[go: up one dir, main page]

JP2006250348A - Sliding member - Google Patents

Sliding member Download PDF

Info

Publication number
JP2006250348A
JP2006250348A JP2006036039A JP2006036039A JP2006250348A JP 2006250348 A JP2006250348 A JP 2006250348A JP 2006036039 A JP2006036039 A JP 2006036039A JP 2006036039 A JP2006036039 A JP 2006036039A JP 2006250348 A JP2006250348 A JP 2006250348A
Authority
JP
Japan
Prior art keywords
intermediate layer
film
base material
carbon
sliding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006036039A
Other languages
Japanese (ja)
Inventor
Masaki Moronuki
正樹 諸貫
Katsuhiro Tsuji
勝啓 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP2006036039A priority Critical patent/JP2006250348A/en
Publication of JP2006250348A publication Critical patent/JP2006250348A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sliding member having an amorphous hard carbon film having hydrogen content of 5 at% or less and superior in adhesiveness with a base material and abrasion resistance, with high hardness. <P>SOLUTION: This sliding member has the base material, an intermediate layer formed on a surface of the base material, and the amorphous hard carbon film having hydrogen content of 5 at% or less, formed on a surface of the intermediate layer and including carbon as its main component. Oxygen concentration of the intermediate layer is increased from a surface side toward the inside of intermediate layer, and carbon concentration is decreased from the surface side toward the inside of intermediate layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車部品などの厳しい摺動条件下で使用される摺動部の表面に非晶質硬質炭素皮膜をコーティングした摺動部材に関する。   The present invention relates to a sliding member in which an amorphous hard carbon film is coated on the surface of a sliding portion used under severe sliding conditions such as automobile parts.

ダイヤモンドと同じ結合状態の炭素原子を比較的多く含む非晶質硬質炭素皮膜は、一般にダイヤモンドライクカーボン(DLC)と呼ばれ、使用する原料や成膜方法によって、皮膜の性質が異なることが知られている。
1)メタンやアセチレンなどの炭化水素系のガスを原料とし、CVD法(プラズマCVD法等)により形成されるDLC皮膜は、膜中に30at%から40at%程度の水素を含有し、皮膜硬度がビッカース硬度でHv1000〜2000程度である。
2)グラファイトなどを原料としたPVD法(スパッタリング法、真空アーク蒸着法等)により形成されるDLC皮膜は、水素含有量が5at%以下であり、皮膜硬度をビッカース硬度でHv3000以上とすることが可能であり、1)の皮膜と比べて高硬度で非常に優れた耐摩耗性を有する。これは、2)による皮膜は、1)による水素含有量の多い皮膜に比べてsp3型結合(ダイヤモンド構造の結合)になっている割合が高いためと考えられる。
An amorphous hard carbon film containing a relatively large number of carbon atoms in the same bonding state as diamond is generally called diamond-like carbon (DLC), and it is known that the properties of the film differ depending on the raw material used and the film formation method. ing.
1) A DLC film formed by a CVD method (plasma CVD method or the like) using a hydrocarbon gas such as methane or acetylene as a raw material contains about 30 to 40 at% hydrogen in the film, and the film hardness is The Vickers hardness is about Hv 1000 to 2000.
2) The DLC film formed by PVD method (sputtering method, vacuum arc deposition method, etc.) using graphite as a raw material has a hydrogen content of 5 at% or less, and the film hardness should be Hv 3000 or more in terms of Vickers hardness. It has a high hardness and very excellent wear resistance as compared with the film of 1). This is probably because the film according to 2) has a higher proportion of sp3 type bonds (diamond structure bonds) than the film with a high hydrogen content according to 1).

このように、DLC皮膜は摩擦係数が低く耐摩耗性に優れている特徴を有することから摺動部材への適用が試みられ、近年では金型や工具などの表面処理へ適用されている。しかしながら、自動車部品などの厳しい摺動環境で使用される摺動部材へのDLC皮膜の適用はあまり進んでいない。
この理由としては、DLC皮膜の基材に対する密着性の確保が難しいことが挙げられる。一般的に、金型や工具の基材としては超硬合金が用いられる場合が多い。この超硬合金はタングステンカーバイト等の安定な炭化物とコバルトとからなる複合合金であり硬度も高いので、その表面にDLC皮膜を密着性良くコーティングすることが出来る。一方、一般の機械部品や自動車部品の殆どは鉄系材料が使用されており、これら鉄系材料に対するDLC皮膜の密着性は充分ではなく、摺動部材の使用中に皮膜が剥離するという問題がある。
As described above, since the DLC film has a feature of a low friction coefficient and excellent wear resistance, application to a sliding member has been attempted. In recent years, the DLC film has been applied to surface treatments such as molds and tools. However, the application of DLC coatings to sliding members used in harsh sliding environments such as automobile parts has not progressed much.
This is because it is difficult to ensure the adhesion of the DLC film to the substrate. In general, cemented carbide is often used as a base material for molds and tools. This cemented carbide is a composite alloy composed of a stable carbide such as tungsten carbide and cobalt and has a high hardness, so that a DLC film can be coated on the surface with good adhesion. On the other hand, most of general machine parts and automobile parts use iron-based materials, and the adhesion of the DLC film to these iron-based materials is not sufficient, and there is a problem that the film peels off during use of the sliding member. is there.

そこで、DLC皮膜と鉄系材料からなる基材との密着性を向上させる方法として、DLC皮膜と基材の間に中間層を形成する技術が開示されている。例えば、中間層を複数の金属層から構成し、最表面の中間層を金属と炭素との非晶質層とすることにより、DLC皮膜との密着性を向上させる技術が開示されている(特許文献1参照)。この技術において、上記非晶質層の炭素濃度を基材側から表面側に向けて増加させた傾斜組成とすることもできる。又、中間層として、Ti,Cr,Si等の金属の炭化物層を設ける技術が開示されている(特許文献2参照)。
さらに、DLC皮膜と基材の間に炭素原子と注入原子との混合層を形成する技術が開示されている(特許文献3参照)。この混合層は、基材上にDLC皮膜を形成した後、窒素イオン等を注入することにより形成される。
Then, the technique of forming an intermediate | middle layer between a DLC film and a base material is disclosed as a method of improving the adhesiveness of a DLC film and the base material which consists of iron-type materials. For example, a technique is disclosed in which the intermediate layer is composed of a plurality of metal layers, and the outermost intermediate layer is an amorphous layer of metal and carbon, thereby improving the adhesion to the DLC film (patent) Reference 1). In this technique, a gradient composition in which the carbon concentration of the amorphous layer is increased from the substrate side toward the surface side can be obtained. In addition, a technique of providing a carbide layer of a metal such as Ti, Cr, Si as an intermediate layer is disclosed (see Patent Document 2).
Furthermore, a technique for forming a mixed layer of carbon atoms and implanted atoms between the DLC film and the substrate is disclosed (see Patent Document 3). This mixed layer is formed by injecting nitrogen ions or the like after forming a DLC film on the substrate.

特開2003―171758号公報(段落0025、0027)JP2003-171758 (paragraphs 0025 and 0027) 特開2001―316800号公報Japanese Patent Laid-Open No. 2001-316800 特開平7―90553号公報Japanese Unexamined Patent Publication No. 7-90553

しかしながら、上記した従来技術を用いたとしても、基材とのDLC皮膜との間の密着性が充分ではなかった。この理由としては、鉄系金属基材の表面に酸化皮膜が形成され易く、この酸化皮膜がDLC皮膜の密着性を低下させるためと考えられる。DLC皮膜を形成する前に上記酸化皮膜を予め除去しておくことが望ましいが、酸化皮膜を完全に除去することは実際には困難である。
特に、上記1)のPVD法により形成されるDLC皮膜は薄く、皮膜硬度が高いことから、摺動時にかかる面圧が基材との界面にそのまま伝達されるため、剥離がさらに発生しやすい。従って、上記1)による皮膜を自動車部品などの厳しい摺動条件で用いると、特に内燃機関や動弁系部品のように摺動方向が変化する摺動部材に用いた場合、基材と皮膜との密着性を確保することが困難であった。
従って、本発明の目的は、基材との密着性に優れ、高硬度で耐摩耗性に優れた水素含有量が5at%以下の非晶質硬質炭素皮膜を有する摺動部材を提供することにある。
However, even if the above-described conventional technique is used, the adhesion between the substrate and the DLC film is not sufficient. The reason for this is thought to be that an oxide film is easily formed on the surface of the iron-based metal substrate, and this oxide film reduces the adhesion of the DLC film. Although it is desirable to remove the oxide film in advance before forming the DLC film, it is actually difficult to completely remove the oxide film.
In particular, since the DLC film formed by the PVD method of 1) is thin and the film hardness is high, the surface pressure applied during sliding is transmitted as it is to the interface with the base material, so that peeling is more likely to occur. Therefore, when the coating according to the above 1) is used under severe sliding conditions such as automobile parts, especially when it is used for a sliding member whose sliding direction changes, such as an internal combustion engine or a valve operating system component, It was difficult to ensure the adhesion.
Accordingly, an object of the present invention is to provide a sliding member having an amorphous hard carbon film having a hydrogen content of 5 at% or less, which has excellent adhesion to a substrate, high hardness and excellent wear resistance. is there.

本発明者らは、上記課題を解決するため、基材と中間層の界面付近に酸化物を多く形成させることにより、中間層表面の酸素濃度を低減してDLC皮膜との密着性を向上できることに着目した。
すなわち、本発明の摺動部材は、基材と、基材表面に形成された中間層と、前記中間層表面に形成され炭素を主成分とし水素含有量が5at%以下の非晶質硬質炭素皮膜とを有し、前記中間層の酸素濃度が表面側から前記中間層内部に向かって増加し、かつ炭素濃度が表面側から前記中間層内部に向かって減少している。
In order to solve the above problems, the present inventors can reduce the oxygen concentration on the surface of the intermediate layer and improve the adhesion to the DLC film by forming a large amount of oxide near the interface between the base material and the intermediate layer. Focused on.
That is, the sliding member of the present invention includes a base material, an intermediate layer formed on the surface of the base material, and an amorphous hard carbon formed on the surface of the intermediate layer and mainly containing carbon and having a hydrogen content of 5 at% or less. The intermediate layer has an oxygen concentration that increases from the surface side toward the inside of the intermediate layer, and a carbon concentration that decreases from the surface side toward the inside of the intermediate layer.

前記非晶質硬質炭素皮膜のヤング率が60GPa以上であることが好ましく、前記中間層および前記非晶質硬質炭素皮膜が真空アーク蒸着法により形成されていることが好ましい。
前記中間層が100℃における酸化物の標準生成自由エネルギーが−600kJ以下の金属層からなることが好ましく、前記中間層がSi、Ti、及びCrの群から選ばれた1種又は2種以上を含む金属層からなることが好ましい。
The amorphous hard carbon film preferably has a Young's modulus of 60 GPa or more, and the intermediate layer and the amorphous hard carbon film are preferably formed by a vacuum arc deposition method.
The intermediate layer is preferably composed of a metal layer having a standard free energy of formation of oxide at 100 ° C. of −600 kJ or less, and the intermediate layer includes one or more selected from the group consisting of Si, Ti, and Cr. It is preferable to consist of a metal layer containing.

本発明によれば、基材との密着性に優れ、高硬度で耐摩耗性に優れた水素含有量が5at%以下の非晶質硬質炭素皮膜を有する摺動部材が得られる。そのため、例えば自動車などの内燃機関の動弁部品であるバルブリフター及びシム、内燃機関の部品であるピストンリング及びコンプレッサー、並びに油圧ポンプ用のベーン等、高面圧下で使用され耐久性を要求される摺動部材に本発明を好適に適用することができる。   According to the present invention, it is possible to obtain a sliding member having an amorphous hard carbon film having a hydrogen content of 5 at% or less, which has excellent adhesion to a substrate, high hardness and excellent wear resistance. For this reason, for example, valve lifters and shims that are valve parts of internal combustion engines such as automobiles, piston rings and compressors that are parts of internal combustion engines, and vanes for hydraulic pumps, etc. are used under high surface pressure and require durability. The present invention can be suitably applied to the sliding member.

本発明の好ましい実施の形態について説明する。
図1は本発明の実施形態に係る摺動部材の断面を示す模式図である。基材1の表面に中間層2が形成され、中間層2の表面に非晶質硬質炭素皮膜(DLC皮膜)3が形成されている。
A preferred embodiment of the present invention will be described.
FIG. 1 is a schematic view showing a cross section of a sliding member according to an embodiment of the present invention. An intermediate layer 2 is formed on the surface of the substrate 1, and an amorphous hard carbon film (DLC film) 3 is formed on the surface of the intermediate layer 2.

<基材>
本発明の摺動部材の基材は特に制限されないが、例えば各種の金属や合金を用いることができる。特に、後述するように酸化皮膜が形成され易い鉄系材料を基材に用いる場合に本発明がさらに有効である。鉄系材料としては、例えば鋼、ステンレス鋼、各種合金鋼等を用いることができる。例えば、JIS規格でSCM415などの浸炭材の他、SKD11、SKH51、SUJ−2等の鉄系材料を使用することができる。
<Base material>
Although the base material of the sliding member of the present invention is not particularly limited, for example, various metals and alloys can be used. In particular, the present invention is more effective when an iron-based material on which an oxide film is easily formed is used as a substrate as described later. As the iron-based material, for example, steel, stainless steel, various alloy steels, and the like can be used. For example, ferrous materials such as SKD11, SKH51, and SUJ-2 can be used in addition to carburized materials such as SCM415 according to JIS standards.

<中間層>
中間層は、基材と非晶質硬質炭素皮膜との間に形成される。
(中間層の酸素濃度)
基材として各種の金属や合金を用いる場合(特に鉄系材料を用いる場合)、基材が大気中に放置されると表面が酸化され、酸化皮膜が形成される。この酸化皮膜はDLC皮膜の密着性を低下させるため、DLC皮膜を形成する前に上記酸化皮膜を予め除去しておくことが望ましいが、酸化皮膜を完全に除去することは実際には困難である。
そこで、中間層の酸素濃度を表面側(DLC皮膜側)から中間層内部に向かって増加させ、基材と中間層の界面付近に酸化物を多く形成させることにより、中間層表面の酸素濃度を低減してDLC皮膜との密着性を向上することができる。つまり、このようにすると、基材表面の酸化皮膜に由来する酸化物が基材と中間層の界面付近に固定化されるので、中間層表面の酸素濃度が低減する。
<Intermediate layer>
The intermediate layer is formed between the substrate and the amorphous hard carbon film.
(Oxygen concentration in the intermediate layer)
When various metals and alloys are used as the substrate (especially when an iron-based material is used), the surface is oxidized and an oxide film is formed when the substrate is left in the atmosphere. Since this oxide film lowers the adhesion of the DLC film, it is desirable to remove the oxide film in advance before forming the DLC film, but it is actually difficult to completely remove the oxide film. .
Therefore, the oxygen concentration of the intermediate layer surface is increased by increasing the oxygen concentration of the intermediate layer from the surface side (DLC film side) toward the inside of the intermediate layer and forming a large amount of oxide near the interface between the base material and the intermediate layer. It can reduce and can improve adhesiveness with a DLC film. That is, in this way, the oxide derived from the oxide film on the surface of the base material is fixed near the interface between the base material and the intermediate layer, so that the oxygen concentration on the surface of the intermediate layer is reduced.

中間層表面の酸素濃度は5at%以下であることが望ましい。中間層表面の酸素濃度はオージェ分析やSIMS(2次イオン質量分析)などによるデプスプロファイルから測定することができる。
なお、中間層の酸素濃度を層方向に段階的又は連続的に変化させた傾斜組成とすることが好ましい。このようにすると、中間層の膜特性が急激に変化することがなく、応力集中による剥離等が防止される。
The oxygen concentration on the surface of the intermediate layer is preferably 5 at% or less. The oxygen concentration on the surface of the intermediate layer can be measured from a depth profile by Auger analysis or SIMS (secondary ion mass spectrometry).
In addition, it is preferable to set it as the gradient composition which changed the oxygen concentration of the intermediate | middle layer stepwise or continuously in the layer direction. In this way, the film characteristics of the intermediate layer do not change suddenly, and peeling due to stress concentration is prevented.

(中間層の炭素濃度)
さらに、中間層の炭素濃度を表面側(DLC皮膜側)から中間層内部に向かって減少させる。この場合、中間層の表面側の炭素濃度を好ましくは1×1017atoms/cm3〜1×1020atoms/cm3に保つことで、DLC皮膜と中間層との親和性を高め、両者の密着性を向上させることができる。また、中間層表面には炭化物や非晶質炭素層が形成されるため、表面硬度が増加する。そのため、中間層の表面に形成される高硬度のDLC皮膜との硬度の差が小さくなり、両者の密着性向上に寄与する。
中間層の炭素濃度を制御する方法としては、例えば、中間層形成後に中間層表面側から内部に向かって炭素イオンを照射する(イオン注入する)ことにより行うことができる。これにより、カーボンイオンが中間層表面から内部に侵入し、中間層表面付近にカーボン濃度の高い部分が形成される。
(Intermediate carbon concentration)
Further, the carbon concentration of the intermediate layer is decreased from the surface side (DLC film side) toward the inside of the intermediate layer. In this case, the carbon concentration on the surface side of the intermediate layer is preferably maintained at 1 × 10 17 atoms / cm 3 to 1 × 10 20 atoms / cm 3 to increase the affinity between the DLC film and the intermediate layer, Adhesion can be improved. Further, since a carbide or amorphous carbon layer is formed on the surface of the intermediate layer, the surface hardness is increased. Therefore, the difference in hardness from the high-hardness DLC film formed on the surface of the intermediate layer is reduced, which contributes to improving the adhesion between them.
As a method for controlling the carbon concentration in the intermediate layer, for example, carbon ions can be irradiated (ion implantation) from the surface side of the intermediate layer toward the inside after the intermediate layer is formed. Thereby, carbon ions enter the inside from the surface of the intermediate layer, and a portion having a high carbon concentration is formed in the vicinity of the surface of the intermediate layer.

中間層の酸素濃度及び炭素濃度の分布はSIMS(2次イオン質量分析)法などにより測定することができる。   The distribution of oxygen concentration and carbon concentration in the intermediate layer can be measured by SIMS (secondary ion mass spectrometry) method or the like.

(中間層の形成) (Formation of intermediate layer)

中間層は、例えば各種金属又は合金の層から形成することができる。特に、基材表面の酸化層と反応して安定な酸化物を形成させるため、中間層として、100℃における酸化物の標準生成自由エネルギー(G)が−600kJ以下の金属からなる層を用いることが好ましく、特にSi、Ti、及びCrの群から選ばれた1種又は2種以上の成分からなる層を用いることが好ましい。このような金属又は元素は容易に酸化物を形成するため、基材との界面に安定な酸化物を形成し、酸素を基材表面付近に固定化することができる。
中間層は、例えば真空蒸着法、スパッタ蒸着法、真空アーク蒸着法、イオンプレーティング法、及び各種CVD法など公知の方法を用いて形成することができる。これらの中でもイオンプレーティング法、スパッタ蒸着法を用いることが好ましく、特に真空アーク蒸着法を用いると、原料のイオン化率が高く、イオンの基材への打ち込み効果などにより、中間層と基材との間の密着力が向上するため最も好ましい。
An intermediate | middle layer can be formed from the layer of various metals or an alloy, for example. In particular, in order to form a stable oxide by reacting with the oxide layer on the surface of the base material, a layer made of a metal having a standard free energy of formation (G) of oxide of −600 kJ or less at 100 ° C. is used as the intermediate layer. It is preferable to use a layer composed of one or more components selected from the group consisting of Si, Ti, and Cr. Since such a metal or element easily forms an oxide, a stable oxide can be formed at the interface with the substrate, and oxygen can be immobilized in the vicinity of the substrate surface.
The intermediate layer can be formed using a known method such as a vacuum deposition method, a sputter deposition method, a vacuum arc deposition method, an ion plating method, and various CVD methods. Among these, it is preferable to use an ion plating method and a sputter deposition method. Particularly, when a vacuum arc deposition method is used, the ionization rate of the raw material is high, and the intermediate layer and the substrate It is most preferable because the adhesion between the two is improved.

中間層の厚みは、例えば5nm〜300nmとすることができる。
また、中間層金属の密度は基材の密度より小さいことが好ましい。例えば、鉄系基材の場合、鉄の密度は7.86であるが、これより低密度な材料を中間層材料として使用すると、後述する炭素イオン照射による注入効果が得やすくなり、中間層表面の炭素濃度を高くしやすくなる。
The thickness of the intermediate layer can be set to, for example, 5 nm to 300 nm.
Moreover, it is preferable that the density of an intermediate | middle layer metal is smaller than the density of a base material. For example, in the case of an iron-based base material, the density of iron is 7.86. However, if a material having a lower density is used as the intermediate layer material, it becomes easier to obtain an implantation effect due to carbon ion irradiation, which will be described later. It becomes easy to raise the carbon concentration of.

中間層の酸素濃度を表面側から中間層内部に向かって増加させる方法としては以下がある。例えばスパッタ蒸着法や真空アーク蒸着法を中間層の形成に用いる場合、中間層を形成する前に基材を設置した真空チャンバー内の到達真空度を低真空として残留水分を多くし、基材表面を酸化しやすくする。これにより、基材と中間層の界面の酸素濃度を高くすることができる。この時、基材と中間層界面に存在する酸素は中間層の成分(金属等)と反応して安定な酸化物を形成する。その後、中間層の成膜が進むにつれて、真空チャンバー内の酸素が消費され、中間層の酸素濃度は低下する。
また、中間層形成前の基材のクリーニング処理時の雰囲気ガス(Arガス等)の圧力を低く設定することによって、残留水分の影響を顕著にすることも可能である。さらに、中間層形成時の真空チャンバー内の雰囲気ガスの圧力やカソードへの印加電力を調整することにより、酸素濃度を制御することもできる。
There are the following methods for increasing the oxygen concentration of the intermediate layer from the surface side toward the inside of the intermediate layer. For example, when sputter deposition or vacuum arc deposition is used to form the intermediate layer, the final vacuum in the vacuum chamber in which the substrate is installed is reduced to a low vacuum before the intermediate layer is formed, and the residual moisture is increased. Makes it easier to oxidize. Thereby, the oxygen concentration at the interface between the substrate and the intermediate layer can be increased. At this time, oxygen present at the interface between the base material and the intermediate layer reacts with components of the intermediate layer (metal or the like) to form a stable oxide. Thereafter, as the intermediate layer is formed, oxygen in the vacuum chamber is consumed, and the oxygen concentration in the intermediate layer decreases.
Further, by setting the pressure of the atmospheric gas (Ar gas or the like) during the cleaning process of the base material before forming the intermediate layer to be low, it is possible to make the influence of residual moisture noticeable. Furthermore, the oxygen concentration can also be controlled by adjusting the pressure of the atmospheric gas in the vacuum chamber and the power applied to the cathode when forming the intermediate layer.

中間層の酸素濃度及び炭素濃度の分布を以上のように規定することにより、第1に、基材表面の酸素が中間層と反応して酸化物となるために基材と中間層の密着性が向上する。第2に、基材表面の酸素が中間層との界面に固定化され、中間層表面の酸化物が少ないため、中間層とDLC皮膜との密着性が向上する。第3に、中間層表面にはDLC皮膜と親和性の高い炭化物や非晶質炭素層が形成されるため、中間層とDLC皮膜との密着性がさらに向上する。   By defining the distribution of oxygen concentration and carbon concentration in the intermediate layer as described above, first, oxygen on the surface of the base material reacts with the intermediate layer to form an oxide, and therefore the adhesion between the base material and the intermediate layer. Will improve. Secondly, oxygen on the surface of the substrate is fixed at the interface with the intermediate layer, and since there is little oxide on the surface of the intermediate layer, the adhesion between the intermediate layer and the DLC film is improved. Third, since a carbide or amorphous carbon layer having a high affinity with the DLC film is formed on the surface of the intermediate layer, the adhesion between the intermediate layer and the DLC film is further improved.

<非晶質硬質炭素皮膜(DLC皮膜)>
DLC皮膜は中間層の表面に形成され、水素含有量が5at%以下である。DLC皮膜の水素含有量は2at%以下であることが好ましい。DLC皮膜は、好ましくはPVD法により形成され、より好ましくは真空アーク蒸着法により形成される。CVD法によって形成したDLC皮膜は水素含有量が5at%を超えるため、硬度が低く、耐摩耗性が不充分となる可能性がある。
スパッタリング法(スパッタ蒸着法)によっても水素含有量が5at%以下のDLC皮膜を形成することは可能である。しかし、この方法は真空アーク蒸着法に比べてイオン化率が低く、カーボンイオンの照射効率が低くなるため、イオン化率の高い真空アーク蒸着法をカーボンイオン源として用いることが好ましい。真空アークからのカーボンの約70%がイオン化されており、イオン化したカーボンの96〜98%は1価イオンであるが、残りは2価イオンであるとされている。又、パルス真空アーク源では2価イオンの比率がさらに増加することが知られている。このような多価イオン比率の高いカーボンイオン源を利用することにより、低いバイアス電圧でも高い照射効果を得ることができる。
<Amorphous hard carbon film (DLC film)>
The DLC film is formed on the surface of the intermediate layer, and the hydrogen content is 5 at% or less. The hydrogen content of the DLC film is preferably 2 at% or less. The DLC film is preferably formed by the PVD method, more preferably by the vacuum arc deposition method. Since the DLC film formed by the CVD method has a hydrogen content exceeding 5 at%, the hardness may be low and the wear resistance may be insufficient.
It is possible to form a DLC film having a hydrogen content of 5 at% or less by a sputtering method (sputter deposition method). However, since this method has a lower ionization rate and lower carbon ion irradiation efficiency than the vacuum arc vapor deposition method, it is preferable to use a vacuum arc vapor deposition method with a high ionization rate as the carbon ion source. About 70% of the carbon from the vacuum arc is ionized, and 96 to 98% of the ionized carbon is monovalent ions, while the rest are divalent ions. It is also known that the ratio of divalent ions is further increased in a pulsed vacuum arc source. By using such a carbon ion source having a high polyvalent ion ratio, a high irradiation effect can be obtained even at a low bias voltage.

DLC皮膜中の水素濃度はHFS(Hydrogen Forward Scattering)法により求めることができる。また、DLC皮膜の硬度(ナノインデンター硬度)およびヤング率は、ナノインデンテーション法(例えば東洋テクニカ株式会社製のナノインデンター)を用いて求めることができる。
好ましくは、DLC皮膜のヤング率が60GPa以上であると、応力が負荷された時の皮膜の歪みを低減することができ、皮膜の欠けや剥離が起こり難くなるため、より高い密着性を得ることができる。
The hydrogen concentration in the DLC film can be determined by the HFS (Hydrogen Forward Scattering) method. Further, the hardness (nanoindenter hardness) and Young's modulus of the DLC film can be determined using a nanoindentation method (for example, nanoindenter manufactured by Toyo Technica Co., Ltd.).
Preferably, when the Young's modulus of the DLC film is 60 GPa or more, distortion of the film when stress is applied can be reduced, and chipping and peeling of the film are less likely to occur, thereby obtaining higher adhesion. Can do.

DLC皮膜のナノインデンテーション硬度を20GPa〜70GPaとし、DLC皮膜の厚さを0.5μm〜5μmとすることが好ましい。   The nanoindentation hardness of the DLC film is preferably 20 GPa to 70 GPa, and the thickness of the DLC film is preferably 0.5 μm to 5 μm.

以下、本発明の実施例についてさらに詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, examples of the present invention will be described in more detail, but the present invention is not limited thereto.

<実施例1−1>
摺動部材の基材1としてSUS440Cを使用し、図1に示す皮膜構造を形成した。基材1を予めアセトン、イソプロピルアルコールで超音波洗浄した後、真空チャンバー内の基板ホルダーに基材を取り付けた。次に、基材1を加熱しながら真空チャンバー内を所定の真空度まで排気したのち、Arガスによるクリーニング処理を行い、基材表面を清浄化した。この時、到達真空度を低真空とし、真空チャンバー内の残留水分の影響を受けやすくすることにより、基材と中間層の界面の酸素濃度を高くするようにした。また、クリーニング処理時のArガス圧を低めに設定し、残留水分の影響を顕著にした。
次に、Crターゲットを基材1表面にスパッタリングしてCr中間層2を形成した。中間層形成中は真空チャンバー内に酸素を供給しなかった。
次に、Cr中間層2が形成された基材1に数100Vの負のバイアス電圧を印加し、カーボンイオン照射(カーボンボンバード)により、Cr中間層2の表面に高濃度炭素層を形成した。引き続いてバイアス電圧を数10V程度に下げ、非晶質硬質炭素皮膜3を形成し、実施例1−1の試料を得た。なお、数100Vの高バイアス電圧を印加すると中間層表面にカーボンイオンの一部が侵入し、高濃度炭素層を形成することを別途確認した。又、低バイアス電圧にすると、カーボンイオンが中間層に侵入せずに中間層表面に堆積してDLC皮膜を形成することも別途確認した。
HFS分析により非晶質硬質炭素皮膜3中の水素含有量を測定したところ、最表面で4at%程度、皮膜内部では1at%以下であった。
<Example 1-1>
SUS440C was used as the base material 1 of the sliding member, and the film structure shown in FIG. 1 was formed. After the substrate 1 was ultrasonically cleaned with acetone and isopropyl alcohol in advance, the substrate was attached to the substrate holder in the vacuum chamber. Next, the inside of the vacuum chamber was evacuated to a predetermined degree of vacuum while heating the substrate 1, and then a cleaning process with Ar gas was performed to clean the substrate surface. At this time, the ultimate vacuum was set to a low vacuum, and the oxygen concentration at the interface between the base material and the intermediate layer was increased by making it easily affected by residual moisture in the vacuum chamber. In addition, the Ar gas pressure during the cleaning process was set to be low, and the influence of residual moisture was remarkable.
Next, a Cr intermediate layer 2 was formed by sputtering a Cr target on the surface of the substrate 1. During the formation of the intermediate layer, oxygen was not supplied into the vacuum chamber.
Next, a negative bias voltage of several hundred volts was applied to the base material 1 on which the Cr intermediate layer 2 was formed, and a high concentration carbon layer was formed on the surface of the Cr intermediate layer 2 by carbon ion irradiation (carbon bombardment). Subsequently, the bias voltage was lowered to about several tens of volts to form an amorphous hard carbon film 3, and a sample of Example 1-1 was obtained. It was separately confirmed that when a high bias voltage of several hundred volts was applied, a part of the carbon ions entered the surface of the intermediate layer to form a high concentration carbon layer. It was also confirmed that when a low bias voltage was applied, carbon ions did not enter the intermediate layer and deposited on the intermediate layer surface to form a DLC film.
When the hydrogen content in the amorphous hard carbon film 3 was measured by HFS analysis, it was about 4 at% on the outermost surface and 1 at% or less inside the film.

<実施例1−2>
中間層の形成用ターゲットとしてTiを用いたこと以外は、実施例1−1とまったく同様にして実施例1−2の試料を作製した。
<Example 1-2>
A sample of Example 1-2 was produced in the same manner as Example 1-1 except that Ti was used as a target for forming the intermediate layer.

<実施例1−3>
中間層の形成用ターゲットとしてSiを用いたこと以外は、実施例1−1とまったく同様にして実施例1−2の試料を作製した。
<Example 1-3>
A sample of Example 1-2 was manufactured in exactly the same manner as Example 1-1 except that Si was used as a target for forming the intermediate layer.

<実施例2>
実施例1−1と同一の基材について同様の手順で洗浄、真空チャンバー内への設置を行い、基材を加熱しながら真空チャンバー内を所定の真空度まで排気した。その後、基材に数100Vの負のバイアス電圧を印加し、Crカソードを装着した真空アーク源によるCrイオンボンバードにより基材表面をクリーニングした。その後、バイアス電圧を下げてCr中間層を基材上に形成した。
次に、実施例1−1とまったく同様にして中間層表面にカーボンイオン照射を行った後に非晶質硬質炭素皮膜を形成し、実施例2の試料を作製した。
<Example 2>
The same base material as in Example 1-1 was washed and placed in a vacuum chamber in the same procedure, and the inside of the vacuum chamber was evacuated to a predetermined degree of vacuum while heating the base material. Thereafter, a negative bias voltage of several hundred volts was applied to the substrate, and the substrate surface was cleaned by Cr ion bombardment by a vacuum arc source equipped with a Cr cathode. Thereafter, the bias voltage was lowered to form a Cr intermediate layer on the substrate.
Next, in the same manner as in Example 1-1, the surface of the intermediate layer was irradiated with carbon ions, an amorphous hard carbon film was formed, and the sample of Example 2 was produced.

<比較例1−1>
Cr中間層2の表面にカーボンイオン照射を行わなかったこと以外は、実施例1−1とまったく同様にして比較例1−1の試料を作製した。
<Comparative Example 1-1>
A sample of Comparative Example 1-1 was produced in the same manner as Example 1-1 except that the surface of the Cr intermediate layer 2 was not irradiated with carbon ions.

<比較例1−2>
Ti中間層2の表面にカーボンイオン照射を行わなかったこと以外は、実施例1−2とまったく同様にして比較例1−2の試料を作製した。
<Comparative Example 1-2>
A sample of Comparative Example 1-2 was produced in exactly the same manner as Example 1-2 except that the surface of the Ti intermediate layer 2 was not irradiated with carbon ions.

<比較例1−3>
Si中間層2の表面にカーボンイオン照射を行わなかったこと以外は、実施例1−3とまったく同様にして比較例1−3の試料を作製した。
<Comparative Example 1-3>
A sample of Comparative Example 1-3 was produced in exactly the same manner as Example 1-3 except that the surface of the Si intermediate layer 2 was not irradiated with carbon ions.

<比較例1−4>
中間層の形成用ターゲットとしてFeを用いたと共に、中間層2の表面にカーボンイオン照射を行わなかったこと以外は、実施例1−1とまったく同様にして比較例1−4の試料を作製した。
<Comparative Example 1-4>
A sample of Comparative Example 1-4 was prepared in exactly the same manner as Example 1-1, except that Fe was used as a target for forming the intermediate layer, and the surface of intermediate layer 2 was not irradiated with carbon ions. .

<比較例1−5>
中間層形成の間、雰囲気中に酸素を添加したこと以外は、実施例1−2とまったく同様にして比較例1−5の試料を作製した。
<Comparative Example 1-5>
A sample of Comparative Example 1-5 was produced in exactly the same manner as Example 1-2, except that oxygen was added to the atmosphere during the formation of the intermediate layer.

<比較例2−1>
Crカソードの代わりにWカソードを用いて中間層を形成したと共に、中間層2の表面にカーボンイオン照射を行わなかったこと以外は、実施例2とまったく同様にして比較例2−1の試料を作製した。
<Comparative Example 2-1>
The sample of Comparative Example 2-1 was prepared in exactly the same manner as in Example 2 except that the intermediate layer was formed using a W cathode instead of the Cr cathode and the surface of the intermediate layer 2 was not irradiated with carbon ions. Produced.

<比較例2−2>
中間層形成の間、雰囲気中に酸素を添加したこと以外は、実施例2とまったく同様にして比較例2−2の試料を作製した。
<Comparative Example 2-2>
A sample of Comparative Example 2-2 was produced in exactly the same manner as Example 2 except that oxygen was added to the atmosphere during the formation of the intermediate layer.

<比較例3>
基材としてSCM420浸炭材(表面炭素濃度1〜2at%程度)を使用し、実施例1−1と同様の手順で洗浄、真空チャンバー内への設置を行い、基材を加熱しながら真空チャンバー内を所定の真空度まで排気した。その後、基材に数100Vの負のバイアス電圧を印加し、Crカソードを装着した真空アーク源によるCrイオンボンバードにより基材表面をクリーニングした。その後、中間層を形成せず、カーボンイオン照射を行わなかったこと以外は、実施例1−1とまったく同様にして比較例3の試料を作製した。
<Comparative Example 3>
Using a SCM420 carburized material (surface carbon concentration of about 1 to 2 at%) as a base material, cleaning in the same procedure as in Example 1-1, placing in a vacuum chamber, and heating the base material in the vacuum chamber Was evacuated to a predetermined vacuum. Thereafter, a negative bias voltage of several hundred volts was applied to the substrate, and the substrate surface was cleaned by Cr ion bombardment by a vacuum arc source equipped with a Cr cathode. Thereafter, a sample of Comparative Example 3 was produced in the same manner as Example 1-1 except that the intermediate layer was not formed and carbon ion irradiation was not performed.

<評価>
1.中間層の酸素濃度及び炭素濃度の測定
SIMS分析により、試料のデプスプロファイルを測定した。図2、図3は実施例1−1の試料の皮膜のデプスプロファイルを示す。図2から明らかなように、中間層の酸素濃度は、表面から内部に向かって増加し、内部側(基材側)で最大の濃度となっていることが確認できた。一方、中間層の炭素濃度は、表面側で最大となり、内部に向かって減少していることが確認できた。
又、図3に対応する実施例1−1と比較例1−5の試料のデプスプロファイルの縦軸(酸素濃度)を相対比較したところ、実施例1−1に比べて比較例1−5の中間層表面の酸素濃度が約5倍高いことが判明した。
<Evaluation>
1. Measurement of oxygen concentration and carbon concentration of intermediate layer The depth profile of the sample was measured by SIMS analysis. 2 and 3 show the depth profile of the film of the sample of Example 1-1. As is clear from FIG. 2, it was confirmed that the oxygen concentration of the intermediate layer increased from the surface toward the inside, and reached the maximum concentration on the inner side (base material side). On the other hand, it was confirmed that the carbon concentration in the intermediate layer was maximum on the surface side and decreased toward the inside.
Moreover, when the vertical axis | shaft (oxygen concentration) of the depth profile of the sample of Example 1-1 corresponding to FIG. 3 and Comparative Example 1-5 was compared relatively, compared with Example 1-1, Comparative Example 1-5. It was found that the oxygen concentration on the surface of the intermediate layer was about 5 times higher.

2.密着性の評価
2−1.ロックウェル圧痕試験
ロックウェル硬度計(Cスケール、ダイヤモンド圧子、荷重:1.47×10Pa(150kgf))を用い、各試料の表面に圧痕を付けた。圧痕周辺部の剥離状態を光学顕微鏡により観察し、以下の基準で評価した。
○:皮膜の剥離が見られない
×:皮膜の剥離が見られる
2−2.スクラッチ試験
ダイヤモンド圧子(先端径200μm)を使用し、負荷速度100N/分、スクラッチ速度10mm/分で各試料の表面をスクラッチし、皮膜の剥離開始荷重を測定した。測定機はCSEM社製のREVETESTを用いた。
2−3.実機試験
本発明の摺動部材として、実機のエンジンのピストンリングおよびバルブリフターに上記各実施例及び比較例の皮膜構造を成膜し、実機のエンジンに組み込んで摺動試験(エンジンの運転)を行った。試験条件は、ピストンリングの場合には実機エンジンで10時間の運転を行い、バルブリフターの場合は実機ヘッドを用いて100時間の耐久試験を行って、以下の基準で評価した。
○:試験後に皮膜の剥離が見られない
×:試験後に皮膜の剥離が見られる
2. 2. Evaluation of adhesion 2-1. Rockwell Indentation Test Using a Rockwell hardness meter (C scale, diamond indenter, load: 1.47 × 10 7 Pa (150 kgf)), an indentation was made on the surface of each sample. The peeled state around the indentation was observed with an optical microscope and evaluated according to the following criteria.
○: No peeling of the film is observed ×: The peeling of the film is observed 2-2. Scratch test Using a diamond indenter (tip diameter 200 μm), the surface of each sample was scratched at a load speed of 100 N / min and a scratch speed of 10 mm / min, and the peeling start load of the film was measured. The measuring machine used was REVETEST manufactured by CSEM.
2-3. Actual machine test As the sliding member of the present invention, the coating structure of each of the above examples and comparative examples is formed on the piston ring and the valve lifter of the actual engine, and the sliding test (engine operation) is performed by incorporating it into the actual engine. went. In the case of a piston ring, the test was performed for 10 hours with an actual engine. In the case of a valve lifter, a 100-hour endurance test was performed using an actual head, and evaluation was performed according to the following criteria.
○: No peeling of the film is observed after the test ×: peeling of the film is observed after the test

3.硬度の測定
ナノインデンテーション(ダイヤモンド型の三角錐型鋭角圧子(バーコビッチ圧子)を用いた超微小硬度計であり、超低荷重で圧子を押込んだ時の押込み量を測定して硬度およびヤング率を求めるもの)により、各試料の厚み方向の皮膜硬度(ナノインデンター硬度)およびヤング率を測定した。ナノインデンターは、MTSシステムズ社製のNanoIndenterを用いた。
図4は実施例1−1と比較例2−1の試料について、ナノインデンテーションによる押し込み深さと硬度の関係を測定したグラフである。実施例1−1の場合、Cr中間層表面へカーボンイオンを照射した効果により、DLC皮膜と中間層の界面領域の硬度が増加していることが確認された。
3. Measurement of hardness Nano indentation (Diamond-type triangular pyramid type indenter (Barkovitch indenter) is an ultra-micro hardness meter that measures the amount of indentation when the indenter is indented under ultra-low load. The film hardness (nanoindenter hardness) and Young's modulus in the thickness direction of each sample were measured. As the nano indenter, NanoIndenter manufactured by MTS Systems was used.
FIG. 4 is a graph obtained by measuring the relationship between indentation depth and hardness by nanoindentation for the samples of Example 1-1 and Comparative Example 2-1. In the case of Example 1-1, it was confirmed that the hardness of the interface region between the DLC film and the intermediate layer was increased by the effect of irradiating the surface of the Cr intermediate layer with carbon ions.

以上の結果を表1に示す。   The results are shown in Table 1.

Figure 2006250348
Figure 2006250348

表1から明らかなように、各実施例の場合、密着性の評価に優れ、実機のエンジンを用いた場合も皮膜が剥離しなかった。   As is clear from Table 1, in each case, the adhesion was excellent, and the film was not peeled even when an actual engine was used.

一方、カーボンイオン照射を行わなかったため、中間層表面に炭化物が形成されなかった比較例1−1〜1−3、比較例2−1の場合、実機での密着性の評価が劣った。
又、中間層として基材と同じ材料(Fe)を用いたと共に、カーボンイオン照射を行わなかったため、中間層表面に炭化物が形成されなかった比較例1−4の場合、密着性の評価がいずれも劣った。
中間層として基材と同じ材料(Fe)を用いたと共に、カーボンイオン照射を行わなかったため、中間層表面に炭化物が形成されなかった比較例1−4の場合、密着性の評価がラボ評価と実機評価のいずれも劣った。
On the other hand, since carbon ion irradiation was not performed, in the case of Comparative Examples 1-1 to 1-3 and Comparative Example 2-1, in which carbide was not formed on the intermediate layer surface, the evaluation of adhesion with an actual machine was inferior.
Moreover, since the same material (Fe) as the base material was used as the intermediate layer and no carbon ion irradiation was performed, in the case of Comparative Example 1-4 where no carbide was formed on the surface of the intermediate layer, the adhesion evaluation was Also inferior.
In the case of Comparative Example 1-4 in which carbide was not formed on the intermediate layer surface because the same material (Fe) as that of the base material was used as the intermediate layer and carbon ion irradiation was not performed, the evaluation of adhesion was a laboratory evaluation. All of the actual machine evaluations were inferior.

中間層形成の間、雰囲気中に酸素を添加したため、中間層表面の酸素濃度が実施例に比べて高くなった比較例1−5、比較例2−2の場合、密着性の評価がラボ評価と実機評価のいずれも劣った。
中間層を形成しなかった比較例3の場合、密着性の評価がラボ評価と実機評価のいずれも劣った。
Since oxygen was added to the atmosphere during the formation of the intermediate layer, in the case of Comparative Example 1-5 and Comparative Example 2-2 in which the oxygen concentration on the surface of the intermediate layer was higher than that of the example, the evaluation of adhesion was a laboratory evaluation. And the actual machine evaluation were inferior.
In the case of Comparative Example 3 in which no intermediate layer was formed, the adhesion evaluation was inferior in both the laboratory evaluation and the actual machine evaluation.

本発明の実施形態に係る摺動部材の断面を示す模式図である。It is a schematic diagram which shows the cross section of the sliding member which concerns on embodiment of this invention. 実施例1−1の試料の皮膜のデプスプロファイルを示す図である。It is a figure which shows the depth profile of the film | membrane of the sample of Example 1-1. 実施例1−1の試料の皮膜のデプスプロファイルを示す別の図である。It is another figure which shows the depth profile of the film | membrane of the sample of Example 1-1. 実施例の試料のナノインデンテーションによる押し込み深さと硬度の関係を測定したグラフを示す図である。It is a figure which shows the graph which measured the relationship of the indentation depth by the nanoindentation of the sample of an Example, and hardness.

符号の説明Explanation of symbols

1 基材
2 中間層
3 非晶質硬質炭素皮膜
1 Base material 2 Intermediate layer 3 Amorphous hard carbon film

Claims (5)

基材と、基材表面に形成された中間層と、前記中間層表面に形成され炭素を主成分とし水素含有量が5at%以下の非晶質硬質炭素皮膜とを有し、
前記中間層の酸素濃度が表面側から前記中間層内部に向かって増加し、かつ炭素濃度が表面側から前記中間層内部に向かって減少している摺動部材。
A base material, an intermediate layer formed on the surface of the base material, and an amorphous hard carbon film formed on the surface of the intermediate layer and containing hydrogen as a main component and having a hydrogen content of 5 at% or less,
A sliding member in which the oxygen concentration of the intermediate layer increases from the surface side toward the inside of the intermediate layer, and the carbon concentration decreases from the surface side toward the inside of the intermediate layer.
前記非晶質硬質炭素皮膜のヤング率が60GPa以上である請求項1に記載の摺動部材。   The sliding member according to claim 1, wherein Young's modulus of the amorphous hard carbon film is 60 GPa or more. 前記中間層および前記非晶質硬質炭素皮膜が真空アーク蒸着法により形成されている請求項1又は2に記載の摺動部材。   The sliding member according to claim 1 or 2, wherein the intermediate layer and the amorphous hard carbon film are formed by a vacuum arc deposition method. 前記中間層が100℃における酸化物の標準生成自由エネルギーが−600kJ以下の金属層からなることを特徴とする請求項1乃至3の何れかに記載の摺動部材。   The sliding member according to any one of claims 1 to 3, wherein the intermediate layer is made of a metal layer having a standard free energy of formation of oxide at 100 ° C of -600 kJ or less. 前記中間層がSi、Ti、及びCrの群から選ばれた1種又は2種以上を含む金属層からなる請求項1乃至4の何れかに記載の摺動部材。   The sliding member according to any one of claims 1 to 4, wherein the intermediate layer is made of a metal layer including one or more selected from the group consisting of Si, Ti, and Cr.
JP2006036039A 2005-02-14 2006-02-14 Sliding member Withdrawn JP2006250348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006036039A JP2006250348A (en) 2005-02-14 2006-02-14 Sliding member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005036626 2005-02-14
JP2006036039A JP2006250348A (en) 2005-02-14 2006-02-14 Sliding member

Publications (1)

Publication Number Publication Date
JP2006250348A true JP2006250348A (en) 2006-09-21

Family

ID=37091059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006036039A Withdrawn JP2006250348A (en) 2005-02-14 2006-02-14 Sliding member

Country Status (1)

Country Link
JP (1) JP2006250348A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261261A (en) * 2007-04-11 2008-10-30 Hitachi Appliances Inc Sliding member and scroll-type electric compressor using the same
JP2011052238A (en) * 2009-08-31 2011-03-17 Hitachi Tool Engineering Ltd Sliding component
JP2011190827A (en) * 2010-03-12 2011-09-29 Ntn Corp Die for forming dynamic pressure grooves and method for manufacturing dynamic pressure-type oil-impregnated sintered bearing
WO2015064538A1 (en) 2013-10-31 2015-05-07 株式会社リケン Piston ring and method for manufacturing same
JP2016126123A (en) * 2014-12-26 2016-07-11 富士ゼロックス株式会社 Rubbing member, cleaning device, process cartridge, and image forming apparatus
JP2018003880A (en) * 2016-06-28 2018-01-11 株式会社リケン Slide member
WO2019078052A1 (en) 2017-10-20 2019-04-25 株式会社リケン Sliding member and piston ring
WO2019130769A1 (en) 2017-12-27 2019-07-04 株式会社リケン Sliding member and piston ring

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261261A (en) * 2007-04-11 2008-10-30 Hitachi Appliances Inc Sliding member and scroll-type electric compressor using the same
JP2011052238A (en) * 2009-08-31 2011-03-17 Hitachi Tool Engineering Ltd Sliding component
JP2011190827A (en) * 2010-03-12 2011-09-29 Ntn Corp Die for forming dynamic pressure grooves and method for manufacturing dynamic pressure-type oil-impregnated sintered bearing
US10006547B2 (en) 2013-10-31 2018-06-26 Kabushiki Kaisha Riken Piston ring and its production method
WO2015064538A1 (en) 2013-10-31 2015-05-07 株式会社リケン Piston ring and method for manufacturing same
JP2016126123A (en) * 2014-12-26 2016-07-11 富士ゼロックス株式会社 Rubbing member, cleaning device, process cartridge, and image forming apparatus
JP2018003880A (en) * 2016-06-28 2018-01-11 株式会社リケン Slide member
WO2019078052A1 (en) 2017-10-20 2019-04-25 株式会社リケン Sliding member and piston ring
CN111065757A (en) * 2017-10-20 2020-04-24 株式会社理研 Sliding members and piston rings
US11168790B2 (en) 2017-10-20 2021-11-09 Kabushiki Kaisha Riken Sliding member and piston ring
EP3660180B1 (en) 2017-10-20 2023-04-12 Kabushiki Kaisha Riken Sliding member and piston ring
WO2019130769A1 (en) 2017-12-27 2019-07-04 株式会社リケン Sliding member and piston ring
CN111108227A (en) * 2017-12-27 2020-05-05 株式会社理研 Sliding members and piston rings
US10670147B2 (en) 2017-12-27 2020-06-02 Kabushiki Kaisha Riken Sliding member and piston ring
CN111108227B (en) * 2017-12-27 2021-02-19 株式会社理研 Sliding members and piston rings

Similar Documents

Publication Publication Date Title
US8202615B2 (en) Nitrogen-containing amorphous carbon-type film, amorphous carbon-type lamination film, and sliding member
CN110770362B (en) Sliding member and coating film
JP4918656B2 (en) Amorphous hard carbon film
JP4400603B2 (en) Member with hard carbon coating
JP2006250348A (en) Sliding member
JP5575989B2 (en) Combination of cylinder and piston ring
EP2083095A2 (en) Diamond-like carbon film for sliding parts and method for production thereof
EP3828311A1 (en) Razor blade coating
US20240093344A1 (en) Hard carbon coatings with improved adhesion strength by means of hipims and method thereof
US11946010B2 (en) Sliding member, manufacturing method thereof, and coating film
JP4360082B2 (en) Method for producing amorphous carbon coating and sliding part with amorphous carbon coating
EP3660180B1 (en) Sliding member and piston ring
JPWO2011007770A1 (en) Surface-coated sliding component with excellent film adhesion and method for producing the same
JP2003293136A (en) Amorphous hard carbon film and sliding member using the same
JP5077293B2 (en) Method for producing amorphous carbon coating and sliding part with amorphous carbon coating
JP6938807B1 (en) Sliding members and piston rings
CN117062936A (en) Sliding member, method for producing same, and coating film
JP2010031327A (en) Hard amorphous carbon coated member and manufacturing method thereof
JPH05214512A (en) Ceramic coated member and method of manufacturing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090512