[go: up one dir, main page]

JP5154713B2 - ガラス基板の製造方法およびガラス基板の製造装置 - Google Patents

ガラス基板の製造方法およびガラス基板の製造装置 Download PDF

Info

Publication number
JP5154713B2
JP5154713B2 JP2012525564A JP2012525564A JP5154713B2 JP 5154713 B2 JP5154713 B2 JP 5154713B2 JP 2012525564 A JP2012525564 A JP 2012525564A JP 2012525564 A JP2012525564 A JP 2012525564A JP 5154713 B2 JP5154713 B2 JP 5154713B2
Authority
JP
Japan
Prior art keywords
sheet glass
temperature
cooling
glass
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012525564A
Other languages
English (en)
Other versions
JPWO2012133842A1 (ja
Inventor
伸広 前田
浩幸 苅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Avanstrate Inc
Original Assignee
Avanstrate Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46931535&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP5154713(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Avanstrate Inc filed Critical Avanstrate Inc
Priority to JP2012525564A priority Critical patent/JP5154713B2/ja
Application granted granted Critical
Publication of JP5154713B2 publication Critical patent/JP5154713B2/ja
Publication of JPWO2012133842A1 publication Critical patent/JPWO2012133842A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/04Changing or regulating the dimensions of the molten glass ribbon
    • C03B18/06Changing or regulating the dimensions of the molten glass ribbon using mechanical means, e.g. restrictor bars, edge rollers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/067Forming glass sheets combined with thermal conditioning of the sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/18Controlling or regulating the temperature of the float bath; Composition or purification of the float bath
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

本発明は、ガラス基板の製造方法に関する。
従来、ダウンドロー法を用いてガラス基板を製造する方法が用いられている。ダウンドロー法では、成形体に溶融ガラスを流し込んだ後、当該溶融ガラスを成形体からオーバーフローさせる。溶融ガラスは、その後、成形体に沿って流下する。溶融ガラスは、成形体の下端部で合流し、その後、成形体を離れてシート状のガラス(シートガラス)となる。シートガラスは、流下する過程で炉内の雰囲気によって冷却される。その後、シートガラスは、所望の大きさに切断され、さらに加工されてガラス基板となる。
しかし、上述のガラス基板の製造方法では、溶融ガラスが成形体を離れると同時に、表面張力によりシートガラスが幅方向に収縮する。その結果、シートガラスの幅方向の縁部に膨らみ(玉縁)が生じるので、この玉縁を切り取る必要がある。シートガラスの収縮が大きい場合、切り取られるシートガラスの縁部が大きくなり、実用に供されるシートガラスの幅が小さくなる。そのため、ガラス基板の製造効率が悪くなるという課題があった。
この課題を解決する手段として、特許文献1(特開平5−124827号公報)には、成形体と成形体下方の引張りローラとの間において、シートガラスの幅方向の縁部の近傍において、シートガラスと離間して設けられた冷却ユニットを用いて、シートガラスの縁部を冷却する構成が開示されている。これにより、成形体から離れたシートガラスの幅方向の収縮が抑制される。
しかし、特許文献1(特開平5−124827号公報)に記載の技術では、シートガラスの幅方向の収縮を十分に抑えることができない場合がある。なぜなら、成形体の下端の近傍、かつ、シートガラスの幅方向の縁部の近傍において、シートガラスと離間して設けられた冷却ユニットのみでは、シートガラスの冷却能力が十分でなく、シートガラスの幅方向の収縮が十分に抑制されない場合があるからである。
そこで、本発明の目的は、成形体から離れたシートガラスの幅方向の収縮を効果的に抑制することができるガラス基板の製造方法を提供することである。
本発明に係るガラス基板の製造方法は、ダウンドロー法により、ガラス基板を製造する方法である。ダウンドロー法は、溶融ガラスを成形体からオーバーフローさせてシートガラスに成形し、シートガラスを流下方向に引き伸ばしながら冷却する。ガラス基板の製造方法は、シートガラスが成形体から離れた後、シートガラスの温度が軟化点より高い温度から徐冷点近傍になるまでの温度領域にあるとき、シートガラスの側部(幅方向の端部)に向かって張力を加えながら、側部の粘度を109.0〜1014.5Poiseの範囲内に維持して冷却する。
成形体から離れたシートガラスの温度が軟化点より高い温度から徐冷点近傍になるまでの温度領域にあるとき、シートガラスは、粘度が低く十分な流動性を持っているので、収縮しやすい。なお、「シートガラスの温度が軟化点より高い温度から徐冷点近傍になるまでの温度領域にある」とは、シートガラスの少なくとも一部が、この温度領域内にあることを意味する。また、成形体直下におけるシートガラスの粘度は、105.7〜107.5Poiseであることが好ましい。
このガラス基板の製造方法では、具体的には、成形体から離れたシートガラスの側部の粘度を109.0〜1014.5Poiseの範囲内に維持して冷却することにより、シートガラスの幅方向への収縮が抑制される。シートガラスの側部の粘度が109.0Poiseに満たない場合、シートガラスが変形しやすいので、シートガラスの幅方向の収縮が起きやすい。また、シートガラスの側部の粘度が1014.5Poiseを超える場合、シートガラス内部に発生する応力に耐え切れず、シートガラスが割れる可能性がある。従って、シートガラスの側部の粘度を109.0〜1014.5Poiseの範囲内に維持して冷却することが好ましい。また、シートガラスの側部の粘度を1010.0〜1014.5Poiseの範囲内に維持して冷却することがより好ましい。
そして、成形体から離れたシートガラスの側部の粘度を109.0〜1014.5Poiseの範囲内に維持して冷却することにより、シートガラスの幅方向への収縮が抑制されるので、シートガラスの両側部に向かってシートガラスの幅方向に張力が加えられている状態となる。なお、内部に空気が通された冷却ローラにより、シートガラスを保持することが好ましい。これにより、シートガラスの幅方向への収縮がより効果的に抑制される。
また、シートガラスの側部の粘度が、流下方向に沿って高くなるように冷却することが好ましい。これにより、シートガラスの側部は、段階的または連続的に冷却されるので、シートガラスが一度に過度に冷却されて割れることが防止される。
また、このガラス基板の製造方法では、シートガラスの温度が軟化点より高い温度から徐冷点近傍になるまでの温度領域において、板厚均一化処理と、反り低減処理とを行う。板厚均一化処理とは、シートガラスの板厚を幅方向に均一にするための工程である。反り低減処理とは、板厚均一化処理の後に、シートガラスの反りを低減するための工程である。
板厚均一化工程では、シートガラスの中央領域における幅方向の温度分布を均一にし、かつ、シートガラスの両側部の温度を、中央領域の温度より低くする。これにより、シートガラスの側部は幅方向の収縮が抑制されるように冷却され、シートガラスの中央領域は板厚が均一になるように冷却されるので、シートガラスの板厚を幅方向に均一にすることができる。ここで、シートガラスの中央領域は、板厚を均一にする対象の部分を含む領域であり、シートガラスの端部は、製造後に切断される対象の部分を含む領域である。
なお、板厚均一化処理は、シートガラスが成形体から離れた直後に行われることが好ましく、また、シートガラスの温度が軟化点まで冷却されるまでに行われることが好ましい。これにより、板厚をより均一にすることができる。
反り低減工程では、板厚均一化工程と比べてシートガラスの幅方向の温度分布を低温にし、かつ、シートガラスの中央領域の幅方向の中央部から側部に向かって、シートガラスの幅方向に温度勾配を形成する。そして、シートガラスの温度が歪点に向かうに従って、シートガラスの温度勾配が低減するように冷却することで、シートガラスの幅方向の中央部に常に引っ張り応力が働くように冷却することができる。これにより、シートガラスの板厚を均一に維持しながら冷却することができ、シートガラスの反りを低減することができる。なお、「シートガラスの温度勾配が低減する」の「温度勾配」は、シートガラスの幅方向の中央部の温度から、シートガラスの幅方向の縁部の温度を引いた値を、シートガラスの幅の半分の値で除した値の絶対値である。
また、成形体直下におけるシートガラスの粘度は、105.7〜107.5Poiseであり、シートガラスの側部の粘度が109.0Poise以上になるようにシートガラスを急冷することが好ましい。
成形体から離れた直後のシートガラスは、最も収縮しやすい状態にあるため、急冷することにより効果的に幅方向の収縮を抑えることができる。また、成形体の直下で板厚均一化処理が行われる場合、シートガラスの側部の粘度が109.0Poise以上になるように急冷することにより、シートガラスの幅方向の収縮が抑えられた状態で板厚が均一化される。これにより、シートガラスの板厚が均一化される部分を大きくすることができる。
さらに、シートガラスを急冷した後、急冷時よりも冷却能を低下させて側部を冷却することにより、側部の粘度を109.0〜1014.5Poiseの範囲内に維持することが好ましい。これにより、シートガラスの側部が段階的又は連続的に冷却されるので、シートガラスが一度に過度に冷却されて割れることを防止することができる。
また、板厚均一化工程は、シートガラスの中央領域における幅方向の温度分布を均一にし、かつ、シートガラスの両側部の温度を、中央領域の温度より低くすることが好ましい。また、反り低減工程では、板厚均一化工程よりシートガラスの幅方向の温度分布を低温にし、中央領域の中心部から側部に向けてシートガラスの幅方向に温度勾配を形成することが好ましい。
本発明に係るガラス基板の製造装置は、成形体と、第1熱処理ユニットと、第2熱処理ユニットと、第3熱処理ユニットとを備える。成形体は、一対の頂部と、下端部と、一対の表面とを有する。一対の表面は、一対の頂部から下端部まで延びる。成形体は、溶融ガラスを一対の頂部からオーバーフローさせた後、一対の表面に沿って流下させ、下端部で合流させてシートガラスを成形する。第1熱処理ユニットは、成形体から離れたシートガラスが、軟化点より高い温度域にあるとき、シートガラスの側部の熱処理を行う。第2熱処理ユニットは、シートガラスが軟化点近傍から徐冷点近傍までの温度域にあるとき、側部の熱処理を行う。第3熱処理ユニットは、シートガラスの中央領域の熱処理を行う。また、第1熱処理ユニットおよび第2熱処理ユニットは、側部に向かって張力を加えながら、側部の粘度を109.0〜1014.5Poiseの範囲内に維持して冷却する。これにより、ガラス基板の生産量の向上と、反り品質の向上とを実現することができる。
また、このガラス基板の製造装置では、第1熱処理ユニット、第2熱処理ユニットおよび第3熱処理ユニットは、シートガラスの板厚を幅方向に均一にするための板厚均一化工程と、板厚均一化処理の後に、シートガラスの反りを低減するための反り低減工程とを行う。板厚均一化工程は、シートガラスの中央領域における幅方向の温度分布を均一にし、かつ、シートガラスの両側部の温度を、中央領域の温度より低くする。反り低減工程では、板厚均一化工程よりシートガラスの幅方向の温度分布を低温にし、中央領域の中心部から側部に向けてシートガラスの幅方向に温度勾配を形成する。
本発明に係るガラス基板の製造方法は、ダウンドロー法により、ガラス基板を製造する方法である。ダウンドロー法は、溶融ガラスを成形体からオーバーフローさせてシートガラスに成形し、シートガラスを流下方向に引き伸ばしながら冷却する方法である。このガラス基板の製造方法では、シートガラスが成形体から離れた後、シートガラスの温度が軟化点より高い温度から徐冷点近傍になるまでの温度領域にあるとき、シートガラスの両側部に向かってシートガラスの幅方向に張力を加えながら、側部の粘度を109.0〜1014.5Poiseの範囲内に維持して冷却する。
成形体から離れたシートガラスの温度が軟化点より高い温度から徐冷点近傍になるまでの温度領域にあるとき、シートガラスは、粘度が低く十分な流動性を持っているので、収縮しやすい。なお、「シートガラスの温度が軟化点より高い温度から徐冷点近傍になるまでの温度領域にある」とは、シートガラスの少なくとも一部が、この温度領域内にあることを意味する。また、成形体直下におけるシートガラスの粘度は、105.7〜107.5Poiseであることが好ましい。
このガラス基板の製造方法では、具体的には、成形体から離れたシートガラスの側部の粘度を109.0〜1014.5Poiseの範囲内に維持して冷却することにより、シートガラスの幅方向への収縮が抑制される。シートガラスの側部の粘度が109.0Poiseに満たない場合、シートガラスが変形しやすいので、シートガラスの幅方向の収縮が起きやすい。また、シートガラスの側部の粘度が1014.5Poiseを超える場合、シートガラス内部に発生する応力に耐え切れず、シートガラスが割れる可能性がある。従って、シートガラスの側部の粘度を109.0〜1014.5Poiseの範囲内に維持して冷却することが好ましい。また、シートガラスの側部の粘度を1010.0〜1014.5Poiseの範囲内に維持して冷却することがより好ましい。
そして、成形体から離れたシートガラスの側部の粘度を109.0〜1014.5Poiseの範囲内に維持して冷却することにより、シートガラスの幅方向への収縮が抑制されるので、シートガラスの両側部に向かってシートガラスの幅方向に張力が加えられている状態となる。なお、内部に空気が通された冷却ローラにより、シートガラスを保持することが好ましい。これにより、シートガラスの幅方向への収縮がより効果的に抑制される。
また、シートガラスの側部の粘度が、流下方向に沿って高くなるように冷却することが好ましい。これにより、シートガラスの側部は、段階的または連続的に冷却されるので、シートガラスが一度に過度に冷却されて割れることが防止される。
また、成形体直下におけるシートガラスの粘度は、105.7〜107.5Poiseであり、シートガラスの側部の粘度が109.0〜1010.5Poiseの範囲内になるようにシートガラスを急冷し、シートガラスを急冷した後、急冷時よりも冷却能を低下させて側部を冷却することにより、側部の粘度を1010.5〜1014.5Poiseの範囲内に維持することが好ましい。
成形体直下における105.7〜107.5Poiseの粘度を有するシートガラスを、側部の粘度が109.0〜1010.5Poiseの範囲内になるように急冷することにより、シートガラスの割れを防ぎつつ、シートガラスの幅方向の収縮を抑制することができる。また、シートガラスの急冷後、側部の粘度が1010.5〜1014.5Poiseの範囲内になるようにシートガラスをさらに冷却することにより、シートガラスの割れを防ぎつつ、シートガラスの幅方向の収縮を継続して抑制することができる。
なお、成形体直下における105.7〜107.5Poiseの粘度を有するシートガラスを、側部の粘度が109.5〜1010.5Poiseの範囲内になるように急冷することがより好ましく、側部の粘度が1010.0〜1010.5Poiseの範囲内になるように急冷することがさらに好ましい。また、シートガラスの急冷後、シートガラスを、側部の粘度が1011.0〜1014.5Poiseの範囲内に冷却することがより好ましく、側部の粘度が1011.5〜1014.5Poiseの範囲内に冷却することがさらに好ましい。
また、冷却ローラを用いて、成形体直下におけるシートガラスを、側部の粘度が109.0〜1010.5Poiseの範囲内になるように急冷することが好ましい。冷却ローラをシートガラスに接触させることにより、熱伝導により、短時間でシートガラスから熱を奪うことができるので、シートガラスを急冷することができる。また、冷却ローラによりシートガラスを保持することにより、幅方向への収縮をさらに抑制することができる。
また、冷却ローラにより急冷されたシートガラスを、シートガラスと離間して設置される冷却ユニットを用いて冷却することにより、シートガラスの側部の粘度を1010.5〜1014.5Poiseの範囲内に維持することが好ましい。これにより、シートガラスと離間して設置される冷却ユニットによる輻射熱伝達により、シートガラスが継続して冷却されるので、シートガラスの表面が過剰に冷却されて割れることを防止することができる。なお、複数の冷却ユニットが設けられていることが好ましい。これにより、シートガラスの表面が過剰に冷却されることが効果的に抑制され、シートガラスの割れを効果的に抑制することができる。
また、このガラス基板の製造方法では、シートガラスの温度が軟化点より高い温度から徐冷点近傍になるまでの温度領域において、板厚均一化処理と、反り低減処理とを行う。板厚均一化処理とは、シートガラスの板厚を幅方向に均一にするための工程である。反り低減処理とは、板厚均一化処理の後に、シートガラスの反りを低減するための工程である。
板厚均一化工程では、シートガラスの中央領域における幅方向の温度分布を均一にし、かつ、シートガラスの両側部の温度を、中央領域の温度より低くする。これにより、シートガラスの側部は幅方向の収縮が抑制されるように冷却され、シートガラスの中央領域は板厚が均一になるように冷却されるので、シートガラスの板厚を幅方向に均一にすることができる。ここで、シートガラスの中央領域は、板厚を均一にする対象の部分を含む領域であり、シートガラスの端部は、製造後に切断される対象の部分を含む領域である。
なお、板厚均一化処理は、シートガラスが成形体から離れた直後に行われることが好ましく、また、シートガラスの温度が軟化点まで冷却されるまでに行われることが好ましい。これにより、板厚をより均一にすることができる。
反り低減工程では、板厚均一化工程と比べてシートガラスの幅方向の温度分布を低温にし、かつ、シートガラスの中央領域の幅方向の中央部から側部に向かって、シートガラスの幅方向に温度勾配を形成する。そして、シートガラスの温度が歪点に向かうに従って、シートガラスの温度勾配が低減するように冷却することで、シートガラスの幅方向の中央部に常に引っ張り応力が働くように冷却することができる。これにより、シートガラスの板厚を均一に維持しながら冷却することができ、シートガラスの反りを低減することができる。なお、「シートガラスの温度勾配が低減する」の「温度勾配」は、シートガラスの幅方向の中央部の温度から、シートガラスの幅方向の縁部の温度を引いた値を、シートガラスの幅の半分の値で除した値の絶対値である。
また、板厚均一化工程は、シートガラスの中央領域における幅方向の温度分布を均一にし、かつ、シートガラスの両側部の温度を、中央領域の温度より低くすることが好ましい。また、反り低減工程では、板厚均一化工程よりシートガラスの幅方向の温度分布を低温にし、中央領域の中心部から側部に向けてシートガラスの幅方向に温度勾配を形成することが好ましい。
また、反り低減工程では、シートガラスの幅方向に形成された温度勾配が低減するように、シートガラスの歪点近傍に向かってシートガラスを冷却することが好ましい。反り低減工程で形成された温度勾配が低減するように、シートガラスを歪点まで冷却することにより、シートガラスの幅方向の中央部の冷却量は、シートガラスの幅方向の両端部の冷却量よりも大きくなる。これにより、シートガラスの体積収縮量は、シートガラスの幅方向の端部から中央部に向かうにつれて大きくなるので、シートガラスの中央部には引張り応力が働く。特に、シートガラスの中央部には、シートガラスの流れ方向および幅方向に引張り応力が働く。なお、シートガラスの幅方向に働く引張り応力よりも、シートガラスの流れ方向に働く引張り応力の方が大きいことが好ましい。引張り応力により、シートガラスの平坦度を維持しつつ冷却することができるので、シートガラスの反りを低減することができる。
本発明に係るガラス基板の製造方法では、ガラス基板の生産量の向上と、反り品質の向上とを実現することができる。
ガラス基板製造方法の流れを示す図である。 ガラス基板製造装置の概略構成図である。 成形装置の概略構成図(断面図)である。 成形装置の概略構成図(側面図)である。 図4のV−V断面図(中央部冷却ユニットの断面図)である。 下部空冷ユニットの概略平面図である。 図4のVII−VII断面図(側部冷却ユニットの断面図)である。 下部水冷ユニットの斜視図である。 制御装置および制御装置に接続される各機構を示す図である。 複数の温度プロファイルに基づいて制御された雰囲気温度を示す図である。
(1)全体構成
本実施形態に係るガラス基板の製造方法では、液晶テレビ、プラズマテレビ、およびノートパソコンなどのフラットパネルディスプレイ用のガラス基板を製造する。ガラス基板は、ダウンドロー法を用いて製造される。
図1および図2を参照して、ガラス基板が製造されるまでの複数の工程(ガラス基板の製造方法)および複数の工程に用いられるガラス基板の製造装置100を説明する。
複数の工程には、溶解工程S1、清澄工程S2、成形工程S3、冷却工程S4、および切断工程S5が含まれる。
溶解工程S1は、ガラスの原料が溶解される工程である。ガラスの原料は、図2に示すように、上流に配置された溶解装置11に投入される。ガラスの原料は、溶解装置11で溶解されて、溶融ガラスFGになる。溶融ガラスFGは、上流パイプ23を通って清澄装置12に送られる。
清澄工程S2は、溶融ガラスFG中の気泡の除去を行う工程である。清澄装置12内で気泡が除去された溶融ガラスFGは、その後、下流パイプ24を通って、成形装置40へと送られる。
成形工程S3は、溶融ガラスFGをシート状のガラス(シートガラス)SGに成形する工程である。具体的に、溶融ガラスFGは、成形装置40に含まれる成形体41に送られた後、成形体41からオーバーフローする。オーバーフローした溶融ガラスFGは、成形体41の表面に沿って流下する。溶融ガラスFGは、その後、成形体41の下端部で合流してシートガラスSGになる。
冷却工程S4は、シートガラスSGを冷却(徐冷)する工程である。ガラスシートは、冷却工程S4を経て室温に近い温度へと冷却される。なお、冷却工程S4における、冷却の状態に応じて、ガラス基板の厚み(板厚)、ガラス基板の反り量、およびガラス基板の歪量が決まる。
切断工程S5は、室温に近い温度になったシートガラスSGを、所定の大きさに切断する工程である。
なお、所定の大きさに切断されたシートガラスSG(ガラス片)は、その後、端面加工等の工程を経て、ガラス基板となる。
以下、図3〜図9を参照して、成形装置40の構成を説明する。なお、本実施形態において、シートガラスSGの幅方向とは、シートガラスSGが流下する方向(流下方向または流れ方向)に交差する方向、すなわち、水平方向を意味する。
(2)成形装置の構成
まず、図3および図4に、成形装置40の概略構成を示す。図3は、成形装置40の断面図である。図4は、成形装置40の側面図である。成形装置40は、主として、成形体41と、仕切り部材50と、冷却ローラ51と、冷却ユニット60と、引下げローラ81と、切断装置90とから構成されている。さらに、成形装置40は、制御装置91を備える(図9参照)。制御装置91は、成形装置40に含まれる各構成の駆動部を制御する。以下、成形装置40に含まれる各構成について説明する。
(2−1)成形体
成形体41は、溶融ガラスFGをオーバーフローさせることによって、溶融ガラスFGをシート状のガラス(シートガラスSG)へと成形する。
図3に示すように、成形体41は、断面形状で略5角形の形状(楔形に類似する形状)を有する。略5角形の先端は、成形体41の下端部41aに相当する。
また、成形体41は、第1端部に流入口42を有する(図4参照)。流入口42は、上述の下流パイプ24と接続されており、清澄装置12から流れ出た溶融ガラスFGは、流入口42から成形体41に流し込まれる。成形体41には、溝43が形成されている。溝43は、成形体41の長手方向に延びる。具体的には、溝43は、第1端部から、第1端部の反対側の端部である第2端部に延びる。より具体的に、溝43は、図4の左右方向に延びる。溝43は、流入口42近傍が最も深く、第2端部に近づくにつれて、徐々に浅くなるように形成されている。成形体41に流し込まれた溶融ガラスFGは、成形体41の一対の頂部41b,41bからオーバーフローし、成形体41の一対の側面(表面)41c,41cを沿いながら流下する。その後、溶融ガラスFGは、成形体41の下端部41aで合流してシートガラスSGになる。なお、成形体41の直下において、シートガラスSGは、粘度は105.7〜107.5Poiseである。
(2−2)仕切り部材
仕切り部材50は、溶融ガラスFGの合流ポイントの近傍に配置されている。また、図3に示すように、仕切り部材50は、合流ポイントで合流した溶融ガラスFG(シートガラスSG)の厚み方向両側に配置される。仕切り部材50は、断熱材である。仕切り部材50は、溶融ガラスFGの合流ポイントの上側雰囲気および下側雰囲気を仕切ることにより、仕切り部材50の上側から下側への熱の移動を遮断する。
(2−3)冷却ローラ
冷却ローラ51は、シートガラスSGの両側部(幅方向両端部)を熱処理するユニットである。冷却ローラ51は、仕切り部材50の直下に配置されている。また、冷却ローラ51は、シートガラスSGの厚み方向両側、且つ、シートガラスSGの幅方向両側に配置される。すなわち、冷却ローラ51は、成形体41から離れたシートガラスSGを、成形体41の直下で熱処理する。シートガラスSGの厚み方向両側に配置された冷却ローラ51は対で動作する。したがって、シートガラスSGの両側部(幅方向両端部)は、二対の冷却ローラ51,51,・・・によって挟み込まれる。
冷却ローラ51は、内部に通された空冷管により空冷されている。冷却ローラ51は、シートガラスSGの側部(耳部)に接触し、熱伝導によりシートガラスSGの側部を急冷する(急冷工程)。冷却ローラ51は、シートガラスSGの側部の粘度が、109.0Poise以上になるようにシートガラスSGの側部を急冷する。なお、冷却ローラ51は、好ましくは、シートガラスSGの側部の粘度が、109.0〜1010.5Poiseの範囲内になるようにシートガラスSGの側部を急冷する。
なお、冷却ローラ51によるシートガラスSGの側部の冷却は、シートガラスSGの厚みの均一化に影響を与える。
(2−4)冷却ユニット
冷却ユニット60は、シートガラスSGの熱処理を行うユニットである。具体的に、冷却ユニット60は、シートガラスSGを徐冷点近傍の温度まで冷却するユニットである。冷却ユニット60は、仕切り部材50の下方であって、徐冷炉80の天板80aの上に配置される。冷却ユニット60は、シートガラスSGの上流領域を冷却する(上流領域冷却工程)。シートガラスSGの上流領域とは、シートガラスSGの中央部(中央領域)の温度が徐冷点より上であるシートガラスSGの領域である。また、シートガラスSGの中央部とは、シートガラスSGの幅方向中央部分であって、シートガラスSGの有効範囲およびその近傍を含む領域である。言い換えると、シートガラスSGの中央部は、シートガラスSGの両側部に挟まれた部分である。上流領域には、具体的に、第1温度領域と第2温度領域とが含まれる。第1温度領域は、成形体41の下端部41aの直下から、シートガラスSGの中央領域の温度(より具体的には、中央領域の幅方向中心の温度)が軟化点近傍になるまでのシートガラスSGの領域である。また、第2温度領域とは、シートガラスSGの中央領域の温度(より具体的には、中央領域の幅方向中心の温度)が軟化点近傍から徐冷点近傍になるまでの温度領域である。すなわち、冷却ユニット60は、シートガラスSGの中央領域の温度が徐冷点に近づくように、シートガラスSGを冷却する。シートガラスSGの中央領域は、その後、後述の徐冷炉80内で、徐冷点、歪点を経て、室温近傍の温度まで冷却される(下流領域冷却工程(徐冷工程))。
冷却ユニット60は、シートガラスSGの厚みおよび反りが所望の値になるように、シートガラスSGを複数の温度プロファイルに基づいて冷却する。すなわち、上流領域において、シートガラスSGの流下方向に沿って、複数の温度プロファイルが設定される。ここで、温度プロファイルとは、シートガラスSG近傍の雰囲気温度についての、シートガラスSGの幅方向に沿った温度分布である。言い換えると、温度プロファイルは、目標となる雰囲気温度の分布である。上述の冷却ローラ51および冷却ユニット60は、温度プロファイルを実現させるように雰囲気温度を制御する。
冷却ユニット60は、複数のユニットを含む。複数の温度プロファイルは、複数のユニットが独立して制御されることにより実現される。具体的に、冷却ユニット60は、中央部冷却ユニット61と、2つの側部冷却ユニット71,71とを含む。図4に示すように、中央部冷却ユニット61は、成形装置40の幅方向中央に配置され、シートガラスSGの中央部を冷却する(中央部冷却工程)。中央部冷却ユニット61は、シートガラスSGの厚み方向両側に配置されている。側部冷却ユニット71は、中央部冷却ユニット61に隣接する位置にそれぞれ配置される。すなわち、側部冷却ユニット71は、シートガラスSGの厚み方向両側で、シートガラスSGを挟んで対向するように配置され、シートガラスSGの側部(耳部)および側部周辺を冷却する(側部冷却工程)。また、中央部冷却ユニット61および側部冷却ユニット71は、シートガラスSGに近接した位置にそれぞれ配置される。
以下、図5〜図8を用いて、中央部冷却ユニット61の構成と、側部冷却ユニット71の構成とを詳細に説明する。なお、図5および図7に示す断面図では、シートガラスSGの通過位置(一点鎖線W)に対して、各冷却ユニット61,71の片側の構成のみを示す。また、以下の記載において、後方とは、シートガラスSGの表面から遠ざかる方向を意味する。
(2−4−1)中央部冷却ユニット
中央部冷却ユニット61は、シートガラスSGの中央部を、流下方向に沿って段階的に冷却する(中央部冷却工程)。中央部冷却ユニット61は、中央部冷却ユニット61は、上部空冷ユニット62と、下部空冷ユニット63a,63bとから構成されている。上部空冷ユニット62および2つの下部空冷ユニット63a,63bは、シートガラスSGの流下方向に沿って配置される。具体的には、上部空冷ユニット62の下方に2つの下部空冷ユニット63a,63bが配置されている。図5に示すように、上部空冷ユニット62および2つの下部空冷ユニット63a,63bは、それぞれ断熱部材93を介して連結されている。断熱部材93は、上部空冷ユニット62の内部に形成される空間(第1空間SP1)と、上方に配置された下部空冷ユニット63aの内部に形成される空間(第2空間SP2)との間の熱の移動、および、第2空間SP2と、下方に配置された下部空冷ユニット63bによって形成される空間(第3空間SP3)との間の熱の移動を遮断する。上部空冷ユニット62および各下部空冷ユニット63a,63bは、それぞれ独立して制御可能である。
a)上部空冷ユニット
上部空冷ユニット62は、上述の仕切り部材50の直下に位置する。上部空冷ユニット62は、シートガラスSGの厚みを決定付ける領域の温度プロファイルを実現するためのユニットである。シートガラスSGの厚みを決定付ける領域は、上述の第1温度領域に相当する。上部空冷ユニット62は、シートガラスSGの厚みを幅方向に均一にするように制御される(第1中央部冷却工程)。上部空冷ユニット62は、主として、上部冷却調整板21と、後方水冷ユニット22とを有する。
a−1)上部冷却調整板
上部冷却調整板21は、シートガラスSGの幅方向(すなわち、水平方向)に延びる。上部冷却調整板21の長手方向の長さは、シートガラスSGの側部とシートガラスSGの側部周辺とを除く部分に対応する長さである。したがって、上部冷却調整板21の長さは、シートガラスSGの幅方向の長さよりも短い。
上部冷却調整板21は、第1天井部211と、第1底部212と、第1対向部213とを有する。第1天井部211は、上部空冷ユニット62の天井となる部分である。第1底部212は、上部空冷ユニット62の底となる部分である。上部冷却調整板21のうち、第1天井部211および第1底部212を除く部分が第1対向部213である。
本実施形態では、上部冷却調整板21として、金属部材を用いる。特に、第1対向部213は、大気中で600℃以上の耐熱性を持つ部材であることが好ましい。また、第1対向部213は、少なくとも30W/m・K以上の熱伝導率があり、使用温度域で0.85以上の放射率特性を有する部材であることが好ましい。本実施形態では、第1対向部213として、純ニッケル(熱伝導率:79.3W/m℃)が用いられる。
第1対向部213には、図5に示すように、折り曲げ加工が施されている。具体的に、第1対向部213は、チャンネル(溝形鋼)である。第1対向部213は、シートガラスSGに対向する面(第1対向面)213aを有する。上部冷却調整板21は、図示しない側壁とともに、第1空間SP1を形成する。
a−2)後方水冷ユニット
後方水冷ユニット22は、第1空間SP1の空気を水冷するユニットである。後方水冷ユニット22は、上部冷却調整板21の後方に配置され、第1空間SP1を後方から水冷する。第1空間SP1は、後方水冷ユニット22によって閉じられる。後方水冷ユニット22は、図示しない第1冷却水供給ユニットに接続されている。第1冷却水供給ユニットから後方水冷ユニット22に供給される水の量は、第1冷却水供給弁22aにより調整される(図9参照)。
b)下部空冷ユニット
下部空冷ユニット63a,63bは、上述したように、上部空冷ユニット62の下方に配置される。下部空冷ユニット63a,63bは、シートガラスSGの反り量の制御を開始する領域の温度プロファイルを実現するためのユニットである。ここで、シートガラスSGの反り量の制御を開始する領域は、上述の第2温度領域に相当する。
下部空冷ユニット63aは、第2温度領域の上流側で、シートガラスSGの温度制御を行う(第2中央部冷却工程)。下部空冷ユニット63bは、第2温度領域の下流側で、シートガラスSGの温度制御を行う(第3中央部冷却工程)。下部空冷ユニット63aは、第2空間SP2を有し、下部空冷ユニット63bは、第3空間SP3を有する。下部空冷ユニット63a,63bは、同様の構成を有する。したがって、以下、下部空冷ユニット63aの構成を説明する。下部空冷ユニット63aは、図6に示すように、主として、下部冷却調整板31と、温度制御ユニット32とを有する。
b−1)下部冷却調整板
下部冷却調整板31は、上述した上部冷却調整板21と同様の構成を有する。すなわち、下部冷却調整板31は、シートガラスSGの幅方向(すなわち、水平方向)に延び、長手方向の長さは、上部冷却調整板21の長手方向の長さと同様である。
また、下部冷却調整板31は、第2天井部311と、第2底部312と、第2対向部313とを有する。第2天井部311は、下部空冷ユニット63aの天井となる部分であり、第2底部312は、下部空冷ユニット63aの底となる部分である。下部冷却調整板31のうち、第2天井部311および第2底部312を除く部分が第2対向部313である。
下部冷却調整板31にも、上部冷却調整板21と同様、金属部材が用いられている。特に、第2対向部313は、大気中で600℃以上の耐熱性を持つ部材であることが好ましく、さらに、少なくとも30W/m・K以上の熱伝導率があり、使用温度域で0.85以上の放射率特性を有する部材であることが好ましい。本実施形態では、第2対向部313として、純ニッケル(熱伝導率:79.3W/m℃)が用いられる。
また、第2対向部313には、第1対向部213と同様、折り曲げ加工が施されている(図5参照)。すなわち、第2対向部313もまた、チャンネル(溝形鋼)であり、第2対向部313は、シートガラスSGに対向する面(第2対向面)313aを有する。下部冷却調整板31は、側壁37とともに、第2空間SP2を形成する。
b−2)温度制御ユニット
温度制御ユニット32は、下部冷却調整板31の温度を調整するためのユニットである。温度制御ユニット32は、主として、温度調整パイプ33と、複数のガス供給ユニット34a,34b,34cとによって構成されている。
温度調整パイプ33は、下部冷却調整板31の全体を冷却または加熱するための流体を流す。ここで、温度調整パイプ33に流される流体とは、ガス(例えば、空気や、窒素等の不活性ガス)である。温度調整パイプ33は、図6に示すように、下部冷却調整板31の長手方向に沿って配置される。温度調整パイプ33には、複数の吹出口(ノズル)331,331,・・・が均等に形成されている。具体的には、吹出口331は、温度調整パイプ33の中心線Cに対して対称の位置に形成されている。吹出口331は、第2対向面313aの裏面に対向する位置に設けられている。すなわち、吹出口331から吹き出されるガスは、第2対向面313aの裏面に吹き付けられる。
温度調整パイプ33は、内部空間を有する。内部空間は、内部で3分割されている。これにより、温度調整パイプ33は、第1側部調整部33a、第2側部調整部33b、および中央部調整部33cを有する。第1側部調整部33aは、下部冷却調整板31の第1側部の温度を調整するための部分である。第2側部調整部33bは、下部冷却調整板31の第2側部の温度を調整するための部分である。第2側部は、第1側部の反対側にある側部である。中央部調整部33cは、下部冷却調整板31の幅方向中央部分の温度を調整するための部分である。また、温度調整パイプ33には、複数の導入パイプ35a,35b,35c,35cが接続されている。導入パイプ35a,35b,35c,35cは、熱交換の媒体となるガスを温度調整パイプ33に送るパイプである。具体的に、温度調整パイプ33の第1側部調整部33aには、第1導入パイプ35aが接続され、温度調整パイプ33の第2側部調整部33bには、第2導入パイプ35bが接続され、温度調整パイプ33の中央部調整部33cには、2つの第3導入パイプ35c,35cが接続されている。第1導入パイプ35a、第2導入パイプ35b、および第3導入パイプ35cは、それぞれ異なるガス供給ユニット34a,34b,34cから供給されるガスを各温度調整部33a,33b,33cに送る。具体的には、図6に示すように、第1導入パイプ35aは、第1ガス供給ユニット34aと接続される。第1ガス供給ユニット34aから第1導入パイプ35aに送られるガスの量は、第1ガス供給弁36aによって調整される。また、第2導入パイプ35bは、第2ガス供給ユニット34bと接続される。第2ガス供給ユニット34bから第2導入パイプ35bに送られるガスの量は、第2ガス供給弁36bによって調整される。さらに、2つの第3導入パイプ35c,35cは、第3ガス供給ユニット34cと接続される。第3ガス供給ユニット34cから第3導入パイプ35c,35cに送られるガスの量は、第3ガス供給弁36cによって調整される。
なお、下部冷却調整板31に吹き付けられたガスは、下部冷却調整板31に吹き付けられた後、吹き出し方向d1と真逆の方向d2へ流れるように、流れが制御される。吹出口331から吹き出されたガスが、下部冷却調整板31の長手方向に流れる前に、方向d2に流れるように制御することにより、一の吹出口331から吹き出されるガスが、他の吹出口331から吹き出されるガスの流れ方向d1に影響を与えないように構成されている。方向d2に流されたガスは、炉外へ放出される。
(2−4−2)側部冷却ユニット
側部冷却ユニット71は、冷却ローラ51によって急冷されたシートガラスSGの側部と、シートガラスSGの側部周辺とを、シートガラスSGの流下方向に沿って連続的に、または、段階的に冷却する(側部冷却工程)。側部冷却ユニット71は、冷却ローラ51よりも低い冷却能で動作する。言い換えると、冷却ローラ51によってシートガラスSGの側部から奪われる熱量と比較して、側部冷却ユニット71によってシートガラスSGの側部から奪われる熱量は少ない。側部冷却ユニット71は、上述したように、中央部冷却ユニット61の両側にそれぞれ配置される(図4参照)。側部冷却ユニット71は、シートガラスSGの表面に近接して配置される。側部冷却ユニット71は、シートガラスSGの側部の粘度を109.0〜1014.5Poiseの範囲内に維持するように、シートガラスの側部を冷却する。なお、側部冷却ユニット71は、好ましくは、シートガラスSGの側部の粘度を1010.5〜1014.5Poiseの範囲内に維持するように、シートガラスの側部を冷却する。
側部冷却ユニット71は、図7に示すように、上部水冷ユニット72と、下部水冷ユニット73とから構成されている。上部水冷ユニット72および下部水冷ユニット73は、シートガラスSGの流下方向に沿って配置される。また、上部水冷ユニット72および下部水冷ユニット73は、それぞれ独立して制御される。
a)上部水冷ユニット
上部水冷ユニット72は、シートガラスSGの厚みおよび/または反り量の調整に影響を与える領域の温度プロファイルを実現するためのユニットである(第1側部冷却工程)。上部水冷ユニット72は、図7に示すように、上述した冷却ローラ51の直下に位置する。また、上部水冷ユニット72は、後述する下部水冷ユニット73の天板735の上に載せられている。上部水冷ユニット72は、下部水冷ユニット73の天板735の上で水平移動することにより、シートガラスSGに対して近接させたり離反させたりできる構成になっている。シートガラスSGは、上部水冷ユニット72の、主に輻射熱伝達によって、所要の冷却速度で冷却される。ここで、所要の冷却速度とは、冷却ローラ51を通過したガラスSGの板幅の収縮が最大限抑えられ、かつ、下部水冷ユニット73以降の冷却過程でシートガラスSGにクラックが生じないような冷却速度である。すなわち、上部水冷ユニット72は、シートガラスSGに悪影響を及ぼさない範囲でガラスSGを最大限冷却する。上部水冷ユニット72は、主として、上部水冷板721と、上部連結ユニット722とを有する。
a−1)上部水冷板
上部水冷板721は、熱伝導率が比較的高く、耐酸化性および耐熱性に優れた部材で構成されている。本実施形態では、上部水冷板721として、ステンレスが用いられる。上部水冷板721の内部には、流体(本実施形態では、水)を通すための第1流路PS1が形成されている。第1流路PS1は、上部水冷板721の表面(シートガラスSGに対向する面)721aを裏側から冷却する構成になっている。
上部水冷板721の表面(シートガラスSGに対向する面)には、放射率を上げるための塗装が施されている。上部水冷板721の放射率は0.9以上であることが好ましい。
a−2)上部連結ユニット
上部連結ユニット722は、上部水冷板721の後方に配置され、上部水冷板721に連結されるユニットである。上部連結ユニット722は、主として、上部給水パイプ723と、上部排水パイプ724とを含む。上部給水パイプ723および上部排水パイプ724は、上部水冷板721の後方に形成された第4空間SP4の内部に配置される(図7参照)。第4空間SP4は、ステンレス製の薄板によって形成された空間であり、天板、底板、および側壁によって構成されている。上部給水パイプ723は、上部水冷板721の第1流路PS1の上部に連結される。上部給水パイプ723には、図示しない第2冷却水供給ユニットから送られる冷却水が送られる。第2冷却水供給ユニットは、第1冷却水供給ユニットとは異なるユニットである。冷却水は、上部給水パイプ723を通って上部水冷板721の第1流路PS1に供給される。第2冷却水供給ユニットから供給される冷却水の量は、第2冷却水供給弁72aによって調整される(図9参照)。上部排水パイプ724は、上部水冷板721の第1流路PS1の下部に連結される。第1流路PS1を通過して温められた冷却水は、上部排水パイプ724を通って排出される。
b)下部水冷ユニット
下部水冷ユニット73は、図7に示すように、上述の上部水冷ユニット72の直下に位置する。下部水冷ユニット73は、シートガラスSGの反り量の制御に影響を与える領域の温度プロファイルを実現するためのユニットである(第2側部冷却工程)。下部水冷ユニット73は、後述する徐冷炉80の天板80aの上に載せられている。下部水冷ユニット73は、上述の中央部冷却ユニット61に固定されている。シートガラスSGは、下部水冷ユニット73の、主に輻射熱伝達によって、所要の冷却速度で冷却される。ここで、所要の冷却速度とは、徐冷炉80に進入する際のシートガラスSG耳部周辺が最適な温度になる冷却速度である。また、所要の冷却速度とは、ガラスSGの板幅の収縮が最大限抑えられ、かつ、除冷炉80以降の冷却過程でシートガラスSGにクラックが生じないような冷却速度である。すなわち、下部水冷ユニット73は、ガラスSGに悪影響を及ぼさない範囲でシートガラスSGを最大限冷却する。下部水冷ユニット73は、主として、下部水冷板731と、下部連結ユニット732とを有する。
b−1)下部水冷板
下部水冷板731は、熱伝導率が比較的高く、耐酸化性および耐熱性に優れた部材で構成されている。本実施形態では、下部水冷板731として、ステンレスが用いられる。下部水冷板731の内部には、流体(本実施形態では、水)を通すための第2流路PS2が形成されている。第2流路PS2は、下部水冷板731の表面(シートガラスSGに対向する面)731cを裏側から冷却する構成になっている。
下部水冷板731の放射率も、0.9以上であることが好ましい。
さらに、下部水冷板731の表面には、図8に示すように、上方支持部材731aと下方支持部材731bとが取り付けられている。上方支持部材731aおよび下方支持部材731bは、下部水冷板731の表面に、遮断部材(ファイバーボード等)を支持することを可能にする部材である。遮断部材とは、下部水冷板731からの熱輻射を遮る部材である。上方支持部材731aおよび下方支持部材731bによって、遮断部材が支持されることにより、下部水冷板731の一部が覆い隠される。
b−2)下部連結ユニット
下部連結ユニット732は、上部連結ユニット722と同様の構成をしている。すなわち、下部連結ユニット732は、下部水冷板731の後方に配置され、下部水冷板731に連結されるユニットである。下部連結ユニット732は、主として、下部給水パイプ733と、下部排水パイプ734とを含む。下部給水パイプ733および下部排水パイプ734は、下部水冷板731の後方に形成された第5空間SP5の内部に配置される(図7参照)。第5空間SP5もまた、第4空間SP4と同様、ステンレス製の薄板によって形成された空間である。下部給水パイプ733は、下部水冷板731の第2流路PS2の上部に連結される。下部給水パイプ733には、図示しない第3冷却水供給ユニットから送られる冷却水が送られる。第3冷却水供給ユニットは、第1冷却水供給ユニットおよび第2冷却水供給ユニットとは異なるユニットである。冷却水は、下部給水パイプ733を通って下部水冷板731の第2流路PS2に供給される。第3冷却水供給ユニットから供給される冷却水の量は、第3冷却水供給弁73aによって調整される(図9参照)。下部排水パイプ734は、下部水冷板731の第2流路PS2の下部に連結される。第2流路PS2を通過して温められた冷却水は、下部排水パイプ734を通って排出される。
(2−5)引下げローラ
引下げローラ81は、徐冷炉80の内部に配置される。徐冷炉80は、冷却ユニット60の直下に配置される空間である。除冷炉80では、シートガラスSGの温度が、徐冷点近傍の温度から室温近傍の温度まで冷却される(下流域冷却工程(徐冷工程))。また、引下げローラ81は、冷却ユニット60を通過したシートガラスSGを、シートガラスSGの流下方向へ引き下げる。引下げローラ81は、シートガラスSGの厚み方向両側(図3参照)、および、シートガラスSGの幅方向両側(図4参照)に複数配置される。引下げローラ81は、図示しないモーターによって駆動されている。また、引下げローラ81は、シートガラスSGに対して内側に回転する。シートガラスSGの厚み方向両側に配置された引下げローラ81は、対で動作し、対の引下げローラ81,81,・・・が、シートガラスSGを下方向に引き下げる。
(2−6)切断装置
切断装置90は、徐冷炉80を通過して室温近傍の温度まで冷却されたシートガラスSGを、所定のサイズに切断する。その結果、シートガラスSGは、ガラス片になる。切断装置90は、徐冷炉80の下方に配置されており、所定の時間間隔でシートガラスSGを切断していく。
(2−7)制御装置
制御装置91は、CPU、RAM、ROM、およびハードディスク等から構成されている。制御装置91は、図9に示すように、冷却ローラ51、引下げローラ81、第1ガス供給弁36a、第2ガス供給弁36b、第3ガス供給弁36c、第1冷却水供給弁22a、第2冷却水供給弁72a、第3冷却水供給弁73a、および切断装置90等と接続されている。
制御装置91は、冷却ローラ51、引下げローラ81、および切断装置90等の駆動部を制御する。また、制御装置91は、第1ガス供給弁36a、第2ガス供給弁36b、第3ガス供給弁36c、第1冷却水供給弁22a、第2冷却水供給弁72a、および第3冷却水供給弁73aの開閉または開度を制御する。
(3)温度プロファイルおよび冷却ユニットによる温度制御
次に、図10を参照して、本実施形態に係るガラス基板の製造方法で用いる温度プロファイルと、当該温度プロファイルを実現する冷却ユニットの制御とについて説明する。図10中、破線で区分けされた領域は、冷却ローラ51および冷却ユニットに含まれる各ユニット62,63a,63b,72,73の配置を示す。また、破線で区分けされた領域に含まれる曲線10b,10c,10e,10fおよび直線10a,10dは、冷却ローラ51または各ユニット62,63a,63b,72,73によって実現される温度プロファイル20a,20b,20cに含まれるサブプロファイルである。
本実施形態では、上述したように、シートガラスSGの流下方向において、複数の温度プロファイルに基づいた雰囲気温度の制御を独立して行っている。シートガラスSGの温度が所定の温度領域にあるとき、シートガラスSGの幅方向に沿ってシートガラスSGの側部に向かって張力が加わるように、シートガラスSGは冷却される。所定の温度領域とは、シートガラスSGが成形体41から離れた後、シートガラスSGの温度が軟化点より高い温度から徐冷点近傍になるまでの温度領域である。すなわち、所定の温度領域とは、上述した、シートガラスSGの上流領域である。
成形体41を離れた後のシートガラスSGは、上述したように、105.7〜107.5Poiseの粘度を有する。シートガラスSGは、冷却ローラ51および冷却ユニット60によって冷却されることにより、粘度が高くなる。すなわち、シートガラスSGの粘度(中央部および側部の粘度)は、シートガラスSGの流下方向に沿って高くなる。言い換えると、シートガラスSGの粘度は、シートガラスSGの下流側ほど高くなる。本実施形態では、上流領域において、冷却ローラ51および側部冷却ユニット71によって、シートガラスSGの側部が冷却される。具体的には、シートガラスSGの側部は、粘度が109.0〜1014.5Poiseの範囲内に維持されるように冷却される。より具体的には、冷却ローラ51は、シートガラスSGの側部の粘度が、109.0〜1010.5Poiseの範囲内になるようにシートガラスの側部を急冷し、側部冷却ユニット71は、冷却ローラ51によって急冷されたシートガラスSGの側部の粘度が、1010.5〜1014.5Poiseの範囲内になるように、シートガラスの側部を冷却する。
複数の温度プロファイルは、シートガラスSGの幅方向およびシートガラスSGの流れ方向に、それぞれ設定される(温度プロファイル設定工程)。具体的に、複数の温度プロファイルには、図10に示すように、第1の温度プロファイル20aと、第2の温度プロファイル20bと、第3の温度プロファイル20cとが含まれる。第1の温度プロファイル20aは、第2の温度プロファイル20bよりも、流れ方向において高温側に位置する。また、第2の温度プロファイル20bは、第3の温度プロファイル20cよりも、流れ方向において高温側に位置する。
第1の温度プロファイル20aは、シートガラスSGの中央領域における幅方向の温度分布が均一であり、かつ、シートガラスSGの幅方向両端部(両側部)の温度がシートガラスSGの中央領域の温度より低い。ここで、幅方向の温度分布が均一であるとは、幅方向の温度分布が、所定の基準値(温度)に対して±0℃〜10℃の範囲の値であることを意味する。すなわち、第1の温度プロファイル20aに基づいて、シートガラスSGの端部は急冷され、シートガラスSGの中央領域(中央部)の温度は、シートガラスSGの端部の温度よりも高い温度で、かつ、幅方向に均一な温度になるように制御される(板厚均一化工程:第1温度プロファイル制御工程)。なお、第1の温度プロファイル20aは、シートガラスSGの中央領域の温度(平均温度)とシートガラスSGの両端部の温度とが第1の温度差Xになるように設定されている。
第2の温度プロファイル20bおよび第3の温度プロファイル20cは、第1の温度プロファイル20aより低温である。また、第2の温度プロファイル20bおよび第3の温度プロファイル20cは、シートガラスSGの中央領域において幅方向に温度勾配を有する。具体的には、第2の温度プロファイル20bおよび第3の温度プロファイル20cは、シートガラスSGの中心部の温度が高く、シートガラスSGの両端部の温度が低い。より具体的には、第2の温度プロファイル20bおよび第3の温度プロファイル20cは、シートガラスSGの中心部からシートガラスSGの両端部に向かうに従って温度を徐々に低くする。シートガラスSGの中心部は、中央領域の中心部分である。すなわち、第2の温度プロファイル20bおよび第3の温度プロファイル20cに基づいて、シートガラスSGの幅方向の温度分布は、山形(上に凸を有する放物線)になるように制御される(反り低減工程:第2温度プロファイル制御工程および第3温度プロファイル制御工程)。すなわち、反り低減工程は、温度勾配(上に凸を有する放物線)を維持しつつシートガラスSGを冷却する。言い換えると、反り低減工程は、温度分布が、上に凸を有する放物線を連続して形成するように、シートガラスSGを冷却する。
なお、第2の温度プロファイル20bに基づいた制御は、シートガラスSGの流下方向に対して、第2温度領域の上流側で実行される(第2温度プロファイル制御工程)。また、第3の温度プロファイル20cに基づいた制御は、シートガラスSGの流れ方向に対して、第2温度領域の下流側で実行される(第3温度プロファイル制御工程)。ここで、第3の温度プロファイル20cは、第2の温度プロファイル20bよりも勾配が大きくなるように設定されることが好ましい。具体的に、第2の温度プロファイル20bは、シートガラスSGの中心部の温度とシートガラスSGの端部の温度とが第2の温度差Y1になるように設定されている。また、第3の温度プロファイル20cは、シートガラスSGの中心部の温度とシートガラスSGの端部の温度とが第3の温度差Y2になるように設定されている。第3の温度差Y2は、第2の温度差Y1より大きい。なお、第2の温度差Y1は、第1の温度差Xより大きい。すなわち、温度プロファイル20a〜20cは、シートガラスSGの流下方向に沿って、中央領域と端部との温度差または中央部と端部との温度差が大きくなっている(X<Y1<Y2)。
なお、反り低減工程は、第3の温度プロファイル20cより低温の温度領域において、シートガラスSGの温度が歪点近傍に向かうに従って、シートガラスSGの幅方向の温度勾配が低減するように、シートガラスSGを冷却する。
以下、各ユニットによる温度制御について、詳細に説明する。
(3−1)上部空冷ユニットによる温度制御
上部空冷ユニット62では、上述したように、シートガラスSGの厚みを決定付ける領域の温度プロファイルを実現する(第1中央部冷却工程)。具体的に、上部空冷ユニット62は、上部冷却調整板21の幅方向の温度分布を均一にする。これにより、上部冷却調整板21の表面周辺の雰囲気温度(シートガラスSGの幅方向の温度)は均一になる(サブプロファイル10a)。
(3−2)下部空冷ユニットによる温度制御
下部空冷ユニット63a,63bでは、上述したように、シートガラスSGの反りの調整を開始する領域の温度プロファイルを実現する(第2中央部冷却工程および第3中央部冷却工程)。具体的に、下部空冷ユニット63a,63bは、シートガラスSGの幅方向の温度が山形(上に凸を有する放物線)になるように、下部冷却調整板31の温度分布を調整する。詳細には、下部冷却調整板31の長手方向中心の温度を最も高い温度にする。また、下部冷却調整板31の長手方向両端部の温度を最も低い温度にする。さらに、中心から両端部に向けて温度が徐々に低くなるように制御する。より詳細には、温度調整パイプ33に含まれる第1側部調整部33a、第2側部調整部33b、および中央部調整部33cのうち、中央部調整部33cから吹き出されるガスの温度を、第1側部調整部33aおよび第2側部調整部33bから吹き出されるガスの温度に対して高くする。これにより、下部冷却調整板31の表面周辺の雰囲気温度(シートガラスSGの幅方向の温度)は、山形になる(サブプロファイル10b、サブプロファイル10c)。
なお、本実施形態では、シートガラスSGの流れ方向に沿って、2つの下部空冷ユニット63a,63bを配置している。シートガラスSGの流下方向下方に配置された下部空冷ユニット63bは、上方に配置された下部空冷ユニット63aよりも、大きな放物線の温度分布を形成するように制御される。具体的には、上述したように、下部空冷ユニット63aによって実現されたプロファイル10bの温度勾配(中心部と端部との温度勾配)(図10のY1参照)よりも、下部空冷ユニット63bによって実現された温度プロファイル10cの温度勾配(図10のY2参照)を大きくする(Y1<Y2)。
(3−3)冷却ロールによる温度制御
冷却ローラ51は、上述したように、シートガラスSGの厚みの均一化に影響を与える領域の温度プロファイルを実現する(急冷工程)。冷却ローラ51は、成形体41の下端部41aで合流したガラスの側部(端部)を急冷する。すなわち、シートガラスSGの側部および側部周辺の雰囲気温度は、シートガラスSGの中央部周辺の雰囲気温度よりも低い温度になる(サブプロファイル10d)。
(3−4)上部水冷ユニットによる温度制御
上部水冷ユニット72では、上述したように、シートガラスSGの厚みおよび/または反り量の調整に影響を与える領域の温度プロファイルを実現する(第1側部冷却工程)。上部水冷ユニット72は、上部空冷ユニット62および下部空冷ユニット63aによって生成される温度より低い温度を生成する。すなわち、シートガラスSGの側部および側部周辺の雰囲気温度は、シートガラスSGの中央領域周辺の雰囲気温度よりも低い温度になる(サブプロファイル10e)。
(3−5)下部水冷ユニットによる温度制御
下部水冷ユニット73では、上述したように、シートガラスSGの反り量の調整に影響を与える領域の温度プロファイルを実現する(第2側部冷却工程)。下部水冷ユニット73は、下部空冷ユニット63a,63bによって生成される温度より低い温度を生成する。すなわち、シートガラスSGの側部および側部周辺の雰囲気温度は、シートガラスSGの中央領域周辺の雰囲気温度よりも低い温度になる(サブプロファイル10f)。
(4)特徴
(4−1)
上記実施形態に係るガラス基板の製造方法では、成形体直下から徐冷点の上までの第1温度領域において、シートガラスSGの幅方向端部(側部)の温度が、シートガラスSGの流下方向の位置に応じて制御される。具体的には、シートガラスSGの流下方向に沿った複数の温度プロファイルが設定され、当該複数の温度プロファイルに基づいて、シートガラスSGの流下方向に沿って配置された複数の水冷ユニット72,73によって、シートガラスSGの側部の温度がそれぞれ制御される。
また、上記実施形態に係るガラス基板の製造方法では、水冷ユニット72,73の上方で、冷却ローラ51,51がシートガラスSGの側部を急冷する。冷却ローラ51,51によって冷却されたシートガラスSGの側部は、厚みが大きくなるため、シートガラスSGの中央部分と比較して多くの熱量を有する。したがって、シートガラスSGの側部の温度制御は、シートガラスSGの中央部分の温度制御にも大きく影響を与える。
ところで、近年のガラス基板の需要増加に伴い、ガラス基板の大量生産が必要となった。そのため、シートガラスSGを冷却する工程に、従来同様の時間をかけることが難しくなった。しかし、単純にガラスシートSGの冷却速度を上げると、品質の良いガラス基板を製造することができない。
上記実施形態に係るガラス基板の製造方法では、シートガラスSGの流下方向に沿って配置される複数の冷却ユニットを独立して制御することにより、シートガラスSGの側部の温度が実現される。これにより、効果的にシートガラスSGの側部を冷却することができるため、冷却時間を短時間にした場合であっても、品質の良いガラス基板を製造することができる。
(4−2)
また、上記実施形態では、冷却ローラ51を用いてシートガラスSGの耳部を急冷した後、側部冷却ユニット71によって、シートガラスSGの耳部を継続して冷却する。
冷却ローラ51によってシートガラスSGの耳部が急冷されると、特開平10−291826に開示されているように、シートガラスSGの幅方向に張力が加えられる。但し、成形体41の直下で形成されたシートガラスSGは、冷却ローラ51によって急冷された後も、幅方向の縮小(収縮)が起こり易い。上記実施形態では、冷却ローラ51による冷却に続いて、シートガラスSGの耳部は、側部冷却ユニット71によって継続して冷却される。これにより、シートガラスSGの幅方向の収縮を抑制することができる。
さらに、上記実施形態では、冷却ローラ51の冷却能に対して、側部冷却ユニット71の冷却能を低くしている。これにより、シートガラスSGの割れを防止することができる。
(4−3)
また、上記実施形態に係るガラス基板の製造方法では、熱伝導によりシートガラスSGを急冷した後、シートガラスSGを輻射熱伝達により冷却する。これにより、シートガラスSGの耳部を効率よく冷却することができる。
(4−4)
さらに、上記実施形態に係るガラス基板の製造方法では、下部水冷板731の表面に、ファイバーボードを配置可能な部材(上方支持部材731a、下方支持部材731b)が設けられている。これにより、下部水冷板731によって冷却する領域について、冷却時の炉内環境に応じて、部分的に熱輻射を遮断することができる。
(4−5)
上記実施形態において、上部水冷ユニット72は、下部水冷ユニット73の天板735の上で水平移動可能な構成である。また、下部水冷ユニット73は、遮断部材の支持が可能な構成になっている。
上部水冷ユニット72は、上部水冷板721に送り込まれる流体の温度および/または流量を変化させる他、シートガラスSGに対して近接または離反することにより、シートガラスSGの温度制御を行うことができる。一方、下部水冷ユニット73は、下部水冷板731に送り込まれる流体の温度および/または流量を変化させる他、上方支持部材731aおよび下方支持部材731bに遮断部材を支持させたり、上方支持部材731aおよび下方支持部材731bから遮断部材を取り外したり、さらに、支持させる遮断部材の面積を変更したりすることにより、冷却能を変更し、シートガラスSGの温度制御を行うことができる。
(4−6)
上記実施形態では、成形体から離れたシートガラスSGの側部の粘度を109.0〜1014.5Poiseの範囲内に維持しながら、シートガラスSGを冷却する工程が行われる。シートガラスSGの側部の粘度が109.0Poiseに満たない場合、シートガラスSGが変形しやすいので、シートガラスSGの幅方向の収縮が起きやすい。また、シートガラスSGの側部の粘度が1014.5Poiseを超える場合、シートガラスSG内部に発生する応力に耐え切れず、シートガラスSGが割れる可能性がある。
すなわち、成形体から離れたシートガラスSGの側部の粘度を109.0〜1014.5Poiseの範囲内に維持しながら冷却することにより、シートガラスSGの割れを防ぎつつ、シートガラスSGの幅方向への収縮を抑制することができる。これにより、シートガラスSGの両端部に向かってシートガラスSGの幅方向に張力が加えられている状態となる。また、シートガラスSGの側部の粘度が、流下方向に沿って高くなるように冷却することにより、シートガラスSGの側部は、段階的または連続的に冷却される。これにより、シートガラスSGが一度に過度に冷却されて割れることが防止される。
(4−7)
上記実施形態では、成形体直下における105.7〜107.5Poiseの粘度を有するシートガラスSGを、側部の粘度が109.0〜1010.5Poiseの範囲内になるように急冷し、シートガラスSGの急冷後、側部の粘度が1010.5〜1014.5Poiseの範囲内になるようにシートガラスSGをさらに冷却することにより、シートガラスSGの割れを防ぎつつ、シートガラスSGの幅方向の収縮を抑制する。
このように、冷却ローラ51をシートガラスSGに接触させることにより、熱伝導により、短時間でシートガラスSGから熱を奪うことができるので、シートガラスSGを急冷することができる。また、冷却ローラ51によりシートガラスSGを保持することにより、幅方向への収縮をより効果的に抑制することができる。
また、冷却ローラ51により急冷されたシートガラスSGは、シートガラスSGと離間して設置される冷却ユニット60による輻射熱伝達により継続して冷却されるので、シートガラスSGの表面が過剰に冷却されて割れることを防止することができる。なお、複数の冷却ユニット60を設けることにより、シートガラスSGの表面が過剰に冷却されることが効果的に抑制され、シートガラスSGの割れを効果的に抑制することができる。
(4−8)
上記実施形態では、板厚均一化工程において、シートガラスSGの中央領域における幅方向の温度分布を均一にし、かつ、シートガラスSGの両側部の温度を、中央領域の温度より低くする。これにより、シートガラスSGの側部は幅方向の収縮が抑制されるように冷却され、シートガラスSGの中央領域は板厚が均一になるように冷却されるので、シートガラスSGの板厚を幅方向に均一にすることができる。
なお、シートガラスSGが成形体から離れた直後から、シートガラスSGの温度が軟化点まで冷却されるまでに板厚均一化処理を行うことで、板厚をより均一にすることができる。
(4−9)
上記実施形態では、反り低減工程において、板厚均一化工程と比べてシートガラスSGの幅方向の温度分布を低温にし、かつ、シートガラスSGの中央領域の幅方向の中央部から側部に向かって、シートガラスSGの幅方向に温度勾配を形成する。そして、シートガラスSGの温度が歪点に向かうに従って、シートガラスSGの温度勾配が低減するように冷却する。これにより、シートガラスSGの幅方向の中央部に常に引っ張り応力が働くように冷却することができる。また、シートガラスSGの板厚を均一に維持しながら冷却することができ、シートガラスSGの反りを低減することができる。
また、反り低減工程では、シートガラスSGの幅方向に形成された温度勾配が低減するように、シートガラスSGの歪点近傍に向かってシートガラスSGを冷却する。温度勾配が低減するように、シートガラスSGを歪点まで冷却することにより、シートガラスSGの幅方向の中央部の冷却量は、シートガラスSGの幅方向の両端部の冷却量よりも大きくなる。これにより、シートガラスSGの体積収縮率は、幅方向の両端部から中央部に向かって大きくなるので、シートガラスSGの中央部には引張り応力が働く。特に、シートガラスSGの中央部には、シートガラスSGの流れ方向および幅方向に引張り応力が働く。なお、シートガラスSGの幅方向に働く引張り応力よりも、シートガラスSGの流れ方向に働く引張り応力の方が大きいことが好ましい。引張り応力により、シートガラスSGの平坦度を維持しつつ冷却することができるので、シートガラスSG、ひいては、ガラス板の反りをより低減できる。
(5)変形例
(5−1)変形例A
上記実施形態では、温度調整パイプ33が内部で三分割されており、温度調整パイプ33は、第1側部調整部33a、第2側部調整部33b、および中央部調整部33cを有する。温度調整パイプ33は、三分割に限られず、五分割されていても構わない。これにより、シートガラスSGの幅方向に、より細かい温度制御を独立して行うことができる。
(5−2)変形例B
上記実施形態では、熱伝導率の高い材料として、純ニッケルを採用したが、熱伝導率の高い材料として、他の材料を用いても構わない。例えば、モリブデン、焼結SiC、再結晶SiC、人造黒鉛、鉄、タングステン等であっても構わない。但し、モリブデンを採用する場合には、非酸化雰囲気で使用することが好ましい。また、モリブデンを酸化雰囲気で使用する場合には、耐酸化コートを施すことが好ましい。また、焼結SiCおよび再結晶SiCは、酸化雰囲気で採用することができ、人造黒鉛、鉄、およびタングステンは、非酸化雰囲気で使用される場合に採用することができる。
(5−3)変形例C
上記実施形態では、上部冷却調整板21および下部冷却調整板31としてチャンネル(溝形鋼形状)を用いたが、上部冷却調整板21および下部冷却調整板31は、上記形状に限定されず、他の形状であっても構わない。このとき、隣接する上部冷却調整板21および下部冷却調整板31同士の接触を最小限にし、隣接する上部冷却調整板21および下部冷却調整板31同士の熱伝導を抑えるような構成にすることが好ましい。例えば、上部冷却調整板21および下部冷却調整板31は、丸棒(円柱)形状や、奇数の多角柱形状などであってもよい。
(5−4)変形例D
上記実施形態では、上部空冷ユニット62によって、シートガラスSGの幅方向に沿って、雰囲気温度が均一になるように制御した(板厚均一化工程)。これにより、上記実施形態では、シートガラスSGの厚み(肉厚)を均一にした。しかし、上部空冷ユニット62は、シートガラスSGの幅方向に沿って、温度を変更できるような構成を取っていてもよい。例えば、空冷ユニット62の内部に形成される空間を複数に分け、空間ごとにそれぞれ冷却できるようにしたり、空冷ユニット62の内部に部分的に保温材を設置できる構成を設けたりすることにより、幅方向の雰囲気温度を変更できるようにしてもよい。これにより、中央領域の温度を均一にしているにもかかわらず、何らかの影響により、シートガラスSGの幅方向の肉厚の均一化が実現できなかった場合にも、シートガラスSGの肉厚の均一化を図ることができる。
11 溶解装置
12 清澄装置
21 上部冷却調整板
22 後方水冷ユニット
31 下部冷却調整板
32 温度制御ユニット
40 成形装置
41 成形体
41a 成形体の下端部
41b 成形体の頂部
41c 成形体の側面(表面)
43 溝
50 仕切り部材
51 冷却ローラ
60 冷却ユニット
61 中央部冷却ユニット
62 上部空冷ユニット
63a,63b 下部空冷ユニット
71 側部冷却ユニット
72 上部水冷ユニット
73 下部水冷ユニット
80 徐冷炉
81 引下げローラ
FG 溶融ガラス
SG シートガラス
100 ガラス基板製造装置
721 上部水冷板
722 上部連結ユニット
731 下部水冷板
732 下部連結ユニット
特開平5−124827号公報

Claims (11)

  1. ダウンドロー法により、溶融ガラスを成形体からオーバーフローさせてシートガラスに成形し、前記シートガラスを流下方向に引き伸ばしながら冷却することによりガラス基板を製造する方法であって、
    前記シートガラスが前記成形体から離れた後、前記シートガラスの温度が軟化点より高い温度から徐冷点近傍になるまでの温度領域にあるとき、前記シートガラスの側部に向かって張力を加えながら、前記側部の粘度を109.0〜1014.5Poiseの範囲内に維持して冷却し、
    前記温度領域において、
    前記シートガラスの板厚を幅方向に均一にするための板厚均一化工程と、
    前記板厚均一化処理の後に、前記シートガラスの反りを低減するための反り低減工程と、
    を行い、
    前記板厚均一化工程は、前記シートガラスの中央領域における幅方向の温度分布を均一にし、かつ、前記シートガラスの両側部の温度を、前記中央領域の温度より低くし、
    前記反り低減工程では、前記板厚均一化工程より前記シートガラスの幅方向の温度分布を低温にし、前記中央領域の中心部から前記側部に向けて前記シートガラスの幅方向に温度勾配を形成する、
    ガラス基板の製造方法。
  2. 前記シートガラスの側部の粘度が、前記流下方向に沿って高くなるように冷却する、
    請求項1に記載のガラス基板の製造方法
  3. 前記成形体直下におけるシートガラスの粘度は、105.7〜107.5Poiseであり、
    前記シートガラスの側部の粘度が109.0Poise以上になるように前記シートガラスを急冷する、
    請求項1または2に記載のガラス基板の製造方法
  4. 前記シートガラスを急冷した後、急冷時よりも冷却能を低下させて前記側部を冷却することにより、前記側部の粘度を109.0〜1014.5Poiseの範囲内に維持する、
    請求項3に記載のガラス基板の製造方法
  5. 一対の頂部と、下端部と、前記一対の頂部から前記下端部まで延びる一対の表面とを有し、溶融ガラスを前記一対の頂部からオーバーフローさせた後、前記一対の表面に沿って流下させ、前記下端部で合流させてシートガラスを成形する成形体と、
    前記成形体から離れた前記シートガラスが、軟化点より高い温度域にあるとき、前記シートガラスの側部の熱処理を行う第1熱処理ユニットと、
    前記シートガラスが前記軟化点近傍から徐冷点近傍までの温度域にあるとき、前記側部の熱処理を行う第2熱処理ユニットと、
    前記シートガラスの中央領域の熱処理を行う第3熱処理ユニットと、
    を備え、
    前記第1熱処理ユニットおよび前記第2熱処理ユニットは、前記側部に向かって張力を加えながら、前記側部の粘度を109.0〜1014.5Poiseの範囲内に維持して冷却し、
    前記第1熱処理ユニット、前記第2熱処理ユニットおよび前記第3熱処理ユニットは、
    前記シートガラスの板厚を幅方向に均一にするための板厚均一化工程と、
    前記板厚均一化処理の後に、前記シートガラスの反りを低減するための反り低減工程と、
    を行い、
    前記板厚均一化工程は、前記シートガラスの中央領域における幅方向の温度分布を均一にし、かつ、前記シートガラスの両側部の温度を、前記中央領域の温度より低くし、
    前記反り低減工程では、前記板厚均一化工程より前記シートガラスの幅方向の温度分布を低温にし、前記中央領域の中心部から前記側部に向けて前記シートガラスの幅方向に温度勾配を形成する、
    ガラス基板の製造装置。
  6. ダウンドロー法により、溶融ガラスを成形体からオーバーフローさせてシートガラスに成形し、前記シートガラスを流下方向に引き伸ばしながら冷却することによりガラス基板を製造する方法であって、
    前記シートガラスが前記成形体から離れた後、前記シートガラスの温度が軟化点より高い温度から徐冷点近傍になるまでの温度領域にあるとき、前記シートガラスの両側部に向かって前記シートガラスの幅方向に張力を加えながら、前記側部の粘度を109.0〜1014.5Poiseの範囲内に維持して冷却し、
    前記温度領域において、
    前記シートガラスの板厚を幅方向に均一にするための板厚均一化工程と、
    前記板厚均一化処理の後に、前記シートガラスの反りを低減するための反り低減工程と、
    を行い、
    前記板厚均一化工程は、前記シートガラスの中央領域における幅方向の温度分布を均一にし、かつ、前記シートガラスの両側部の温度を、前記中央領域の温度より低くし、
    前記反り低減工程では、前記板厚均一化工程より前記シートガラスの幅方向の温度分布を低温にし、前記中央領域の中心部から前記側部に向けて前記シートガラスの幅方向に温度勾配を形成する、
    ガラス基板の製造方法。
  7. 前記シートガラスの側部の粘度が、前記流下方向に沿って高くなるように冷却する、
    請求項6に記載のガラス基板の製造方法。
  8. 前記成形体直下におけるシートガラスの粘度は、105.7〜107.5Poiseであり、
    前記シートガラスの側部の粘度が109.0〜1010.5Poiseの範囲内になるように前記シートガラスを急冷し、
    前記シートガラスを急冷した後、急冷時よりも冷却能を低下させて前記側部を冷却することにより、前記側部の粘度を1010.5〜1014.5Poiseの範囲内に維持する、
    請求項6または7に記載のガラス基板の製造方法。
  9. 冷却ローラを用いて、成形体直下における前記シートガラスを、前記側部の粘度が109.0〜1010.5Poiseの範囲内になるように急冷する、
    請求項8に記載のガラス基板の製造方法。
  10. 前記冷却ローラにより急冷された前記シートガラスを、前記シートガラスと離間して設置される冷却ユニットを用いて冷却することにより、前記側部の粘度を1010.5〜1014.5Poiseの範囲内に維持する、
    請求項9に記載のガラス基板の製造方法。
  11. 前記反り低減工程では、前記シートガラスの幅方向に形成された前記温度勾配が低減するように、前記シートガラスの歪点近傍に向かって前記シートガラスを冷却する、
    請求項6から10のいずれか1項に記載のガラス基板の製造方法。
JP2012525564A 2011-03-31 2012-03-30 ガラス基板の製造方法およびガラス基板の製造装置 Active JP5154713B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012525564A JP5154713B2 (ja) 2011-03-31 2012-03-30 ガラス基板の製造方法およびガラス基板の製造装置

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2011081265 2011-03-31
JP2011081267 2011-03-31
JP2011081265 2011-03-31
JP2011081268 2011-03-31
JP2011081266 2011-03-31
JP2011081268 2011-03-31
JP2011081267 2011-03-31
JP2011081266 2011-03-31
PCT/JP2012/058715 WO2012133842A1 (ja) 2011-03-31 2012-03-30 ガラス基板の製造方法およびガラス基板の製造装置
JP2012525564A JP5154713B2 (ja) 2011-03-31 2012-03-30 ガラス基板の製造方法およびガラス基板の製造装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012239644A Division JP5349668B2 (ja) 2011-03-31 2012-10-30 ガラス基板の製造方法およびガラス基板の製造装置

Publications (2)

Publication Number Publication Date
JP5154713B2 true JP5154713B2 (ja) 2013-02-27
JPWO2012133842A1 JPWO2012133842A1 (ja) 2014-07-28

Family

ID=46931535

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2012525564A Active JP5154713B2 (ja) 2011-03-31 2012-03-30 ガラス基板の製造方法およびガラス基板の製造装置
JP2012239644A Active JP5349668B2 (ja) 2011-03-31 2012-10-30 ガラス基板の製造方法およびガラス基板の製造装置
JP2013145984A Active JP5352753B2 (ja) 2011-03-31 2013-07-12 ガラス基板の製造方法およびガラス基板の製造装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2012239644A Active JP5349668B2 (ja) 2011-03-31 2012-10-30 ガラス基板の製造方法およびガラス基板の製造装置
JP2013145984A Active JP5352753B2 (ja) 2011-03-31 2013-07-12 ガラス基板の製造方法およびガラス基板の製造装置

Country Status (6)

Country Link
US (1) US9108873B2 (ja)
JP (3) JP5154713B2 (ja)
KR (2) KR101907227B1 (ja)
CN (2) CN103183463B (ja)
TW (2) TWI409229B (ja)
WO (1) WO2012133842A1 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9676650B2 (en) * 2011-03-28 2017-06-13 Avanstrate Inc. Method and apparatus for making glass sheet
JP5782058B2 (ja) * 2013-02-21 2015-09-24 AvanStrate株式会社 ガラスシートの製造方法、ガラスシート製造装置、及びガラス積層体
JP6007277B2 (ja) * 2014-03-31 2016-10-12 AvanStrate株式会社 ガラス基板の製造方法、及び、ガラス基板の製造装置
CN104944748B (zh) * 2014-03-31 2017-10-20 安瀚视特控股株式会社 玻璃基板的制造方法、及玻璃基板的制造装置
US9919944B2 (en) * 2014-08-15 2018-03-20 Corning Incorporated Apparatus and methods for manufacturing glass
KR101837875B1 (ko) 2014-09-30 2018-03-12 아반스트레이트 가부시키가이샤 글래스 기판의 제조 방법 및 글래스 기판의 제조 장치
DE102015118308B4 (de) * 2014-10-29 2023-07-27 Schott Ag Verfahren zur Herstellung einer keramisierbaren Grünglaskomponente sowie keramisierbare Grünglaskomponente und Glaskeramikgegenstand
CN107108316B (zh) 2014-12-27 2021-01-29 安瀚视特控股株式会社 玻璃板的制造方法、及玻璃板的制造装置
CN107771165B (zh) * 2015-04-17 2020-12-01 康宁股份有限公司 热增强的玻璃制造设备和方法
JP6597953B2 (ja) * 2015-04-30 2019-10-30 日本電気硝子株式会社 板ガラス製造装置及び板ガラス製造方法
TW201704159A (zh) * 2015-05-01 2017-02-01 康寧公司 控制玻璃片厚度的方法及裝置
CN107735369B (zh) * 2015-06-30 2021-06-18 安瀚视特控股株式会社 玻璃基板的制造方法及玻璃基板制造装置
JP2017048102A (ja) * 2015-08-31 2017-03-09 AvanStrate株式会社 ガラス基板の製造方法、及び、ガラス基板の製造装置
US20180319694A1 (en) * 2015-11-19 2018-11-08 Corning Incorporated Glass manufacturing apparatuses with cooling devices and methods of using the same
KR20180086220A (ko) * 2015-11-19 2018-07-30 코닝 인코포레이티드 냉각 장치를 갖는 글라스 제조 장치 및 이를 사용하는 방법
JP6638381B2 (ja) * 2015-12-22 2020-01-29 日本電気硝子株式会社 板ガラス製造装置及び板ガラス製造方法
WO2018039002A1 (en) * 2016-08-24 2018-03-01 Corning Incorporated Glass manufacturing apparatus and methods
TWI774715B (zh) * 2016-12-21 2022-08-21 美商康寧公司 用於管理玻璃帶冷卻之方法及設備
JP6724813B2 (ja) * 2017-02-13 2020-07-15 日本電気硝子株式会社 ガラス製造方法、及びガラス供給管の予熱方法
TWI788338B (zh) * 2017-04-04 2023-01-01 美商康寧公司 用於製造玻璃片的設備與方法及用於拉引玻璃帶的拉引設備
JP2020528394A (ja) * 2017-07-21 2020-09-24 コーニング インコーポレイテッド ガラスリボンでの調整可能な伝熱のための方法および装置
CN111065607A (zh) * 2017-07-28 2020-04-24 康宁公司 玻璃处理设备及方法
KR102136931B1 (ko) 2017-09-29 2020-07-23 아반스트레이트 가부시키가이샤 유리 기판의 제조 방법 및 유리 기판 제조 장치
JP6676119B2 (ja) * 2017-09-29 2020-04-08 AvanStrate株式会社 ガラス板の製造方法
KR102179884B1 (ko) 2017-12-26 2020-11-18 아반스트레이트 가부시키가이샤 유리 기판의 제조 방법, 및 유리 기판 제조 장치
CN108911483A (zh) * 2018-07-27 2018-11-30 彩虹显示器件股份有限公司 一种溢流下拉法成型玻璃板厚快速精细调整装置
EP3883895A1 (de) * 2018-11-21 2021-09-29 Schott AG Verfahren und vorrichtung zur herstellung von dünnglas sowie dünnglasband
WO2021231124A1 (en) * 2020-05-13 2021-11-18 Corning Incorporated Glass molding apparatus including adjustable cooling nozzles and methods of using the same
CN117561224A (zh) * 2021-08-17 2024-02-13 日本电气硝子株式会社 玻璃物品的制造方法以及制造装置
CN114956533B (zh) * 2022-05-07 2023-10-03 河北省沙河玻璃技术研究院 超薄柔性玻璃制备方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05124827A (ja) * 1991-10-31 1993-05-21 Hoya Corp ガラス板の製造装置及び製造方法
JP2007051028A (ja) * 2005-08-18 2007-03-01 Nippon Electric Glass Co Ltd 板ガラスの成形方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE757057A (fr) * 1969-10-06 1971-04-05 Corning Glass Works Procede et appareil de controle d'epaisseur d'une feuille de verre nouvellement etiree
JP2572444B2 (ja) 1988-11-30 1997-01-16 ホーヤ株式会社 ガラス板の製造装置
JP3335291B2 (ja) * 1997-04-16 2002-10-15 ホーヤ株式会社 ガラス板の製造方法及び製造装置
JP3586142B2 (ja) * 1999-07-22 2004-11-10 エヌエッチ・テクノグラス株式会社 ガラス板の製造方法、ガラス板の製造装置、及び液晶デバイス
US6748765B2 (en) * 2000-05-09 2004-06-15 Richard B. Pitbladdo Overflow downdraw glass forming method and apparatus
EP1746076A1 (en) 2005-07-21 2007-01-24 Corning Incorporated Method of making a glass sheet using rapid cooling
JP4826722B2 (ja) 2005-08-18 2011-11-30 日本電気硝子株式会社 板ガラスの成形方法
US20070062219A1 (en) * 2005-09-22 2007-03-22 Blevins John D Methods of fabricating flat glass with low levels of warp
JP5327702B2 (ja) * 2008-01-21 2013-10-30 日本電気硝子株式会社 ガラス基板の製造方法
US8037716B2 (en) 2009-02-27 2011-10-18 Corning Incorporated Thermal control of the bead portion of a glass ribbon
US8047085B2 (en) * 2009-05-27 2011-11-01 Corning Incorporated Force monitoring methods and apparatus
JP5582446B2 (ja) * 2009-07-10 2014-09-03 日本電気硝子株式会社 フィルム状ガラスの製造方法及び製造装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05124827A (ja) * 1991-10-31 1993-05-21 Hoya Corp ガラス板の製造装置及び製造方法
JP2007051028A (ja) * 2005-08-18 2007-03-01 Nippon Electric Glass Co Ltd 板ガラスの成形方法

Also Published As

Publication number Publication date
CN102869623B (zh) 2016-07-27
KR20130122961A (ko) 2013-11-11
JP5352753B2 (ja) 2013-11-27
TW201242911A (en) 2012-11-01
JP5349668B2 (ja) 2013-11-20
CN103183463B (zh) 2017-08-01
US20130118206A1 (en) 2013-05-16
JPWO2012133842A1 (ja) 2014-07-28
JP2013018707A (ja) 2013-01-31
CN103183463A (zh) 2013-07-03
KR101907227B1 (ko) 2018-10-11
TWI409229B (zh) 2013-09-21
CN102869623A (zh) 2013-01-09
KR20120132686A (ko) 2012-12-07
KR101319204B1 (ko) 2013-10-16
TWI551557B (zh) 2016-10-01
WO2012133842A1 (ja) 2012-10-04
US9108873B2 (en) 2015-08-18
JP2013212987A (ja) 2013-10-17
TW201328996A (zh) 2013-07-16

Similar Documents

Publication Publication Date Title
JP5154713B2 (ja) ガラス基板の製造方法およびガラス基板の製造装置
TWI414493B (zh) Glass plate making device and glass plate cooling method
KR101599158B1 (ko) 글래스 기판의 제조 방법 및 글래스 기판 제조 장치
JP6007277B2 (ja) ガラス基板の製造方法、及び、ガラス基板の製造装置
JP6034950B2 (ja) ガラス製造プロセスにおける成形本体の熱分離装置
JP2013139342A (ja) ガラス板の製造方法
JP6007341B2 (ja) ガラス基板の製造方法、及び、ガラス基板の製造装置
CN215440178U (zh) 一种基板玻璃翘曲应力分区控制的成型系统
CN104944748B (zh) 玻璃基板的制造方法、及玻璃基板的制造装置
JP2019064860A (ja) ガラス基板の製造方法、及びガラス基板製造装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5154713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250