成としている
I)図5(ア)及び図6に示すフローチャートの通りに、制御弁の開閉制御を以下のi)〜xi)の通りに場合に応じて一定時間ごとに行い、これを繰り返す。詳しくは、i)蒸気流量判断手段が、測定流量が下限値以上か否かについて、下限値より少ないと判断した場合、
制御弁開閉手段が制御弁を所定幅、開側に変更する。
ii)先ず、蒸気流量判断手段が、測定流量が下限値以上か否かについて、下限値以上と判断し、次に、測定流量が下限値と等しいか否かについて、下限値と等しいと判断し、その次に、温度範囲判断手段が、測定温度が最適値下限以上か否かについて、最適値下限よりも低いと判断した場合、
制御弁開閉手段が制御弁を所定幅、開側に変更する。
iii)蒸気流量判断手段が、先ず、測定流量が下限値以上か否かについて、下限値以上と判断し、次に、測定流量が下限値と等しいか否かについて、下限値と等しいと判断し、その次に、温度範囲判断手段が、測定温度が最適値下限以上か否かについて、最適値下限以上と判断し、その次に、測定温度が最適値上限以下か否かについて、最適値上限よりも高いと判断した場合、
制御弁開閉手段がその時点の制御弁の開度を維持する。
iv)蒸気流量判断手段が、先ず、測定流量が下限値以上か否かについて、下限値以上と判断し、次に、測定流量が下限値と等しいか否かについて、下限値と等しいと判断し、その次に、温度範囲判断手段が、測定温度が最適値下限以上か否かについて、最適値下限以上と判断し、その次に、測定温度が最適値上限以下か否かについて、最適値上限以下と判断した場合、
制御弁開閉手段がその時点の制御弁の開度を維持する。
v)蒸気流量判断手段が、先ず、測定流量が下限値以上か否かについて、下限値以上と判断し、次に、測定流量が下限値と等しいか否かについて、下限値と等しくないと判断し、その次に、測定流量が上限値以下か否かについて、上限値より多いと判断した場合、
制御弁開閉手段が制御弁を所定幅、閉側に変更する。
vi)蒸気流量判断手段が、先ず、測定流量が下限値以上か否かについて、下限値以上と判断し、次に、測定流量が下限値と等しいか否かについて、下限値と等しくないと判断し、その次に、測定流量が上限値以下か否かについて、上限値以下と判断し、その次に、測定流量が上限値と等しいか否かについて、上限値と等しいと判断し、その次に、温度範囲判断手段が、測定温度が最適値下限以上か否かについて、最適値下限よりも低いと判断した場合、
制御弁開閉手段がその時点の制御弁の開度を維持する。
vii)蒸気流量判断手段が、先ず、測定流量が下限値以上か否かについて、下限値以上と判断し、次に、測定流量が下限値と等しいか否かについて、下限値と等しくないと判断し、その次に、測定流量が上限値以下か否かについて、上限値以下と判断し、その次に、測定流量が上限値と等しいか否かについて、上限値と等しいと判断し、その次に、温度範囲判断手段が、測定温度が最適値下限以上か否かについて、最適値下限以上と判断し、その次に、測定温度が最適値上限以下か否かについて、最適値上限よりも高いと判断した場合、
制御弁開閉手段が制御弁を所定幅、閉側に変更する。
viii)蒸気流量判断手段が、先ず、測定流量が下限値以上か否かについて、下限値以上と判断し、次に、測定流量が下限値と等しいか否かについて、下限値と等しくないと判断し、その次に、測定流量が上限値以下か否かについて、上限値以下と判断し、その次に、測定流量が上限値と等しいか否かについて、上限値と等しいと判断し、その次に、温度範囲判断手段が、測定温度が最適値下限以上か否かについて、最適値下限以上と判断し、その次に、測定温度が最適値上限以下か否かについて、最適値上限以下と判断した場合、
制御弁開閉手段がその時点の制御弁の開度を維持する。
ix)蒸気流量判断手段が、先ず、測定流量が下限値以上か否かについて、下限値以上と判断し、次に、測定流量が下限値と等しいか否かについて、下限値と等しくないと判断し、その次に、測定流量が上限値以下か否かについて、上限値以下と判断し、その次に、測定流量が上限値と等しいか否かについて、上限値と等しくないと判断し、その次に、温度範囲判断手段が、測定温度が最適値下限以上か否かについて、最適値下限よりも低いと判断した場合、
制御弁開閉手段が制御弁を所定幅、開側に変更する。
x)蒸気流量判断手段が、先ず、測定流量が下限値以上か否かについて、下限値以上と判断し、次に、測定流量が下限値と等しいか否かについて、下限値と等しくないと判断し、その次に、測定流量が上限値以下か否かについて、上限値以下と判断し、その次に、測定流量が上限値と等しいか否かについて、上限値と等しくないと判断し、その次に、温度範囲判断手段が、測定温度が最適値下限以上か否かについて、最適値下限以上と判断し、その次に、測定温度が最適値上限以下か否かについて、最適値上限よりも高いと判断した場合、
制御弁開閉手段が制御弁を所定幅、閉側に変更する。
xi)蒸気流量判断手段が、先ず、測定流量が下限値以上か否かについて、下限値以上と判断し、次に、測定流量が下限値と等しいか否かについて、下限値と等しくないと判断し、その次に、測定流量が上限値以下か否かについて、上限値以下と判断し、その次に、測定流量が上限値と等しいか否かについて、上限値と等しくないと判断し、その次に、温度範囲判断手段が、測定温度が最適値下限以上か否かについて、最適値下限以上と判断し、その次に、測定温度が最適値上限以下か否かについて、最適値上限以下と判断した場合、
制御弁開閉手段がその時点の制御弁の開度を維持する、
という構成。
Specifically, if necessary, A) when the steam flow determining means determines that the measured steam flow is less than the lower limit, B) the steam flow determining means determines that the measured steam flow is equal to the lower limit, When the temperature range determining means determines that the measured temperature is lower than the lower limit of the optimum value, C) the steam flow determining means determines that the measured steam flow rate is equal to the lower limit value, and the temperature range determining means is optimal for the measured temperature. When it is determined that the value is higher than the upper limit, D) the steam flow determining means determines that the measured steam flow rate is equal to the lower limit value, and the temperature range determining means determines that the measured temperature is within the optimum value range. E) When the steam flow rate determining means determines that the measured steam flow rate is greater than the upper limit value, F) the steam flow rate determining means determines that the measured steam flow rate is equal to the upper limit value, and the temperature range determining means is the measured temperature. Is lower than the optimum lower limit G) When the steam flow rate determining means determines that the measured steam flow rate is equal to the upper limit value, and when the temperature range determining means determines that the measured temperature is higher than the upper limit of the optimum value, H) Steam flow rate determining means Determines that the measured steam flow rate is equal to the upper limit value, and the temperature range determining means determines that the measured temperature is within the optimum value range. I) The steam flow determining means determines that the measured steam flow rate is the lower limit value. J) When the temperature range determining means determines that the measured temperature is lower than the optimum lower limit, and J) the steam flow determining means has the measured steam flow larger than the lower limit. When the temperature range determining means determines that the measured temperature is higher than the upper limit of the optimum value, and K) the steam flow determining means has a measured steam flow rate greater than the lower limit and the upper limit. Less than value C), D), F), H) or K) in each of the cases where it is determined that the measured temperature is within the optimum value range and the measured temperature range is determined to be within the optimum value range. In the case of A, B) or I), the control valve is changed to a predetermined width and open side in the case of A), B) or I), and in the case of E), G) or J) The control valve opening / closing means adjusts the steam flow rate at regular intervals so as to change the valve to a predetermined width and closed side, and repeats this.
More specifically, as necessary, the following I) and II) are configured. I) The control valve opening / closing control is performed as shown in the flowcharts of FIGS. As in i) to xi), it is performed at regular intervals as needed, and this is repeated. Specifically, if i) the steam flow rate determining means determines that the measured flow rate is lower than the lower limit value, it is less than the lower limit value,
The control valve opening / closing means changes the control valve to a predetermined width and open side.
ii) First, the steam flow rate determining means determines whether or not the measured flow rate is equal to or greater than the lower limit value, and then determines whether or not the measured flow rate is equal to the lower limit value as equal to the lower limit value. Then, if the temperature range determination means determines that the measured temperature is lower than the optimum value lower limit, it is lower than the optimum value lower limit,
The control valve opening / closing means changes the control valve to a predetermined width and open side.
iii) The steam flow rate determining means first determines whether or not the measured flow rate is equal to or greater than the lower limit value, and then determines whether or not the measured flow rate is equal to the lower limit value to be equal to the lower limit value. Next, the temperature range determining means determines whether the measured temperature is equal to or higher than the optimum lower limit, and then determines whether the measured temperature is equal to or lower than the optimum upper limit. If it ’s higher than
The control valve opening / closing means maintains the opening degree of the control valve at that time.
iv) The steam flow rate determining means first determines whether or not the measured flow rate is equal to or higher than the lower limit value, and then determines whether or not the measured flow rate is equal to the lower limit value to be equal to the lower limit value. Next, the temperature range determining means determines whether the measured temperature is equal to or higher than the optimum lower limit, and then determines whether the measured temperature is equal to or lower than the optimum upper limit. If you decide that
The control valve opening / closing means maintains the opening degree of the control valve at that time.
v) The steam flow rate determining means first determines whether or not the measured flow rate is equal to or greater than the lower limit value, and then determines whether or not the measured flow rate is equal to the lower limit value and is not equal to the lower limit value. Then, when it is determined that the measured flow rate is less than or equal to the upper limit value,
The control valve opening / closing means changes the control valve to a predetermined width and closed side.
vi) The steam flow rate determining means first determines whether or not the measured flow rate is equal to or greater than the lower limit value, and then determines whether or not the measured flow rate is equal to the lower limit value and is not equal to the lower limit value. Next, it is determined that the measured flow rate is equal to or lower than the upper limit value, and then whether or not the measured flow rate is equal to the upper limit value is determined to be equal to the upper limit value. In addition, if the temperature range determination means determines that the measured temperature is lower than the optimum lower limit, it is lower than the optimum lower limit,
The control valve opening / closing means maintains the opening degree of the control valve at that time.
vii) The steam flow rate determining means first determines whether or not the measured flow rate is equal to or greater than the lower limit value, and then determines whether or not the measured flow rate is equal to the lower limit value and is not equal to the lower limit value. Next, it is determined that the measured flow rate is equal to or lower than the upper limit value, and then whether or not the measured flow rate is equal to the upper limit value is determined to be equal to the upper limit value. In addition, the temperature range determination means determines whether or not the measured temperature is equal to or higher than the lower limit of the optimum value, and then determines whether or not the measured temperature is equal to or lower than the upper limit of the optimum value. If you decide
The control valve opening / closing means changes the control valve to a predetermined width and closed side.
viii) The steam flow rate determining means first determines whether or not the measured flow rate is equal to or greater than the lower limit value, and then determines whether or not the measured flow rate is equal to the lower limit value and is not equal to the lower limit value. Next, it is determined that the measured flow rate is equal to or lower than the upper limit value, and then whether or not the measured flow rate is equal to the upper limit value is determined to be equal to the upper limit value. In addition, the temperature range determination means determines whether or not the measured temperature is equal to or greater than the optimum lower limit, and then determines whether or not the measured temperature is equal to or less than the optimum upper limit. if you did this,
The control valve opening / closing means maintains the opening degree of the control valve at that time.
ix) The steam flow rate determining means first determines whether or not the measured flow rate is equal to or greater than the lower limit value, and then determines whether or not the measured flow rate is equal to the lower limit value and is not equal to the lower limit value. Next, it is determined whether the measured flow rate is equal to or lower than the upper limit value, and then, whether the measured flow rate is equal to the upper limit value is determined to be not equal to the upper limit value. Next, when the temperature range determination means determines that the measured temperature is equal to or higher than the optimum lower limit, it is lower than the optimum lower limit,
The control valve opening / closing means changes the control valve to a predetermined width and open side.
x) The steam flow rate determining means first determines whether or not the measured flow rate is equal to or greater than the lower limit value, and then determines whether or not the measured flow rate is equal to the lower limit value and is not equal to the lower limit value. Next, it is determined whether the measured flow rate is equal to or lower than the upper limit value, and then, whether the measured flow rate is equal to the upper limit value is determined to be not equal to the upper limit value. Next, the temperature range determination means determines whether or not the measured temperature is equal to or higher than the optimum lower limit, and then determines whether or not the measured temperature is equal to or lower than the optimum upper limit. If it ’s high,
The control valve opening / closing means changes the control valve to a predetermined width and closed side.
xi) The steam flow rate determining means first determines whether or not the measured flow rate is equal to or greater than the lower limit value, and then determines whether or not the measured flow rate is equal to the lower limit value and is not equal to the lower limit value. Next, it is determined whether the measured flow rate is equal to or lower than the upper limit value, and then, whether the measured flow rate is equal to the upper limit value is determined to be not equal to the upper limit value. Next, the temperature range determination means determines whether or not the measured temperature is equal to or higher than the optimum lower limit, and then determines whether or not the measured temperature is equal to or lower than the optimum upper limit. If you decide,
The control valve opening / closing means maintains the opening degree of the control valve at that time,
The configuration.

II)図7(イ)に示すフローチャートの通りに、制御弁の開閉制御を以下のi)〜xi)の通りに場合に応じて一定時間ごとに行い、これを繰り返す。詳しくは、i)蒸気流量判断手段が、測定流量が上限値以下か否かについて、上限値より多いと判断した場合、制御弁開閉手段が制御弁を所定幅、閉側に変更する。
ii)先ず、蒸気流量判断手段が、測定流量が上限値以下か否かについて、上限値以下と判断し、次に、測定流量が上限値と等しいか否かについて、上限値と等しいと判断し、その次に、温度範囲判断手段が、測定温度が最適値下限以上か否かについて、最適値下限よりも低いと判断した場合、
制御弁開閉手段がその時点の制御弁の開度を維持する。
iii)蒸気流量判断手段が、先ず、測定流量が上限値以下か否かについて、上限値以下と判断し、次に、測定流量が上限値と等しいか否かについて、上限値と等しいと判断し、その次に、温度範囲判断手段が、測定温度が最適値下限以上か否かについて、最適値下限以上と判断し、その次に、測定温度が最適値上限以下か否かについて、最適値上限よりも高いと判断した場合、
制御弁開閉手段が制御弁を所定幅、閉側に変更する。
iv)蒸気流量判断手段が、先ず、測定流量が上限値以下か否かについて、上限値以下と判断し、次に、測定流量が上限値と等しいか否かについて、上限値と等しいと判断し、その次に、温度範囲判断手段が、測定温度が最適値下限以上か否かについて、最適値下限以上と判断し、その次に、測定温度が最適値上限以下か否かについて、最適値上限以下と判断した場合、
制御弁開閉手段がその時点の制御弁の開度を維持する。
v)蒸気流量判断手段が、先ず、測定流量が上限値以下か否かについて、上限値以下と判断し、次に、測定流量が上限値と等しいか否かについて、上限値と等しくないと判断し、その次に、測定流量が下限値以上か否かについて、下限値より少ないと判断した場合、
制御弁開閉手段が制御弁を所定幅、開側に変更する。
vi)蒸気流量判断手段が、先ず、測定流量が上限値以下か否かについて、上限値以下と判断し、次に、測定流量が上限値と等しいか否かについて、上限値と等しくないと判断し、その次に、測定流量が下限値以上か否かについて、下限値以上と判断し、その次に、測定流量が下限値と等しいか否かについて、下限値と等しいと判断し、その次に、温度範囲判断手段が、測定温度が最適値下限以上か否かについて、最適値下限よりも低いと判断した場合、
制御弁開閉手段が制御弁を所定幅、開側に変更する。
vii)蒸気流量判断手段が、先ず、測定流量が上限値以下か否かについて、上限値以下と判断し、次に、測定流量が上限値と等しいか否かについて、上限値と等しくないと判断し、その次に、測定流量が下限値以上か否かについて、下限値以上と判断し、その次に、測定流量が下限値と等しいか否かについて、下限値と等しいと判断し、その次に、温度範囲判断手段が、測定温度が最適値下限以上か否かについて、最適値下限以上と判断し、その次に、測定温度が最適値上限以下か否かについて、最適値上限よりも高いと判断した場合、
制御弁開閉手段がその時点の制御弁の開度を維持する。
viii)蒸気流量判断手段が、先ず、測定流量が上限値以下か否かについて、上限値以下と判断し、次に、測定流量が上限値と等しいか否かについて、上限値と等しくないと判断し、その次に、測定流量が下限値以上か否かについて、下限値以上と判断し、その次に、測定流量が下限値と等しいか否かについて、下限値と等しいと判断し、その次に、温度範囲判断手段が、測定温度が最適値下限以上か否かについて、最適値下限以上と判断し、その次に、測定温度が最適値上限以下か否かについて、最適値上限以下と判断した場合、
制御弁開閉手段がその時点の制御弁の開度を維持する。
ix)蒸気流量判断手段が、先ず、測定流量が上限値以下か否かについて、上限値以下と判断し、次に、測定流量が上限値と等しいか否かについて、上限値と等しくないと判断し、その次に、測定流量が下限値以上か否かについて、下限値以上と判断し、その次に、測定流量が下限値と等しいか否かについて、下限値と等しくないと判断し、その次に、温度範囲判断手段が、測定温度が最適値下限以上か否かについて、最適値下限よりも低いと判断した場合、
制御弁開閉手段が制御弁を所定幅、開側に変更する。
x)蒸気流量判断手段が、先ず、測定流量が上限値以下か否かについて、上限値以下と判断し、次に、測定流量が上限値と等しいか否かについて、上限値と等しくないと判断し、その次に、測定流量が下限値以上か否かについて、下限値以上と判断し、その次に、測定流量が下限値と等しいか否かについて、下限値と等しくないと判断し、その次に、温度範囲判断手段が、測定温度が最適値下限以上か否かについて、最適値下限以上と判断し、その次に、測定温度が最適値上限以下か否かについて、最適値上限よりも高いと判断した場合、
制御弁開閉手段が制御弁を所定幅、閉側に変更する。
xi)蒸気流量判断手段が、先ず、測定流量が上限値以下か否かについて、上限値以下と判断し、次に、測定流量が上限値と等しいか否かについて、上限値と等しくないと判断し、その次に、測定流量が下限値以上か否かについて、下限値以上と判断し、その次に、測定流量が下限値と等しいか否かについて、下限値と等しくないと判断し、その次に、温度範囲判断手段が、測定温度が最適値下限以上か否かについて、最適値下限以上と判断し、その次に、測定温度が最適値上限以下か否かについて、最適値上限以下と判断した場合、
制御弁開閉手段がその時点の制御弁の開度を維持する。
という構成。
II) As shown in the flowchart of FIG. 7 (a), the control valve opening / closing control is performed at regular intervals as shown in the following i) to xi), and this is repeated. Specifically, i) When the steam flow rate determining means determines that the measured flow rate is greater than or equal to the upper limit value, the control valve opening / closing means changes the control valve to a predetermined width and closed side.
ii) First, the steam flow rate determining means determines whether or not the measured flow rate is equal to or lower than the upper limit value, and then determines whether or not the measured flow rate is equal to the upper limit value as equal to the upper limit value. Then, if the temperature range determination means determines that the measured temperature is lower than the optimum value lower limit, it is lower than the optimum value lower limit,
The control valve opening / closing means maintains the opening degree of the control valve at that time.
iii) The steam flow rate determining means first determines whether or not the measured flow rate is equal to or lower than the upper limit value, and then determines whether or not the measured flow rate is equal to the upper limit value as equal to the upper limit value. Next, the temperature range determining means determines whether the measured temperature is equal to or higher than the optimum lower limit, and then determines whether the measured temperature is equal to or lower than the optimum upper limit. If it ’s higher than
The control valve opening / closing means changes the control valve to a predetermined width and closed side.
iv) The steam flow rate determining means first determines whether the measured flow rate is equal to or lower than the upper limit value, and then determines whether the measured flow rate is equal to the upper limit value as to whether it is equal to the upper limit value. Next, the temperature range determining means determines whether the measured temperature is equal to or higher than the optimum lower limit, and then determines whether the measured temperature is equal to or lower than the optimum upper limit. If you decide that
The control valve opening / closing means maintains the opening degree of the control valve at that time.
v) The steam flow rate determining means first determines whether or not the measured flow rate is equal to or less than the upper limit value, and then determines whether or not the measured flow rate is equal to the upper limit value and is not equal to the upper limit value. Then, if it is determined that the measured flow rate is lower than the lower limit value,
The control valve opening / closing means changes the control valve to a predetermined width and open side.
vi) The steam flow rate determination means first determines whether or not the measured flow rate is equal to or lower than the upper limit value, and then determines whether or not the measured flow rate is equal to the upper limit value and is not equal to the upper limit value. Next, it is determined that the measured flow rate is equal to or greater than the lower limit value, and then whether or not the measured flow rate is equal to the lower limit value is determined to be equal to the lower limit value. In addition, if the temperature range determination means determines that the measured temperature is lower than the optimum lower limit, it is lower than the optimum lower limit,
The control valve opening / closing means changes the control valve to a predetermined width and open side.
vii) The steam flow rate determining means first determines whether or not the measured flow rate is equal to or lower than the upper limit value, and then determines whether or not the measured flow rate is equal to the upper limit value and is not equal to the upper limit value. Next, it is determined that the measured flow rate is equal to or greater than the lower limit value, and then whether or not the measured flow rate is equal to the lower limit value is determined to be equal to the lower limit value. In addition, the temperature range determination means determines whether or not the measured temperature is equal to or higher than the lower limit of the optimum value, and then determines whether or not the measured temperature is equal to or lower than the upper limit of the optimum value. If you decide
The control valve opening / closing means maintains the opening degree of the control valve at that time.
viii) The steam flow rate determining means first determines whether or not the measured flow rate is equal to or lower than the upper limit value, and then determines whether or not the measured flow rate is equal to the upper limit value and is not equal to the upper limit value. Next, it is determined that the measured flow rate is equal to or greater than the lower limit value, and then whether or not the measured flow rate is equal to the lower limit value is determined to be equal to the lower limit value. In addition, the temperature range determination means determines whether or not the measured temperature is equal to or greater than the optimum lower limit, and then determines whether or not the measured temperature is equal to or less than the optimum upper limit. if you did this,
The control valve opening / closing means maintains the opening degree of the control valve at that time.
ix) The steam flow rate determining means first determines whether or not the measured flow rate is equal to or lower than the upper limit value, and then determines whether or not the measured flow rate is equal to the upper limit value and is not equal to the upper limit value. Then, it is determined that the measured flow rate is equal to or greater than the lower limit value, and then whether the measured flow rate is equal to the lower limit value is determined to be not equal to the lower limit value. Next, when the temperature range determination means determines that the measured temperature is equal to or higher than the optimum lower limit, it is lower than the optimum lower limit,
The control valve opening / closing means changes the control valve to a predetermined width and open side.
x) The steam flow rate determining means first determines whether or not the measured flow rate is equal to or lower than the upper limit value, and then determines whether or not the measured flow rate is equal to the upper limit value and is not equal to the upper limit value. Then, it is determined that the measured flow rate is equal to or greater than the lower limit value, and then whether the measured flow rate is equal to the lower limit value is determined to be not equal to the lower limit value. Next, the temperature range determination means determines whether or not the measured temperature is equal to or higher than the optimum lower limit, and then determines whether or not the measured temperature is equal to or lower than the optimum upper limit. If it ’s high,
The control valve opening / closing means changes the control valve to a predetermined width and closed side.
xi) The steam flow rate determination means first determines whether or not the measured flow rate is equal to or lower than the upper limit value, and then determines whether or not the measured flow rate is equal to the upper limit value and is not equal to the upper limit value. Then, it is determined that the measured flow rate is equal to or greater than the lower limit value, and then whether the measured flow rate is equal to the lower limit value is determined to be not equal to the lower limit value. Next, the temperature range determination means determines whether or not the measured temperature is equal to or higher than the optimum lower limit, and then determines whether or not the measured temperature is equal to or lower than the optimum upper limit. If you decide,
The control valve opening / closing means maintains the opening degree of the control valve at that time.
The configuration.

これらI)又はII)のいずれかの構成とすることにより、
蒸気流量が下限値から上限値までの範囲に維持されるように、上記の蒸気流量の調整を行い、測定温度が最適値上限より高い場合にも、測定流量が下限値に等しいときには、蒸気流量を減少させることなく維持し、又、蒸気流量が下限値より多く、且つ上限値以下の場合には蒸気流量を減少させ、これを繰り返すが、下限値より少なくならないように(下限値まで)減少させるようにするため、蒸気流量を減少させすぎて蒸気流量が不足する事態が未然に防止され、逆に、測定温度が最適値下限より低い場合にも、測定流量が上限値に等しいときには、蒸気流量を増加させることなく維持し、又、蒸気流量が下限値以上で、且つ上限値より少ない場合には蒸気流量を増加させ、これを繰り返すが、上限値より多くならないように(上限値まで)増加させるようにするため、蒸気流量を増加させすぎて蒸気流量が過剰になる事態が未然に防止され、確実に蒸し機で蒸される食品を全て同様の適切な蒸気加熱条件で蒸気加熱し続けることができ、品質の維持を図ることができるようになる。
By adopting either of these I) or II),
When the steam flow is adjusted so that the steam flow rate is maintained in the range from the lower limit value to the upper limit value, and the measured flow rate is equal to the lower limit value even when the measured temperature is higher than the optimum upper limit value, If the steam flow rate is greater than the lower limit value and less than the upper limit value, the steam flow rate is decreased and this is repeated, but it is reduced so as not to be less than the lower limit value (up to the lower limit value). Therefore, it is possible to prevent a situation where the steam flow rate is excessively decreased and the steam flow rate is insufficient. Conversely, when the measurement temperature is lower than the optimum lower limit, Maintain the flow rate without increasing it, and if the steam flow rate is greater than or equal to the lower limit value and less than the upper limit value, increase the steam flow rate and repeat this, but do not exceed the upper limit value (up to the upper limit value). In order to increase, it is possible to prevent the steam flow from being excessively increased by excessively increasing the steam flow, and to ensure that all foods steamed by the steamer are steam-heated under the same appropriate steam heating conditions. And the quality can be maintained.

また、必要に応じ、前記吐出管を前記蒸し機内部の複数箇所に設け、前記複数箇所の吐出管を予め複数グループに分け、該グループ毎に対応させて前記制御弁,蒸気流量計及び温度センサを設け、前記流量制御装置は、前記吐出管のグループ毎に前記温度センサによる温度の測定値及び前記蒸気流量計による蒸気流量の測定値に基づいて前記対応する制御弁を開閉制御して蒸気流量を調整する構成としている。蒸し機内部の必要箇所毎に蒸気流量の調整ができるので、蒸し機内の食品に対する蒸気加熱環境をより細かく設定することができ、それだけ、確実に食品の品質の維持を図ることができるようになる。   Further, if necessary, the discharge pipes are provided at a plurality of locations inside the steamer, and the discharge pipes at the plurality of locations are divided into a plurality of groups in advance, and the control valve, the steam flow meter, and the temperature sensor are associated with each group. The flow rate control device controls the opening and closing of the corresponding control valve based on the measured value of the temperature by the temperature sensor and the measured value of the steam flow rate by the steam flow meter for each group of the discharge pipes to control the steam flow rate. Is configured to adjust. Since the steam flow rate can be adjusted for each required location inside the steamer, the steam heating environment for the food in the steamer can be set in more detail, and as a result, the quality of the food can be reliably maintained. .

更に、前記吐出管の複数グループのうち、任意の一又は複数のグループについては、温度センサを複数設け、前記流量制御装置は、それら複数の温度センサによる測定値の平均値を当該グループの温度の測定値とする構成としている。測定温度をより正確に測定でき、精度の良い制御を行なうことができるようになる。   Furthermore, for any one or a plurality of groups of the discharge pipes, a plurality of temperature sensors are provided, and the flow rate control device calculates an average value of the measurement values of the plurality of temperature sensors of the temperature of the group. It is set as the measured value. The measurement temperature can be measured more accurately, and control with high accuracy can be performed.

更にまた、必要に応じ、前記供給蒸気流量の上限値を基準値の110%〜200%の範囲で、かつ、下限値を基準値の50〜90%の範囲で設定する構成としている。望ましくは、前記供給蒸気流量の上限値を基準値の120%〜180%の範囲で、かつ、下限値を基準値の70〜85%の範囲で設定する構成としている。蒸気流量の上限値から下限値までの範囲が適正になり、蒸し機内で蒸される食品が全て同様の適切な蒸気加熱条件で蒸気加熱し続けることができ、品質の維持を図ることができるようになる。   Furthermore, if necessary, the upper limit value of the supply steam flow rate is set in the range of 110% to 200% of the reference value, and the lower limit value is set in the range of 50 to 90% of the reference value. Preferably, the upper limit value of the supply steam flow rate is set in a range of 120% to 180% of a reference value, and the lower limit value is set in a range of 70 to 85% of the reference value. The range from the upper limit value to the lower limit value of the steam flow rate becomes appropriate, and all the foods steamed in the steamer can be continuously steam-heated under the same appropriate steam heating conditions, so that the quality can be maintained. become.

また、必要に応じ、上述した食品の連続蒸気加熱装置による蒸気流量の調整(本制御モード)に先立って、蒸気流量を前記上限値から下限値までの範囲内に設定する予備制御モードを設け、前記流量制御装置は、前記予備制御モード及び本制御モードに切り替えるモード切替手段を備えた構成としている。予備制御モードにおいて、予め、蒸気流量を上限値から下限値までの範囲内に設定するので、その後の本制御モードにおいて、蒸気流量を上限値から下限値までの範囲内になるように制御しやすくすることができる。   Also, if necessary, prior to the adjustment of the steam flow rate by the above-described continuous steam heating device for food (this control mode), a preliminary control mode for setting the steam flow rate within the range from the upper limit value to the lower limit value is provided, The flow rate control device includes a mode switching unit that switches between the preliminary control mode and the main control mode. In the preliminary control mode, the steam flow rate is set in the range from the upper limit value to the lower limit value in advance, so in the subsequent control mode, it is easy to control the steam flow rate to be in the range from the upper limit value to the lower limit value. can do.

更に、必要に応じ、前記蒸し機に該蒸し機を開閉するダンパを備え、該ダンパを開にして前記蒸し機を開放して蒸気を該蒸機内から蒸し機外へ流出させて加熱雰囲気温度を調整するダンパ調整モードを設け、前記流量制御装置は、前記ダンパ調整モードに切り替えるモード切替手段を備えた構成としている。これにより、蒸し機の蒸気を蒸し機内から短時間で流出させて、蒸し機内の温度を急速に大きく下げることができ、そのため、例えば、取り扱う食品の種類を変えるときなどは、単に蒸気の供給を減少させ、又は停止して調整するよりも効率的に蒸し機内の温度や蒸気加熱条件を変えたい場合に、例えば、蒸し機内の温度を急速に下げたい場合に、温度・蒸気流量等の設定変えを迅速に行うことができ、それだけ、製造効率が向上させられる。   Further, if necessary, the steamer is provided with a damper for opening and closing the steamer, the damper is opened to open the steamer, and the steam is allowed to flow out of the steamer to the outside of the steamer. A damper adjustment mode for adjustment is provided, and the flow rate control device includes a mode switching means for switching to the damper adjustment mode. This allows steam in the steamer to flow out of the steamer in a short time and rapidly lowers the temperature in the steamer.For example, when changing the type of food to be handled, simply supply steam. If you want to change the temperature in the steamer or the steam heating conditions more efficiently than if you reduce or stop and adjust, for example, if you want to rapidly reduce the temperature in the steamer, change the settings of temperature, steam flow, etc. Can be performed quickly, and the production efficiency is improved accordingly.

本発明によれば、温度及び蒸気流量の測定値に対応して、蒸気供給手段により供給する蒸気流量を自動的に制御して調整することができる。蒸し機内で蒸される食品を全て同様の適切な蒸気加熱条件で蒸気加熱し続けることができ、品質の維持を図ることができるようになる。特に、多数の食品を運行しながら連続的に蒸気加熱する場合に、好適である。
即ち、蒸し機により複数の食品を運行しながら連続的に蒸気加熱する場合であっても、熟練者が常に現場でバルブを人手で開閉して蒸気量を調整する必要がなく、また過剰な設備やコストを要することもなく、自動的に蒸気流量を調整して、極端な加熱状態の変化を抑制して、より安定的に一定の熱量をすべての食品にまんべんなく付与し続けることが可能となる。特に、大規模な蒸し機により大量の食品を運行しながら連続的に蒸気加熱する場合に有効である。
According to the present invention, the steam flow supplied by the steam supply means can be automatically controlled and adjusted in accordance with the measured values of temperature and steam flow. All the foods steamed in the steamer can be continuously steam-heated under the same appropriate steam heating conditions, and the quality can be maintained. In particular, it is suitable when steam is continuously heated while operating a large number of foods.
That is, even when steam is continuously operated while operating multiple foods with a steamer, it is not necessary for the skilled person to constantly open and close the valve manually to adjust the amount of steam, and excessive facilities are installed. It is possible to adjust the flow rate of steam automatically, suppress changes in extreme heating conditions, and continue to apply a certain amount of heat evenly and stably to all foods, without any cost or cost. . This is particularly effective when steam is continuously heated while a large amount of food is being operated by a large-scale steamer.

本発明の実施の形態に係る食品の連続蒸気加熱装置を示す正面図である。It is a front view which shows the continuous steam heating apparatus of the foodstuff which concerns on embodiment of this invention. 本発明の実施の形態に係る食品の連続蒸気加熱装置を示す概念図である。It is a conceptual diagram which shows the continuous steam heating apparatus of the foodstuff which concerns on embodiment of this invention. 本発明の実施の形態に係る食品の連続蒸気加熱装置の制御部の構成を示すブロック図である。It is a block diagram which shows the structure of the control part of the continuous steam heating apparatus of the foodstuff which concerns on embodiment of this invention. 本発明の実施の形態に係る食品の連続蒸気加熱装置の予備制御を示すフローチャート図である。It is a flowchart figure which shows the preliminary control of the continuous steam heating apparatus of the foodstuff which concerns on embodiment of this invention. 本発明の実施の形態に係る食品の連続蒸気加熱装置の本制御(ア)を示すフローチャート図である。It is a flowchart figure which shows this control (A) of the continuous steam heating apparatus of the foodstuff which concerns on embodiment of this invention. 本発明の実施の形態に係る食品の連続蒸気加熱装置の本制御(ア)の要旨を示す図である。It is a figure which shows the summary of this control (A) of the continuous steam heating apparatus of the foodstuff which concerns on embodiment of this invention. 本発明の実施の形態に係る食品の連続蒸気加熱装置の本制御(イ)を示すフローチャート図である。It is a flowchart figure which shows this control (I) of the continuous steam heating apparatus of the foodstuff which concerns on embodiment of this invention. 本発明の実施の形態に係る食品の連続蒸気加熱装置のダンパ制御を示すフローチャート図である。It is a flowchart figure which shows damper control of the continuous steam heating apparatus of the foodstuff which concerns on embodiment of this invention. 実施例に係り、連続蒸気加熱装置において、バッター状生地の加熱雰囲気温度を計測した結果を示すグラフ図である。It is a graph which shows the result of having measured the heating atmosphere temperature of the batter-like material | dough in the continuous steam heating apparatus concerning an Example. 実施例に係る蒸しケーキの仕上がり状態を比較例とともに示す図面代用写真である。It is a drawing substitute photograph which shows the finishing state of the steamed cake which concerns on an Example with a comparative example. 従来の食品の連続蒸気加熱装置の一例を示す図である。It is a figure which shows an example of the conventional continuous steam heating apparatus of a foodstuff.

以下、添付図面に基づいて、本発明の実施の形態に係る食品の連続蒸気加熱方法及び食品の連続蒸気加熱装置について詳細に説明する。本発明の実施の形態に係る食品の連続蒸気加熱方法は、本発明の実施の形態に係る食品の連続蒸気加熱装置において実現されるので、本連続蒸気加熱装置の作用において説明する。
図1及び図2に示すように、本願発明に係る食品連続蒸気加熱装置は、食品を蒸す空間を形成する蒸し機1と、蒸し機1内で食品を連続的に運行する食品運行手段と、蒸し機1内に蒸気を供給する蒸気供給装置とを備えたトンネル式とバーチカル式の複合スチーマーである。
Hereinafter, based on an accompanying drawing, the continuous steam heating method and food continuous steam heating device concerning an embodiment of the invention are explained in detail. Since the continuous steam heating method for food according to the embodiment of the present invention is realized in the continuous steam heating apparatus for food according to the embodiment of the present invention, the operation of the continuous steam heating device will be described.
As shown in FIG.1 and FIG.2, the food continuous steam heating apparatus which concerns on this invention is the steamer 1 which forms the space which steams food, the food operation means which operates food continuously in the steamer 1, A tunnel-type and vertical-type combined steamer provided with a steam supply device for supplying steam into the steamer 1.

蒸し機1は、食品の入口2a及び出口2bを有するトンネル式の前室2と、入口3a及び出口3bを有しその入口3aが前室2の出口2bと連通するように設けられたバーチカル式の本体3とを備えている。
前室2は、トンネル状に形成され、内部には食品が載置されたトレー4を水平方向に搬送する食品運行手段としての第一搬送コンベア5が設置されている。
本体3は、搭状に形成され、内部には、前室2の第一搬送コンベア5からのトレー4を引き継いで搬送する食品運行手段としての第二搬送コンベア6が設けられている。また、本体3は、ステンレス製の仕切り板7により上部および下部で連通する前後2室に分けられており、搬入側の室を上昇室10、搬出側の室を下降室11とし、上昇室10内には、搬入したトレー4を間欠的に上昇させる食品運行手段としての上昇コンベア12が配設され、下降室11内には、トレー4を間欠的に下降させる食品運行手段としての下降コンベア13が配設されており、さらに、上部の連通空間部14には、上昇室10において上昇したトレー4を下降室11に移動するための移載装置15が設けられている。下降コンベア13によって下降させられたトレー4は、再び、第二搬送コンベア6に引き渡されて、出口3bから排出される。そして、出口3bは、開閉可能に構成されており、蒸し工程の完了した食品を収容したトレー4が排出されるときのみ開口するようにしている。
また、蒸し機1の本体3の上部には、蒸し機1の本体3を開閉するダンパ16が設けられている。
The steamer 1 has a tunnel-type front chamber 2 having an inlet 2a and an outlet 2b for food, and a vertical type provided with an inlet 3a and an outlet 3b so that the inlet 3a communicates with the outlet 2b of the front chamber 2 The main body 3 is provided.
The front chamber 2 is formed in a tunnel shape, and a first transport conveyor 5 serving as a food operation means for transporting the tray 4 on which food is placed in the horizontal direction is installed.
The main body 3 is formed in a tower shape, and a second transport conveyor 6 is provided inside the main body 3 as food operation means for taking over and transporting the tray 4 from the first transport conveyor 5 in the front chamber 2. Further, the main body 3 is divided into two front and rear chambers communicating with each other at the upper and lower portions by a stainless steel partition plate 7. The loading chamber is the rising chamber 10, the unloading chamber is the descending chamber 11, and the rising chamber 10. Inside, a raising conveyor 12 as a food operation means for intermittently raising the loaded tray 4 is disposed, and in the lowering chamber 11, a lowering conveyor 13 as a food operation means for intermittently lowering the tray 4. Furthermore, a transfer device 15 for moving the tray 4 raised in the ascending chamber 10 to the descending chamber 11 is provided in the upper communication space portion 14. The tray 4 lowered by the descending conveyor 13 is again delivered to the second transport conveyor 6 and discharged from the outlet 3b. And the exit 3b is comprised so that opening and closing is possible, and it is made to open only when the tray 4 which accommodated the food which the steaming process completed is discharged | emitted.
In addition, a damper 16 that opens and closes the main body 3 of the steamer 1 is provided on the upper portion of the main body 3 of the steamer 1.

蒸気供給装置20は、所定温度の蒸気を発生させる蒸気発生器21と、蒸気発生器21により発生した蒸気を蒸し機1内に送給する蒸気送給管22と、蒸し機1内で蒸気送給管22により送給された蒸気を吐出する吐出部としての吐出管23と、吐出管23から吐出される蒸気量を調整するための制御弁24とを備えて構成されている。蒸気発生器21としては、水を加熱して蒸気を発生しうるものであれば何でも良く、加熱手段も、電気、ガス、地熱など何でもよく、あるいはこれらのうち2つ以上を併用してもよい。
蒸気発生器21で発生させられる蒸気の温度は、略一定であり、例えば、100℃以上のものが供給される。
The steam supply device 20 includes a steam generator 21 that generates steam at a predetermined temperature, a steam feed pipe 22 that feeds steam generated by the steam generator 21 into the steamer 1, and steam feed in the steamer 1. A discharge pipe 23 serving as a discharge unit that discharges the steam fed by the supply pipe 22 and a control valve 24 for adjusting the amount of steam discharged from the discharge pipe 23 are provided. The steam generator 21 may be anything as long as it can generate steam by heating water, and the heating means may be anything such as electricity, gas, geothermal heat, or two or more of these may be used in combination. .
The temperature of the steam generated by the steam generator 21 is substantially constant. For example, a temperature of 100 ° C. or higher is supplied.

吐出管23は、図1(b)に示すように、平面視H型に形成され、その下面には蒸気を下方に向けて供給する供給孔(図示せず)が設けられている。吐出管23は、前室2において、第一搬送コンベア5の走行方向に沿って3個(a,b,c)列設され、本体3において、第二搬送コンベア6の走行方向に沿って2個(d,e)列設されている。本体3において、第二搬送コンベア6の搬送前位側の吐出管23(d)は主に上昇室10に対応して蒸気を供給し、第二搬送コンベア6の搬送後位側の吐出管23(e)は、主に下降室11に対応して蒸気を供給する。即ち、吐出管23は、蒸し機1内部の複数箇所に設けられており、これらの複数箇所の吐出管23(a,b,c,d,e)は、予め複数グループに分けられ、具体的には、例えば、前室2の3個の吐出管23(a,b,c)と、本体3の上昇室10に対応する吐出管23(d)と、本体3の下降室11に対応する吐出管23(e)との3つのグループ(G1,G2,G3)に分けられている。   As shown in FIG. 1B, the discharge pipe 23 is formed in an H shape in a plan view, and a supply hole (not shown) for supplying steam downward is provided on the lower surface thereof. In the front chamber 2, three discharge pipes 23 (a, b, c) are arranged in the front chamber 2 along the traveling direction of the first transport conveyor 5, and 2 in the main body 3 along the traveling direction of the second transport conveyor 6. (D, e) are arranged. In the main body 3, the discharge pipe 23 (d) on the front side of the second transport conveyor 6 supplies steam mainly corresponding to the rising chamber 10, and the discharge pipe 23 on the rear side of the transport of the second transport conveyor 6. (E) mainly supplies steam corresponding to the descending chamber 11. That is, the discharge pipes 23 are provided at a plurality of locations inside the steamer 1, and the discharge pipes 23 (a, b, c, d, e) at the plurality of locations are divided into a plurality of groups in advance. For example, the three discharge pipes 23 (a, b, c) of the front chamber 2, the discharge pipe 23 (d) corresponding to the rising chamber 10 of the main body 3, and the lowering chamber 11 of the main body 3 are corresponded. It is divided into three groups (G1, G2, G3) with the discharge pipe 23 (e).

そして、蒸気送給管22は、上記の吐出管23のグループ(G1,G2,G3)に対応させられて、第一〜第三蒸気送給管22(22A,22B,22C)の3系統設けられている。第一蒸気送給管22Aは、前室2の各吐出管23(a,b,c)に接続され、第二蒸気送給管22Bは、本体3の上昇室10に対応した吐出管23(d)に接続され、第三蒸気送給管22Cは、本体3の下降室11に対応した吐出管23(e)に接続されている。第一〜第三蒸気送給管22(22A,22B,22C)の夫々に、制御弁24(24A,24B,24C)が介装されている。制御弁24(24A,24B,24C)は、開度調整されて蒸気送給管22の開口面積を調整して蒸気流量の制御を行う。   The steam supply pipe 22 is provided in three systems, ie, first to third steam supply pipes 22 (22A, 22B, 22C), corresponding to the groups (G1, G2, G3) of the discharge pipes 23 described above. It has been. The first steam feed pipe 22A is connected to each discharge pipe 23 (a, b, c) of the front chamber 2, and the second steam feed pipe 22B is a discharge pipe 23 (corresponding to the rising chamber 10 of the main body 3). The third steam supply pipe 22C is connected to a discharge pipe 23 (e) corresponding to the descending chamber 11 of the main body 3. A control valve 24 (24A, 24B, 24C) is interposed in each of the first to third steam supply pipes 22 (22A, 22B, 22C). The control valve 24 (24A, 24B, 24C) controls the steam flow rate by adjusting the opening and adjusting the opening area of the steam feed pipe 22.

更に、吐出管23から吐出される蒸気供給量を測定する蒸気流量計(M1,M2,M3)が備えられている。蒸気流量計(M1,M2,M3)は、夫々、第一〜第三蒸気送給管22(22A,22B,22C)に介装されている。蒸気流量計(M1,M2,M3)は、蒸気送給管22を流れる蒸気流量を測定するために用いられるもので、より正確な測定のために制御弁24(24A,24B,24C)よりも上流側に設けられている。尚、図1中、符号31は圧力制御弁、32は圧力センサである。   Further, steam flow meters (M1, M2, M3) for measuring the amount of steam supplied from the discharge pipe 23 are provided. The steam flow meters (M1, M2, M3) are interposed in the first to third steam supply pipes 22 (22A, 22B, 22C), respectively. The steam flow meters (M1, M2, M3) are used to measure the flow rate of steam flowing through the steam supply pipe 22, and are more accurate than the control valve 24 (24A, 24B, 24C) for more accurate measurement. It is provided upstream. In FIG. 1, reference numeral 31 is a pressure control valve, and 32 is a pressure sensor.

更にまた、蒸し機1内には、蒸し機1内部の加熱雰囲気温度を測定する温度センサ(S1,S2,S3,S4,S5,S6,S7)が設けられている。温度センサ(S1,S2,S3,S4,S5,S6,S7)は、上記の吐出管23のグループ(G1,G2,G3)に対応させられて、複数設けられている。前室2の3個の吐出管23(a,b,c)のグループ(G1)に対応させて、前室2の入口側と出口側に、夫々、1個ずつ(合計2個)の温度センサ(S1,S2)が設けられ、本体3の上昇室10に対応する吐出管23のグループ(G1,G2,G3)に対応させて、上昇室10の上側,中間及び下側に、夫々、1個ずつ(合計3個)の温度センサ(S3,S4,S5)が設けられ、本体3の下降室11に対応する吐出管23のグループ(G1,G2,G3)に対応させて、下降室11の上側及び下側に、夫々、1個ずつ(合計2個)の温度センサ(S6,S7)が設けられている。   Furthermore, in the steamer 1, temperature sensors (S1, S2, S3, S4, S5, S6, S7) for measuring the heating atmosphere temperature inside the steamer 1 are provided. A plurality of temperature sensors (S1, S2, S3, S4, S5, S6, S7) are provided corresponding to the groups (G1, G2, G3) of the discharge pipes 23 described above. Corresponding to the group (G1) of the three discharge pipes 23 (a, b, c) in the front chamber 2, one temperature (one in total) on the inlet side and the outlet side of the front chamber 2 respectively. Sensors (S1, S2) are provided, corresponding to the groups (G1, G2, G3) of the discharge pipes 23 corresponding to the rising chamber 10 of the main body 3, respectively, on the upper side, middle and lower side of the rising chamber 10, respectively. One (three in total) temperature sensors (S3, S4, S5) are provided, and the descending chambers correspond to the groups (G1, G2, G3) of the discharge pipes 23 corresponding to the descending chambers 11 of the main body 3. One (one in total) two temperature sensors (S6, S7) are provided on the upper side and the lower side of 11, respectively.

そして、本実施の形態においては、図2及び図3に示すように、温度センサ(S1,S2,S3,S4,S5,S6,S7)による温度の測定値及び蒸気流量計(M1,M2,M3)による蒸気流量の測定値に対応して自動的に制御弁24(24A,24B,24C)を開閉制御して蒸気流量を調整する流量制御装置30が備えられている。
本実施の形態では、流量制御装置30は、上記の吐出管23のグループ(G1,G2,G3)毎(蒸気送給管22(22A,22B,22C)毎)に、グループ(G1)では、温度センサ(S1,S2)による温度の測定値の平均値及び蒸気流量計(M1)による蒸気流量の測定値に基づいて対応する制御弁(24A)を開閉制御して蒸気流量を調整し、グループ(G2)では、上昇室10の上側に設けた温度センサ(S3)による温度の測定値及び蒸気流量計(M2)による蒸気流量の測定値に基づいて対応する制御弁(24B)を開閉制御して蒸気流量を調整し、また、グループ(G3)では、下降室11の上側に設けた温度センサ(S6)による温度の測定値及び蒸気流量計(M2)による蒸気流量の測定値に基づいて対応する制御弁(24C)を開閉制御して蒸気流量を調整する。
この場合、流量制御装置30が用いる温度センサ(S1,S2,S3,S4,S5,S6,S7)のデータの用い方としては、もちろん上記の本実施の形態のようにグループ(G1)で複数の温度センサ(S1,S2)による温度の測定値の平均値を用い、グループ(G2)及びグループ(G3)でそれぞれ温度センサ(S3)、温度センサ(S6)による温度の測定値を単独で用いてもよいが、例えば、グループ(G1)においてS2のみを単独で用いてもよく、また、例えば、グループ(G2)において、3個の温度センサ(S3、S4,S5)による温度の測定値の平均値を用いてもよく、これらのうち任意の2個の温度センサを選択して(例えばS3とS5)による温度の測定値の平均値を用いてもよく、また、例えば、グループ(G3)において2個の温度センサ(S6、S7)による温度の測定値の平均値を用いてもよく、また、S7による温度の測定値のみを単独で用いてもよい。すなわち、各グループにおいて任意の数個を選択して用いて、それらの平均値を用いてよいし、任意の1個を選択して単独で用いてもよく、季節や蒸気加熱する食品の特性に応じて適宜調整しうる。
And in this Embodiment, as shown in FIG.2 and FIG.3, the measured value of the temperature by the temperature sensor (S1, S2, S3, S4, S5, S6, S7) and the steam flow meter (M1, M2,). A flow rate control device 30 is provided for automatically adjusting the steam flow rate by controlling the opening and closing of the control valve 24 (24A, 24B, 24C) according to the measured value of the steam flow rate according to M3).
In the present embodiment, the flow rate control device 30 is provided for each group (G1, G2, G3) of the discharge pipe 23 (for each steam supply pipe 22 (22A, 22B, 22C)), for each group (G1), Based on the average value of the temperature measured values by the temperature sensors (S1, S2) and the measured value of the steam flow rate by the steam flow meter (M1), the corresponding control valve (24A) is controlled to open and close to adjust the steam flow rate. In (G2), the corresponding control valve (24B) is controlled to open and close based on the measured value of the temperature by the temperature sensor (S3) provided above the ascending chamber 10 and the measured value of the steam flow rate by the steam flow meter (M2). The group (G3) responds based on the measured temperature value by the temperature sensor (S6) provided above the descending chamber 11 and the measured steam flow rate by the steam flow meter (M2). Control valve 24C) close control to adjust the steam flow rate.
In this case, as a way of using the data of the temperature sensors (S1, S2, S3, S4, S5, S6, S7) used by the flow control device 30, of course, there are a plurality of groups (G1) as in the present embodiment. Temperature sensor (S1, S2) average values of temperature measurement values are used, and group (G2) and group (G3) use temperature sensor (S3) and temperature sensor (S6), respectively, independently. However, for example, in the group (G1), only S2 may be used alone. For example, in the group (G2), the temperature measured values by the three temperature sensors (S3, S4, S5) may be used. An average value may be used, and any two temperature sensors among these may be selected (for example, S3 and S5), and an average value of temperature measurement values may be used. Two temperature sensors in 3) (S6, S7) may be used an average value of the measured value of the temperature by, it may also be used only measurements of temperature by S7 alone. That is, any number selected in each group may be used and the average value thereof may be used, or any one may be selected and used alone. It can be adjusted accordingly.

流量制御装置30は、図3に示すように、予め設定された加熱雰囲気温度の最適値範囲を記憶する温度条件記憶手段31を備えている。最適温度範囲は、例えば以下のようにして定められる。各所(前室2,上昇室10,下降室11)の基準温度を設定し、基準温度±0.5℃を最適温度範囲とする。基準温度は、取り扱う食品の種類に夫々対応して、各所(前室2,上昇室10,下降室11)毎に設定する。例えば、各所(前室2,上昇室10,下降室11)の基準温度を、それぞれ90℃、94℃、95℃とする等に設定する。そして、最適温度範囲の設定は、上記の他、例えば、基準温度±0.3℃、基準温度±1.0℃、基準温度−0.5℃〜基準温度+0.3℃等、適宜に定めてよい   As shown in FIG. 3, the flow rate control device 30 includes a temperature condition storage unit 31 that stores a preset optimum value range of the heating atmosphere temperature. The optimum temperature range is determined as follows, for example. The reference temperature of each place (front chamber 2, ascending chamber 10, descending chamber 11) is set, and the reference temperature ± 0.5 ° C. is set as the optimum temperature range. The reference temperature is set for each location (front chamber 2, ascending chamber 10, descending chamber 11) corresponding to the type of food to be handled. For example, the reference temperature of each place (front chamber 2, ascending chamber 10, descending chamber 11) is set to 90 ° C., 94 ° C., 95 ° C., respectively. In addition to the above, the optimum temperature range is set as appropriate, for example, a reference temperature ± 0.3 ° C., a reference temperature ± 1.0 ° C., a reference temperature −0.5 ° C. to a reference temperature + 0.3 ° C. May

また、流量制御装置30は、予め設定された供給蒸気流量の基準値を記憶するとともに、供給蒸気流量の基準値を基準にして設定された上限値及び下限値を記憶する蒸気流量条件記憶手段32を備えている。基準値は、取り扱う食品の種類に夫々対応して、各所(前室2,上昇室10,下降室11)毎に設定する。基準値としては、例えば、前室2,上昇室10,下降室11の基準値を95Kg/H、99Kg/H、100Kg/Hとする等適宜に設定される。
また、例えば、供給蒸気流量の上限値は、基準値の110%〜200%の範囲で、かつ、下限値は基準値の50〜90%の範囲で設定する。望ましくは、供給蒸気流量の上限値は基準値の120%〜180%の範囲で、かつ、下限値は基準値の70〜85%の範囲で設定する。例えば、前室において基準値が95Kg/Hである場合、例えば、85.5Kg/H(基準値の90%)〜104.5Kg/H(上限値の110%)にする等である。上昇室、下降室も同様に適宜に設定される。
The flow rate control device 30 stores a reference value of the supply steam flow set in advance, and also stores a steam flow condition storage unit 32 that stores an upper limit value and a lower limit value set with reference to the reference value of the supply steam flow. It has. The reference value is set for each location (front chamber 2, ascending chamber 10, descending chamber 11) corresponding to the type of food to be handled. As the reference value, for example, the reference values of the front chamber 2, the ascending chamber 10, and the descending chamber 11 are appropriately set to 95 kg / H, 99 kg / H, 100 kg / H, and the like.
Further, for example, the upper limit value of the supply steam flow rate is set in the range of 110% to 200% of the reference value, and the lower limit value is set in the range of 50 to 90% of the reference value. Desirably, the upper limit value of the supply steam flow rate is set in the range of 120% to 180% of the reference value, and the lower limit value is set in the range of 70 to 85% of the reference value. For example, when the reference value is 95 Kg / H in the anterior chamber, for example, 85.5 Kg / H (90% of the reference value) to 104.5 Kg / H (110% of the upper limit value). Similarly, the ascending chamber and the descending chamber are set appropriately.

更に、流量制御装置30は、温度センサ(S1,S2,S3,S4,S5,S6,S7)が測定した測定温度が温度条件記憶手段31が記憶した温度の最適値範囲内にあるか最適値範囲外にあるかを判断する温度範囲判断手段33と、蒸気流量計(M1,M2,M3)による蒸気流量の測定値が蒸気流量条件記憶手段32が記憶した上限値以下か否か若しくは等しいか、及び下限値以上か否か若しくは等しいか、を判断する蒸気流量判断手段35と、前記温度範囲判断手段と前記蒸気流量判断手段による判断結果に従って、前記制御弁24(24A,24B,24C)の開度を所定幅開側若しくは閉側に変更するか、又は維持するかを決定し、決定したとおりに前記制御弁24(24A,24B,24C)の開度を開側若しくは閉側に所定幅変更させ又は維持する制御弁開閉手段と、を備えて構成されている。
尚、測定温度が最適値範囲の上限値または下限値と同じときは、最適範囲内にしても最適範囲外にしても良いが、本実施の形態では最適範囲内にあるとしている。また、蒸気流量の測定値が上限値または下限値と同じときは、それぞれ上限値内及び下限値内にしても良く、あるいは、それぞれ上限値外及び下限値外にあるとしても良いが、本実施の形態では、それぞれ上限値外及び下限値外であるとしている。
Further, the flow control device 30 determines whether the measured temperature measured by the temperature sensors (S1, S2, S3, S4, S5, S6, S7) is within the optimum value range of the temperature stored in the temperature condition storage means 31. Whether the measured value of the steam flow rate by the temperature range judgment means 33 for judging whether the temperature is out of the range and the steam flow meter (M1, M2, M3) is equal to or less than the upper limit value stored in the steam flow condition storage means 32 or not. And the steam flow rate judgment means 35 for judging whether or not it is equal to or greater than the lower limit value, and the control valve 24 (24A, 24B, 24C) according to the judgment results by the temperature range judgment means and the steam flow rate judgment means. Decide whether to change or maintain the opening to a predetermined width open side or close side, and as determined, set the opening of the control valve 24 (24A, 24B, 24C) to a predetermined width on the open side or close side It is configured by including a control valve opening and closing means for further be brought or maintained, the.
When the measured temperature is the same as the upper limit value or the lower limit value of the optimum value range, it may be within the optimum range or outside the optimum range, but in the present embodiment, it is assumed to be within the optimum range. Further, when the measured value of the steam flow rate is the same as the upper limit value or the lower limit value, it may be within the upper limit value and the lower limit value, respectively, or may be outside the upper limit value and the lower limit value, respectively. In this embodiment, the value is outside the upper limit value and outside the lower limit value.

更に、上述したとおり、温度及び蒸気流量の測定値に対応して蒸気供給手段により供給する蒸気流量を自動的に調整することを本制御モードとして、当該本制御モードに先立って蒸気流量を上限値から下限値までの範囲内に設定する予備制御モードが設けられている。本実施の形態では、本制御モードでは、一回の制御における制御弁24(24A,24B,24C)の調整幅は、0.125%開閉とし、予備制御モードでは、一回の制御における制御弁24(24A,24B,24C)の調整幅は、0.25%開閉としている。
また、蒸し機1を開閉するダンパ16を開にして蒸し機1を開放し、蒸気を蒸機内から流出させて加熱雰囲気温度を調整する蒸気流出調整モードが設けられている。
流量制御装置30は、本制御モード,予備制御モード,蒸気流出調整モードのいずれかに切り替えるモード切替手段37を備えて構成されている。
Furthermore, as described above, automatically adjusting the steam flow rate supplied by the steam supply means corresponding to the measured values of the temperature and the steam flow rate is the main control mode, and the steam flow rate is set to the upper limit value prior to the main control mode. To a lower limit value is provided as a preliminary control mode. In the present embodiment, in this control mode, the adjustment width of the control valve 24 (24A, 24B, 24C) in one control is 0.125% open / close, and in the preliminary control mode, the control valve in one control. The adjustment width of 24 (24A, 24B, 24C) is 0.25% open / close.
Further, a steam outflow adjustment mode is provided in which the damper 16 that opens and closes the steamer 1 is opened to open the steamer 1, and the steam is flowed out of the steamer to adjust the heating atmosphere temperature.
The flow rate control device 30 includes a mode switching unit 37 that switches to any one of the main control mode, the preliminary control mode, and the steam outflow adjustment mode.

従って、この食品の連続蒸気加熱装置により、食品を連続的に蒸気加熱するときは以下のようになる。食品としては、例えば、饅頭,蒸しパン,和風中華菓子などが対象となる。流量制御装置30においては、取り扱う食品の種類に夫々対応して、各所(前室2,上昇室10,下降室11)毎に、最適温度範囲,供給蒸気流量の基準値,上限値及び下限値が設定されている。そして、流量制御装置30で、先ず、取り扱う食品の種類を指定し、取り扱う食品の種類に対応した制御を行なわせる。   Therefore, when the food is continuously steam-heated by the continuous steam heating apparatus for food, the following occurs. Examples of food include buns, steamed bread, and Japanese-style Chinese confectionery. In the flow rate control device 30, the optimum temperature range, the reference value, the upper limit value, and the lower limit value of the supply steam flow rate for each place (the front chamber 2, the rising chamber 10, and the falling chamber 11) corresponding to the types of food to be handled. Is set. The flow control device 30 first designates the type of food to be handled and performs control corresponding to the type of food to be handled.

先ず、制御弁24(24A,24B,24C)を開いて蒸し機1内に蒸気を充満させる。流量制御装置30においては、0.1秒毎に、温度センサ(S1,S2,S3,S4,S5,S6,S7)からの温度の測定値を入手し、過去5秒間の平均値を算出し、この平均値を、現時点の測定値としている。この状態で、先ず、予備制御モードに設定されて予備制御が行われる。   First, the control valve 24 (24A, 24B, 24C) is opened to fill the steamer 1 with steam. In the flow control device 30, the measured value of the temperature from the temperature sensor (S1, S2, S3, S4, S5, S6, S7) is obtained every 0.1 second, and the average value for the past 5 seconds is calculated. The average value is used as the current measurement value. In this state, first, the preliminary control mode is set and the preliminary control is performed.

<予備制御モード>
図4に示すフローチャートを用い、先ず、それぞれの制御系等毎に、制御弁24(24A,24B,24C)を所定開度(例えば66%)にし(1−1)、所定時間(例えば5秒)経過したならば(1−2)、蒸気流量計(M1,M2,M3)による蒸気流量の測定値が下限値以上か否かを判断する(1−3)、下限値よりも少なければ(1−3N)、蒸気量が不足しているとして、制御弁24(24A,24B,24C)を所定幅(実施の形態では0.25%)開にする(1−4)。そして、下限値以上に多くなれば(1−3Y)、蒸気流量計(M1,M2,M3)による蒸気流量の測定値が上限値以内にあるかを判断する(1−5)、上限値よりも多ければ(1−5N)、蒸気量が過剰であるとして、今度は、制御弁24(24A,24B,24C)を所定幅(実施の形態では0.25%)閉にする(1−6)。このようにして、制御弁24(24A,24B,24C)を開閉して蒸気流量を上限値から下限値までの範囲内に調整する。この調整ができたならば、即ち、蒸気流量の測定値が上限値以内になれば(1−5Y)、蒸気流量が適正なものとして、本制御モードに移行する(1−7)。
<Preliminary control mode>
Using the flowchart shown in FIG. 4, first, for each control system or the like, the control valve 24 (24A, 24B, 24C) is set to a predetermined opening (eg, 66%) (1-1) for a predetermined time (eg, 5 seconds). ) If it has elapsed (1-2), it is determined whether the measured value of the steam flow rate by the steam flow meters (M1, M2, M3) is equal to or higher than the lower limit value (1-3). 1-3N) Since the amount of steam is insufficient, the control valve 24 (24A, 24B, 24C) is opened by a predetermined width (0.25% in the embodiment) (1-4). And if it becomes more than a lower limit (1-3Y), it will be judged whether the measured value of the steam flow rate by a steam flow meter (M1, M2, M3) is within an upper limit (1-5), from upper limit If it is too large (1-5N), it is determined that the amount of steam is excessive, and this time, the control valve 24 (24A, 24B, 24C) is closed by a predetermined width (0.25% in the embodiment) (1-6). ). In this way, the control valve 24 (24A, 24B, 24C) is opened and closed to adjust the steam flow rate within the range from the upper limit value to the lower limit value. If this adjustment is completed, that is, if the measured value of the steam flow rate is within the upper limit value (1-5Y), it is determined that the steam flow rate is appropriate, and the process proceeds to the present control mode (1-7).

<本制御モード>
本実施の形態においては、図5(ア)及び図6に示すフローチャートに従って行われる本制御の説明を行うが、本発明の本制御はこれに限られず、例えば、図7(イ)に示されるフローチャートに従う本制御を行っても良い。
この本制御モードにおいて、食品運行手段としての第一搬送コンベア5,第二搬送コンベア6,上昇コンベア12,下降コンベア13及び移載装置15が駆動されて食品が載置されたトレー4が搬送され、食品が連続的に蒸気加熱される。例えば、先ず前記前室2の吐出管23のグループ(G1)における本制御を説明する。
1)図5(ア)及び図6に示すとおり、先ず、蒸気流量判断手段35が、蒸気流量計(M1)による蒸気流量の測定値(以下、単に測定流量)が蒸気流量条件記憶手段32が記憶した下限値以上か否かを判断する(2−1)。
蒸気流量判断手段35が、測定流量が下限値より少ないと判断すると(2−1N)、制御弁開閉手段が、制御弁の開度を所定幅(本実施の形態では0.125%)開にする(2−2)。
そのため、蒸気流量が増加する。この制御は測定流量が下限値以上となるまで繰り返される。
2)一方、蒸気流量判断手段35が、測定流量が下限値以上と判断すると(2−1Y)、次に、蒸気流量判断手段35は、測定流量が下限値と等しいか否かを判断する(2−3)。蒸気流量判断手段35が、測定流量が下限値と等しいと判断すると(2−3Y)、その次に、温度範囲判断手段33が、温度センサ(S1,S2)が測定した測定温度の平均値(以下、単に測定温度)が温度条件記憶手段31が記憶した温度の最適値下限以上か否かを判断する(2−4)。温度範囲判断手段33が、測定温度が最適値下限よりも低いと判断すると(2−4N)、制御弁開閉手段が、制御弁の開度を所定幅(実施の形態では0.125%)開にする(2−5)。そのため、蒸気流量が増加する。この制御は、測定温度が最適値下限以上となるまで繰り返される。そして、測定温度が最適値範囲になるとともに、蒸気流量も適正範囲内になり、蒸し機1内で蒸される食品を全て同様の適切な蒸気加熱条件で蒸気加熱し続けることができ、品質の維持が図られる。
3)温度範囲判断手段33が、測定温度が最適値下限以上と判断すると(2−4Y)、その次に、温度範囲判断手段33は、測定温度が最適値上限以下か否かを判断する(2−6)。温度範囲判断手段33が、最適値上限より高いと判断すると(2−6N)、制御弁開閉手段が、その時点の制御弁(24A)の開度を維持する(2−7)。
この場合、測定温度が最適値上限よりも高くなっていて、単に温度だけを検知して調整する従来法ならば、温度を下げるべく蒸気量を減らすようにするところであるが、本実施の形態では測定流量が下限値と等しくなっているので、制御弁(24A)の開度を小さくすることなく蒸気流量が調整される。そのため、下限値の蒸気流量により次第に温度は低くなり最適値範囲内に入るように調整されるとともに、(仮に従来法のように単に温度だけを検知して調整した場合に起こりうる)必要以上に開度を小さくしすぎて蒸気量が不足する事態が防止され、蒸し機1内で蒸される食品を全て同様の適切な蒸気加熱条件で蒸気加熱し続けることができ、品質の維持が図られる。
4)温度範囲判断手段33が、測定温度が最適値上限以下と判断すると(2−6Y)、制御弁開閉手段が、その時点の制御弁(24A)の開度を維持する(2−8)。
そのため、測定温度が最適値範囲内にあるとともに、蒸気流量も適正範囲内にあるので、蒸し機1内で蒸される食品を全て同様の適切な蒸気加熱条件で蒸気加熱し続けることができ、品質の維持が図られる。
5)蒸気流量判断手段35が、測定流量が下限値と等しくないと判断すると(2−3N)、次に、蒸気流量判断手段35は、測定流量が上限値以下か否かを判断する(2−9)。蒸気流量判断手段35が、測定流量が上限値より多いと判断すると(2−9N)、制御弁開閉手段が、制御弁の開度を所定幅(実施の形態では0.125%)閉にする(2−10)。
そのため、蒸気流量が減少する。この制御は蒸気流量が上限値以下となるまで繰り返される。
6)蒸気流量判断手段35が、測定流量が上限値以下と判断すると(2−9Y)、次に、蒸気流量判断手段35が、測定流量が上限値と等しいか否かを判断する(2−11)。蒸気流量判断手段35が、測定流量が上限値と等しいと判断すると(2−11Y)、温度範囲判断手段33が、測定温度が最適値下限以上か否かを判断する(2−12)。温度範囲判断手段33が、測定温度が最適値下限よりも低いと判断すると(2−12N)、制御弁開閉手段が、その時点の制御弁(24A)の開度を維持する(2−13)。
この場合、測定温度が最適値下限よりも低くなっていて、単に温度だけを検知して調整する従来法ならば、温度を上げるべく蒸気量を増すようにするところであるが、本実施の形態では測定流量が上限値となっているので、制御弁(24A)の開度をより大きくすることなく蒸気流量を維持して調整される。そのため、上限値の蒸気流量により次第に温度は高くなり最適値範囲内に入るように調整されるとともに、(仮に従来法のように単に温度だけを検知して調整した場合に起こりうる)必要以上に開度を大きくし過ぎて蒸気量が過剰になる事態が防止され、蒸し機1内で蒸される食品を全て同様の適切な蒸気加熱条件で蒸気加熱し続けることができ、品質の維持が図られる。
7)温度範囲判断手段33が、測定温度が最適値下限以上と判断すると(2−12Y)、その次に、温度範囲判断手段33は、測定温度が最適値上限以下か否かを判断する(2−14)。温度範囲判断手段33が、最適値上限より高いと判断すると(2−14N)、制御弁開閉手段が、制御弁の開度を所定幅(実施の形態では0.125%)閉にする(2−15)。
この制御は、測定温度が最適値上限以下となるまで繰り返される。そのため、蒸気流量が減少して温度下降に寄与し、測定温度が最適値範囲内に入るようになる。この場合、蒸気流量も適正範囲内となるので、蒸し機1内で蒸される食品を全て同様の適切な蒸気加熱条件で蒸気加熱し続けることができ、品質の維持が図られる。
8)温度範囲判断手段33が、測定温度が最適値上限以下と判断すると(2−14Y)、制御弁開閉手段が、その時点の制御弁(24A)の開度を維持する(2−16)。
そのため、測定温度が最適値範囲内にあるとともに、蒸気流量も適正範囲内にあるので、蒸し機1内で蒸される食品を全て同様の適切な蒸気加熱条件で蒸気加熱し続けることができ、品質の維持が図られる。
9)蒸気流量判断手段35が、測定流量が上限値と等しくないと判断すると(2−11N)、温度範囲判断手段33が、測定温度が最適値下限以上か否かを判断する(2−17)。温度範囲判断手段33が、測定温度が最適値下限よりも低いと判断すると(2−17N)、制御弁開閉手段が、制御弁の開度を所定幅(実施の形態では0.125%)開にする(2−18)。この制御は、測定流量が上限値と等しくなるか、又は測定流量が上限値より少なくても、測定温度が最適値下限以上となるまで繰り返される。そのため、蒸気流量が増加して温度上昇に寄与し、測定温度が最適値範囲内に入るように調整される。この場合、蒸気流量が上限値より少ない適正範囲内で制御され調整されるので、必要以上に開度を大きくし過ぎて蒸気量が過剰になる事態が防止され、蒸し機1内で蒸される食品を全て同様の適切な蒸気加熱条件で蒸気加熱し続けることができ、品質の維持が図られる。
10)温度範囲判断手段33が、測定温度が最適値下限以上と判断すると(2−17Y)、その次に、温度範囲判断手段33は、測定温度が最適値上限以下か否かを判断する(2−19)。温度範囲判断手段33が、最適値上限より高いと判断すると(2−19N)、制御弁開閉手段が、制御弁の開度を所定幅(実施の形態では0.125%)閉にする(2−20)。この制御は、測定流量が下限値と等しくなるか、又は測定温度が最適値上限以下となるまで繰り返される。そのため、蒸気流量が減少して温度下降に寄与し、測定温度が最適値範囲内に入るように調整される。この場合、測定流量が下限値より多い適正範囲内で制御され調整されるので、必要以上に開度を小さくし過ぎて蒸気量が過小になる事態が防止され、蒸し機1内で蒸される食品を全て同様の適切な蒸気加熱条件で蒸気加熱し続けることができ、品質の維持が図られる。
11)温度範囲判断手段33が、測定温度が最適値上限以下と判断すると(2−19Y)、
制御弁開閉手段が、その時点の制御弁(24A)の開度を維持する(2−21)。
そのため、測定温度が最適値範囲内にあるとともに、蒸気流量も適正範囲内にあるので、蒸し機1内で蒸される食品を全て同様の適切な蒸気加熱条件で蒸気加熱し続けることができ、品質の維持が図られる。
この前室2の吐出管23のグループ(G1)における本制御と同様に、前記本体3の上昇室10及び下降室11の吐出管23のグループ(G2)、(G3)における本制御についても、それぞれ温度センサ(S3)、(S6)が測定した測定温度と蒸気流量計(M2)、(M3)が測定した蒸気流量の測定値とにより制御弁(24B)、(24C)を開閉制御して行う。
<This control mode>
In the present embodiment, the present control performed according to the flowcharts shown in FIGS. 5A and 6 will be described. However, the present control of the present invention is not limited to this, for example, as shown in FIG. You may perform this control according to a flowchart.
In this control mode, the first transport conveyor 5, the second transport conveyor 6, the ascending conveyor 12, the descending conveyor 13, and the transfer device 15 as food operation means are driven to transport the tray 4 on which the food is placed. The food is continuously steam heated. For example, first, the main control in the group (G1) of the discharge pipes 23 in the front chamber 2 will be described.
1) As shown in FIGS. 5 (a) and 6, first, the steam flow rate determination means 35 determines that the steam flow rate measurement value (hereinafter simply measured flow rate) measured by the steam flow meter (M1) is the steam flow rate condition storage means 32. It is determined whether or not the stored lower limit is exceeded (2-1).
When the steam flow rate determining means 35 determines that the measured flow rate is less than the lower limit value (2-1N), the control valve opening / closing means opens the control valve opening to a predetermined width (0.125% in this embodiment). (2-2).
Therefore, the steam flow rate increases. This control is repeated until the measured flow rate becomes equal to or higher than the lower limit value.
2) On the other hand, when the steam flow rate determining unit 35 determines that the measured flow rate is equal to or higher than the lower limit (2-1Y), the steam flow rate determining unit 35 then determines whether the measured flow rate is equal to the lower limit value ( 2-3). When the steam flow rate determining means 35 determines that the measured flow rate is equal to the lower limit value (2-3Y), then the temperature range determining means 33 is the average value of the measured temperatures measured by the temperature sensors (S1, S2) ( Hereinafter, it is determined whether or not the simply measured temperature is equal to or higher than the lower limit of the optimum temperature stored in the temperature condition storage means 31 (2-4). When the temperature range determination means 33 determines that the measured temperature is lower than the optimum lower limit (2-4N), the control valve opening / closing means opens the control valve opening by a predetermined width (0.125% in the embodiment). (2-5). Therefore, the steam flow rate increases. This control is repeated until the measured temperature becomes equal to or higher than the optimum lower limit. And while the measurement temperature is in the optimum value range, the steam flow rate is also in the appropriate range, and all the foods steamed in the steamer 1 can be continuously steam-heated under the same appropriate steam heating conditions. Maintenance is planned.
3) When the temperature range determining means 33 determines that the measured temperature is equal to or higher than the optimum value lower limit (2-4Y), next, the temperature range determining means 33 determines whether or not the measured temperature is equal to or less than the optimum value upper limit ( 2-6). If the temperature range determination means 33 determines that it is higher than the optimum upper limit (2-6N), the control valve opening / closing means maintains the opening degree of the control valve (24A) at that time (2-7).
In this case, the measured temperature is higher than the upper limit of the optimum value, and if it is a conventional method in which only the temperature is detected and adjusted, the amount of steam is reduced to lower the temperature. Since the measured flow rate is equal to the lower limit value, the steam flow rate is adjusted without reducing the opening of the control valve (24A). For this reason, the temperature gradually decreases with the lower limit steam flow rate and is adjusted so that it falls within the optimum value range, and more than necessary (which can occur if only the temperature is detected and adjusted as in the conventional method). The situation where the opening degree is too small and the amount of steam is insufficient is prevented, and all the foods steamed in the steamer 1 can be continuously steam-heated under the same appropriate steam heating conditions, thereby maintaining the quality. .
4) When the temperature range determining means 33 determines that the measured temperature is not more than the optimum value upper limit (2-6Y), the control valve opening / closing means maintains the opening degree of the control valve (24A) at that time (2-8) .
Therefore, since the measured temperature is within the optimum value range and the steam flow rate is also within the appropriate range, all the foods steamed in the steamer 1 can be continuously steam-heated under the same appropriate steam heating conditions, Quality is maintained.
5) If the steam flow rate determining means 35 determines that the measured flow rate is not equal to the lower limit value (2-3N), then the steam flow rate determining means 35 determines whether the measured flow rate is equal to or lower than the upper limit value (2). -9). When the steam flow rate determining means 35 determines that the measured flow rate is greater than the upper limit (2-9N), the control valve opening / closing means closes the opening of the control valve by a predetermined width (0.125% in the embodiment). (2-10).
Therefore, the steam flow rate is reduced. This control is repeated until the steam flow rate falls below the upper limit value.
6) If the steam flow rate determining means 35 determines that the measured flow rate is equal to or lower than the upper limit value (2-9Y), then the steam flow rate determining means 35 determines whether or not the measured flow rate is equal to the upper limit value (2- 11). When the steam flow rate determining means 35 determines that the measured flow rate is equal to the upper limit value (2-11Y), the temperature range determining means 33 determines whether the measured temperature is equal to or higher than the optimum value lower limit value (2-12). When the temperature range determination means 33 determines that the measured temperature is lower than the optimum lower limit (2-12N), the control valve opening / closing means maintains the opening of the control valve (24A) at that time (2-13). .
In this case, the measurement temperature is lower than the lower limit of the optimum value, and the conventional method in which only the temperature is detected and adjusted is to increase the amount of steam in order to increase the temperature. Since the measured flow rate is the upper limit value, the steam flow rate is maintained and adjusted without increasing the opening of the control valve (24A). For this reason, the temperature gradually increases depending on the upper limit steam flow rate and is adjusted to fall within the optimum value range, and more than necessary (which can occur if only temperature is detected and adjusted as in the conventional method). It is possible to prevent a situation where the amount of steam is excessive because the opening degree is too large, and all the food steamed in the steamer 1 can be continuously steam-heated under the same appropriate steam heating conditions, thereby maintaining the quality. It is done.
7) When the temperature range determining means 33 determines that the measured temperature is equal to or higher than the optimum value lower limit (2-12Y), next, the temperature range determining means 33 determines whether or not the measured temperature is equal to or lower than the optimum value upper limit ( 2-14). When the temperature range determination means 33 determines that the value is higher than the optimum upper limit (2-14N), the control valve opening / closing means closes the opening of the control valve by a predetermined width (0.125% in the embodiment) (2 -15).
This control is repeated until the measured temperature falls below the upper limit of the optimum value. Therefore, the steam flow rate decreases and contributes to the temperature decrease, and the measured temperature falls within the optimum value range. In this case, since the steam flow rate is within an appropriate range, all the foods steamed in the steamer 1 can be continuously steam-heated under the same appropriate steam heating conditions, and the quality can be maintained.
8) When the temperature range determining means 33 determines that the measured temperature is less than or equal to the upper limit of the optimum value (2-14Y), the control valve opening / closing means maintains the opening of the control valve (24A) at that time (2-16) .
Therefore, since the measured temperature is within the optimum value range and the steam flow rate is also within the appropriate range, all the foods steamed in the steamer 1 can be continuously steam-heated under the same appropriate steam heating conditions, Quality is maintained.
9) When the steam flow rate determining means 35 determines that the measured flow rate is not equal to the upper limit value (2-11N), the temperature range determining means 33 determines whether the measured temperature is equal to or greater than the optimum lower limit value (2-17). ). When the temperature range determination means 33 determines that the measured temperature is lower than the optimum lower limit (2-17N), the control valve opening / closing means opens the control valve opening by a predetermined width (0.125% in the embodiment). (2-18). This control is repeated until the measured temperature becomes equal to or greater than the optimum lower limit even if the measured flow rate becomes equal to the upper limit value or even if the measured flow rate is less than the upper limit value. Therefore, the steam flow rate increases and contributes to the temperature rise, and the measured temperature is adjusted to be within the optimum value range. In this case, since the steam flow rate is controlled and adjusted within an appropriate range less than the upper limit value, a situation in which the opening degree is excessively increased and the steam amount becomes excessive is prevented, and steaming is performed in the steamer 1. All foods can be continuously steam-heated under the same appropriate steam heating conditions, and quality can be maintained.
10) When the temperature range determining means 33 determines that the measured temperature is not less than the optimum lower limit (2-17Y), next, the temperature range judging means 33 determines whether or not the measured temperature is not more than the optimum upper limit ( 2-19). When the temperature range determination means 33 determines that the value is higher than the optimum upper limit (2-19N), the control valve opening / closing means closes the opening of the control valve by a predetermined width (0.125% in the embodiment) (2 -20). This control is repeated until the measured flow rate becomes equal to the lower limit value or the measured temperature becomes equal to or lower than the optimum upper limit value. Therefore, the steam flow rate is reduced to contribute to the temperature decrease, and the measured temperature is adjusted to fall within the optimum value range. In this case, since the measured flow rate is controlled and adjusted within an appropriate range larger than the lower limit value, a situation in which the opening degree is excessively reduced and the amount of steam becomes excessive is prevented, and steaming is performed in the steamer 1. All foods can be continuously steam-heated under the same appropriate steam heating conditions, and quality can be maintained.
11) When the temperature range determining means 33 determines that the measured temperature is less than or equal to the upper limit of the optimum value (2-19Y),
The control valve opening / closing means maintains the opening degree of the control valve (24A) at that time (2-21).
Therefore, since the measured temperature is within the optimum value range and the steam flow rate is also within the appropriate range, all the foods steamed in the steamer 1 can be continuously steam-heated under the same appropriate steam heating conditions, Quality is maintained.
Similar to the main control in the group (G1) of the discharge pipe 23 in the front chamber 2, the main control in the groups (G2) and (G3) of the discharge pipe 23 in the ascending chamber 10 and the descending chamber 11 of the main body 3, The control valves (24B) and (24C) are controlled to open and close by the measured temperature measured by the temperature sensors (S3) and (S6) and the measured value of the steam flow rate measured by the steam flow meters (M2) and (M3), respectively. Do.

次に、取り扱う食品の種類を変えるときは、流量制御装置30で、取り扱う食品の種類を指定し、取り扱う食品の種類に対応した制御を行なわせる。この場合、蒸し機1内の温度や蒸気条件が変わり、蒸し機1内の温度を下げなければならない場合には、設定変えを迅速に行うために、以下のダンパ調整モードで、蒸し機1内の温度を大きく下げることができる。
<ダンパ調整モード>
図8に示すフローチャートを用い、ダンパ16が閉状態にあるとき(3−1)、測定温度が所定温度(実施の形態では、基準温度+2℃)以下か否かが判断され(3−2)、所定温度以下である場合には、温度降下の必要性がないことから、処理を終了する(3−2Y)。所定温度よりも高い場合には(3−2N)、ダンパ16を開にする(3−3)。これにより、ダンパ16の開口から、蒸し機1内の蒸気が排気されていき、蒸し機1内の温度が下降する。そして、測定温度が(予め設定しておいた)適正温度になると(3−4Y)、ダンパ16が閉じられ(3−5)、処理が終了する。この場合、ダンパ16を開けることにより、蒸し機1内の温度を急速に下降させることができるので、次の取り扱う食品の種類への設定変えを迅速に行うことができ、製造効率が向上させられる。なお、この場合の適正温度は予め適宜に設定でき、「所定温度+1℃」としてもよく、また、「所定温度+(ダンパ16を開にする前の測定温度−基準温度)/2」とする等としてもよい。
Next, when changing the type of food to be handled, the flow control device 30 designates the type of food to be handled and performs control corresponding to the type of food to be handled. In this case, when the temperature and steam conditions in the steamer 1 change and the temperature in the steamer 1 has to be lowered, in order to change the setting quickly, the steamer 1 has the following damper adjustment mode. The temperature can be greatly reduced.
<Damper adjustment mode>
When the damper 16 is in the closed state (3-1) using the flowchart shown in FIG. 8, it is determined whether or not the measured temperature is equal to or lower than a predetermined temperature (reference temperature + 2 ° C. in the embodiment) (3-2). If the temperature is equal to or lower than the predetermined temperature, there is no need for a temperature drop, and the process is terminated (3-2Y). When the temperature is higher than the predetermined temperature (3-2N), the damper 16 is opened (3-3). Thereby, the vapor | steam in the steamer 1 is exhausted from the opening of the damper 16, and the temperature in the steamer 1 falls. When the measured temperature reaches an appropriate temperature (set in advance) (3-4Y), the damper 16 is closed (3-5), and the process ends. In this case, since the temperature in the steamer 1 can be rapidly lowered by opening the damper 16, the setting change to the type of food to be handled next can be performed quickly, and the production efficiency is improved. . The appropriate temperature in this case can be appropriately set in advance and may be “predetermined temperature + 1 ° C.”, or “predetermined temperature + (measured temperature before opening the damper 16−reference temperature) / 2”. Etc.

以下、本発明の実施例を示すが、本発明はこれに限定されるものではない。
下表に示した配合の原材料を用いて常法どおりに混合し、バッター状の蒸しケーキ用生地を作成する。
[蒸しケーキ生地の配合]
小麦粉 100
卵 100
砂糖 100
菜種油 30
起泡剤 5
膨張剤 2
(小麦粉を100とした質量比)
Examples of the present invention will be described below, but the present invention is not limited thereto.
Using the ingredients shown in the table below, mix as usual to make a batter-like steamed cake dough.
[Combination of steamed cake dough]
Flour 100
Egg 100
Sugar 100
Rape oil 30
Foaming agent 5
Swelling agent 2
(Mass ratio with flour as 100)

前記バッター状生地を小判型の蒸し型に流し入れ、図1に示される本実施の形態に係る連続蒸気加熱装置を用いて、前記の本実施の形態に記載した制御方法により、下記の蒸し条件により連続的に蒸気加熱して小判型の蒸しケーキを製造した。
[蒸し条件]
蒸し時間:20分
前室:[S2] 基準温度57.5℃(最適値温度範囲は、基準温度±0.5℃)、
供給蒸気流量の基準値50Kg/H(下限値は基準値の80%で40Kg/H、上限値は基準値の120%で60Kg/H)
上昇室:[S3]基準温度93.5℃(最適値温度範囲は、基準温度±0.5℃)、
供給蒸気流量の基準値30Kg/H(下限値は基準値の80%で24Kg/H、上限値は基準値の120%で36Kg/H)
下降室:[S6]基準温度93.5℃(最適値温度範囲は、基準温度±0.5℃)、
供給蒸気流量の基準値60Kg/H(下限値は基準値の80%で48Kg/H、上限値は基準値の120%で72Kg/H)
The batter-like dough is poured into an oval-type steaming mold, and using the continuous steam heating apparatus according to the present embodiment shown in FIG. 1, according to the following steaming condition by the control method described in the present embodiment. Oval steamed cake was produced by continuous steam heating.
[Steaming conditions]
Steaming time: 20 minutes Front chamber: [S2] Reference temperature 57.5 ° C (optimum value temperature range is reference temperature ± 0.5 ° C),
Supply steam flow rate reference value 50Kg / H (lower limit is 40Kg / H at 80% of the reference value, upper limit is 60Kg / H at 120% of the reference value)
Ascending chamber: [S3] Reference temperature 93.5 ° C (optimum value temperature range is reference temperature ± 0.5 ° C),
Supply steam flow rate reference value 30Kg / H (lower limit value is 24Kg / H at 80% of the reference value, upper limit value is 36Kg / H at 120% of the reference value)
Lowering chamber: [S6] Reference temperature 93.5 ° C (optimum value temperature range is reference temperature ± 0.5 ° C),
Supply steam flow rate reference value 60Kg / H (lower limit value is 48Kg / H at 80% of reference value, upper limit value is 72Kg / H at 120% of reference value)

前記蒸し型の上に温度センサーを設置して実際の前記バッター状生地の加熱雰囲気温度を3回計測した。その結果は、図9のグラフに示すとおりであり、S2、S3、S6の各温度センサーの位置において、上記設定した基準温度(それぞれ57.5℃、93.5℃、93.5℃)に近接した雰囲気温度を維持できており、また、3回の計測値が蒸し機内全体にわたりほぼ一致している。   A temperature sensor was installed on the steaming mold, and the actual heating atmosphere temperature of the batter-like fabric was measured three times. The result is as shown in the graph of FIG. 9, and at the positions of the temperature sensors S2, S3, and S6, the set reference temperatures (57.5 ° C., 93.5 ° C., and 93.5 ° C., respectively) are obtained. The close ambient temperature can be maintained, and the three measured values almost coincide with each other throughout the steamer.

比較例として、前記バッター状生地を小判型の蒸し型に流し入れ、図1に示される本実施の形態に係る連続蒸気加熱装置を用いて、自動制御を行わずに、従来通り熟練者(人)が人手によりバルブを開閉して蒸気供給量を調整して(それ以外は本実施例と同じ)、小判型の蒸しケーキを製造した。
実施例による蒸しケーキは、形状・大きさが一定に保たれ、表面のキメが細かく、外観に優れ、また、食したところ、しっとりとして口溶けがよいものが多かった。
それに対して比較例の蒸しケーキは、実施例に近い出来のものもあるが、総じて外観、内容ともに実施例に劣るだけでなく、蒸し機内の蒸気流量が少なすぎて蒸気加熱が不十分な場合に見られる、縮んだ形状で、表面に皺が生じて外観的に劣り、食しても口溶けが悪いものや、逆に、蒸し機内の蒸気流量が多すぎて蒸気加熱が過剰な場合に見られる、過膨張で歪な形状となった、表面にヒビや割れが生じてしまい外観的に劣り、食してもパサつくものが多く生じた。
As a comparative example, the batter-like dough is poured into an oval steaming mold, and the conventional steam heating apparatus according to the present embodiment shown in FIG. However, the steam supply amount was adjusted by manually opening and closing the valve (otherwise, the same as in this example) to produce a small-sized steamed cake.
The steamed cakes according to the examples had a constant shape and size, a fine texture on the surface, excellent appearance, and when eaten, many of them were moist and melted in the mouth.
On the other hand, the steamed cake of the comparative example may be similar to the example, but not only the appearance and contents are generally inferior to the example, but also the steam flow in the steamer is too small and the steam heating is insufficient As seen in Fig. 2, it appears when the surface is inferior due to wrinkles on the surface, poor in appearance and poorly melts when eaten, or conversely, when the steam flow in the steamer is too high and steam heating is excessive. The surface became cracked due to overexpansion, cracks and cracks were generated on the surface, and the appearance was inferior.

また、本願発明の実施例の(A)蒸気加熱が適切な場合、比較例の(B)蒸気加熱が不十分な場合及び(C)蒸気加熱が過剰な場合に、蒸しケーキの表面を北海道地図の形状に白抜き天焼きしたところ、図10に示す図面代用写真のとおり、(A)の蒸しケーキは焼き色が均一で鮮やかな白抜き図柄が形成されているが、(B)の蒸しケーキは蒸気加熱が不十分で、表面に縮み皺や収縮によるケービングの凹凸があるために焼き色が不均一で、所々はがれて荒れた状態となっており外観に劣り、また、(C)蒸しケーキは、過剰な蒸気加熱による過膨張で表面一部に割れが生じているうえ、部分的に膨張しすぎている箇所が凸凹しているために焼き色が不均一となっており、白抜き図柄も歪な形状で形成されている。   In addition, when (A) steam heating is appropriate in the examples of the present invention, (B) when steam heating is insufficient and (C) when steam heating is excessive, the surface of the steamed cake is compared with the Hokkaido map. As shown in the drawing substitute photograph shown in FIG. 10, the steamed cake of (A) has a uniform baked color and a bright white pattern, but the steamed cake of (B). Is inadequately heated with steam and has uneven surface due to shrinkage of wrinkles and shrinkage of caving due to shrinkage. Has cracks on the surface due to overexpansion due to excessive steam heating, and uneven color due to irregularities in the part that is partly overexpanded. Is also formed in a distorted shape.

1 蒸し機
2 前室
3 本体
4 トレー
5 第一搬送コンベア
6 第二搬送コンベア
7 仕切り板
10 上昇室
11 下降室
12 上昇コンベア
13 下降コンベア
14 連通空間部
15 移載装置
16 ダンパ
20 蒸気供給装置
21 蒸気発生器
22(22A,22B,22C) 第一〜第三蒸気送給管
23(a,b,c,d,e) 吐出管
24(24A,24B,24C) 制御弁
G1,G2,G3 グループ
M1,M2,M3 蒸気流量計
S1,S2,S3,S4,S5,S6,S7 温度センサ
30 流量制御装置
31 温度条件記憶手段
32 蒸気流量条件記憶手段
33 温度範囲判断手段
34 制御弁開度変更手段
35 蒸気流量判断手段
36 開閉条件設定手段
37 モード切替手段
DESCRIPTION OF SYMBOLS 1 Steamer 2 Front chamber 3 Main body 4 Tray 5 1st conveyance conveyor 6 2nd conveyance conveyor 7 Partition plate 10 Ascending chamber 11 Descent chamber 12 Ascending conveyor 13 Descent conveyor 14 Communication space part 15 Transfer device 16 Damper 20 Steam supply device 21 Steam generator 22 (22A, 22B, 22C) First to third steam supply pipes 23 (a, b, c, d, e) Discharge pipes 24 (24A, 24B, 24C) Control valves G1, G2, G3 groups M1, M2, M3 Steam flow meters S1, S2, S3, S4, S5, S6, S7 Temperature sensor 30 Flow control device 31 Temperature condition storage means 32 Steam flow condition storage means 33 Temperature range determination means 34 Control valve opening change means 35 Steam flow rate judging means 36 Opening / closing condition setting means 37 Mode switching means

Claims (13)

運行式の蒸し機内部で食品を運行させながら蒸気供給手段の吐出部から所定温度の蒸気を供給して連続的に蒸気加熱する方法において、
前記蒸し機内部の加熱雰囲気温度及び前記蒸気供給手段の吐出部から供給される蒸気流量を連続的に測定しながら、該温度及び蒸気流量の測定値に対応して、該蒸気供給手段により供給する蒸気流量を自動的に連続して調整することを特徴とする食品の連続蒸気加熱方法。
In the method of continuously steam heating by supplying steam at a predetermined temperature from the discharge part of the steam supply means while operating food inside the operation type steamer,
While the heating atmosphere temperature inside the steamer and the flow rate of steam supplied from the discharge part of the steam supply means are continuously measured, the steam supply means supplies the temperature and the flow rate of the steam corresponding to the measured values. A continuous steam heating method for food, characterized by automatically and continuously adjusting the steam flow rate.
予め、前記加熱雰囲気温度の最適値範囲を設定し、又、前記蒸気流量の基準値を設定するとともに、当該蒸気流量の基準値を基準にして上限値及び下限値を設定し、当該加熱雰囲気温度の測定値がその最適値範囲にあるか否か、及び測定蒸気流量がその下限値から上限値までの範囲にあるか否かに応じて、前記雰囲気温度測定値が前記最適値範囲内になるように、且つ、前記測定蒸気流量が下限値から上限値までの範囲内になるように、前記蒸気供給手段により供給する蒸気流量を調整することを特徴とする請求項1記載の食品の連続蒸気加熱方法。 An optimum value range of the heating atmosphere temperature is set in advance, a reference value of the steam flow rate is set, an upper limit value and a lower limit value are set based on the reference value of the steam flow rate, and the heating atmosphere temperature is set. The ambient temperature measurement value falls within the optimum value range depending on whether the measured value is within the optimum value range and whether the measured steam flow rate is within the range from the lower limit value to the upper limit value. And the steam flow supplied by the steam supply means is adjusted so that the measured steam flow rate is within a range from a lower limit value to an upper limit value. Heating method. A)測定蒸気流量が下限値より少ない場合、
B)測定蒸気流量が下限値に等しく、且つ、測定温度が最適値下限より低い場合、
C)測定蒸気流量が下限値に等しく、且つ、測定温度が最適値上限より高い場合、
D)測定蒸気流量が下限値に等しく、且つ、測定温度が測定温度が最適値範囲内にある場合、
E)測定蒸気流量が上限値より多い場合、
F)測定蒸気流量が上限値に等しく、且つ、測定温度が最適値下限より低い場合、
G)測定蒸気流量が上限値に等しく、且つ、測定温度が最適値上限より高い場合、
H)測定蒸気流量が上限値に等しく、且つ、測定温度が測定温度が最適値範囲内にある場合、
I)測定蒸気流量が下限値より多く、上限値より少ない範囲内にあり、且つ、測定温度が最適値下限より低い場合、
J)測定蒸気流量が下限値より多く、上限値より少ない範囲内にあり、且つ、測定温度が最適値上限より高い場合、
K)測定蒸気流量が下限値より多く、上限値より少ない範囲内にあり、且つ、測定温度が最適値範囲内にある場合、
の各場合のうち、
C)、D)、F)、H)又はK)の場合、その時点の蒸気流量を維持し、
A)、B)又はI)の場合、蒸気流量を所定量増加させ、
E)、G)又はJ)の場合、蒸気流量を所定量減少させるように、
前記蒸気流量の調整を一定時間ごとに行い、これを繰り返すことを特徴とする請求項1又は2記載の食品の連続蒸気加熱方法。
A) If the measured steam flow is less than the lower limit,
B) When the measured steam flow rate is equal to the lower limit value and the measured temperature is lower than the optimum lower limit value,
C) When the measured steam flow rate is equal to the lower limit value and the measured temperature is higher than the optimum upper limit value,
D) When the measured steam flow rate is equal to the lower limit value and the measured temperature is within the optimum value range,
E) When the measured steam flow rate is higher than the upper limit,
F) When the measured steam flow rate is equal to the upper limit value and the measured temperature is lower than the optimum lower limit value,
G) When the measured steam flow rate is equal to the upper limit value and the measured temperature is higher than the optimum upper limit value,
H) When the measured steam flow rate is equal to the upper limit value and the measured temperature is within the optimum value range,
I) When the measured steam flow rate is greater than the lower limit value and less than the upper limit value, and the measured temperature is lower than the optimum lower limit value,
J) When the measured steam flow rate is greater than the lower limit value and less than the upper limit value, and the measured temperature is higher than the optimum upper limit value,
K) When the measured steam flow rate is greater than the lower limit value and less than the upper limit value, and the measured temperature is within the optimum value range,
Of each case,
In the case of C), D), F), H) or K), the current steam flow rate is maintained,
In the case of A), B) or I), the steam flow rate is increased by a predetermined amount,
In the case of E), G) or J), the steam flow rate is decreased by a predetermined amount,
The method for continuous steam heating of food according to claim 1 or 2, wherein the adjustment of the steam flow rate is performed at regular intervals, and this is repeated.
前記蒸気供給手段の吐出部を前記蒸し機内部の複数箇所に設け、該複数箇所の吐出部を予め複数グループに分け、該グループ毎に加熱雰囲気温度の最適値範囲及び前記供給蒸気流量の基準値を設定して、前記供給手段により供給する蒸気流量を調整することを特徴とする請求項2又は3記載の食品の連続蒸気加熱方法 Discharge portions of the steam supply means are provided at a plurality of locations inside the steamer, the discharge portions at the plurality of locations are divided into a plurality of groups in advance, and an optimum value range of the heating atmosphere temperature and a reference value of the supply steam flow rate for each group The continuous steam heating method for food according to claim 2, wherein the flow rate of steam supplied by the supply means is adjusted. 前記供給蒸気流量の上限値を基準値の110%〜200%の範囲で、かつ、下限値を基準値の50〜90%の範囲で設定することを特徴とする請求項2乃至4の何れかに記載の食品の連続蒸気加熱方法。 5. The upper limit value of the supply steam flow rate is set in a range of 110% to 200% of a reference value, and the lower limit value is set in a range of 50 to 90% of a reference value . continuous steam heating method of the food according to. 前記加熱雰囲気温度の最適値範囲を100℃未満とすることを特徴とする請求項2乃至5の何れかに記載の食品の連続蒸気加熱方法。 The continuous steam heating method for food according to any one of claims 2 to 5 , wherein an optimum value range of the heating atmosphere temperature is set to less than 100 ° C. 前記蒸し機の蒸気を該蒸し機内から蒸し機外へ流出させて加熱雰囲気温度を調整する蒸気流出調整モードを備えたことを特徴とする請求項1乃至6の何れかに記載の食品の連続蒸気加熱方法。 The continuous steam for food according to any one of claims 1 to 6, further comprising a steam outflow adjustment mode for adjusting the heating atmosphere temperature by allowing the steam of the steamer to flow out of the steamer to the outside of the steamer. Heating method. 請求項1乃至7の何れかに記載の食品の連続蒸気加熱方法による蒸気流量の調整(本制御モード)に先立って、蒸気流量を前記下限値から上限値までの範囲内に設定する予備制御モードを備えたことを特徴とする請求項1乃至7の何れかに記載の食品の連続蒸気加熱方法。 A preliminary control mode in which the steam flow rate is set within the range from the lower limit value to the upper limit value prior to the adjustment of the steam flow rate (main control mode) by the continuous steam heating method for foods according to any one of claims 1 to 7. A continuous steam heating method for foods according to any one of claims 1 to 7. 食品を蒸す蒸し機と、該蒸し機内で食品を連続的に運行する食品運行手段と、前記蒸し機内に蒸気を供給する蒸気供給装置とを備える食品の連続蒸気加熱装置において、
前記蒸気供給装置を、所定温度の蒸気を発生させる蒸気発生器と、該蒸気発生器により発生した蒸気を蒸し機内に送給する蒸気送給管と、前記蒸し機内で蒸気送給管により送給された蒸気を吐出する吐出管と、該吐出管から吐出される蒸気流量を調整するための制御弁とを備えて構成し、
前記吐出管から吐出される蒸気流量を測定する蒸気流量計を備え、
前記蒸し機内に、該蒸し機内部の加熱雰囲気温度を測定する温度センサを備え、
前記温度センサによる温度の測定値及び前記蒸気流量計による蒸気流量の測定値に対応して自動的に前記制御弁を開閉制御して蒸気流量を調整する流量制御装置を備えたことを特徴とする食品連続蒸気加熱装置。
In a continuous steam heating apparatus for food comprising a steamer for steaming food, a food operating means for continuously operating food in the steamer, and a steam supply device for supplying steam to the steamer,
The steam supply device includes a steam generator that generates steam at a predetermined temperature, a steam feed pipe that feeds steam generated by the steam generator into the steamer, and a steam feed pipe that feeds the steam generated in the steamer. A discharge pipe that discharges the generated steam, and a control valve for adjusting the flow rate of the steam discharged from the discharge pipe,
A steam flow meter for measuring the flow rate of steam discharged from the discharge pipe;
In the steamer, provided with a temperature sensor for measuring the heating atmosphere temperature inside the steamer,
A flow rate control device is provided that automatically controls opening and closing of the control valve in accordance with a measured value of the temperature by the temperature sensor and a measured value of the steam flow rate by the steam flow meter to adjust the steam flow rate. Food continuous steam heating device.
前記流量制御装置は、予め設定された加熱雰囲気温度の最適値範囲を記憶する温度条件記憶手段と、予め設定された蒸気流量の基準値を記憶するとともに、該蒸気流量の基準値を基準にして設定された上限値及び下限値を記憶する蒸気流量条件記憶手段と、前記温度センサが測定した測定温度が前記温度条件記憶手段が記憶した温度の最適値範囲内にあるか否かを判断する温度範囲判断手段と、前記蒸気流量計による蒸気流量の測定値を前記蒸気流量条件記憶手段が記憶した上限値及び下限値と比較して、これらの数値との関係を判断する蒸気流量判断手段と、
前記温度範囲判断手段と前記蒸気流量判断手段による判断結果に従って、制御弁の開度を開側若しくは閉側に所定幅変更し、又は維持する制御弁開閉手段と
を備えたことを特徴とする請求項9記載の食品の連続蒸気加熱装置。
The flow rate control device stores a temperature condition storage means for storing an optimum value range of a preset heating atmosphere temperature, a preset reference value for the steam flow rate, and a reference value for the reference value for the steam flow rate. Steam flow rate condition storage means for storing the set upper limit value and lower limit value, and temperature for determining whether the measured temperature measured by the temperature sensor is within the optimum value range of the temperature stored by the temperature condition storage means A range determination means, a steam flow determination means for comparing a measured value of the steam flow rate by the steam flow meter with an upper limit value and a lower limit value stored in the steam flow condition storage means, and determining a relationship between these values;
A control valve opening / closing means for changing or maintaining the opening degree of the control valve to a predetermined width on the open side or the closed side according to the determination results by the temperature range determination means and the steam flow rate determination means. Item 10. A continuous steam heating apparatus for food according to Item 9.
前記制御弁開閉手段が、一定時間ごとに、以下の通りに、場合に応じて制御弁の開度を所定幅開側若しくは閉側に変更するか、又は維持することを行い、これを繰り返すことを特徴とする請求項10記載の食品の連続蒸気加熱装置。
A)蒸気流量判断手段が測定蒸気流量が下限値より少ないと判断した場合、
B)蒸気流量判断手段が測定蒸気流量が下限値に等しいと判断し、且つ、温度範囲判断手段が測定温度が最適値下限より低いと判断した場合、
C)蒸気流量判断手段が測定蒸気流量が下限値に等しいと判断し、且つ、温度範囲判断手段が測定温度が最適値上限より高いと判断した場合、
D)蒸気流量判断手段が測定蒸気流量が下限値に等しいと判断し、且つ、温度範囲判断手段が測定温度が測定温度が最適値範囲内にあると判断した場合、
E)蒸気流量判断手段が測定蒸気流量が上限値より多いと判断した場合、
F)蒸気流量判断手段が測定蒸気流量が上限値に等しいと判断し、且つ、温度範囲判断手段が測定温度が最適値下限より低いと判断した場合、
G)蒸気流量判断手段が測定蒸気流量が上限値に等しいと判断し、且つ、温度範囲判断手段が測定温度が最適値上限より高いと判断した場合、
H)蒸気流量判断手段が測定蒸気流量が上限値に等しいと判断し、且つ、温度範囲判断手段が測定温度が測定温度が最適値範囲内にあると判断した場合、
I)蒸気流量判断手段が測定蒸気流量が下限値より多く、上限値より少ない範囲内にあると判断し、且つ、温度範囲判断手段が測定温度が最適値下限より低いと判断した場合、
J)蒸気流量判断手段が測定蒸気流量が下限値より多く、上限値より少ない範囲内にあると判断し、且つ、温度範囲判断手段が測定温度が最適値上限より高いと判断した場合、
K)蒸気流量判断手段が測定蒸気流量が下限値より多く、上限値より少ない範囲内にあると判断し、且つ、温度範囲判断手段が測定温度が最適値範囲内にあると判断した場合、
の各場合のうち、
C)、D)、F)、H)又はK)の場合、その時点の制御弁の開度を維持し、
A)、B)又はI)の場合、制御弁を所定幅、開側に変更し、
E)、G)又はJ)の場合、制御弁を所定幅、閉側に変更する。
The control valve opening / closing means changes or maintains the opening degree of the control valve to the predetermined width open side or the closed side depending on the case at regular intervals as follows, and repeats this. The continuous steam heating apparatus for food according to claim 10.
A) When the steam flow determining means determines that the measured steam flow is less than the lower limit value,
B) When the steam flow determining means determines that the measured steam flow is equal to the lower limit, and the temperature range determining means determines that the measured temperature is lower than the optimum lower limit,
C) When the steam flow determining means determines that the measured steam flow is equal to the lower limit value, and the temperature range determining means determines that the measured temperature is higher than the upper limit of the optimum value,
D) When the steam flow determining means determines that the measured steam flow is equal to the lower limit, and the temperature range determining means determines that the measured temperature is within the optimum value range,
E) When the steam flow rate judging means judges that the measured steam flow rate is higher than the upper limit value,
F) When the steam flow determining means determines that the measured steam flow is equal to the upper limit, and the temperature range determining means determines that the measured temperature is lower than the optimum lower limit,
G) When the steam flow determining means determines that the measured steam flow is equal to the upper limit, and the temperature range determining means determines that the measured temperature is higher than the optimum upper limit,
H) When the steam flow rate determining means determines that the measured steam flow rate is equal to the upper limit value, and the temperature range determining means determines that the measured temperature is within the optimum value range,
I) When the steam flow rate judging means judges that the measured steam flow rate is within the range lower than the lower limit value and lower than the upper limit value, and the temperature range judging means judges that the measured temperature is lower than the optimum lower limit value,
J) When the steam flow determining means determines that the measured steam flow is within the range less than the lower limit and lower than the upper limit, and the temperature range determining means determines that the measured temperature is higher than the optimum upper limit,
K) When the steam flow rate determining means determines that the measured steam flow rate is within the range lower than the lower limit value and lower than the upper limit value, and the temperature range determining means determines that the measured temperature is within the optimum value range,
Of each case,
In the case of C), D), F), H) or K), the opening of the control valve at that time is maintained,
In the case of A), B) or I), change the control valve to a predetermined width and open side,
In the case of E), G) or J), the control valve is changed to the predetermined width and closed side.
前記吐出管を前記蒸し機内部の複数箇所に設け、前記複数箇所の吐出管を予め複数グループに分け、該グループ毎に対応させて前記制御弁,蒸気流量計及び温度センサを設け、前記流量制御装置は、前記吐出管のグループ毎に前記温度センサによる温度の測定値及び前記蒸気流量計による蒸気流量の測定値に基づいて前記対応する制御弁を開閉制御して蒸気流量を調整することを特徴とする請求項9乃至11の何れかに記載の食品の連続蒸気加熱装置。 The discharge pipes are provided at a plurality of locations inside the steamer, the discharge pipes at the plurality of locations are previously divided into a plurality of groups, and the control valve, the steam flow meter and the temperature sensor are provided corresponding to each group, and the flow control The apparatus adjusts the steam flow rate by opening and closing the corresponding control valve based on the temperature measurement value by the temperature sensor and the steam flow measurement value by the steam flow meter for each group of the discharge pipes. The continuous steam heating apparatus for food according to any one of claims 9 to 11. 前記吐出管の複数グループのうち、任意の一又は複数のグループについては、温度センサを複数設け、前記流量制御装置は、それら複数の温度センサによる測定値の平均値を当該グループの温度の測定値とすることを特徴とする請求項12記載の食品の連続蒸気加熱装置。 A plurality of temperature sensors are provided for any one or a plurality of groups of the plurality of discharge pipes, and the flow rate control device calculates an average value of the measurement values of the plurality of temperature sensors as a measurement value of the temperature of the group. The continuous steam heating apparatus for foods according to claim 12.
JP2009158675A 2009-07-03 2009-07-03 Continuous steam heating method for food and continuous steam heating apparatus for food Active JP5370834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009158675A JP5370834B2 (en) 2009-07-03 2009-07-03 Continuous steam heating method for food and continuous steam heating apparatus for food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009158675A JP5370834B2 (en) 2009-07-03 2009-07-03 Continuous steam heating method for food and continuous steam heating apparatus for food

Publications (2)

Publication Number Publication Date
JP2011010926A JP2011010926A (en) 2011-01-20
JP5370834B2 true JP5370834B2 (en) 2013-12-18

Family

ID=43590353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009158675A Active JP5370834B2 (en) 2009-07-03 2009-07-03 Continuous steam heating method for food and continuous steam heating apparatus for food

Country Status (1)

Country Link
JP (1) JP5370834B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5825943B2 (en) * 2011-09-07 2015-12-02 千葉製粉株式会社 Steamed bread and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1189722A (en) * 1997-09-16 1999-04-06 Hiroshi Shishido Food processing, cooking method and apparatus for the same in atmosphere where temperature and humidity of low presser and high temperature superheated steam are controlled
JP2006122037A (en) * 2004-09-29 2006-05-18 Maruchu Setsubi Kogyo:Kk Gas boil device, drying device, transfer article sterilizing device, gas boil method and transfer article sterilizing method

Also Published As

Publication number Publication date
JP2011010926A (en) 2011-01-20

Similar Documents

Publication Publication Date Title
AU728160B2 (en) Baking device and method
JP2007508829A (en) Filled food products, related semi-processed products, and methods and plants for producing them
EP0897896B1 (en) Semi-convective forced air system and method for heating low emissivity glass
NZ571750A (en) Dough cooling and thawing within a conditioning apparatus
JP5370834B2 (en) Continuous steam heating method for food and continuous steam heating apparatus for food
BRPI0620969A2 (en) process for retroactive management and regulation of a tunnel oven and apparatus for retroactive management of a tunnel oven
CN103976041B (en) Anji white tea automation complete equipment for processing and tea Processing method
JP2008161559A (en) Steam heating method and apparatus
US8056470B2 (en) Tempering channel for confectioneries
US5787800A (en) Oven and method for baking moldings by means of air heating
CN101257807B (en) Method for adjusting a water temperature and a pasteurisation tunnel
CN103976042A (en) Flat tea automatic processing complete equipment, and tea processing method
JP2018201766A (en) Hybrid oven
EP2141132B1 (en) Furnace
JP4283257B2 (en) Bread dough correction device
US5970730A (en) Method of cooling coated foods, particularly confectionery and baked goods
KR101950144B1 (en) Manufacturing method for stir-fried rice
JPH05271751A (en) Method for controlling temperature in vacuum furnace
JP3545703B2 (en) Method and apparatus for continuous steaming of food materials
SU1556617A1 (en) Device for heat treating of dough articles in ovens
JP6367756B2 (en) Thick steel plate cooling method and thick steel plate cooling device
CN217242389U (en) Double-layer partition temperature control oven and vanilla cake production line
KR102085923B1 (en) Pot
CN118742207A (en) Baking device and method for operating a baking device
JP2018537148A (en) Panigachi manufacturing method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130905

R150 Certificate of patent or registration of utility model

Ref document number: 5370834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250