[go: up one dir, main page]

JP5131078B2 - Hard amorphous carbon-coated member and method for producing the same - Google Patents

Hard amorphous carbon-coated member and method for producing the same Download PDF

Info

Publication number
JP5131078B2
JP5131078B2 JP2008195841A JP2008195841A JP5131078B2 JP 5131078 B2 JP5131078 B2 JP 5131078B2 JP 2008195841 A JP2008195841 A JP 2008195841A JP 2008195841 A JP2008195841 A JP 2008195841A JP 5131078 B2 JP5131078 B2 JP 5131078B2
Authority
JP
Japan
Prior art keywords
amorphous carbon
hard amorphous
film
intermediate layer
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008195841A
Other languages
Japanese (ja)
Other versions
JP2010031327A (en
Inventor
広行 森
和之 中西
宗久 松井
新太郎 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2008195841A priority Critical patent/JP5131078B2/en
Publication of JP2010031327A publication Critical patent/JP2010031327A/en
Application granted granted Critical
Publication of JP5131078B2 publication Critical patent/JP5131078B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、基材の表面に中間層を介して硬質非晶質炭素膜が被覆されてなる被覆部材に関するものである。   The present invention relates to a covering member in which a surface of a base material is coated with a hard amorphous carbon film via an intermediate layer.

非晶質構造を有する硬質非晶質炭素(ダイヤモンドライクカーボン:DLC)は、耐摩耗性、固体潤滑性などの機械的特性に優れ、耐食性、絶縁性、可視光/赤外光透過率、酸素バリア性などを合わせもつ。そのため、DLC膜は、各種基材の表面に被覆され、保護膜として用いられることが多い。ところが、硬質なDLC膜は、基材に被覆された状態で非常に高い内部応力を有し、基材表面から剥離しやすいことが知られている。基材とDLC膜との密着性が低いと、DLC膜を厚く成膜するのが困難であったり、DLCが有する上記の特性が良好に発揮されなかったり、という問題がある。   Hard amorphous carbon (diamond-like carbon: DLC) with an amorphous structure is excellent in mechanical properties such as wear resistance and solid lubricity, corrosion resistance, insulation, visible / infrared light transmittance, oxygen Combined with barrier properties. Therefore, the DLC film is often coated on the surface of various base materials and used as a protective film. However, it is known that a hard DLC film has a very high internal stress in a state where it is coated on a substrate, and is easily peeled off from the surface of the substrate. If the adhesion between the substrate and the DLC film is low, there is a problem that it is difficult to form a thick DLC film, or the above-mentioned characteristics of the DLC are not exhibited well.

基材とDLC膜との密着性を向上させる方法としては、基材の表面に適度の凹凸を形成してアンカー効果により両者の密着性を高める、DLC膜の内部応力を低減させる、等の方法がある。たとえば、特許文献1では、基材の表面に中間層を介して形成されたDLC膜において、中間層とDLC膜との間に中間層の成分と炭素とからなる混合成分層を設けて中間層とDLC膜との密着性を向上させることで、基材とDLC膜との密着性を向上させている。また、特許文献2には、基材の表面に中間層を介して形成され、基材から遠い部分ほど珪素の含有量が少ないDLC膜が開示されている。   As a method for improving the adhesion between the base material and the DLC film, a method such as forming appropriate irregularities on the surface of the base material to increase the adhesion between the two by the anchor effect, reducing the internal stress of the DLC film, etc. There is. For example, in Patent Document 1, in a DLC film formed on the surface of a substrate via an intermediate layer, a mixed component layer composed of components of the intermediate layer and carbon is provided between the intermediate layer and the DLC film, and the intermediate layer By improving the adhesion between the substrate and the DLC film, the adhesion between the substrate and the DLC film is improved. Patent Document 2 discloses a DLC film that is formed on the surface of a base material via an intermediate layer and has a lower silicon content in a portion farther from the base material.

特許文献3および特許文献4には、DLC膜が形成される表面の酸素濃度が高いと、その表面とDLC膜との密着性が低下することが記載されている。そのため、これらの文献では、DLC膜が形成される表面の酸素濃度を低減させることで、DLC膜の表面への密着性を向上させている。
特開2000−256850号公報 特開2006−161075号公報 特開2000−8155号公報 特開2006−250348号公報
Patent Document 3 and Patent Document 4 describe that when the oxygen concentration on the surface on which the DLC film is formed is high, the adhesion between the surface and the DLC film decreases. Therefore, in these documents, the adhesion to the surface of the DLC film is improved by reducing the oxygen concentration on the surface on which the DLC film is formed.
JP 2000-256850 A JP 2006-161075 A JP 2000-8155 A JP 2006-250348 A

アンカー効果では、基材の表面に凹凸を形成するのに高温処理を必要とすることがあり(特許第3453033号公報参照)、耐熱性の低い基材には不向きである。また、摺動部材のように表面にある程度の平滑性が必要な場合には、基材に形成された凹凸がDLC膜の表面に影響することがあるため、そのまま使用すると摺動特性が低下することもある。   The anchor effect may require high temperature treatment to form irregularities on the surface of the substrate (see Japanese Patent No. 3453033), and is not suitable for a substrate with low heat resistance. In addition, when the surface needs a certain level of smoothness, such as a sliding member, the unevenness formed on the base material may affect the surface of the DLC film. Sometimes.

特許文献1および特許文献2に記載のように中間層とDLC膜との間に他の層を形成したり、DLC膜の成分を傾斜させたり、といった場合には、成膜装置および成膜条件が複雑となり、成膜手順が煩雑となる。こうした成膜処理を大量に行うと膜厚や膜組成にバラツキが生じやすいため、十分な密着性が得られない場合もある。   In the case where another layer is formed between the intermediate layer and the DLC film or the components of the DLC film are inclined as described in Patent Document 1 and Patent Document 2, the film forming apparatus and the film forming conditions are used. Becomes complicated and the film forming procedure becomes complicated. When such a film forming process is performed in large quantities, the film thickness and the film composition tend to vary, so that sufficient adhesion may not be obtained.

また、既に述べたが、特許文献3および特許文献4に記載のように、DLC膜は酸化物のように酸素が存在する表面に密着しにくいとされていた。しかしながら、本発明者等は、中間層を介して基材に被覆されたDLC膜をもつ被覆部材では、中間層およびDLC膜の組成によっては、中間層に酸素が含まれることで中間層とDLC膜とが強固に密着することを新たに見出した。   As described above, as described in Patent Document 3 and Patent Document 4, the DLC film is considered to be difficult to adhere to a surface on which oxygen exists like an oxide. However, the present inventors have found that in a covering member having a DLC film coated on a base material via an intermediate layer, depending on the composition of the intermediate layer and the DLC film, the intermediate layer may contain oxygen due to the inclusion of oxygen. It was newly found that the film was firmly adhered.

すなわち、本発明は、基材と硬質な非晶質炭素膜との密着性に優れた新規の構成をもつ硬質非晶質炭素被覆部材およびその製造方法を提供することを目的とする。   That is, an object of the present invention is to provide a hard amorphous carbon-coated member having a novel structure excellent in adhesion between a substrate and a hard amorphous carbon film, and a method for producing the same.

本発明の硬質非晶質炭素被覆部材は、基材と、該基材の表面に形成されモリブデンおよび/またはチタンを含む中間層と、該中間層の表面に形成された硬質非晶質炭素膜と、を備え、
少なくとも前記中間層と前記硬質非晶質炭素膜との界面部において、該中間層は酸素および炭素を含み、該硬質非晶質炭素膜は珪素を含むことを特徴とする。
The hard amorphous carbon-coated member of the present invention includes a base material, an intermediate layer formed on the surface of the base material and containing molybdenum and / or titanium, and a hard amorphous carbon film formed on the surface of the intermediate layer. And comprising
At least at the interface between the intermediate layer and the hard amorphous carbon film, the intermediate layer contains oxygen and carbon, and the hard amorphous carbon film contains silicon.

また、本発明の硬質非晶質炭素被覆部材は、基材と、該基材の表面に形成されアルミニウムを含む中間層と、該中間層の表面に形成された硬質非晶質炭素膜と、を備え、
少なくとも前記中間層と前記硬質非晶質炭素膜との界面部において、該中間層は酸素を含み、該硬質非晶質炭素膜は珪素を含むことを特徴とする。
The hard amorphous carbon-coated member of the present invention includes a base material, an intermediate layer containing aluminum formed on the surface of the base material, a hard amorphous carbon film formed on the surface of the intermediate layer, With
At least at the interface between the intermediate layer and the hard amorphous carbon film, the intermediate layer contains oxygen, and the hard amorphous carbon film contains silicon.

本発明の硬質非晶質炭素被覆部材では、中間層と硬質非晶質炭素膜との界面部において、中間層は酸素(O)を、硬質非晶質炭素膜は珪素(Si)を含む。そのため、中間層と硬質非晶質炭素膜との界面では、SiとOとの強い結合が得られる。その結果、硬質非晶質炭素膜は、中間層を介して基材に強く密着する。また、界面部において中間層に炭素(C)が含まれる場合には、界面部で中間層の主成分と硬質非晶質炭素膜の主成分とが混在するため、界面部の硬質非晶質炭素膜の内部応力が緩和され、両者の密着性はさらに向上する。   In the hard amorphous carbon-coated member of the present invention, the intermediate layer contains oxygen (O) and the hard amorphous carbon film contains silicon (Si) at the interface between the intermediate layer and the hard amorphous carbon film. Therefore, a strong bond between Si and O is obtained at the interface between the intermediate layer and the hard amorphous carbon film. As a result, the hard amorphous carbon film is strongly adhered to the substrate via the intermediate layer. Further, when carbon (C) is contained in the intermediate layer at the interface, the main component of the intermediate layer and the main component of the hard amorphous carbon film coexist at the interface, so that the hard amorphous at the interface The internal stress of the carbon film is relaxed, and the adhesion between them is further improved.

上記の構成をもつ硬質非晶質炭素被覆部材であれば、たとえば300℃以下の低温で作製しても、硬質非晶質炭素膜は中間層を介して基材に強固に密着する。そのため、高温に曝されることで特性が劣化するような材料からなる基材であっても好適である。   In the case of a hard amorphous carbon-coated member having the above-described configuration, the hard amorphous carbon film is firmly adhered to the base material via the intermediate layer even when produced at a low temperature of 300 ° C. or lower. Therefore, even a base material made of a material whose characteristics deteriorate due to exposure to a high temperature is suitable.

本発明の硬質非晶質炭素被覆部材は、下記の本発明の硬質非晶質炭素被覆部材の製造方法により容易に作製可能である。   The hard amorphous carbon-coated member of the present invention can be easily produced by the following method for producing a hard amorphous carbon-coated member of the present invention.

本発明の硬質非晶質炭素被覆部材の製造方法は、基材の表面にモリブデンおよび/またはチタンを含み少なくとも表面部に酸素を含む酸素含有金属層を形成する酸素含有金属層形成工程と、
前記酸素含有金属層の表面に炭素および珪素を堆積させて珪素を含む硬質非晶質炭素膜を形成するとともに該酸素含有金属層に該表面から炭素を拡散させる成膜拡散工程と、
を含むことを特徴とする。
The method for producing a hard amorphous carbon-coated member of the present invention includes an oxygen-containing metal layer forming step of forming an oxygen-containing metal layer containing molybdenum and / or titanium on the surface of a base material and containing oxygen on at least the surface portion;
Depositing carbon and silicon on the surface of the oxygen-containing metal layer to form a hard amorphous carbon film containing silicon and diffusing carbon from the surface into the oxygen-containing metal layer; and
It is characterized by including.

また、本発明の硬質非晶質炭素被覆部材の製造方法は、基材の表面にアルミニウムを含み少なくとも表面部に酸素を含む酸素含有金属層を形成する酸素含有金属層形成工程と、
前記酸素含有金属層の表面に炭素および珪素を堆積させて珪素を含む硬質非晶質炭素膜を形成する硬質非晶質炭素膜成膜工程と、
を含むことを特徴とする。
Moreover, the method for producing a hard amorphous carbon-coated member of the present invention includes an oxygen-containing metal layer forming step of forming an oxygen-containing metal layer containing aluminum on the surface of a base material and containing oxygen on at least a surface portion;
A hard amorphous carbon film forming step of forming a hard amorphous carbon film containing silicon by depositing carbon and silicon on the surface of the oxygen-containing metal layer;
It is characterized by including.

以下に、本発明の硬質非晶質炭素被覆部材およびその製造方法を実施するための最良の形態を説明する。   The best mode for carrying out the hard amorphous carbon-coated member and the method for producing the same of the present invention will be described below.

本発明の硬質非晶質炭素被覆部材は、基材と、基材の表面に形成された中間層と、中間層の表面に形成された硬質非晶質炭素膜と、を備える。以下に、基材、中間層および硬質非晶質炭素膜について説明する。   The hard amorphous carbon coating member of the present invention includes a base material, an intermediate layer formed on the surface of the base material, and a hard amorphous carbon film formed on the surface of the intermediate layer. Below, a base material, an intermediate | middle layer, and a hard amorphous carbon film are demonstrated.

[基材]
基材は、その形状や材質に特に限定はない。ただし、後に説明する中間層との密着性が高い材料からなる基材を用いるのが望ましい。したがって、少なくとも中間層が形成され部分が、鉄、鋼、アルミニウム、アルミニウム合金、チタン、チタン合金、マグネシウム、マグネシウム合金、銅、銅合金、超硬合金、などの金属からなる基材を用いるとよい。さらに、本発明の硬質非晶質炭素被覆部材は、後に詳説するように、300℃以下の低温処理により作製することが可能である。そのため、耐熱性の低いアルミニウム、アルミニウム合金、マグネシウム、マグネシウム合金など、また、高温で処理することで強度が低下する鋼、チタン、チタン合金などからなる基材であってもよい。
[Base material]
The substrate is not particularly limited in its shape and material. However, it is desirable to use a base material made of a material having high adhesion to an intermediate layer described later. Therefore, it is preferable to use a substrate made of a metal such as iron, steel, aluminum, aluminum alloy, titanium, titanium alloy, magnesium, magnesium alloy, copper, copper alloy, cemented carbide, etc. . Furthermore, the hard amorphous carbon-coated member of the present invention can be produced by low-temperature treatment at 300 ° C. or lower as will be described in detail later. Therefore, it may be a substrate made of aluminum, aluminum alloy, magnesium, magnesium alloy, etc. having low heat resistance, or steel, titanium, titanium alloy, etc. whose strength is reduced by processing at high temperature.

[中間層]
[モリブデンおよび/またはチタンを含む中間層]
中間層は、基材の表面に形成され、モリブデンおよび/またはチタンを含む。そして、この中間層は、少なくとも中間層と硬質非晶質炭素膜(後述)との界面部において、酸素および炭素を含む。なお、界面部のうち、硬質非晶質炭素膜と接する中間層の表面部を中間層側界面部と記す。すなわち中間層において、少なくとも中間層側界面部は、酸素および炭素を含む。中間層を構成するモリブデンおよびチタンは、表面部に酸素が取り込まれても、その膜の表面から炭素を拡散させることができる。そのため、中間層側界面部に酸素および炭素を存在させることが容易である。
[Middle layer]
[Intermediate layer containing molybdenum and / or titanium]
The intermediate layer is formed on the surface of the substrate and contains molybdenum and / or titanium. The intermediate layer contains oxygen and carbon at least at the interface between the intermediate layer and the hard amorphous carbon film (described later). Note that, of the interface portion, the surface portion of the intermediate layer in contact with the hard amorphous carbon film is referred to as an intermediate layer side interface portion. That is, in the intermediate layer, at least the intermediate layer side interface includes oxygen and carbon. Molybdenum and titanium constituting the intermediate layer can diffuse carbon from the surface of the film even if oxygen is taken into the surface portion. Therefore, it is easy to make oxygen and carbon exist at the interface portion on the intermediate layer side.

中間層は、10〜900nmさらには200〜700nmの厚さが好ましい。中間層が薄すぎると、基材の表面が十分に被覆されずに基材が露出する部分が残り、中間層と硬質非晶質炭素膜との密着性が良好に発現しないことがある。また、中間層が厚すぎると、硬質非晶質炭素膜や基材の表面よりも強度が低いために中間層にて破壊することがあるため、好ましくない。   The intermediate layer preferably has a thickness of 10 to 900 nm, more preferably 200 to 700 nm. If the intermediate layer is too thin, the surface of the base material is not sufficiently covered, leaving a portion where the base material is exposed, and the adhesiveness between the intermediate layer and the hard amorphous carbon film may not be exhibited well. Also, if the intermediate layer is too thick, the intermediate layer may break because the strength is lower than that of the hard amorphous carbon film or the surface of the substrate, which is not preferable.

中間層は、中間層側界面部全体を100原子%としたときに、中間層側界面部に酸素を4原子%以上さらには7原子%以上含むのが好ましい。中間層側界面部に酸素が少しでも含まれていれば、硬質非晶質炭素膜の剥離を抑制する効果は得られるが、4原子%以上とすることで、密着性が向上する。一方、中間層は、中間層側界面部全体を100原子%としたときに、中間層側界面部に酸素を50原子%以下さらには30原子%以下含むのが好ましい。なお、酸化モリブデン(MoO)および酸化チタン(TiO)の化学量論的組成より求められる酸素量は、66原子%である。安定なMoOおよびTiOは絶縁性が高いため、硬質非晶質炭素膜を成膜する際に安定なプラズマを形成することが難しく、成膜が困難となる場合があるため酸素含有量を50原子%以下とするのがよい。 The intermediate layer preferably contains 4 atomic% or more, more preferably 7 atomic% or more of oxygen in the intermediate layer side interface when the entire intermediate layer side interface is 100 atomic%. If even a small amount of oxygen is contained in the interface portion on the intermediate layer side, the effect of suppressing the separation of the hard amorphous carbon film can be obtained, but the adhesiveness is improved by setting it to 4 atomic% or more. On the other hand, the intermediate layer preferably contains 50 atomic% or less, more preferably 30 atomic% or less of oxygen in the intermediate layer side interface when the entire intermediate layer side interface is 100 atomic%. The oxygen amount obtained from the stoichiometric composition of the molybdenum oxide (MoO 2) and titanium oxide (TiO 2) is 66 atomic%. Since stable MoO 2 and TiO 2 have high insulation, it is difficult to form a stable plasma when forming a hard amorphous carbon film, and it may be difficult to form a film. It is good to set it to 50 atomic% or less.

上記の酸素含有量は、いずれも、中間層側界面部を、硬質非晶質炭素膜が形成された表面から10nmまでと規定した場合の値である。少なくとも中間層側界面部に上記所定量の酸素が含まれていればよく、酸素は、中間層側界面部のみに含まれていてもよいし、中間層全体に含まれていてもよい。そのとき、中間層の基材側(中間層側界面部を除いた部分)の酸素含有量は、基材と中間層との密着性に影響のない程度であれば特に限定はない。   All of the above oxygen contents are values when the intermediate layer side interface is defined as 10 nm from the surface on which the hard amorphous carbon film is formed. It suffices that at least the predetermined amount of oxygen is included in the interface portion on the intermediate layer side, and oxygen may be included only in the interface portion on the intermediate layer side or may be included in the entire intermediate layer. At that time, the oxygen content on the substrate side of the intermediate layer (excluding the interface portion on the intermediate layer side) is not particularly limited as long as it does not affect the adhesion between the substrate and the intermediate layer.

また、中間層は、硬質非晶質炭素膜が形成される表面から内部に拡散した炭素の拡散層を有するのがよい。中間層の表面部が炭素の拡散層である場合には、中間層と硬質非晶質炭素膜との間で組成的な傾斜状態が生じるため、両者の密着性はさらに向上する。このとき、拡散層は、拡散深さが50nm以上さらには100nm以上であるのが好ましい。また、炭素は、拡散層全体を100原子%としたとき炭素量が10原子%以上となるように拡散するのが好ましい。   The intermediate layer preferably has a carbon diffusion layer diffused inward from the surface on which the hard amorphous carbon film is formed. In the case where the surface portion of the intermediate layer is a carbon diffusion layer, a compositional gradient state occurs between the intermediate layer and the hard amorphous carbon film, so that the adhesion between them is further improved. At this time, the diffusion layer preferably has a diffusion depth of 50 nm or more, more preferably 100 nm or more. Moreover, it is preferable that carbon is diffused so that the carbon content is 10 atomic% or more when the entire diffusion layer is 100 atomic%.

[アルミニウムを含む中間層]
中間層として、アルミニウムを含み、中間層側界面部に酸素を含む中間層を用いてもよい。アルミニウムは、膜中に酸素が取り込まれると、その膜の表面は緻密となり、炭素の拡散は起こりにくい。しかし、アルミニウムを含む中間層をもつ硬質非晶質炭素被覆部材は、中間層側界面部に炭素が存在しなくても、高い密着性を示す。
[Intermediate layer containing aluminum]
As the intermediate layer, an intermediate layer containing aluminum and oxygen in the intermediate layer side interface may be used. When oxygen is incorporated into a film, the surface of the film becomes dense, and diffusion of carbon hardly occurs. However, a hard amorphous carbon-coated member having an intermediate layer containing aluminum exhibits high adhesion even when no carbon is present at the interface portion on the intermediate layer side.

中間層は、10〜900nmさらには200〜700nmの厚さが好ましい。中間層が薄すぎると、基材の表面が十分に被覆されずに基材が露出する部分が残り、中間層と硬質非晶質炭素膜との密着性が良好に発現しないことがある。また、中間層が厚すぎると、硬質非晶質炭素膜や基材の表面よりも強度が低いために中間層にて破壊することがあるため、好ましくない。   The intermediate layer preferably has a thickness of 10 to 900 nm, more preferably 200 to 700 nm. If the intermediate layer is too thin, the surface of the base material is not sufficiently covered, leaving a portion where the base material is exposed, and the adhesiveness between the intermediate layer and the hard amorphous carbon film may not be exhibited well. Also, if the intermediate layer is too thick, the intermediate layer may break because the strength is lower than that of the hard amorphous carbon film or the surface of the substrate, which is not preferable.

中間層は、中間層側界面部全体を100原子%としたときに、中間層側界面部に酸素を4原子%以上さらには7原子%以上含むのが好ましい。中間層側界面部に酸素が少しでも含まれていれば、硬質非晶質炭素膜の剥離を抑制する効果は得られるが、4原子%以上とすることで、密着性が向上する。一方、中間層は、中間層側界面部全体を100原子%としたときに、中間層側界面部に酸素を50原子%以下さらには30原子%以下含むのが好ましい。これは、表面がアルミニウムの酸化物で覆われると密着性が低下するためである。なお、60原子%は、酸化アルミニウム(Al)の化学量論的組成より求められる値である。Alは絶縁性が高いため、硬質非晶質炭素膜を成膜する際に安定なプラズマを形成することが難しく、成膜が困難となる場合があるため酸素含有量を50原子%以下とするのがよい。 The intermediate layer preferably contains 4 atomic% or more, more preferably 7 atomic% or more of oxygen in the intermediate layer side interface when the entire intermediate layer side interface is 100 atomic%. If even a small amount of oxygen is contained in the interface portion on the intermediate layer side, the effect of suppressing the separation of the hard amorphous carbon film can be obtained, but the adhesiveness is improved by setting it to 4 atomic% or more. On the other hand, the intermediate layer preferably contains 50 atomic% or less, more preferably 30 atomic% or less of oxygen in the intermediate layer side interface when the entire intermediate layer side interface is 100 atomic%. This is because the adhesion is lowered when the surface is covered with an oxide of aluminum. Incidentally, 60 atomic% is a value determined from the stoichiometric composition of aluminum oxide (Al 2 O 3). Since Al 2 O 3 has high insulating properties, it is difficult to form a stable plasma when forming a hard amorphous carbon film, and the film formation may be difficult. The following is recommended.

上記の酸素含有量は、いずれも、中間層側界面部を、硬質非晶質炭素膜が形成された表面から10nmまでと規定した場合の値である。少なくとも中間層側界面部に上記所定量の酸素が含まれていればよく、酸素は、中間層側界面部のみに含まれていてもよいし、中間層全体に含まれていてもよい。そのとき、中間層の基材側(中間層側界面部を除いた部分)の酸素含有量は、基材と中間層との密着性に影響のない程度であれば特に限定はない。あえて規定するのであれば、中間層に含まれる酸素量は、中間層全体を100原子%としたときに、4原子%以上50原子%以下さらには7原子%以上30原子%以下とするのが好ましい。なお、既に説明した通り、アルミニウムを含む中間層は、炭素の拡散層をもたない。   All of the above oxygen contents are values when the intermediate layer side interface is defined as 10 nm from the surface on which the hard amorphous carbon film is formed. It suffices that at least the predetermined amount of oxygen is included in the interface portion on the intermediate layer side, and oxygen may be included only in the interface portion on the intermediate layer side or may be included in the entire intermediate layer. At that time, the oxygen content on the substrate side of the intermediate layer (excluding the interface portion on the intermediate layer side) is not particularly limited as long as it does not affect the adhesion between the substrate and the intermediate layer. If it is stipulated, the amount of oxygen contained in the intermediate layer is 4 atomic% to 50 atomic%, further 7 atomic% to 30 atomic%, assuming that the entire intermediate layer is 100 atomic%. preferable. In addition, as already demonstrated, the intermediate | middle layer containing aluminum does not have a carbon diffusion layer.

[硬質非晶質炭素膜]
硬質非晶質炭素膜は、中間層の表面に形成され、少なくとも中間層と硬質非晶質炭素膜との界面部において、珪素を含む。なお、界面部のうち、中間層と接する硬質非晶質炭素膜の表面部を硬質非晶質炭素膜側界面部と記す。すなわち硬質非晶質炭素膜において、少なくとも硬質非晶質炭素膜側界面部は、珪素を含む。上述のように、中間層側界面部には、酸素(O)が含まれる。硬質非晶質炭素膜が珪素(Si)を含むことで、中間層と硬質非晶質炭素膜との界面で共有結合性のO−Si−Cが形成され、中間層と硬質非晶質炭素膜との間の密着性が向上し、ひいては、基材と硬質非晶質炭素膜との密着性も向上する。
[Hard amorphous carbon film]
The hard amorphous carbon film is formed on the surface of the intermediate layer, and contains silicon at least at the interface between the intermediate layer and the hard amorphous carbon film. Of the interface portion, the surface portion of the hard amorphous carbon film in contact with the intermediate layer is referred to as a hard amorphous carbon film side interface portion. That is, in the hard amorphous carbon film, at least the hard amorphous carbon film side interface includes silicon. As described above, the intermediate layer side interface includes oxygen (O). Since the hard amorphous carbon film contains silicon (Si), covalent bonding O—Si—C is formed at the interface between the intermediate layer and the hard amorphous carbon film. The adhesion between the films is improved, and as a result, the adhesion between the substrate and the hard amorphous carbon film is also improved.

硬質非晶質炭素膜の膜厚は、硬質非晶質炭素被覆部材の用途に応じて適宜選択すればよい。あえて規定するのであれば、0.5〜10μmさらには0.8〜3μmである。硬質非晶質炭素膜の膜厚がこの範囲にあれば、高い密着性が保たれる。   What is necessary is just to select the film thickness of a hard amorphous carbon film | membrane suitably according to the use of a hard amorphous carbon coating | coated member. If it prescribes | regulates, it is 0.5-10 micrometers, Furthermore, it is 0.8-3 micrometers. If the thickness of the hard amorphous carbon film is within this range, high adhesion is maintained.

硬質非晶質炭素膜は、硬質非晶質炭素膜側界面部全体を100原子%としたときに、硬質非晶質炭素膜側界面部に珪素を4原子%以上さらには7原子%以上含むのが好ましい。硬質非晶質炭素膜側界面部に珪素が少しでも含まれていれば、硬質非晶質炭素膜の剥離を抑制する効果は得られるが、4原子%以上とすることで、密着性が向上する。硬質非晶質炭素膜側界面部の珪素量の上限に特に限定はないが、硬質非晶質炭素膜側界面部全体を100原子%としたときに、硬質非晶質炭素膜側界面部に珪素を30原子%以下さらには25原子%以下含むのが好ましい。   The hard amorphous carbon film contains 4 atomic% or more, further 7 atomic% or more of silicon in the hard amorphous carbon film side interface when the entire hard amorphous carbon film side interface is 100 atomic%. Is preferred. If silicon is contained in the hard amorphous carbon film side interface, even if a little, the effect of suppressing the peeling of the hard amorphous carbon film can be obtained, but the adhesion is improved by making it 4 atomic% or more. To do. The upper limit of the silicon amount at the hard amorphous carbon film side interface is not particularly limited, but when the entire hard amorphous carbon film side interface is 100 atomic%, the hard amorphous carbon film side interface It is preferable to contain silicon at 30 atomic% or less, more preferably 25 atomic% or less.

上記の珪素含有量は、いずれも、硬質非晶質炭素膜側界面部を、中間層と接する表面から100nmまでと規定した場合の値である。少なくとも硬質非晶質炭素膜側界面部に上記所定量の珪素が含まれていればよく、珪素は、硬質非晶質炭素膜側界面部のみに含まれていてもよいし、硬質非晶質炭素膜全体に含まれていてもよい。膜全体に珪素が含まれる硬質非晶質炭素膜である場合には、硬質非晶質炭素被覆部材の最外層となる硬質非晶質炭素膜の表層の珪素含有量に特に限定はない。また、硬質非晶質炭素膜は、炭素および珪素の他、水素、酸素、窒素などを含んでもよい。ただし、トライボロジー用途として低摩擦特性を目的とする場合には、少なくとも表層に珪素を含有する硬質非晶質炭素膜が好ましく、その組成は硬質非晶質炭素膜側界面部の組成と同等さらには全体的に均一組成であると生産および品質の面で望ましい。   The above silicon contents are values when the hard amorphous carbon film side interface is defined as 100 nm from the surface in contact with the intermediate layer. It suffices that at least the hard amorphous carbon film side interface portion contains the predetermined amount of silicon, and silicon may be contained only in the hard amorphous carbon film side interface portion, or hard amorphous carbon film side interface portion. It may be contained in the entire carbon film. In the case where the entire film is a hard amorphous carbon film containing silicon, the silicon content of the surface layer of the hard amorphous carbon film that is the outermost layer of the hard amorphous carbon coating member is not particularly limited. The hard amorphous carbon film may contain hydrogen, oxygen, nitrogen, etc. in addition to carbon and silicon. However, in the case of aiming at low friction characteristics for tribological applications, a hard amorphous carbon film containing at least silicon in the surface layer is preferable, and the composition thereof is equivalent to the composition of the hard amorphous carbon film side interface part. A uniform composition throughout is desirable in terms of production and quality.

本発明の硬質非晶質炭素被覆部材は、最表面に硬質非晶質炭素膜をもち、硬質非晶質炭素膜が中間層を介して基材と強固に密着することから、表面に保護膜が必要な各種部材に好適である。本発明の非晶質炭素被覆部材の具体的な用途としては、軸受け、動弁系部品などの摺動部品、自動車エンジン、補機、エアコン等に用いられる摺動部品、ポンプや配管などの耐食部品、ギアやピストンリング等の機械摺動部品、などが挙げられる。   The hard amorphous carbon-coated member of the present invention has a hard amorphous carbon film on the outermost surface, and the hard amorphous carbon film is firmly adhered to the base material via the intermediate layer, so that the protective film is formed on the surface. It is suitable for various members that require Specific applications of the amorphous carbon-coated member of the present invention include sliding parts such as bearings, valve-operating parts, sliding parts used in automobile engines, auxiliary equipment, air conditioners, and corrosion resistance of pumps and piping. Examples include parts, machine sliding parts such as gears and piston rings, and the like.

なお、本発明の硬質非晶質炭素被覆部材の製造方法の一例を以下に説明する。   An example of the method for producing the hard amorphous carbon-coated member of the present invention will be described below.

[硬質非晶質炭素被覆部材の製造方法]
本発明の硬質非晶質炭素被覆部材の製造方法は、既に詳説した本発明の硬質非晶質炭素被覆部材を容易に製造することができる製造方法である。本発明の硬質非晶質炭素被覆部材の製造方法は、酸素含有金属層形成工程と成膜拡散工程とを含む。以下に、各工程について説明する。
[Method for producing hard amorphous carbon-coated member]
The manufacturing method of the hard amorphous carbon-coated member of the present invention is a manufacturing method capable of easily manufacturing the hard amorphous carbon-coated member of the present invention already described in detail. The method for producing a hard amorphous carbon-coated member of the present invention includes an oxygen-containing metal layer forming step and a film forming diffusion step. Below, each process is demonstrated.

酸素含有金属層形成工程は、基材の表面にモリブデンおよび/またはチタンを含み少なくとも表面部に酸素を含む酸素含有金属層を形成する工程である。酸素含有金属層は、あらかじめモリブデンおよび/またはチタンからなる被膜を形成した後、該被膜を酸素を含む雰囲気中に曝すことで形成可能である。すなわち、はじめに、物理蒸着(PVD)または化学蒸着(CVD)などの蒸着、めっき等により基材の表面に金属被膜を形成する。金属被膜が形成された基材を大気中などの酸素を含む雰囲気中に放置することで、金属被膜の表面部は酸化する。金属被膜全体に酸素を取り込みたい場合には、モリブデンおよび/またはチタンからなる被膜の蒸着を、酸素を含む雰囲気中で行うとよい。その後、さらに、金属被膜が形成された基材を酸素を含む雰囲気中に曝してもよい。これらの方法により酸素含有金属層形成工程を行えば、基材を高温に曝すことなく、たとえば300℃以下で酸素含有金属層の形成が可能である。   The oxygen-containing metal layer forming step is a step of forming an oxygen-containing metal layer containing molybdenum and / or titanium on the surface of the base material and containing oxygen on at least the surface portion. The oxygen-containing metal layer can be formed by previously forming a film made of molybdenum and / or titanium and then exposing the film to an atmosphere containing oxygen. That is, first, a metal film is formed on the surface of the substrate by vapor deposition such as physical vapor deposition (PVD) or chemical vapor deposition (CVD), plating, or the like. By leaving the substrate on which the metal film is formed in an atmosphere containing oxygen, such as in the air, the surface portion of the metal film is oxidized. When it is desired to incorporate oxygen into the entire metal film, the film made of molybdenum and / or titanium may be deposited in an atmosphere containing oxygen. Thereafter, the base material on which the metal film is formed may be exposed to an atmosphere containing oxygen. If the oxygen-containing metal layer forming step is performed by these methods, the oxygen-containing metal layer can be formed at, for example, 300 ° C. or less without exposing the substrate to a high temperature.

成膜拡散工程は、酸素含有金属層の表面に炭素および珪素を堆積させて珪素を含む硬質非晶質炭素膜を形成するとともに酸素含有金属層にその表面から炭素を拡散させる工程である。   The film formation diffusion step is a step of depositing carbon and silicon on the surface of the oxygen-containing metal layer to form a hard amorphous carbon film containing silicon and diffusing carbon from the surface into the oxygen-containing metal layer.

硬質非晶質炭素膜を酸素含有金属層の表面に堆積させるだけであれば、既に公知の蒸着法を用いればよいが、酸素含有金属層の表面から炭素を拡散させるためには、硬質非晶質炭素膜を堆積中の酸素含有金属層の表面へのプラズマ放電を制御する必要がある。最も好適な方法は、以下に詳説するような、パルス電源を放電電源として用いた直流プラズマCVD法である。   If only a hard amorphous carbon film is deposited on the surface of the oxygen-containing metal layer, a known vapor deposition method may be used. In order to diffuse carbon from the surface of the oxygen-containing metal layer, a hard amorphous carbon film is used. It is necessary to control the plasma discharge to the surface of the oxygen-containing metal layer during the deposition of the carbonaceous film. The most preferable method is a direct current plasma CVD method using a pulse power source as a discharge power source, as will be described in detail below.

直流プラズマCVD法では、真空容器内に酸素含有金属層が形成された基材(被処理材)を配置して、処理ガスを導入する。次いで、プラス極とマイナス極の二つの電極の間に電力を印加することによってグロー放電によりプラズマを生成させ、電極間に導入した処理ガスをプラズマ化させる。このとき、被処理材はマイナス電位側の電極と接触して配置されるため、被処理材の表面にプラズマ化した陽イオンが堆積することで成膜される。特に、放電電源としてパルス電源を用いることで、グロー放電をパルスで発生させることにより瞬時に強いプラズマを発生させることができ、かつ、パルス放電には休止時間があるため低電流により300℃以下の低温成膜が可能となる。したがって、低温成膜であってもアーク放電の発生が抑制されて、安定した放電が得られる。さらに、原料ガスにデューティー比が2%〜70%さらには5%〜70%かつ0.6kV以上さらには1〜10kVの高電圧を印加してプラズマを発生させると、300℃以下の低温であっても酸素含有金属層の表面から内部へ炭素を拡散させやすい。すなわち、放電電源としては、高電圧パルス電源を用いるのが望ましい。このとき、パルス波形の繰り返し周波数に特に限定はないが、パルス幅が50μ秒の場合に0.4kHz以上さらには1〜9kHzとするのがよい。ここで「デューティー比」とは、1周期の矩形波のうちON状態またはOFF状態である割合のことで、本明細書ではON状態の割合を示す。つまり、デューティー比が大きいほどON状態が長い。   In the direct current plasma CVD method, a base material (material to be processed) on which an oxygen-containing metal layer is formed is placed in a vacuum vessel, and a processing gas is introduced. Next, plasma is generated by glow discharge by applying electric power between the two electrodes of the positive electrode and the negative electrode, and the processing gas introduced between the electrodes is turned into plasma. At this time, since the material to be processed is arranged in contact with the negative potential side electrode, a film is formed by depositing plasma-formed cations on the surface of the material to be processed. In particular, by using a pulse power source as a discharge power source, it is possible to generate a strong plasma instantaneously by generating a glow discharge in pulses, and because the pulse discharge has a downtime, a low current of 300 ° C. or less Low temperature film formation is possible. Therefore, even in the case of low temperature film formation, the occurrence of arc discharge is suppressed and stable discharge can be obtained. Furthermore, when plasma is generated by applying a high voltage of 2% to 70%, 5% to 70%, 0.6 kV or more, and 1 to 10 kV to the source gas, the temperature is as low as 300 ° C. or less. However, it is easy to diffuse carbon from the surface to the inside of the oxygen-containing metal layer. That is, it is desirable to use a high voltage pulse power source as the discharge power source. At this time, the repetition frequency of the pulse waveform is not particularly limited. However, when the pulse width is 50 μsec, it is preferable to set the frequency to 0.4 kHz or more, and further 1 to 9 kHz. Here, the “duty ratio” is a ratio of the ON state or the OFF state in one period of the rectangular wave, and in this specification, indicates the ratio of the ON state. That is, the larger the duty ratio, the longer the ON state.

処理ガスは、少なくとも珪素を含む有機金属含有ガスおよびハロゲン化合物ガスから選ばれる一種以上を含む原料ガスからなる、または、該原料ガスと水素および希ガスから選ばれる一種以上を含む希釈ガスとの混合ガスからなるのが望ましい。必要に応じて炭化水素ガスを混合してもよい。処理ガスは、得られる硬質非晶質炭素膜の組成が所望の組成となるように、その種類や混合比または流量比を適宜選択すればよい。   The processing gas is composed of a source gas containing at least one selected from an organic metal-containing gas containing silicon and a halogen compound gas, or a mixture of the source gas and a diluent gas containing at least one selected from hydrogen and a rare gas It is desirable to consist of gas. You may mix hydrocarbon gas as needed. The type, mixing ratio, or flow rate ratio of the processing gas may be appropriately selected so that the composition of the obtained hard amorphous carbon film has a desired composition.

この際、炭化水素ガスは、メタン、エチレン、アセチレン、ベンゼン、ヘキサン等であるのが望ましい。また、有機金属含有ガスは、Si(CH[TMS]、Si(CHH、Si(CH、Si(CH)H、SiH、SiCl、SiH等であるのが望ましい。また、ハロゲン化合物ガスは、四塩化シリコンであるのが望ましい。また、希釈ガスは、たとえば水素ガス、ヘリウムガス、ネオンガス等であるのが望ましい。これらのうちの1種または2種以上を混合して用いることができる。 At this time, the hydrocarbon gas is preferably methane, ethylene, acetylene, benzene, hexane or the like. Further, the organometallic-containing gas, Si (CH 3) 4 [ TMS], Si (CH 3) 3 H, Si (CH 3) 2 H 2, Si (CH 3) H 3, SiH 4, SiCl 4, SiH 2 F 4 or the like is desirable. The halogen compound gas is preferably silicon tetrachloride. The dilution gas is desirably hydrogen gas, helium gas, neon gas, or the like. One or more of these can be used in combination.

なお、原料ガスの混合比、成膜温度、電圧、などの成膜条件を成膜中に変化させることで、厚さ方向で組成の異なる硬質非晶質炭素膜を成膜することも可能である。したがって、硬質非晶質炭素膜の厚さ方向に珪素濃度を傾斜させるなどして、硬質非晶質炭素膜側界面部とそれ以外の部分で組成の異なる硬質非晶質炭素膜を成膜してもよい。   It is also possible to form hard amorphous carbon films having different compositions in the thickness direction by changing the deposition conditions such as the mixing ratio of source gases, deposition temperature, and voltage during deposition. is there. Therefore, a hard amorphous carbon film having a different composition is formed at the interface portion on the hard amorphous carbon film side and other portions by, for example, tilting the silicon concentration in the thickness direction of the hard amorphous carbon film. May be.

また、本発明の他の硬質非晶質炭素被覆部材の製造方法において、酸素含有金属層形成工程は、基材の表面にアルミニウムを含み少なくとも表面部に酸素を含む酸素含有金属層を形成する工程である。酸素含有金属層は、あらかじめアルミニウムからなる被膜を形成した後、該被膜を酸素を含む雰囲気中に曝すことで形成可能である。すなわち、はじめに、PVDまたはCVDなどの蒸着、めっき等により基材の表面にアルミニウム膜を形成する。アルミニウム膜が形成された基材を大気中などの酸素を含む雰囲気中に放置することで、アルミニウム膜の表面部は酸化する。金属被膜全体に酸素を取り込みたい場合には、アルミニウム膜の蒸着を、酸素を含む雰囲気中で行うとよい。その後、さらに、アルミニウム膜が形成された基材を酸素を含む雰囲気中に曝してもよい。これらの方法により酸素含有金属層形成工程を行えば、基材を高温に曝すことなく、たとえば300℃以下で酸素含有金属層の形成が可能である。   In the method for producing another hard amorphous carbon-coated member of the present invention, the oxygen-containing metal layer forming step includes a step of forming an oxygen-containing metal layer containing aluminum on the surface of the base material and containing oxygen on at least the surface portion. It is. The oxygen-containing metal layer can be formed by forming a film made of aluminum in advance and then exposing the film to an atmosphere containing oxygen. That is, first, an aluminum film is formed on the surface of the substrate by vapor deposition such as PVD or CVD, plating, or the like. By leaving the base material on which the aluminum film is formed in an atmosphere containing oxygen, such as in the air, the surface portion of the aluminum film is oxidized. When it is desired to incorporate oxygen into the entire metal coating, the aluminum film is preferably deposited in an atmosphere containing oxygen. Thereafter, the substrate on which the aluminum film is formed may be further exposed to an atmosphere containing oxygen. If the oxygen-containing metal layer forming step is performed by these methods, the oxygen-containing metal layer can be formed at, for example, 300 ° C. or less without exposing the substrate to a high temperature.

なお、アルミニウム膜は、その表面部に他の部分よりも酸素濃度の高い酸素濃化層が形成されやすい。酸素濃化層は、2〜50nmさらには5〜30nmであるのが望ましい。アルミニウム膜が形成された基材を大気中に放置するだけで、アルミニウム被膜の表面部に2〜50nmの酸素濃化層が形成された酸素含有金属層が容易に得られる。   Note that an oxygen-enriched layer having a higher oxygen concentration than other portions is easily formed on the surface portion of the aluminum film. The oxygen-enriched layer is preferably 2 to 50 nm, more preferably 5 to 30 nm. By simply leaving the substrate on which the aluminum film is formed in the atmosphere, an oxygen-containing metal layer in which an oxygen-concentrated layer of 2 to 50 nm is formed on the surface portion of the aluminum coating can be easily obtained.

本発明の他の硬質非晶質炭素被覆部材の製造方法は、酸素含有金属層の表面に炭素および珪素を堆積させて珪素を含む硬質非晶質炭素膜を形成する硬質非晶質炭素膜成膜工程を含む。硬質非晶質炭素膜は、プラズマCVD法、イオンプレーティング法、スパッタリング法など、既に公知のCVD法、PVD法により形成することができる。ただし、たとえば300℃以下の低温で処理したい場合には、放電電源としてパルス電源を用いた直流プラズマCVD法により硬質非晶質炭素膜を成膜するのが望ましい。なお、直流プラズマCVD法については既に述べた通りである。   Another method for producing a hard amorphous carbon-coated member of the present invention is to form a hard amorphous carbon film that forms a hard amorphous carbon film containing silicon by depositing carbon and silicon on the surface of an oxygen-containing metal layer. Including a membrane process. The hard amorphous carbon film can be formed by a known CVD method or PVD method such as a plasma CVD method, an ion plating method, or a sputtering method. However, for example, when processing is performed at a low temperature of 300 ° C. or lower, it is desirable to form a hard amorphous carbon film by a direct current plasma CVD method using a pulse power source as a discharge power source. Note that the direct-current plasma CVD method has already been described.

以上、本発明の硬質非晶質炭素被覆部材およびその製造方法の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   As mentioned above, although embodiment of the hard amorphous carbon coating | coated member of this invention and its manufacturing method was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.

以下に、本発明の硬質非晶質炭素被覆部材およびその製造方法の実施例を挙げて、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to examples of the hard amorphous carbon-coated member and the method for producing the same.

[酸素含有金属層(中間層)の作製]
基材として2種類の鋼材(軸受け鋼:SUJ2、マルテンサイト系ステンレス鋼:SUS440C)を準備した。軸受け鋼からなる基材は、表面硬さ:HRC62、表面粗さ(算術平均粗さ):Ra0.01μmであった。ステンレス鋼からなる基材は、表面硬さ:HRC60、表面粗さ:Ra0.007μmであった。
[Production of oxygen-containing metal layer (intermediate layer)]
Two types of steel materials (bearing steel: SUJ2, martensitic stainless steel: SUS440C) were prepared as base materials. The base material made of bearing steel had a surface hardness: HRC62 and a surface roughness (arithmetic average roughness): Ra 0.01 μm. The base material made of stainless steel had a surface hardness: HRC60 and a surface roughness: Ra 0.007 μm.

これらの基材の表面に、アンバランスドマグネトロンスパッタリング装置(株式会社神戸製鋼所製UBMS504)を用い、モリブデン膜、チタン膜、アルミニウム膜、および比較例としてニオブ、バナジウム、クロム、珪素、タングステン、金、銅、からなる10種類の金属被膜を形成した。成膜条件は、成膜圧力:0.1〜10Pa、成膜温度(基材の表面温度):240℃、成膜時間:膜厚が300〜600nmとなるように制御、とした。   An unbalanced magnetron sputtering apparatus (UBMS504 manufactured by Kobe Steel, Ltd.) was used on the surface of these substrates, and molybdenum film, titanium film, aluminum film, and niobium, vanadium, chromium, silicon, tungsten, gold as comparative examples. Ten kinds of metal coatings made of copper and copper were formed. The film formation conditions were film formation pressure: 0.1 to 10 Pa, film formation temperature (substrate surface temperature): 240 ° C., and film formation time: film thickness was controlled to be 300 to 600 nm.

金属被膜が形成されたそれぞれの基材は、UBMS装置から取り出し、空気中に50時間放置した。なお、SUJ2からなる基材の成膜後の表面(金属被膜が付いてない表面)の硬さは、HRC60であった。成膜前の基材の硬さがHRC62であったことから、240℃で成膜したことで、基材の強度低下は抑制されることが示された。   Each substrate on which the metal film was formed was taken out from the UBMS apparatus and left in the air for 50 hours. The hardness of the surface of the base material made of SUJ2 after deposition (the surface without the metal coating) was HRC60. Since the hardness of the base material before film formation was HRC62, it was shown that the strength reduction of the base material was suppressed by forming the film at 240 ° C.

[硬質非晶質炭素膜の成膜]
次に、図12に示す直流プラズマCVD装置を用いて、珪素を含む非晶質炭素(DLC−Si)膜を成膜した。直流プラズマCVD装置9は、ステンレス鋼製のチャンバー90と、基台91と、ガス導入管92と、ガス導出管93とを備える。ガス導入管92は、バルブ(図略)を介して各種ガスボンベ(図略)に接続される。ガス導出管93は、バルブ(図略)を介してロータリーポンプ(図略)および拡散ポンプ(図略)に接続される。
[Deposition of hard amorphous carbon film]
Next, an amorphous carbon (DLC-Si) film containing silicon was formed using a DC plasma CVD apparatus illustrated in FIG. The DC plasma CVD apparatus 9 includes a stainless steel chamber 90, a base 91, a gas introduction pipe 92, and a gas outlet pipe 93. The gas introduction pipe 92 is connected to various gas cylinders (not shown) via valves (not shown). The gas outlet pipe 93 is connected to a rotary pump (not shown) and a diffusion pump (not shown) via a valve (not shown).

基材100は、チャンバー90内に設置された基台91の上に配置される。基材100を配置したら、チャンバー90を密閉し、ガス導出管93に接続されたロータリーポンプおよび拡散ポンプにより、チャンバー90内のガスを排気する。   The substrate 100 is disposed on a base 91 installed in the chamber 90. When the substrate 100 is disposed, the chamber 90 is sealed, and the gas in the chamber 90 is exhausted by a rotary pump and a diffusion pump connected to the gas outlet pipe 93.

基材100にDLC−Si膜を形成する際には、はじめに、チャンバー90内にガス導入管92からアルゴン等を導入する。その後、高電圧パルス電源8を作動させてチャンバー90の内側に設けたステンレス鋼製陽極板94と基台91との間に直流電圧を印加すると、放電が開始する。この放電によるイオン衝撃により、基材100の表面温度を所定の成膜温度まで昇温させられる。次に、ガス導入管92から、希釈ガスおよび原料ガスを導入する。その後、チャンバー90の内側に設けたステンレス鋼製陽極板94と基台91(基材100)との間に所定の電力を印加すると、放電95が開始し、基材100の表面にDLC−Si膜が形成される。   When forming a DLC-Si film on the substrate 100, first, argon or the like is introduced into the chamber 90 from the gas introduction pipe 92. Thereafter, when the high voltage pulse power supply 8 is operated and a DC voltage is applied between the stainless steel anode plate 94 provided inside the chamber 90 and the base 91, discharge starts. The surface temperature of the substrate 100 can be raised to a predetermined film formation temperature by ion bombardment due to this discharge. Next, dilution gas and source gas are introduced from the gas introduction pipe 92. Thereafter, when a predetermined power is applied between the stainless steel anode plate 94 provided inside the chamber 90 and the base 91 (base material 100), a discharge 95 is started, and DLC-Si is applied to the surface of the base material 100. A film is formed.

前の工程で金属被膜が形成された基材には、上記装置に水素ガスを100sccm、アルゴンガスを100sccm導入してガス圧を13Paに調整して、3.0kV(88mA)の直流電圧を印加し、1時間のイオン衝撃を行った。このイオン衝撃により、基材の表面温度をDLC−Si膜の成膜温度である220℃まで昇温させた。また、DLC−Si膜は、水素ガスおよびアルゴンガスを100sccmずつ導入した状態でCHガスを100sccm、TMSガスを6sccm導入してガス圧を13Paに調整して、3.0kV(95mA)の直流電圧を印加して成膜を行った。このとき、高電圧パルス電源8のパルス発振条件は、デューティー比:5%(パルス幅:50μ秒(休止:950μ秒))、繰り返し周波数:1kHzとした。3時間の成膜により、厚さ1μmのDLC−Si膜が形成された。 To the substrate on which the metal film was formed in the previous step, hydrogen gas was introduced into the apparatus at 100 sccm and argon gas was introduced at 100 sccm, the gas pressure was adjusted to 13 Pa, and a DC voltage of 3.0 kV (88 mA) was applied. Then, ion bombardment for 1 hour was performed. By this ion bombardment, the surface temperature of the substrate was raised to 220 ° C., which is the deposition temperature of the DLC-Si film. In addition, the DLC-Si film was adjusted to a gas pressure of 13 Pa by introducing CH 4 gas at 100 sccm and TMS gas at 6 sccm with hydrogen gas and argon gas introduced at a rate of 100 sccm, and a direct current of 3.0 kV (95 mA). A film was formed by applying a voltage. At this time, the pulse oscillation conditions of the high-voltage pulse power supply 8 were a duty ratio: 5% (pulse width: 50 μsec (pause: 950 μsec)) and a repetition frequency: 1 kHz. A DLC-Si film having a thickness of 1 μm was formed by film formation for 3 hours.

なお、比較例として、高電圧パルス電源の替わりにサイリスタ電源を用いて、クロム膜が形成されたSUJ2製基材とチタン膜が形成されたSUJ2製基材の表面に厚さ1μmのDLC−Si膜を成膜した。サイリスタ電源は、成膜圧力400Paにおいて、200V(0.5A)、成膜温度を250℃とした。   As a comparative example, using a thyristor power supply instead of a high voltage pulse power supply, a DLC-Si having a thickness of 1 μm is formed on the surface of a SUJ2 base material on which a chromium film is formed and a SUJ2 base material on which a titanium film is formed. A film was formed. The thyristor power source was 200 V (0.5 A) at a film forming pressure of 400 Pa, and the film forming temperature was 250 ° C.

得られたDLC−Si膜のSi含有量を電子線プローブマイクロ分析(EPMA)により求めた。高圧パルス電源を用いて成膜したDLC−Si膜のSi含有量は16at%、H含有量は23at%、また、サイリスタ電源を用いて成膜したDLC−Si膜のSi含有量は12at%、H含有量は30at%であり、いずれの試料においてもSiおよびHは膜中に均一分布しており、厚さ方向で含有量はほぼ一定であった。   The Si content of the obtained DLC-Si film was determined by electron beam probe microanalysis (EPMA). The Si content of the DLC-Si film formed using the high-voltage pulse power source is 16 at%, the H content is 23 at%, and the Si content of the DLC-Si film formed using the thyristor power source is 12 at%, The H content was 30 at%, and Si and H were uniformly distributed in the film in any sample, and the content was almost constant in the thickness direction.

[評価1]
[断面観察および元素分布分析]
以上の手順により得られた硬質非晶質炭素被覆部材のうち、モリブデン、チタンまたはアルミニウムを含む中間層と、高電圧パルス電源を用いた直流プラズマCVD法により成膜されたDLC−Si膜と、を備える硬質非晶質炭素被覆部材について、断面観察を行った。断面観察および元素分布分析は、オージェ電子分光分析法(AES分析)により行った。結果を図1〜図3に示す。
[Evaluation 1]
[Cross-section observation and element distribution analysis]
Among the hard amorphous carbon coated members obtained by the above procedure, an intermediate layer containing molybdenum, titanium or aluminum, a DLC-Si film formed by a direct current plasma CVD method using a high voltage pulse power source, The cross section of the hard amorphous carbon-coated member provided with Cross-sectional observation and element distribution analysis were performed by Auger electron spectroscopy (AES analysis). The results are shown in FIGS.

図1は、モリブデン(Mo)を含む中間層をもつ硬質非晶質炭素被覆部材の断面をオージェ電子分光分析法により測定して得られた二次電子像および元素分布である。Moを含む中間層では、中間層全体に酸素の存在が認められた。中間層全体を100at%としたときの酸素含有量は8at%であった。なお、中間層の表面部(中間層側界面部:表面から10nm)を100at%としたときの表面部の酸素含有量も8at%程度であった。この酸素は、UBMS装置内に残存した酸素が膜中に取り込まれたものと推測される。また、中間層の表面から内部へ拡散した炭素も確認され、DLC−Si膜との界面部に多く検出された。すなわち、DLC−Si膜の成膜時に、中間層の表面から炭素が拡散したことがわかった。モリブデン膜の表面に緻密な酸化膜は形成され難く、炭素がモリブデン膜に拡散しやすかったと推察される。また、炭素の拡散深さは200nm程度であるが、炭素含有量が多かった。また、AES分析による炭素スペクトルの詳細な検討結果は、中間層とDLC−Si膜との界面において、中間層のMoとDLC−Si膜のCとの化合物の形成を示唆している。   FIG. 1 shows secondary electron images and element distributions obtained by measuring a cross section of a hard amorphous carbon-coated member having an intermediate layer containing molybdenum (Mo) by Auger electron spectroscopy. In the intermediate layer containing Mo, the presence of oxygen was observed in the entire intermediate layer. The oxygen content when the entire intermediate layer was 100 at% was 8 at%. In addition, the oxygen content of the surface portion when the surface portion of the intermediate layer (intermediate layer side interface portion: 10 nm from the surface) was 100 at% was also about 8 at%. This oxygen is presumed that oxygen remaining in the UBMS apparatus was taken into the film. Further, carbon diffused from the surface of the intermediate layer to the inside was also confirmed, and a large amount was detected at the interface with the DLC-Si film. That is, it was found that carbon was diffused from the surface of the intermediate layer when the DLC-Si film was formed. It is presumed that a dense oxide film is difficult to form on the surface of the molybdenum film, and carbon easily diffused into the molybdenum film. The carbon diffusion depth was about 200 nm, but the carbon content was high. Moreover, the detailed examination result of the carbon spectrum by AES analysis suggests the formation of a compound of Mo in the intermediate layer and C in the DLC-Si film at the interface between the intermediate layer and the DLC-Si film.

Moを含む中間層を備える硬質非晶質炭素被覆部材の構成を図5に模式的に示す。基材1の表面には、中間層2が形成されている。中間層2は酸素を含むモリブデン膜である。中間層2の表面部(中間層側界面部)2’は炭素の拡散層である。中間層2(表面部2’)の表面には、DLC−Si膜3が形成されている。拡散層は、DLC−Si膜3が形成される際に中間層2の表面より炭素が拡散してなる。なお、硬質非晶質炭素膜側界面部を3’で示す。   The structure of the hard amorphous carbon coating member provided with the intermediate layer containing Mo is schematically shown in FIG. An intermediate layer 2 is formed on the surface of the substrate 1. The intermediate layer 2 is a molybdenum film containing oxygen. The surface portion (intermediate layer side interface portion) 2 'of the intermediate layer 2 is a carbon diffusion layer. A DLC-Si film 3 is formed on the surface of the intermediate layer 2 (surface portion 2 '). The diffusion layer is formed by diffusing carbon from the surface of the intermediate layer 2 when the DLC-Si film 3 is formed. The hard amorphous carbon film side interface is indicated by 3 '.

図2は、チタン(Ti)を含む中間層をもつ硬質非晶質炭素被覆部材の断面をAES分析により測定して得られた二次電子像および元素分布である。Tiを含む中間層では、中間層全体に酸素の存在が認められた。中間層の表面部(中間層側界面部:表面から10nm)を100at%としたときの表面部の酸素含有量は20at%であった。この酸素は、UBMS装置内に残存した酸素が膜中に取り込まれたものだけでなく、チタン膜の表面部が大気中で酸化されたものと推測される。また、中間層の表面から内部へ拡散した炭素も確認された。すなわち、DLC−Si膜の成膜時に、中間層の表面から炭素が拡散したことがわかった。また、AES分析による炭素スペクトルの詳細な検討結果は、中間層とDLC−Si膜との界面において、中間層のTiとDLC−Si膜のCとの化合物の形成を示唆している。   FIG. 2 is a secondary electron image and element distribution obtained by measuring the cross section of a hard amorphous carbon-coated member having an intermediate layer containing titanium (Ti) by AES analysis. In the intermediate layer containing Ti, the presence of oxygen was observed in the entire intermediate layer. When the surface part of the intermediate layer (intermediate layer side interface part: 10 nm from the surface) was 100 at%, the oxygen content in the surface part was 20 at%. This oxygen is presumed to be that not only oxygen remaining in the UBMS apparatus was taken into the film but also the surface portion of the titanium film was oxidized in the atmosphere. Further, carbon diffused from the surface of the intermediate layer to the inside was also confirmed. That is, it was found that carbon was diffused from the surface of the intermediate layer when the DLC-Si film was formed. Moreover, the detailed examination result of the carbon spectrum by AES analysis suggests the formation of a compound of Ti of the intermediate layer and C of the DLC-Si film at the interface between the intermediate layer and the DLC-Si film.

図3は、アルミニウム(Al)を含む中間層をもつ硬質非晶質炭素被覆部材の断面をAES分析により測定して得られた二次電子像および元素分布である。Alを含む中間層では、DLC−Si膜側の表面部に酸素濃化層の存在が認められた。中間層の表面部(中間層側界面部:表面から10nm)を100at%としたときの表面部の酸素含有量は20at%であった。この酸素は、アルミニウム膜の表面部が大気中で酸化されたものと推測される。しかし、中間層への炭素の拡散は確認されなかった。表面部に形成された酸素濃化層が緻密であったために、炭素が中間層内に移動できなかったと考えられる。   FIG. 3 is a secondary electron image and element distribution obtained by measuring the cross section of a hard amorphous carbon-coated member having an intermediate layer containing aluminum (Al) by AES analysis. In the intermediate layer containing Al, the presence of an oxygen-enriched layer was observed on the surface portion on the DLC-Si film side. When the surface part of the intermediate layer (intermediate layer side interface part: 10 nm from the surface) was 100 at%, the oxygen content in the surface part was 20 at%. This oxygen is presumed that the surface portion of the aluminum film was oxidized in the atmosphere. However, no carbon diffusion into the intermediate layer was confirmed. It is considered that carbon could not move into the intermediate layer because the oxygen-enriched layer formed on the surface portion was dense.

なお、Alを含む中間層を備える硬質非晶質炭素被覆部材については、その断面を透過型電子顕微鏡(TEM)により観察した。結果を図4に示す。中間層の表面から10nmの厚さでAlの酸化被膜が形成されたことがわかった。   In addition, about the hard amorphous carbon coating | coated member provided with the intermediate | middle layer containing Al, the cross section was observed with the transmission electron microscope (TEM). The results are shown in FIG. It was found that an Al oxide film was formed with a thickness of 10 nm from the surface of the intermediate layer.

[密着性の評価]
DLC−Si膜の剥離強度(密着力)を、ロックウェル試験およびスクラッチ試験により測定した。ここでは、実用性および評価方法の安定性の点から、光学顕微鏡を用いた観察においてDLC−Si膜の剥離が生じたときの荷重を密着力と定義した。
[Evaluation of adhesion]
The peel strength (adhesion strength) of the DLC-Si film was measured by a Rockwell test and a scratch test. Here, from the standpoint of practicality and stability of the evaluation method, the load when the DLC-Si film was peeled in the observation using an optical microscope was defined as the adhesion force.

ロックウェル試験については、Cスケールにて圧痕周囲のDLC−Si膜の剥離形態より密着力を評価した。スクラッチ試験においては、円錐型ダイヤモンド(圧子径:0.2mm)を用い、テーブル速度10mm/分、荷重増加速度:100N/分で行った。結果を図6および図7に示す。   For the Rockwell test, the adhesion strength was evaluated from the peeling form of the DLC-Si film around the indentation on the C scale. In the scratch test, a conical diamond (indenter diameter: 0.2 mm) was used, and the table speed was 10 mm / min and the load increasing speed was 100 N / min. The results are shown in FIG. 6 and FIG.

図6は、実施例および比較例の硬質非晶質炭素被覆部材について中間層の種類と密着力の関係を示すグラフであって、それぞれ2種類の基材を用いた場合の密着力を示す。グラフ中、黒色のバーはSUJ2製基材を用いた場合の密着力、その右側のバーはSUS440C製基材を用いた場合の密着力をそれぞれ示す。いずれの基材を用いても、密着力に大きな差は生じなかったが、SUS440C製基材を用いた硬質非晶質炭素被覆部材の密着性の方がやや劣る結果となった。これ以後、SUJ2製基材を用いた硬質非晶質炭素被覆部材に対して、中間層の種類と密着性とを評価する。炭化物を形成しないAuおよびCuを含む中間層を用いた場合、密着力はいずれも12〜15Nと最も低い値を示した。炭化物を形成する元素を含む中間層を比較すると、Nb、V、Cr、SiおよびWの場合に密着力15〜20N程度であったのに対し、Ti、AlおよびMoの場合には25〜30Nと顕著に優れた密着力を示した。特に、Moを含む中間層およびTiを含む中間層を備える硬質非晶質炭素被覆部材では、最も高い値である30Nを示した。これは、密着性の向上が、中間層への炭素の拡散のみに起因するのではなく中間層に含まれる酸素によるところも大きいことを示す結果である。   FIG. 6 is a graph showing the relationship between the type of intermediate layer and the adhesion strength of the hard amorphous carbon-coated members of Examples and Comparative Examples, and shows the adhesion strength when two types of substrates are used. In the graph, the black bar indicates the adhesion when a SUJ2 substrate is used, and the right bar indicates the adhesion when a SUS440C substrate is used. Even if any base material was used, there was no great difference in the adhesion force, but the adhesion of the hard amorphous carbon-coated member using the SUS440C base material was slightly inferior. Thereafter, the type and adhesion of the intermediate layer are evaluated for the hard amorphous carbon-coated member using the SUJ2 base material. When an intermediate layer containing Au and Cu that did not form carbides was used, the adhesion was the lowest value of 12 to 15 N. Comparing the intermediate layer containing an element that forms carbide, the adhesion was about 15 to 20 N in the case of Nb, V, Cr, Si, and W, whereas it was 25 to 30 N in the case of Ti, Al, and Mo. Remarkably excellent adhesion. In particular, the hard amorphous carbon-coated member provided with the intermediate layer containing Mo and the intermediate layer containing Ti showed the highest value of 30N. This is a result showing that the improvement in adhesion is not only due to the diffusion of carbon into the intermediate layer but also due to oxygen contained in the intermediate layer.

なお、V、Cr、SiおよびWは炭化物を形成しやすい元素であるが、その中でも大気中で酸化されやすいCrおよびSiは、中間層の表面に緻密な酸化物を形成するため、炭素が中間層内に移動できなかったと考えられる。また、VおよびWに関しては、酸化の程度が低いとともに、後述のように中間層の表面が平滑であった(図8)ために炭素の拡散層が形成されにくく、密着力が向上しなかったと考えられる。   V, Cr, Si, and W are elements that easily form carbides. Among them, Cr and Si, which are easily oxidized in the atmosphere, form a dense oxide on the surface of the intermediate layer, so that carbon is intermediate. It is thought that they could not move into the layer. Regarding V and W, the degree of oxidation was low, and the surface of the intermediate layer was smooth as described later (FIG. 8), so that the carbon diffusion layer was hardly formed, and the adhesion was not improved. Conceivable.

Alを含む中間層を備える硬質非晶質炭素被覆部材は、図4から明らかなように中間層に炭素は存在しないが、高い密着力を示した。ただし、Tiを含む中間層を備える部材およびMoを含む中間層を備える部材の密着力を超える結果は得られなかった。   As is clear from FIG. 4, the hard amorphous carbon-coated member provided with the intermediate layer containing Al showed high adhesion, although no carbon was present in the intermediate layer. However, the result exceeding the adhesion force of the member provided with the intermediate layer containing Ti and the member provided with the intermediate layer containing Mo was not obtained.

図7は、上記の手順により作製した実施例および比較例の硬質非晶質炭素被覆部材について中間層の種類と密着力の関係を示すグラフであって、それぞれ2種類の電源を用いてDLC−Si膜を成膜した場合の密着力を示す。グラフ中、黒色のバーは高電圧パルス電源を用いてDLC−Si膜を成膜した場合の密着力、その右側の白いバーはサイリスタ電源を用いてDLC−Si膜を成膜した場合の密着力をそれぞれ示す。なお、図6と図7とで同じ印を付したデータは、同じ試料から得られた同じデータである。   FIG. 7 is a graph showing the relationship between the type of the intermediate layer and the adhesion strength of the hard amorphous carbon-coated members of Examples and Comparative Examples produced by the above-described procedure. The adhesion force when a Si film is formed is shown. In the graph, the black bar indicates the adhesion when a DLC-Si film is formed using a high voltage pulse power supply, and the white bar on the right side indicates the adhesion when a DLC-Si film is formed using a thyristor power supply. Respectively. In addition, the data which attached | subjected the same mark in FIG. 6 and FIG. 7 are the same data obtained from the same sample.

中間層を形成せず、基材に直接DLC−Si膜を成膜した場合には、高電圧パルス電源よりもサイリスタ電源を用いた方が高い密着力を示した。しかしながら、中間層を形成した場合においては、中間層の種類にかかわらず、高電圧パルス電源を用いた方が高い密着力を示した。これは、高電圧パルス電源を用いたことにより、酸素含有金属層(中間層)の表面への高電圧のイオン照射により、中間層への炭素の拡散および中間層とDLC−Si膜との界面での結合が生じ、密着性が向上したためである。   When the DLC-Si film was formed directly on the base material without forming the intermediate layer, the use of the thyristor power supply showed higher adhesion than the high voltage pulse power supply. However, in the case where the intermediate layer was formed, a higher adhesion was obtained when the high voltage pulse power source was used regardless of the type of the intermediate layer. This is because, by using a high voltage pulse power source, the surface of the oxygen-containing metal layer (intermediate layer) is irradiated with high voltage ions to diffuse the carbon to the intermediate layer and the interface between the intermediate layer and the DLC-Si film. This is because bonding occurs in the film and adhesion is improved.

さらに、中間層への炭素の拡散に関しては、DLC−Si膜が形成される中間層の表面の表面粗さの影響も考えられる。たとえば、Tiを含む中間層では400nmの拡散層が形成された(図2)が、表面が平滑なTiのバルク体に同じ条件でDLC−Si膜を成膜しても8nm程度しか拡散層が形成されないからである。図8に、Tiを含む中間層またはWを含む中間層の走査型電子顕微鏡による表面観察結果を示す。Tiを含む中間層では、表面に微細な凹凸が見られたが、Wを含む中間層の表面は平坦であった。密着性の向上は、中間層の表面の凹凸によるアンカー効果だけでなく、凹凸の影響による拡散層の形成されやすさにも起因すると推測される。   Furthermore, regarding the diffusion of carbon to the intermediate layer, the influence of the surface roughness of the surface of the intermediate layer on which the DLC-Si film is formed can be considered. For example, a diffusion layer of 400 nm was formed in the intermediate layer containing Ti (FIG. 2), but even if a DLC-Si film was formed on a Ti bulk body having a smooth surface under the same conditions, the diffusion layer was only about 8 nm. It is because it is not formed. FIG. 8 shows the results of surface observation of the intermediate layer containing Ti or the intermediate layer containing W by a scanning electron microscope. In the intermediate layer containing Ti, fine irregularities were observed on the surface, but the surface of the intermediate layer containing W was flat. The improvement in adhesion is presumed to be caused not only by the anchor effect due to the irregularities on the surface of the intermediate layer, but also due to the ease of forming the diffusion layer due to the irregularities.

なお、Tiを含む中間層は中間層側界面部における酸素含有量が20at%であったが、中間層の酸素含有量は12〜28at%であれば誤差範囲であり、この範囲で30N程度の密着力が得られる。Moを含む中間層は中間層側界面部における酸素含有量が8at%であったが、中間層の酸素含有量は7〜15at%であれば誤差範囲であり、この範囲で30N程度の密着力が得られる。また、Alを含む中間層は中間層側界面部における酸素含有量が20at%であったが、中間層の酸素含有量は10〜30at%であれば誤差範囲であり、この範囲で25N程度の密着力が得られる。   The intermediate layer containing Ti had an oxygen content of 20 at% at the interface portion on the intermediate layer side, but if the oxygen content of the intermediate layer was 12 to 28 at%, it was an error range, and in this range about 30 N Adhesion can be obtained. The intermediate layer containing Mo had an oxygen content of 8 at% at the interface portion on the intermediate layer side. However, if the oxygen content of the intermediate layer was 7 to 15 at%, it was an error range. Is obtained. Further, the intermediate layer containing Al had an oxygen content of 20 at% at the interface portion on the intermediate layer side, but if the oxygen content of the intermediate layer was 10 to 30 at%, it was an error range, and in this range about 25 N Adhesion can be obtained.

[評価2]
異なるデューティー比でDLC−Si膜を成膜して硬質非晶質被覆部材を作製し、デューティー比に対する密着性を評価した。
[Evaluation 2]
DLC-Si films were formed at different duty ratios to produce hard amorphous coating members, and the adhesion to the duty ratio was evaluated.

DLC−Si膜を成膜する際のデューティー比を5%〜80%の範囲内で変化させた他は上記と同様な方法で、Moを含む中間層またはTiを含む中間層を備える硬質非晶質炭素被覆部材を作製した。いずれのデューティー比であっても、DLC−Si膜の成膜中の基材の温度が300℃を超えることはなかった。なお、放電電源にはパルス電源を用いたが、5〜67%までを高電圧パルス電源、80%をDCパルスにて実施した。デューティー比と放電電圧との関係を図9に示す。   A hard amorphous material comprising an intermediate layer containing Mo or an intermediate layer containing Ti in the same manner as described above except that the duty ratio when forming the DLC-Si film is changed within a range of 5% to 80%. A carbon-coated member was produced. At any duty ratio, the temperature of the substrate during the formation of the DLC-Si film did not exceed 300 ° C. In addition, although the pulse power supply was used for the discharge power supply, up to 5 to 67% was implemented with a high voltage pulse power supply and 80% with a DC pulse. FIG. 9 shows the relationship between the duty ratio and the discharge voltage.

その後、DLC−Si膜の剥離強度を、前述の方法で測定した。結果を図10に示す。デューティー比が5%〜67%では、25N以上の高い密着力が得られた。しかし、デューティー比が67%を超えると密着性が低下した。デューティー比を高めると電流が増加するが、図9からわかるように電圧は低下するためであると推測される。なお、デューティー比を25%にしてDLC−Si膜を成膜したTiを含む中間層を備える硬質非晶質被覆部材の炭素拡散層をAES分析したところ、拡散深さは250nm程度であった。   Thereafter, the peel strength of the DLC-Si film was measured by the method described above. The results are shown in FIG. When the duty ratio was 5% to 67%, a high adhesion of 25 N or more was obtained. However, when the duty ratio exceeded 67%, the adhesion decreased. When the duty ratio is increased, the current increases, but it is presumed that the voltage decreases as can be seen from FIG. Note that when the carbon diffusion layer of the hard amorphous coating member including the intermediate layer containing Ti on which the DLC-Si film was formed with a duty ratio of 25% was analyzed by AES, the diffusion depth was about 250 nm.

[評価3]
珪素含有量の異なるDLC−Si膜を成膜して硬質非晶質被覆部材を作製し、珪素含有量に対する密着性を評価した。
[Evaluation 3]
DLC-Si films having different silicon contents were formed to produce a hard amorphous coating member, and the adhesion to the silicon content was evaluated.

DLC−Si膜を成膜する際の原料ガスの流量比を変化させた他は上記と同様な方法で、Moを含む中間層またはTiを含む中間層を備える硬質非晶質炭素被覆部材を作製した。なお、いずれの部材も、デューティー比を5%で作製した。   A hard amorphous carbon-coated member provided with an intermediate layer containing Mo or an intermediate layer containing Ti is manufactured in the same manner as described above except that the flow rate ratio of the source gas when the DLC-Si film is formed is changed. did. All members were manufactured with a duty ratio of 5%.

その後、DLC−Si膜の剥離強度を、前述の方法で測定した。また、EPMAにより各部材のDLC−Si膜に含まれるSi量を測定した。なお、Si量は、DLC−Si膜の厚さ方向においてほぼ一定であった。結果を図11に示す。Siを含有しないDLC膜の密着力は、20Nを下回った。一方、Siを含有するDLC−Si膜では、高い密着性が得られた。特に、Si含有量が6〜22at%では、密着性に大きな変化は認められなかった。すなわち、硬質非晶質炭素膜がSiを含有することにより、酸素を含有した中間層でも密着性を確保できることがわかった。   Thereafter, the peel strength of the DLC-Si film was measured by the method described above. Further, the amount of Si contained in the DLC-Si film of each member was measured by EPMA. Note that the amount of Si was substantially constant in the thickness direction of the DLC-Si film. The results are shown in FIG. The adhesion of the DLC film not containing Si was less than 20N. On the other hand, high adhesion was obtained in the DLC-Si film containing Si. In particular, when the Si content was 6 to 22 at%, no significant change was observed in the adhesion. That is, it was found that the adhesion of the intermediate layer containing oxygen can be ensured by the fact that the hard amorphous carbon film contains Si.

モリブデンを含む中間層をもつ硬質非晶質炭素被覆部材の断面をオージェ電子分光分析法により測定した結果を示す図面代用写真であって、二次電子像および元素分布を示す。It is a drawing substitute photograph which shows the result of having measured the cross section of the hard amorphous carbon coating | coated member with the intermediate | middle layer containing molybdenum by the Auger electron spectroscopy analysis, Comprising: A secondary electron image and element distribution are shown. チタンを含む中間層をもつ硬質非晶質炭素被覆部材の断面をオージェ電子分光分析法により測定した結果を示す図面代用写真であって、二次電子像および元素分布を示す。It is a drawing substitute photograph which shows the result of having measured the cross section of the hard amorphous carbon coating | coated member with the intermediate | middle layer containing titanium by the Auger electron spectroscopy, Comprising: A secondary electron image and element distribution are shown. アルミニウムを含む中間層をもつ硬質非晶質炭素被覆部材の断面をオージェ電子分光分析法により測定した結果を示す図面代用写真であって、二次電子像および元素分布を示す。It is a drawing substitute photograph which shows the result of having measured the cross section of the hard amorphous carbon coating | coated member with the intermediate | middle layer containing aluminum by the Auger electron spectroscopy analysis, Comprising: A secondary electron image and element distribution are shown. アルミニウムを含む中間層をもつ硬質非晶質炭素被覆部材の断面を透過型電子顕微鏡により観察した結果を示す図面代用写真である。It is a drawing substitute photograph which shows the result of having observed the cross section of the hard amorphous carbon coating | coated member with the intermediate | middle layer containing aluminum with the transmission electron microscope. 本発明の硬質非晶質炭素被覆部材の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the hard amorphous carbon coating | coated member of this invention. 実施例および比較例の硬質非晶質炭素被覆部材について中間層の種類と密着力の関係を示すグラフであって、それぞれ2種類の基材を用いた場合の密着力を示す。It is a graph which shows the relationship between the kind of intermediate | middle layer, and contact | adhesion power about the hard amorphous carbon coating member of an Example and a comparative example, Comprising: Adhesion power at the time of using 2 types of base materials, respectively is shown. 実施例および比較例の硬質非晶質炭素被覆部材について中間層の種類と密着力の関係を示すグラフであって、それぞれ2種類の電源を用いてDLC−Si膜を成膜した場合の密着力を示す。It is a graph which shows the relationship between the kind of intermediate | middle layer, and adhesive force about the hard amorphous carbon coating member of an Example and a comparative example, Comprising: Adhesive force at the time of forming a DLC-Si film using two types of power supplies, respectively Indicates. Tiを含む中間層またはWを含む中間層の走査型電子顕微鏡による表面観察結果をそれぞれ示す。The surface observation result by the scanning electron microscope of the intermediate layer containing Ti or the intermediate layer containing W is shown, respectively. 硬質非晶質炭素膜を成膜する際のデューティー比と放電電圧との関係を示すグラフである。It is a graph which shows the relationship between the duty ratio at the time of forming a hard amorphous carbon film, and discharge voltage. 硬質非晶質炭素膜を成膜する際のデューティー比と密着力の関係を示すグラフである。It is a graph which shows the relationship between the duty ratio at the time of forming a hard amorphous carbon film, and adhesive force. 硬質非晶質炭素膜の珪素含有量と密着力の関係を示すグラフである。It is a graph which shows the relationship between the silicon content of a hard amorphous carbon film, and adhesive force. 直流プラズマCVD成膜装置の説明図である。It is explanatory drawing of a DC plasma CVD film-forming apparatus.

符号の説明Explanation of symbols

1:基材
2:中間層 2’:中間層側界面部(中間層の表面部)
3:硬質非晶質炭素膜(DLC−Si膜) 3’:硬質非晶質炭素膜側界面部
8:高電圧パルス電源
9:直流プラズマCVD装置
1: Substrate 2: Intermediate layer 2 ′: Intermediate layer side interface (surface portion of intermediate layer)
3: Hard amorphous carbon film (DLC-Si film) 3 ': Hard amorphous carbon film side interface 8: High voltage pulse power supply 9: DC plasma CVD apparatus

Claims (14)

基材と、該基材の表面に形成されモリブデンおよび/またはチタンを含む中間層と、該中間層の表面に形成された硬質非晶質炭素膜と、を備え、
前記中間層は、前記硬質非晶質炭素膜が形成された表面から内部に拡散した炭素の拡散層を有し、
少なくとも前記中間層と前記硬質非晶質炭素膜との界面部において、該中間層は酸素および炭素を含み、かつ、該中間層は、少なくとも前記硬質非晶質炭素膜が形成された表面から10nmまでの中間層側界面部に酸素を4原子%以上50原子%以下含み、該硬質非晶質炭素膜は珪素を含むことを特徴とする硬質非晶質炭素被覆部材。
A base material, an intermediate layer formed on the surface of the base material and containing molybdenum and / or titanium, and a hard amorphous carbon film formed on the surface of the intermediate layer,
The intermediate layer has a carbon diffusion layer diffused inward from the surface on which the hard amorphous carbon film is formed,
At least at the interface between the intermediate layer and the hard amorphous carbon film, the intermediate layer contains oxygen and carbon, and the intermediate layer is at least 10 nm from the surface on which the hard amorphous carbon film is formed. A hard amorphous carbon-coated member comprising oxygen at an intermediate layer side interface up to 4 atomic% to 50 atomic%, and the hard amorphous carbon film containing silicon.
前記硬質非晶質炭素膜は、少なくとも前記中間層と接する表面から100nmまでの硬質非晶質炭素膜側界面部に珪素を4原子%以上30原子%以下含む請求項1に記載の硬質非晶質炭素被覆部材。 The hard amorphous carbon film, according to claim 1 including at least said intermediate layer in contact with 30 atomic% 4 atom% of silicon in a hard amorphous carbon film side interface unit to 100nm from the surface less rigid amorphous Carbon coated member. 請求項1又は2に記載の硬質非晶質炭素被覆部材の製造方法であって、
基材の表面にモリブデンおよび/またはチタンを含み少なくとも表面部に酸素を含む酸素含有金属層を形成する酸素含有金属層形成工程と、
前記酸素含有金属層の表面に炭素および珪素を堆積させて珪素を含む硬質非晶質炭素膜を形成するとともに該酸素含有金属層に該表面から炭素を拡散させる成膜拡散工程と、
を含むことを特徴とする硬質非晶質炭素被覆部材の製造方法。
A method for producing a hard amorphous carbon-coated member according to claim 1 or 2,
An oxygen-containing metal layer forming step of forming an oxygen-containing metal layer containing molybdenum and / or titanium on the surface of the substrate and containing oxygen at least on the surface portion;
Depositing carbon and silicon on the surface of the oxygen-containing metal layer to form a hard amorphous carbon film containing silicon and diffusing carbon from the surface into the oxygen-containing metal layer; and
The manufacturing method of the hard amorphous carbon coating member characterized by including.
前記酸素含有金属層形成工程および前記成膜拡散工程は、前記基材の温度を300℃以下にして行う工程である請求項3に記載の硬質非晶質炭素被覆部材の製造方法。 The method for producing a hard amorphous carbon-coated member according to claim 3, wherein the oxygen-containing metal layer forming step and the film forming diffusion step are steps performed at a temperature of the base material of 300 ° C. or lower. 前記成膜拡散工程は、パルス電源を放電電源として用いた直流プラズマCVD法により前記硬質非晶質炭素膜を成膜するとともに前記酸素含有金属層に炭素を拡散させる工程である請求項3または4に記載の硬質非晶質炭素被覆部材の製造方法。 The film-forming diffusion process, according to claim 3 or 4 is a process to diffuse carbon into the oxygen-containing metal layer while depositing the hard amorphous carbon film by DC plasma CVD method using the pulsed power as discharge power supply A method for producing a hard amorphous carbon-coated member according to claim 1. 前記成膜拡散工程は、デューティー比が2%〜70%かつ0.6kV以上のパルス電圧を原料ガスに印加してプラズマを発生させる工程である請求項5に記載の硬質非晶質炭素被覆部材の製造方法。 6. The hard amorphous carbon-coated member according to claim 5, wherein the film forming diffusion step is a step of generating a plasma by applying a pulse voltage having a duty ratio of 2% to 70% and 0.6 kV or more to the source gas. Manufacturing method. 前記酸素含有金属層形成工程は、モリブデンおよび/またはチタンからなる被膜を形成した後、該被膜を酸素を含む雰囲気中に曝す工程である請求項3〜6のいずれかに記載の硬質非晶質炭素被覆部材の製造方法。 The hard amorphous layer according to any one of claims 3 to 6 , wherein the oxygen-containing metal layer forming step is a step of forming a film made of molybdenum and / or titanium and then exposing the film to an atmosphere containing oxygen. A method for producing a carbon-coated member. 前記酸素含有金属層形成工程は、モリブデンおよび/またはチタンからなる被膜を酸素を含む雰囲気中で蒸着する工程である請求項3〜7のいずれかに記載の硬質非晶質炭素被覆部材の製造方法。 The method for producing a hard amorphous carbon-coated member according to claim 3 , wherein the oxygen-containing metal layer forming step is a step of depositing a film made of molybdenum and / or titanium in an atmosphere containing oxygen. . 基材と、該基材の表面に形成されアルミニウムを含む中間層と、該中間層の表面に形成された硬質非晶質炭素膜と、を備え、
少なくとも前記中間層と前記硬質非晶質炭素膜との界面部において、該中間層は酸素を含み、かつ、該中間層は、少なくとも前記硬質非晶質炭素膜が形成された表面から10nmまでの中間層側界面部に酸素を4原子%以上50原子%以下含み、該硬質非晶質炭素膜は珪素を含むことを特徴とする硬質非晶質炭素被覆部材。
A base material, an intermediate layer formed on the surface of the base material and containing aluminum, and a hard amorphous carbon film formed on the surface of the intermediate layer,
At least at the interface between the intermediate layer and the hard amorphous carbon film, the intermediate layer contains oxygen, and the intermediate layer is at least 10 nm from the surface on which the hard amorphous carbon film is formed. A hard amorphous carbon-coated member comprising oxygen in an intermediate layer side interface portion of not less than 4 atom% and not more than 50 atom% , wherein the hard amorphous carbon film contains silicon.
前記硬質非晶質炭素膜は、少なくとも前記中間層と接する表面から100nmまでの硬質非晶質炭素膜側界面部に珪素を4原子%以上30原子%以下含む請求項9に記載の硬質非晶質炭素被覆部材。 The hard amorphous carbon film, according to claim 9 including at least said intermediate layer in contact with 30 atomic% 4 atom% of silicon in a hard amorphous carbon film side interface unit to 100nm from the surface less rigid amorphous Carbon coated member. 請求項9又は10に記載の硬質非晶質炭素被覆部材の製造方法であって、
基材の表面にアルミニウムを含み少なくとも表面部に酸素を含む酸素含有金属層を形成する酸素含有金属層形成工程と、
前記酸素含有金属層の表面に炭素および珪素を堆積させて珪素を含む硬質非晶質炭素膜を形成する硬質非晶質炭素膜成膜工程と、
を含むことを特徴とする硬質非晶質炭素被覆部材の製造方法。
It is a manufacturing method of the hard amorphous carbon covering member according to claim 9 or 10,
An oxygen-containing metal layer forming step of forming an oxygen-containing metal layer containing aluminum on the surface of the substrate and containing oxygen on at least the surface portion;
A hard amorphous carbon film forming step of forming a hard amorphous carbon film containing silicon by depositing carbon and silicon on the surface of the oxygen-containing metal layer;
The manufacturing method of the hard amorphous carbon coating member characterized by including.
前記酸素含有金属層形成工程および前記硬質非晶質炭素膜成膜工程は、前記基材の温度を300℃以下にして行う工程である請求項11に記載の硬質非晶質炭素被覆部材の製造方法。 The production of a hard amorphous carbon-coated member according to claim 11, wherein the oxygen-containing metal layer forming step and the hard amorphous carbon film forming step are performed by setting the temperature of the base material to 300 ° C or lower. Method. 前記硬質非晶質炭素膜成膜工程は、パルス電源を放電電源として用いた直流プラズマCVD法により前記硬質非晶質炭素膜を成膜する工程である請求項11または12に記載の硬質非晶質炭素被覆部材の製造方法。 The hard amorphous carbon film forming step according to claim 11 or 12, wherein the hard amorphous carbon film forming step is a step of forming the hard amorphous carbon film by a direct current plasma CVD method using a pulse power source as a discharge power source. Of manufacturing a carbonaceous member. 前記酸素含有金属層形成工程は、アルミニウムからなる被膜を形成した後、該被膜を酸素を含む雰囲気中に曝す工程である請求項11に記載の硬質非晶質炭素被覆部材の製造方法。 The method for producing a hard amorphous carbon-coated member according to claim 11, wherein the oxygen-containing metal layer forming step is a step of forming a film made of aluminum and then exposing the film to an atmosphere containing oxygen.
JP2008195841A 2008-07-30 2008-07-30 Hard amorphous carbon-coated member and method for producing the same Expired - Fee Related JP5131078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008195841A JP5131078B2 (en) 2008-07-30 2008-07-30 Hard amorphous carbon-coated member and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008195841A JP5131078B2 (en) 2008-07-30 2008-07-30 Hard amorphous carbon-coated member and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010031327A JP2010031327A (en) 2010-02-12
JP5131078B2 true JP5131078B2 (en) 2013-01-30

Family

ID=41736150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008195841A Expired - Fee Related JP5131078B2 (en) 2008-07-30 2008-07-30 Hard amorphous carbon-coated member and method for producing the same

Country Status (1)

Country Link
JP (1) JP5131078B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087325A (en) * 2011-10-18 2013-05-13 Nippon Itf Kk Hard carbon film, and method for forming the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003293136A (en) * 2002-04-03 2003-10-15 Riken Corp Amorphous hard carbon film and sliding member using the same
JP2005272948A (en) * 2004-03-25 2005-10-06 Shinko Seiki Co Ltd Plasma enhanced chemical vapor deposition system
JP2006169589A (en) * 2004-12-16 2006-06-29 Shinko Seiki Co Ltd Surface treatment apparatus
JP2008163430A (en) * 2006-12-28 2008-07-17 Jtekt Corp High corrosion-resistant member and its manufacturing method

Also Published As

Publication number Publication date
JP2010031327A (en) 2010-02-12

Similar Documents

Publication Publication Date Title
JP4918656B2 (en) Amorphous hard carbon film
JP5667176B2 (en) Protective coating, coating member having protective coating, and method for producing protective coating
JP4400603B2 (en) Member with hard carbon coating
RU2360032C1 (en) Method of obtaining wear-resisting ultra-hard coatings
US9175381B2 (en) Processing tubular surfaces using double glow discharge
WO2018235750A1 (en) Sliding member and coating film
JP2004010923A (en) Sliding member and manufacturing method thereof
JP2007070667A (en) Formed article with hard multilayer film of diamond-like carbon, and production method therefor
US7629031B2 (en) Plasma enhanced bonding for improving adhesion and corrosion resistance of deposited films
CN101711288A (en) Method for applying high strength coatings to workpieces and/or materials
CN1859985A (en) Diamond coated article and method of its production
JP2011089172A (en) Diamond-like carbon film formed member and method for producing the same
JP5508657B2 (en) Amorphous carbon coating material
WO2019171648A1 (en) Surface-coated cutting tool and method for producing same
US20240093344A1 (en) Hard carbon coatings with improved adhesion strength by means of hipims and method thereof
WO2019035397A1 (en) Vanadium silicon carbonitride film, vanadium silicon carbonitride-covered member and method for manufacturing same
WO2016111288A1 (en) Diamond-like carbon layered laminate and method for manufacturing same
JP4122387B2 (en) Composite hard coating, method for producing the same, and film forming apparatus
JP2006250348A (en) Sliding member
JP2009035584A (en) Sliding member
JP5436486B2 (en) Sliding member
JP5131078B2 (en) Hard amorphous carbon-coated member and method for producing the same
CN1782123A (en) Diamond-like carbon film and preparation method thereof
WO2015068655A1 (en) Dlc film formation method
Ha et al. Control of stress and delamination in single and multi-layer carbon thin films prepared by cathodic arc and RF plasma deposition and implantation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees