[go: up one dir, main page]

JP5145685B2 - 流体分離膜エレメント - Google Patents

流体分離膜エレメント Download PDF

Info

Publication number
JP5145685B2
JP5145685B2 JP2006282384A JP2006282384A JP5145685B2 JP 5145685 B2 JP5145685 B2 JP 5145685B2 JP 2006282384 A JP2006282384 A JP 2006282384A JP 2006282384 A JP2006282384 A JP 2006282384A JP 5145685 B2 JP5145685 B2 JP 5145685B2
Authority
JP
Japan
Prior art keywords
membrane element
fiber
hollow fiber
fluid
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006282384A
Other languages
English (en)
Other versions
JP2008100127A (ja
Inventor
秀人 小寺
一成 丸井
淳夫 熊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2006282384A priority Critical patent/JP5145685B2/ja
Publication of JP2008100127A publication Critical patent/JP2008100127A/ja
Application granted granted Critical
Publication of JP5145685B2 publication Critical patent/JP5145685B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は選択透過性を有する選択透過性膜からなる流体分離膜エレメントに関する。流体の膜分離処理に用いられ、例えば、海水の淡水化、かん水の脱塩、廃水の浄化、無菌水の製造、超純水の製造のような逆浸透法や、高度浄水処理や農薬、臭気物質、消毒副生成物前駆物質などの低分子有害物質の除去、硬度成分除去による軟水化処理などのナノろ過法や、電着塗装廃水からの塗料の回収、食品関係の有用物の濃縮・回収、凝集沈殿・砂ろ過代替の浄水処理などのような限外ろ過法や、天然ガスからのヘリウムの回収、アンモニアプラントのパージガスからの水素の分離・回収、石油の3次回収での炭酸ガスの分離、酸素富化、窒素富化などの気体分離法などに用いることが可能な選択透過性膜からなる流体分離膜エレメントに関するものである。特に気体の分離用のガス分離膜エレメントや海水の淡水化などの水処理に有効な逆浸透膜エレメント等の高温・高圧等の過酷な条件で運転される流体分離膜エレメントに好適なものである。
流体分離膜エレメントを用いて流体分離を行う場合、流体分離膜エレメントを圧力容器内に組み込んだ流体分離膜モジュールの形態で使用する。供給流体と透過流体の流路の分離や、供給流体と濃縮流体の流路の分離のために、流体分離膜エレメントの端部を樹脂で封止固定しその外周部に外周リングを固定する構造が汎用されている。
外周リングを金属材料または合成重合体で構成する技術が、特許文献1に開示されている。特許文献1においては外周リングはカラーと記されている。外周リングを金属材料で構成する場合、高温・高塩濃度等の過酷な使用環境下においては耐蝕性に劣るため流体分離膜エレメントの長期間に渡る使用に耐えないこと、外周リングと封止樹脂の接着性が悪く接着界面の剥離による分離性能の低下が生じやすいこと、という問題がある。また外周リングの素材として合成重合体を用いる場合は、引張弾性率が低いため外周リングを厚くしてもなお寸法安定性が悪く、高温・高圧等の過酷な使用環境下においては、外周リングの膨張・収縮あるいは変形により、流体分離膜エレメントの圧力容器への装脱着性の低下、流体分離膜エレメントと圧力容器とのシール性の低下といった問題が生じやすく、問題であった。
特開昭50−99972号公報
外周リングをガラスロービングエポキシ樹脂で構成する技術が特許文献2に開示されている。特許文献2においては、外周リングは筒体と記されている。強化繊維がガラスロービングであると引張弾性率が十分に高くないため、外周リングを厚くしなければならず、このため、圧力容器と流体分離膜エレメントの間に無駄な空間が形成され、流体分離膜モジュール体積あたりの有効膜面積および流体処理容量の向上に対する障害となっていた。
実開昭52−121447号公報
特許文献3にも、中空糸束外周部に外周リングを配し円筒容器の内面と液シールしている外周リングの技術が開示されている。この文献では外周リングの材質や引張弾性率については記述されていない。
特開昭57−102202号公報
図5に流体分離膜エレメントが海水淡水化に用いられる外圧型中空糸膜モジュールに装填されたものである場合の一例を示す。選択透過性膜である中空糸膜層2の両端部は外周リング4a,4bの内側に挿入され、エポキシ樹脂で中空糸膜相互間および中空糸膜と外周リングの間を封止固定している。流体分離膜エレメントの一方側の外周リング4aに設けた溝にOリング15を挿入したものによって流体分離膜エレメントの外周面と圧力容器の内面をシールし、これによって濃縮水室と透過水室が液密に区画されている。左記のOリング15の両側には、典型的には5MPa程度、運転条件によっては8MPa以上の非常に大きな圧力差がかかり、濃縮水室の方が高圧となる。透過水に濃縮水が混入すると分離効率が如実に低下し分離機能が十分に果たせなくなるので、そのようなことが生じないように濃縮水質と透過水室の区画は厳密にシールされていなければならない。厳密なシール性を維持した上で、できる限り大きな有効膜面積をとれるようにするためには、膜エレメントの装脱着に支障をきたさない範囲で、外周リングはできる限り薄く、圧力容器の内面と外周リング4aの外周面のクリアランスはできるだけ小さくすることが合理的である。例えば圧力容器内径280mmの場合には、外周リングの外径279mm、圧力容器内面と外周リング外周面とクリアランスは片側0.5mmであれば、外周リングの変形を考慮した上で充分なシール性を維持出来、且つ膜エレメントの装脱着に支障を来たさない。左記クリアランスは外周リング直径のわずか0.18%に相当し、非常に高いレベルの寸法安定性が求められる。また、この例では、分離膜エレメントの他方側の外周リング4bの外径は274mmであり、外周リングの外周面と圧力容器の内面のクリアランスは比較的大きいが、外周リング4bの外周部にはスナップ17が設置されており、スナップと圧力容器の内面のクリアランスの最小部はやはり0.5mmしかない。したがって、他方側の外周リング4bにも外周リング4aと同等の寸法安定性が求められる。しかも、外周リング4a,4bの内径は充填する中空糸膜層2の外径以上でなければないので、外周リング4bは外周リング4aより薄肉とせざるをえず、寸法安定性の確保はさらに困難な課題となる。
本発明は、流体分離膜モジュールの大きさを維持したままで流体分離膜エレメントの膜面積を従来よりも大きくし、流体分離膜モジュール体積あたりの有効膜面積を向上させ、これにより流体分離膜エレメントの流体処理容量を向上させることを目的とする。
膜エレメントが供給流体と接触することや膜エレメントに加わる温度変化、圧力変化等により、外周リングには収縮応力または膨張応力が作用する。これらの応力にさらされても外周リングは高い寸法安定性を確保しなければならない。外周リングの寸法安定性を確保するには、外周リングの弾性強力を高くすればよい。外周リングの弾性強度を高くするには、外周リングの厚みを大きくするか、または、外周リングを構成する部材の弾性率を高くすればよいと考えられる。外周リングの厚みを大きくする場合、外周リングの外径は圧力容器の内径で制限されるため、外周リングの内径を小さくするほかなく、このため外周リングの内側に装填される中空糸膜層の量が減少し有効膜面積が低下し、結果として流体分離膜モジュール体積あたりの有効膜面積は減少し、流体分離膜モジュールの流体処理容量の低下を引き起こすので、この考え方を採用することは適切でない。一方、外周リングを構成する部材の弾性率を高くすれば、外周リングの弾性強力を維持したまま外周リングを薄くすることができ、外周リングの内径を大きくすることが可能となる。この考え方によれば、流体分離膜モジュールの大きさを維持したまま有効膜面積を増やすことができ、流体分離膜モジュール体積あたりの有効膜面積は増加し、流体処理容量を高くすることが可能となる。
本発明者らは、以上のような考え方に基づき、外周リングを薄くしても外周リングの寸法安定性が確保され、よって流体分離膜モジュールの大きさを維持したままでも流体分離膜エレメントの有効膜面積を大きくし流体処理容量を高めることのできる流体分離膜エレメントについて鋭意検討した結果、本発明に至った。すなわち、本発明は下記の構成を含む。
(1)複数の選択透過性膜の両端部が樹脂で固定された流体分離膜エレメントにおいて、少なくとも一方の樹脂部の外周に引張弾性率が1,800〜5,000kg/mmの繊維強化樹脂からなる外周リングが固定されており、前記繊維強化樹脂が主としてガラス繊維と高強度繊維と樹脂からなり、該樹脂の体積分率が前記繊維強化樹脂に対して20〜50%を占め、該高強度繊維が体積分率で該ガラス繊維と該高強度繊維の体積分率の和の5〜95%を占めることを特徴とする流体分離膜エレメント。
(2)選択透過性膜が外圧型中空糸膜で構成されていることを特徴とする(1)に記載の流体分離膜エレメント。
本発明においては、外周リングの引張弾性率を従来よりも高くしたことにより、外周リングを薄くすることができ、これによって流体分離膜モジュールの大きさを変えることなく有効膜面積を拡大させ、流体処理能力を向上させることができる。また、外周リングを薄くしたにもかかわらず弾性強度は低下していないため、外周リングの寸法安定性は確保されており、従って流体分離膜エレメントの装脱着性の低下や圧力容器とのシール性の低下といった問題も生じない。さらに、外周リングの構成部材として金属材料を使用していないため、耐蝕性の不足による破損の恐れも生じない。このため、水の精製装置、および海水またはかん水の淡水化や脱塩をするための装置、気体分離装置等に使用される流体分離膜エレメントとして、有効に使用することが可能である。
本発明における選択透過性膜としては、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜およびガス分離膜が挙げられ、また膜形状として、平膜(スパイラル膜)、中空糸膜、管状膜が挙げられるが、いずれの選択透過性膜であっても、本発明の流体分離膜エレメントが適用可能である。特に、逆浸透膜、外圧型中空糸膜は、本発明が好適である一例である。外圧型中空糸膜とは、中空糸膜の外側に被処理流体を供給し、中空糸膜の内側に向けて流体を透過させるものである。また、本発明における逆浸透膜とは、数十ダルトンの分子量の分離特性を有する領域の分離膜であり、具体的には、0.5MPa以上の操作圧力で、食塩を90%以上、除去可能であるものである。
本発明における流体分離膜エレメントとは、選択透過性を有する流体分離膜を集合して構成される素子であり、圧力容器に流体分離膜エレメントを装填した流体分離膜モジュールとして、流体分離処理び供される。
本発明における外周リングとは、流体分離膜エレメントの端部の外周部に構成される環状の部材であり、内部には選択透過性膜が封止固定されている。図1は外周リングの一例を示す模式図である。図1に示すように内周面はテーパーになっていることが好ましい。流体分離膜エレメントを圧力容器に装填した流体分離膜モジュールとして流体分離の処理に用いる場合、この外周リングは、流体分離膜エレメントの外周面側と圧力容器の内面側をシール部材でシールし、供給流体及び濃縮流体と透過流体が混合しないようにしたり、圧力容器の内面と流体分離膜エレメントの外表面との空間を確保し、供給流体及び濃縮流体の排出流路を確保する役割を有している。そのために、供給流体及び濃縮流体と接して処理した場合でも、高い寸法安定性を保持されることが求められる。
本発明における外周リングの引張弾性率とは、外周リングの形態で測定した、引張応力に対する弾性率である。その値は1,800kg/mm以上5,000kg/mm以下が好ましく、より好ましくは2,000kg/mm以上3,300kg/mm以下である。引張弾性率が低いと寸法安定性を確保するために外周リングを厚くする必要があり、その結果、挿入可能な選択透過性膜の有効膜面積が小さくなり、流体処理容量が小さくなるため好ましくない。引張弾性率が高すぎると、温度低下等によりポッティング部の収縮が生じた際に外周リングの収縮が追従できず、その結果、ポッティング部と外周リングの界面で剥離を生じる場合があり、好ましくない。
本発明における繊維強化樹脂とは、ガラス繊維に代表される強化繊維を包含した複合素材であり、その強化繊維には短繊維或いは粒子などからなるフィラータイプと長繊維からなるストランドタイプがあるが、ストランドタイプの方が引張強度に優れより好ましい。繊維強化樹脂に用いられる強化繊維は一般的に樹脂とのなじみや結合性を良くする為に、結合剤(バインダー)等によって繊維の外周を表面処理されているが、本発明においてもそのような処理がなされていることが好ましい。また、ストランドをさらに所定の番手になるように数10本引き揃えて束にしたものをロービングと言う。本発明において、強化繊維はロービングの形態で用いられることにより外周リングの生産性を高める効果がありより好ましい。
本発明における高強度繊維とは、引張弾性率が10,000kg/mm以上のもののことである。これに対し、繊維強化樹脂に汎用されるEガラス繊維の引張弾性率は7,000kg/mm程度である。引張弾性率が10,000kg/mm未満の繊維では、ではガラス繊維の引張弾性率との差が小さいので外周リングの引張弾性率向上効果が小さく、好ましくない。高強度繊維の好ましい例としてはパラ系アラミド繊維、PBO(ポリパラフェニレンベンゾビスオキサザール)繊維、超高分子量ポリエチレン繊維、金属繊維などが挙げられる。その中でも引張弾性率が15,000kg/mmから60,000kg/mmである炭素繊維はガラス繊維に対して引張弾性率が大きく耐蝕性にも優れ、また比較的入手しやすく、経済性にも優れることから特に好ましい。なお、本発明における高強度繊維の引張強度の測定方法はJIS L1013−1999「化学繊維フィラメント糸試験方法」に従うものとする。
本発明における繊維強化樹脂とは、ガラス繊維に代表される強化繊維またはそのロービングを包含した複合素材であり、強化繊維またはそのロービングは図2に示すように完全に樹脂で包埋されていることが好ましい。また、ロービングを構成する繊維の間隙にも樹脂が浸透していることが好ましい。
繊維強化樹脂に占める樹脂の体積分率は20〜50%が好ましく、25〜45%がより好ましく、32〜38%がさらに好ましい。繊維強化樹脂に占める樹脂の体積分率が低すぎると成形加工が困難となり、また液密性、気密性にも問題を生じる。逆に繊維強化樹脂に占める樹脂の体積分率が高すぎると、繊維による強化効果が小さいので引張弾性率が低くなり、外周リングを薄くすることができず不適切である。
高強度繊維の体積分率は、該ガラス繊維と該高強度繊維の体積分率の和の5〜95%であることが好ましく、5〜50%であることがより好ましく、10〜40%であることがさらに好ましい。高強度繊維の割合が小さすぎると引張弾性率の向上効果が小さく好ましくない。また、高強度繊維の割合が大きすぎると、引張弾性率の向上効果は大きいものの、一般に高強度繊維は高価であるため、コストが過大となり実用上問題である。
本発明における繊維強化樹脂とは、強化繊維またはそのロービングに樹脂を含浸させながら捲き上げたものであり、その捲上角度は軸方向に対し10°から80°であり、40°から80°が好ましく、70°から80°がより好ましい。捲上角度が小さすぎると径方向への引張強度が小さくなる欠点があり、捲上角度が大きすぎると捲上作業性が著しく低下する。
本発明における繊維強化樹脂において、樹脂の種類としては、エポキシ系、不飽和ポリエステル系、ビニルエステル系などがあるが、熱硬化性であるエポキシ系が、流体分離膜エレメントの端部の外周部との接着力が大きく、収縮が少なく、強度及び耐熱性に優れ、より好ましい。
本発明における選択性透過膜の形状は特に限定されるものではないが、好適な例としては中空糸膜があげられる。この中空糸膜型の流体分離膜エレメントでの好適な一例としては両端開口型膜モジュールがあげられる。これは、両端部で中空糸膜が開口しており両端部に外周リングが存在するため本発明の効果が顕著に発揮される。
本発明における選択性透過膜の素材は特に限定されるものではないが、中空糸膜の逆浸透膜の場合の好ましい一例としては三酢酸セルロースがあげられる。この他、選択性透過膜としてはポリアミドやポリビニルアルコールなど親水性素材が好適である。選択性透過膜がこのような親水性素材で構成されている場合は、供給流体が水であれば膜が膨潤して流体分離膜エレメントの端部の外周リングに過大な引張応力がかかるため、本発明の効果が顕著に発揮される。
以下本発明の実施例を記載するが、本発明はこれら実施例に限定されるものではない。
(中空糸膜の作製例)
酢化度61.5%のセルローストリアセテート(ダイセル化学工業社製)40重量%、溶媒、非溶媒からなる紡糸原液を用いて、公知の乾湿式法により外径140μm、膜厚40μmの選択透過性中空糸膜を得た。
(引張強度、引張弾性率の測定例)
外周リングの引張試験方法を以下に示す。本引張試験は、下記に特記することのほか、JIS K7054−1995「ガラス繊維強化プラスチックの引張試験方法」に準拠している。本試験方法の概略を以下に示す。
図3のように外周リングの内側に均等に力が加わるように内側押さえプレート204を取り付け、固定ボルト203で固定した治具201を介して、試験片である外周リング202を汎用の引張試験装置にセットし、試験速度10mm/min、試験室温度24℃で試験片が破壊するまで荷重を加え、破壊に至るまでの荷重Wと変位dの関係の推移を測定した。変位dを以下の式で表されるひずみεに変換し、ひずみεと荷重Wの関係から引張弾性率を算出した。なお、試験片の断面積Aと引張破壊強度Pは以下で表される。また、外周リングの内周側にはテーパーをつけてある場合には、ここで用いる外周リングの内径DIには、外周リング両端の内径の平均値((DIa+DIb)/2)を用いた。
ε=ΔDO/DO=(DO+d)/DO
A=((DO−DI)×L−(DO−DL)×H) (単位:mm
P=Wp/A (単位:kg/mm
DO:外周リング外径(単位:mm)、DI:外周リング内径(単位:mm)、DL:Oリング溝内径(単位:mm)、H:Oリング溝幅(単位:mm)、L:外周リング高さ(単位:mm)、Wp:破壊荷重(単位:kg)
(実施例1)
(中空糸膜の作製例)に示した方法により得た中空糸膜を多孔管からなる供給流体分配管3の周りに交差状に配置させ、長さが1,600mm、外径が254mmの中空糸膜の集合体を形成させた。供給流体分配管3をその軸を中心に回転させながら、中空糸膜の束をトラバースさせ、供給流体分配管3の周りに捲きつけることにより中空糸膜が交差状に配置される。最外層における中空糸膜は軸方向に対して47度であった。この中空糸膜の集合体の両端部を外周リング4a、4bの内部に挿入した状態でエポキシ樹脂でポッティングし固定させた後、温湯に浸漬(キュアリング)を行った。キュアリング工程後、両端を切断して中空糸膜の中空孔を開口させた。その後、供給流体分配管3の内部に内部管7を通し、両端の中空糸膜開口部5a、5bを透過流体収集部材6a、6bで固定した。一方側(1側)の端部は供給流体入口を構成するコネクター9を中心にして透過流体収集部材6aを保持した。他方側(2側)の端部の透過流体収集部材6bは8個のスナップ17を嵌め合い状態で固定することにより、中空糸膜エレメント端部と固定し、図4に示す中空糸膜エレメント1を作製した。他方側端部付近について、モジュール軸に対して垂直な断面の模式図を図6に、モジュール軸を含む断面の模式図を図7に示した。スナップ17は中空糸膜エレメント1および透過流体収集部材6bの円周形状に沿った円弧状の形状をなしている。透過流体収集部材の外径は274mmであり、圧力容器8の内径280mmに対して、半径で3mmの隙間を形成している。スナップ17の円周方向の幅は50mm、スナップ17の厚みは2.5mmであり、スナップ17装着時の外径は279mm、圧力容器8の内面とのクリアランスはわずかに0.5mmしかなく、高度な寸法安定性が求められる。スナップの個数は8ケで、円周状で対称配置に設置しており、スナップ17装着時の外周長876mmに対して46%を占めている。主に残りの54%を占める空隙の部分で濃縮流体の流路を形成している。左記濃縮流体の流路を確保するため、他方側の外周リング4bの外径は、一方側の外周リング4aの外径よりも小さくする必要がある。一方側の外周リング4aは、繊維と樹脂の混合量が体積%でガラス繊維/高強度繊維/樹脂=65%/0%/35%であり、外径279mm、内径254mmであり、捲き角度は80°、引張弾性率は1,500kg/mmであった。外周リング4aと圧力容器8の内面のクリアランスはわずか0.5mmしかなく、高度な寸法安定性が求められる。ガラス繊維は引張弾性率が約7,100kg/mmのEガラスを用いた。他方側の外周リング4bは、繊維と樹脂の混合量が体積%でガラス繊維/高強度繊維/樹脂=58%/7%/35%であり、外径274mm、内径254mmであり、捲き角度は80°、引張弾性率は2,100kg/mmであった。ガラス繊維は上述のEガラスを、炭素繊維は引張弾性率が約24,400kg/mmの繊維を用いた。この中空糸膜エレメントの有効膜面積は900mであった。この中空糸膜エレメント1を内径が280mmの圧力容器8に1本装着して図5に示すシングルタイプのモジュールとし、このモジュールに温度25℃、食塩3.5重量%の食塩水溶液を供給流体入口に操作圧力5.4MPaで供給して、回収率、すなわち、膜モジュールへの供給水流量に対する透過水流量の割合は30%で逆浸透処理を行った。運転後の圧力容器からの膜エレメントの装脱着に問題なく、また外周リングの破損も認められなかった。
(比較例1)
他方側の外周リング4bが繊維と樹脂の混合量が体積%でガラス繊維/高強度繊維/樹脂=65%/0%/35%である以外は実施例1と同様に中空糸膜エレメントを作製した。外周リング4bの引張弾性率は1,500kg/mmであった。有効膜面積は900mと比較例と同様であったものの、実施例1と同様に圧力容器に装填し逆浸透処理を行ったところ、外周リング4bの外径が大きくなって圧力容器8の内面に接触して膜エレメントの装脱着が困難となり、実用に耐えないことが判明した。
(比較例2)
比較例1と同様に中空糸膜エレメント1を作製した。但し、中空糸膜集合体の外径は249mm、一方側の外周リング4aの厚みを15mm、内径を249mm、他方側の外周リング4bの厚みを12.5mm、内径を249mmと、外周リングの厚みを厚くして外周リングの引張強力を比較例1の場合よりも向上させた。有効膜面積は865mとなり、実施例1および比較例1の場合よりも減少した。実施例1と同様に圧力容器8に中空糸膜エレメント1を装填し逆浸透処理を行ったところ、運転後の圧力容器8からの膜エレメント1の装脱着に問題なく、また外周リング4a,4bの破損も認められなかったが、有効膜面積が減少したため、流体処理容量は実施例1の場合よりも減少した。
(実施例2)
実施例1と同様に中空糸膜エレメント1を作製した。但し、中空糸膜集合体の外径は258mmであり、一方側の外周リング4aの繊維と樹脂の混合量が体積%でガラス繊維/高強度繊維/樹脂=58%/7%/35%、引張弾性率が2,100kg/mmと、実施例1の場合よりも引張弾性率を高くし、外周リングの外径は279mmのまま厚みは10.5mmと薄くし、内径は258mmとした。他方側の外周リング4bの繊維と樹脂の混合量が体積%でガラス繊維/高強度繊維/樹脂=52%/13%/35%、引張弾性率が2,400kg/mmとこちらも実施例1の場合よりも引弾性率を高くし、外周リングの外径は実施例1と同様、274mm、厚みは8mmと薄くし、内径を258mmとした。外周リングを薄くしたことにより中空糸集合体の外径を大きくすることができ、有効膜面積は930mと大きくすることができた。実施例1と同様に圧力容器8に中空糸膜エレメント1を装填し逆浸透処理を行ったところ、実施例1の場合よりも流体処理容量が大きくできたうえ、運転後の圧力容器8からの膜エレメント1の装脱着も問題なく、また外周リング4a,4bの破損も認められなかった。
(比較例3)
実施例2と同様に中空糸膜エレメント1を作製した。但し、一方側、他方側共に外周リング4a、4bの繊維と樹脂の混合量を体積%でガラス繊維/高強度繊維/樹脂=65%/0%/35%としたところ、外周リングの引張弾性率は1,500kg/mmであった。有効膜面積は実施例同様930mと大きくすることができた。実施例1と同様に圧力容器8に中空糸膜エレメント1を装填し逆浸透処理を行ったところ、外周リング4a,4bの外径が大きくなって圧力容器8の内面に接触して膜エレメントの装脱着が困難となり、実用に耐えないことが判明した。
(実施例3)
実施例1と同様に中空糸膜エレメント1、1’を作製した。図8に示すように、1ケの圧力容器8に2本の中空糸膜エレメント1、1’を中間コネクター16で連結させて装填し、中空糸膜モジュールとした。実施例1と同様の逆浸透処理を実施したところ、運転後の圧力容器からの膜エレメントの装脱着に問題なく、また外周リング4a、4b、4a’、4b’の破損も認められなかった。
Figure 0005145685
(実施例4)
実施例1と同様の中空糸膜を多孔管からなる供給流体分配管3の周りに交差状に配置させ、中空糸膜の集合体を形成させた。中空糸膜の集合体の長さは1,900mm、外径は218mmであった。供給流体分配管3をその軸を中心に回転させながら、中空糸膜の束をトラバースさせ、供給流体分配管3の周りに捲きつけることにより中空糸膜が交差状に配置される。最外層における中空糸膜は軸方向に対して42度であった。この中空糸膜の集合体の一方側(1側)、他方側(2側)の両方の端部を外周リング4a,4bの内部に入れた状態でエポキシ樹脂をポッティングし固定させた後、両側の端を切断して中空糸膜の中空孔を開口させ、その後、供給流体分配管3の内部に内部管7を通し、両端の中空糸膜開口部5a、5bを透過流体収集部材6a、6bで固定した。一方側(1側)の端部は供給流体入口を構成するコネクター9を中心にして透過流体収集部材6aを保持した。他方側(2側)の端部の透過流体収集部材6bは8個のスナップ17を嵌め合い状態で固定することにより、中空糸膜エレメメント端部と固定し、中空糸膜エレメント1を作製した。一方側の外周リング4aは繊維と樹脂の混合量が体積%でガラス繊維/高強度繊維/樹脂=58%/7%/35%である。ガラス繊維は上述のEガラスを、炭素繊維は引張弾性率が約24,400kg/mmの繊維を用いた。この外周リングの円周方向の引張弾性率は2,100kg/mmであった。外径は239mm、内径は218mm、厚みは10.5mmであった。他方側の外周リング4bは繊維と樹脂の混合量が体積%でガラス繊維/高強度繊維/樹脂=52%/13%/35%である。使用したガラス繊維、炭素繊維は上述のものと同等である。この外周リングの円周方向の引張弾性率は2,400kg/mmであった。外径は234mm、内径は218mm、厚みは8mmであった。この中空糸膜エレメント1の有効膜面積は870mであった。
この中空糸膜エレメント1を内径が240mmの圧力容器8に1本装着して図9に示すシングルタイプのモジュールとし、このモジュールに温度25℃、食塩3.5重量%の食塩水溶液を供給流体入口に操作圧力5.4MPaで供給して、回収率、すなわち、膜モジュールへの供給水流量に対する透過水流量の割合は30%で逆浸透処理を行った。運転後の圧力容器8からの膜エレメント1の装脱着に問題なく、また外周リング4a,4bの破損も認められなかった。
(比較例4)
一方側、他方側共に、外周リング4a,4bの繊維と樹脂の混合量が体積%でガラス繊維/高強度繊維/樹脂=65%/0%/35%である以外は実施例4と同様に中空糸膜エレメントを作製した。外周リングの引張弾性率は1,500kg/mmと実施例4に比べて低下した。有効膜面積は実施例4同様、870mであったものの、実施例1と同様に圧力容器8に装填し逆浸透処理を行ったところ、外周リング4a,4bの外径が大きくなって圧力容器8の内面に接触して膜エレメントの装脱着が困難となり、実用に耐えないことが判明した。
(実施例5)
実施例4と同様に中空糸膜エレメント1を作製した。但し、高強度繊維の混入比率を実施例4の場合よりも高くして外周リングの引張弾性率高め、外周リング4a,4bを薄くした。すなわち、中空糸膜集合体の外径は223mmであり、一方側の外周リング4aの繊維と樹脂の混合量が体積%でガラス繊維/高強度繊維/樹脂=52%/13%/35%、引張弾性率が2,400kg/mmであり、外周リングの厚みは8mmで、内径は223mmであり、他方側の外周リング4bの繊維と樹脂の混合量が体積%でガラス繊維/高強度繊維/樹脂=41%/24%/35%で、引張弾性率が3,100kg/mmであり、外周リングの厚みは5.5mm、内径が223mmである。有効膜面積は910mと実施例4よりも大きいものであった。実施例4と同様に圧力容器8に中空糸膜エレメント1を装填し逆浸透処理を行ったところ、運転後の圧力容器8からの膜エレメントの装脱着1は問題なく、また外周リング4a、4bの破損も認められなかった。
(比較例5)
実施例5と同様に中空糸膜エレメント1を作製した。但し、一方側、他方側共に外周リング4a、4bの繊維と樹脂の混合量を体積%でガラス繊維/高強度繊維/樹脂=65%/0%/35%とした。外周リングの引張弾性率は1,500kg/mmと実施例5に比べて低下した。実施例5と同様に圧力容器8に中空糸膜エレメント1を装填し逆浸透処理を行ったところ、外周リング4a,4bの外径が大きくなって圧力容器8の内面に接触して膜エレメントの装脱着が困難となり、実用に耐えないことが判明した。
(比較例6)
実施例4と同様に中空糸膜エレメント1を作製した。但し、一方側、他方側共に、外周リング4a、4bの繊維と樹脂の混合量を体積%でガラス繊維/高強度繊維/樹脂=65%/0%/35%とし、引張弾性率は1,500kg/mmであった。一方側の外周リング4aの外径は239mm、厚み12.5mm、内径214mmとし、また他方側の外周リング4bの外径は234mm、厚み10mm、内径214mmとして、実施例4および実施例5と比べて外周リングの外径を変えずに厚みを増して、外周リングの引張強力を実施例4および実施例5の場合よりも向上させた。また、中空糸膜集合体が外周リングに挿入できるように、中空糸膜の本数を減らして中空糸膜集合体の外径を214mmとしたところ、有効膜面積は800mと実施例4および実施例5の場合よりも減少した。実施例4と同様に圧力容器8に中空糸膜エレメント1を装填し逆浸透処理を行ったところ、運転後の圧力容器8からの膜エレメント1の装脱着に問題なく、また外周リング4a、4bの破損も認められなかったが、流体処理容量は実施例4および実施例5の場合よりも減少した。
Figure 0005145685
以上の結果より、外周リングの補強繊維材としてガラス繊維に加え、炭素繊維に代表される高強度繊維を混合使用することにより、外周リングの引張弾性率を大きくすることができ、これにより従来よりも薄い外周リングを採用することが可能となり、よって、流体分離膜モジュールの大きさを変えることなく流体分離膜エレメントの有効膜面積を大きくして流体処理容量を大きくすることができることが明らかになった。
本発明の流体分離膜エレメントは、従来の流体分離膜エレメントと比べて膜エレメントあたりの有効膜面積を大きくでき、そのため流体処理容量を大きくできるため、従来よりも高効率の流体分離膜エレメントとすることができ、よって産業界に寄与することができる。逆浸透膜を用いた海水淡水化、純水製造、排水処理や、ナノろ過膜を用いた高度浄水処理、その他、限外ろ過膜または精密ろ過膜による浄水処理やガス分離等の幅広い用途分野に適用することができる。
外周リングの一例を示す模式図である。 ガラス繊維と高強度繊維と樹脂の混合状態の一例を示す模式図である。 外周リングの引張試験の際に外周リングを引張試験機に取り付けるための治具の一例を示す模式図である。 本発明の中空糸膜エレメントの一例を示す模式図である。中空糸膜エレメントの両端に透過流体収集部材を設置している場合である。 本発明の中空糸膜エレメントの使用状態の一例を示す模式図である。中空糸膜エレメントの両端に透過流体収集部材を設置し、これを圧力容器に1本装着して中空糸膜モジュールを構成した場合である。 本発明の中空糸膜エレメントの一例について、中空糸膜開口部とスナップと圧力容器との関係を示すための、モジュール軸方向に垂直方向の端面部を示す模式図である。 本発明の中空糸膜エレメントの一例について、中空糸膜エレメント端部と透過流体収集部材をスナップが嵌め合うことで装着されている状態等を示す模式図である。 本発明の中空糸膜エレメントの使用状態の他の一例を示す模式図である。中空糸膜エレメントの両端に透過流体収集部材を設置し、これを圧力容器に2本を並列接続で装着して中空糸膜モジュールを構成した場合である。 本発明の中空糸膜エレメント使用状態のさらに他の一例を示す模式図である。中空糸膜エレメントの両端に透過流体収集部材を設置し、これを圧力容器に1本装着して中空糸膜モジュールを構成した場合である。
符号の説明
1、1’:中空糸膜エレメント
2、2’:中空糸膜層
3、3’:供給流体分配管
4a、4b、4a’、4b’:外周リング
5a、5b、5a’、5b’:中空糸膜開口部
6a、6b、6a’、6b’:透過流体収集部材
7、7’:内部管
8:圧力容器
9:供給流体入口
10:濃縮流体出口
11、11’:透過流体出口
12:供給流体
13:濃縮流体
14、14’:透過流体
15:Oリング
16:中間コネクター
17:スナップ
101:樹脂
102:高強度繊維ロービング
103:ガラス繊維ロービング
201:治具
202:外周リング
203:固定ボルト
204:内側押さえプレート

Claims (2)

  1. 複数の選択透過性膜の両端部が樹脂で固定された流体分離膜エレメントにおいて、少なくとも一方の樹脂部の外周に引張弾性率が1,800〜5,000kg/mmの繊維強化樹脂からなる外周リングが固定されており、前記繊維強化樹脂が主としてガラス繊維と高強度繊維と樹脂からなり、該樹脂の体積分率が前記繊維強化樹脂に対して20〜50%を占め、該高強度繊維が体積分率で該ガラス繊維と該高強度繊維の体積分率の和の5〜95%を占めることを特徴とする流体分離膜エレメント。
  2. 選択透過性膜が外圧型中空糸膜で構成されていることを特徴とする請求項1に記載の流体分離膜エレメント。
JP2006282384A 2006-10-17 2006-10-17 流体分離膜エレメント Active JP5145685B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006282384A JP5145685B2 (ja) 2006-10-17 2006-10-17 流体分離膜エレメント

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006282384A JP5145685B2 (ja) 2006-10-17 2006-10-17 流体分離膜エレメント

Publications (2)

Publication Number Publication Date
JP2008100127A JP2008100127A (ja) 2008-05-01
JP5145685B2 true JP5145685B2 (ja) 2013-02-20

Family

ID=39434862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006282384A Active JP5145685B2 (ja) 2006-10-17 2006-10-17 流体分離膜エレメント

Country Status (1)

Country Link
JP (1) JP5145685B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2914963C (en) * 2013-06-12 2022-08-30 Evonik Fibres Gmbh Membrane cartridge system
CN109694139B (zh) * 2017-10-20 2021-12-03 九阳股份有限公司 一种反渗透复合滤芯组件
CN109694138B (zh) * 2017-10-20 2021-11-09 九阳股份有限公司 反渗透复合滤芯组件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546250Y2 (ja) * 1976-03-13 1980-10-30
JPS6369509A (ja) * 1986-09-09 1988-03-29 Toshiba Corp 中空糸膜フイルタ
DE4233952C1 (de) * 1992-10-09 1994-04-21 Holger Knappe Wickelmodul für die Umkehrosmose
JPH11226365A (ja) * 1998-02-16 1999-08-24 Toray Ind Inc 流体分離素子およびその製造方法
JP4934978B2 (ja) * 2005-03-28 2012-05-23 東レ株式会社 中空糸膜モジュール

Also Published As

Publication number Publication date
JP2008100127A (ja) 2008-05-01

Similar Documents

Publication Publication Date Title
US9707518B2 (en) Hollow fiber membrane module
CN202179933U (zh) 复合多孔性中空纤维膜、膜组件、膜过滤装置
WO2002004101A1 (fr) Cartouche à fibres creuses, module à fibres creuses utilisant cette cartouche et filtre du type réservoir
EP1666128B1 (en) Hollow fiber membrane submodule and module including the same
JP7197260B2 (ja) 中空糸膜モジュール、海水淡水化システム、海水を淡水化する方法、海水より淡水を製造する方法、中空糸膜モジュールの運転方法、ろ過方法、および中空糸膜モジュールの製造方法
CN111514759A (zh) 中空纤维膜模块和用于制造中空纤维膜模块的方法
JP5145685B2 (ja) 流体分離膜エレメント
JP4498373B2 (ja) 中空糸膜カートリッジ、並びにそれを用いた中空糸膜モジュール及びタンク型濾過装置
JP5811738B2 (ja) 中空糸膜モジュールの補修方法及び中空糸膜モジュール
WO2013047775A1 (ja) 中空糸膜モジュールの親水化方法
JP5737318B2 (ja) 繊維強化多孔質中空糸膜の製造方法
JP7111885B2 (ja) ろ過方法、海水を淡水化する方法、淡水を製造する方法、中空糸膜モジュール、および海水淡水化システム
JP5772867B2 (ja) 繊維強化多孔質中空糸膜
JP4269171B2 (ja) エアレーションフラッシング用外圧式中空糸膜モジュールのろ過方法
JP4675062B2 (ja) 中空糸膜カートリッジ
JP5145682B2 (ja) 逆浸透膜モジュール用透過水ノズルおよび逆浸透膜モジュール
JP2015160157A (ja) 中空糸膜モジュール
JP7376397B2 (ja) ろ過方法および中空糸膜モジュール
WO2022138127A1 (ja) 流体分離膜モジュール、流体分離膜プラント、及び精製流体
JPH09225270A (ja) 中空糸膜モジュール
JP2002066264A (ja) 濾過モジュール
JP2013202562A (ja) スパイラル型流体分離素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

R151 Written notification of patent or utility model registration

Ref document number: 5145685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250