JP5069111B2 - Al-Si-Mg-Zn-Cu alloy for aerospace and automotive castings - Google Patents
Al-Si-Mg-Zn-Cu alloy for aerospace and automotive castings Download PDFInfo
- Publication number
- JP5069111B2 JP5069111B2 JP2007523726A JP2007523726A JP5069111B2 JP 5069111 B2 JP5069111 B2 JP 5069111B2 JP 2007523726 A JP2007523726 A JP 2007523726A JP 2007523726 A JP2007523726 A JP 2007523726A JP 5069111 B2 JP5069111 B2 JP 5069111B2
- Authority
- JP
- Japan
- Prior art keywords
- casting
- alloy
- less
- aluminum
- shape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910045601 alloy Inorganic materials 0.000 title claims description 154
- 239000000956 alloy Substances 0.000 title claims description 154
- 238000005266 casting Methods 0.000 title claims description 58
- 229910007565 Zn—Cu Inorganic materials 0.000 title 1
- 239000001608 potassium adipate Substances 0.000 claims description 29
- 229910000838 Al alloy Inorganic materials 0.000 claims description 25
- 229910052782 aluminium Inorganic materials 0.000 claims description 20
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 20
- 238000005495 investment casting Methods 0.000 claims description 13
- 210000001787 dendrite Anatomy 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 4
- 238000004512 die casting Methods 0.000 claims description 3
- 230000005484 gravity Effects 0.000 claims description 3
- 238000010120 permanent mold casting Methods 0.000 claims description 3
- 238000007528 sand casting Methods 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 2
- 238000009716 squeeze casting Methods 0.000 claims description 2
- 230000009974 thixotropic effect Effects 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims 3
- 239000010949 copper Substances 0.000 description 116
- 239000011701 zinc Substances 0.000 description 96
- 239000011777 magnesium Substances 0.000 description 88
- 229910052802 copper Inorganic materials 0.000 description 63
- 229910052749 magnesium Inorganic materials 0.000 description 54
- 229910052725 zinc Inorganic materials 0.000 description 37
- 238000012360 testing method Methods 0.000 description 18
- 239000000203 mixture Substances 0.000 description 17
- 230000000694 effects Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 6
- 238000007711 solidification Methods 0.000 description 6
- 230000008023 solidification Effects 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 230000008092 positive effect Effects 0.000 description 4
- 229910017518 Cu Zn Inorganic materials 0.000 description 3
- 229910017752 Cu-Zn Inorganic materials 0.000 description 3
- 229910017943 Cu—Zn Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000861 Mg alloy Inorganic materials 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910018125 Al-Si Inorganic materials 0.000 description 1
- 229910018520 Al—Si Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/12—Making non-ferrous alloys by processing in a semi-solid state, e.g. holding the alloy in the solid-liquid phase
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/10—Alloys based on aluminium with zinc as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/043—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
- C22F1/053—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Conductive Materials (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Description
<関連出願の記載>
この出願は、2004年7月28に出願された米国仮出願第60/592,051号の利益を主張し、該出願は引用を以てその全体を本願への記載加入とする。
<Description of related applications>
This application claims the benefit of US Provisional Application No. 60 / 592,051, filed July 28, 2004, which is hereby incorporated by reference in its entirety.
<発明の分野>
本発明は、アルミニウム合金に関し、より具体的には、珪素(Si)、マグネシウム(Mg)、亜鉛(Zn)及び銅(Cu)を含むアルミニウム鋳造合金に関する。
<Field of Invention>
The present invention relates to an aluminum alloy, and more specifically to an aluminum casting alloy containing silicon (Si), magnesium (Mg), zinc (Zn), and copper (Cu).
<発明の背景>
アルミニウム鋳造品は、重量低減のために航空宇宙及び自動車産業で広く用いられている。使用されている最も一般的な鋳造合金はAl−Si7−Mgであり、強度限界が確証されている。現在、E357が最も一般的に使用されているAl−Si7−Mg合金であり、この鋳造材料は、室温での特性として、最大引張強さ310MPa(45,000psi)、引張降伏強さ260MPa(37,709psi)、伸び5%以上が保証される。より軽量の部品を得るために、より高強度及びより高延性の材料について、設計に関する材料特性の確証が必要である。
<Background of the invention>
Aluminum castings are widely used in the aerospace and automotive industries for weight reduction. The most common cast alloy used is Al-Si 7 -Mg, strength limit has been established. At present, E357 is the most commonly used Al-Si7-Mg alloy, and this cast material has a maximum tensile strength of 310 MPa (45,000 psi) and a tensile yield strength of 260 MPa (37 709 psi) and an elongation of 5% or more is guaranteed. In order to obtain lighter parts, it is necessary to verify the material properties of the design for higher strength and higher ductility materials.
より高強度を有する種々の代替合金が存在し、登録されている。しかしながら、これらの合金は、鋳造性、腐食電位又は流動性に潜在的な問題があり、これらの問題を解消させることは容易でないので、使用適性に劣る。それゆえ、E357等のAl−Si7−Mg合金よりも機械的特性にすぐれると共に、良好な鋳造性、耐食性及びその他所望される特性を有する合金が要請されている。 Various alternative alloys with higher strength exist and are registered. However, these alloys have potential problems in castability, corrosion potential, or fluidity, and it is not easy to solve these problems, so they are inferior in suitability for use. Therefore, there is a demand for an alloy having better mechanical properties than Al-Si7-Mg alloys such as E357, as well as good castability, corrosion resistance and other desired properties.
<発明の概要>
本発明は、改良された機械的特性を有する新規なAlSiMg合金、並びに前記AlSiMg合金から作られた形状鋳物(shaped castings)及び前記AlSiMg合金から形状鋳物を製造する方法を提供する。本発明のAlSiMg合金組成物は、従来のAlSi7Mg合金(例えばE357)よりも機械的特性(例えば、最大引張強さ(UTS)及び引張降伏強度(TYS)。但し、これらに限定されない)を向上させるのに適当な割合となるように、Zn、Cu及びMgを含んでいる。
<Outline of the invention>
The present invention provides a novel AlSiMg alloy with improved mechanical properties, as well as shaped castings made from the AlSiMg alloy and a method for producing a shape casting from the AlSiMg alloy. The AlSiMg alloy composition of the present invention improves mechanical properties (for example, but not limited to, maximum tensile strength (UTS) and tensile yield strength (TYS)) over conventional AlSi7Mg alloys (eg, E357). Zn, Cu, and Mg are contained so that it may become a suitable ratio.
本発明の一態様はアルミニウム鋳造合金であって、本発明のアルミニウム鋳造合金は、
Si:4%〜9%、
Mg:0.1〜0.7%、
Zn:5%以下、
Fe:0.15%未満、
Cu:4%未満、
Mn:0.3%未満、
B:0.05%未満、
Ti:0.15%未満、
残部本質的にアルミニウムである。
One aspect of the present invention is an aluminum cast alloy, the aluminum cast alloy of the present invention,
Si: 4% to 9%
Mg: 0.1-0.7%
Zn: 5% or less,
Fe: less than 0.15%,
Cu: less than 4%,
Mn: less than 0.3%,
B: Less than 0.05%
Ti: less than 0.15%,
The balance is essentially aluminum.
なお、上記の%は、重量%(wt%)で表されている。本発明の幾つかの実施例において、Zn、Cu及びMgの割合は、従来のAlSi7Mg合金(例えばE357)と比べて、向上した強度特性を有するAlSiMg合金が得られるように選択される。本発明の一実施例において、「向上した強度特性」とは、室温又は高温用途のT6質別インベストメント鋳造品について、同じように作られたE357鋳造品と比べて、E357鋳造品と同等の伸びを維持しつつ、引張降伏強度(Tensile Yield Strength(TYS))で約20%〜30%、最大引張強さ(Ultimate Tensile Strength(UTS))で約20%〜30%の増加又は向上を意味する。 In addition, said% is represented by weight% (wt%). In some embodiments of the present invention, the proportions of Zn, Cu and Mg are selected so as to obtain an AlSiMg alloy having improved strength characteristics compared to a conventional AlSi7Mg alloy (eg, E357). In one embodiment of the present invention, “improved strength characteristics” refers to an elongation equal to an E357 casting for a T6 grade investment casting for room temperature or high temperature applications as compared to an E357 casting made in the same manner. This means an increase or improvement of about 20% to 30% in tensile yield strength (TYS) and about 20% to 30% in ultimate tensile strength (UTS). .
本発明の幾つかの実施例において、合金のCu含有量を増加させるのは、室温(22℃)及び高温(100℃〜250℃、好ましくは150℃)における最大引張強さ(UTS)及び引張降伏強度(TYS)を大きくするためである。最大引張強さ(UTS)と引張降伏強度(TYS)は、一般的には、温度の上昇と共に低下すると理解されているが、Cuを含有すると、Cuを含有しない同様なAlSiMg合金と比べて、一般的に高温強度特性が向上することがわかった。本発明の一実施例において、高温伸びを増加させるために、Cu含有量は最少限に抑えられる。さらに留意すべきことは、伸び(E)は一般的には温度の上昇と共に増加することである。 In some embodiments of the present invention, increasing the Cu content of the alloy can be achieved by increasing the maximum tensile strength (UTS) and tensile at room temperature (22 ° C.) and elevated temperature (100 ° C. to 250 ° C., preferably 150 ° C.). This is to increase the yield strength (TYS). Maximum tensile strength (UTS) and tensile yield strength (TYS) are generally understood to decrease with increasing temperature, but with Cu, compared to similar AlSiMg alloys not containing Cu, In general, it was found that the high-temperature strength characteristics were improved. In one embodiment of the present invention, the Cu content is kept to a minimum in order to increase the high temperature elongation. It should be further noted that the elongation (E) generally increases with increasing temperature.
本発明の幾つかの実施例において、合金中のCuとMgの含有量の選択は、室温(22℃)及び高温での最大引張強さ(UTS)及び降伏引張強度(YTS)を向上させるために行なう。本発明の幾つかの実施例において、Znの含有は、Cu及びより多くのMgを含む組成の合金の伸びを増加させることができる。本発明の幾つかの実施例において、Znの含有は、Cu及びより少ないMgを含む組成の合金の伸びが低下する。Znを含有すると、室温での伸びに影響を及ぼすが、高温でも同様な傾向が見られる。 In some embodiments of the present invention, the choice of Cu and Mg content in the alloy is to improve the maximum tensile strength (UTS) and yield tensile strength (YTS) at room temperature (22 ° C.) and high temperature. To do. In some embodiments of the present invention, the inclusion of Zn can increase the elongation of alloys with compositions containing Cu and more Mg. In some embodiments of the present invention, the inclusion of Zn reduces the elongation of alloys with compositions containing Cu and less Mg. When Zn is contained, the elongation at room temperature is affected, but the same tendency is observed even at high temperatures.
本発明の幾つかの実施例において、Cuの含有量は2%以下であり、Znの含有量は約3%〜約5%の範囲である。この範囲内では、Znの含有量が多いほど、合金の最大引張強さ(UTS)及び降伏引張強度(TYS)は向上する。また、本発明の合金にZnを含有する場合、合金中のCu濃度が2%を越える場合、一般的には、合金の最大引張強さ(UTS)を僅かに低下させることも分かった。一実施例において、Cu含有量が2%より多い場合、Znの含有量は3%未満まで少なくする。一実施例において、Cu含有量が2%より多い場合、Znの含有量は0%であってよい。本発明の他の実施例において、Cu、Zn及びMgの含有量の選択は、伸びを増加するために行なう。本発明の合金では、Zn含有量が2.5wt%より少ない場合、Mgはプラスの影響(伸びの増加)を及ぼし、Zn含有量2.5wt%を越える場合、マイナスの影響を与える(伸びの低下)。本発明の一実施例において、合金の最大引張強さ(UTS)は、0.5wt%未満のAgを添加することで増加する。 In some embodiments of the invention, the Cu content is 2% or less and the Zn content is in the range of about 3% to about 5%. Within this range, the higher the Zn content, the higher the maximum tensile strength (UTS) and the yield tensile strength (TYS) of the alloy. It has also been found that when the alloy of the present invention contains Zn, the maximum tensile strength (UTS) of the alloy is generally slightly reduced when the Cu concentration in the alloy exceeds 2%. In one embodiment, if the Cu content is greater than 2%, the Zn content is reduced to less than 3%. In one example, if the Cu content is greater than 2%, the Zn content may be 0%. In another embodiment of the invention, the selection of Cu, Zn and Mg content is done to increase elongation. In the alloy of the present invention, when the Zn content is less than 2.5 wt%, Mg has a positive effect (increase in elongation), and when the Zn content exceeds 2.5 wt%, it has a negative effect (elongation of elongation). Decline). In one embodiment of the present invention, the maximum tensile strength (UTS) of the alloy is increased by adding less than 0.5 wt% Ag.
本発明の幾つかの実施例において、Mg、Cu及びZn濃度の選択は、室温及び高温における合金の品質指数(Quality Index)にプラスの影響を与えるために行なう。品質指数は、強度と伸びを表している。Cuの含有は、合金の強度を高めるが、一方では、合金の伸びを低下させるため、合金の品質指数を低下させることがある。一実施例において、Cuを含むと共に1wt%よりも多くのZnを含む発明合金について、合金の品質指数を増すために、Mgを含有させる。さらにまた、Mg含有量が多く(例えば0.6wt%のオーダ)、かつ、Cu含有量が少ない(例えば2.5wt%未満)とき、Znは品質指数を増加させる。 In some embodiments of the present invention, the choice of Mg, Cu and Zn concentrations is made to positively affect the quality index of the alloy at room temperature and elevated temperature. The quality index represents strength and elongation. Inclusion of Cu increases the strength of the alloy, but on the other hand, it lowers the elongation of the alloy, which may reduce the quality index of the alloy. In one embodiment, an inventive alloy that includes Cu and greater than 1 wt% Zn includes Mg to increase the quality index of the alloy. Furthermore, when the Mg content is high (eg, on the order of 0.6 wt%) and the Cu content is low (eg, less than 2.5 wt%), Zn increases the quality index.
発明合金は、F、T5又はT6熱処理に用いられる。また、E357と比べると、合金の流動性が向上している。 Inventive alloys are used for F, T5 or T6 heat treatment. In addition, the fluidity of the alloy is improved compared to E357.
本発明の他の態様は形状鋳物であって、本発明の形状鋳物は、
Si:4%〜9%、
Mg:0.1〜0.7%、
Zn:5%以下、
Fe:0.15%未満、
Cu:4%未満、
Mn:0.3%未満、
B:0.05%未満、
Ti:0.15%未満、
残部本質的にアルミニウムである。
Another aspect of the present invention is a shape casting, and the shape casting of the present invention comprises:
Si: 4% to 9%
Mg: 0.1-0.7%
Zn: 5% or less,
Fe: less than 0.15%,
Cu: less than 4%,
Mn: less than 0.3%,
B: Less than 0.05%
Ti: less than 0.15%,
The balance is essentially aluminum.
本発明の更なる態様は形状鋳物を製造する方法であって、本発明の方法は、
Si:4%〜9%、
Mg:0.1〜0.7%、
Zn:5%以下、
Fe:0.15%未満、
Cu:4%未満、
Mn:0.3%未満、
B:0.05%未満、
Ti:0.15%未満、
残部本質的にアルミニウム、
である溶融金属塊を製造することを含んでいる。
A further aspect of the invention is a method of producing a shape casting, the method of the invention comprising:
Si: 4% to 9%
Mg: 0.1-0.7%
Zn: 5% or less,
Fe: less than 0.15%,
Cu: less than 4%,
Mn: less than 0.3%,
B: Less than 0.05%
Ti: less than 0.15%,
The balance essentially aluminum,
Producing a molten metal mass that is
アルミニウム合金製品を製造する本発明の方法の一実施例では、溶融金属塊をアルミニウム合金鋳物に鋳造することを含んでおり、鋳造として、インベストメント鋳造、低圧若しくは重力鋳造、永久若しくは半永久鋳型鋳造、スクイズ鋳造、ダイカスト鋳造、一方向性鋳造(directional casting)又は砂型鋳造がある。本発明の製造方法は、鋳型にチル及びライザーを設けることを含んでいる。本発明の一実施例において、溶融金属塊は、チキソトロピック金属塊(thixotropic metal mass)であり、アルミニウム合金製品の製造は、半固体鋳造又は成形を含んでいる。 One embodiment of the method of the present invention for producing an aluminum alloy product includes casting a molten metal mass into an aluminum alloy casting, such as investment casting, low pressure or gravity casting, permanent or semi-permanent mold casting, squeeze There are casting, die casting, directional casting or sand casting. The production method of the present invention includes providing a chill and a riser in the mold. In one embodiment of the invention, the molten metal mass is a thixotropic metal mass and the production of the aluminum alloy product includes semi-solid casting or forming.
<発明の詳細な記述>
表1は、本発明に係る様々な合金と比較用の従来合金E357の組成を示している。表1に示す合金について、機械的性質の試験を含む様々な試験を行ない、その試験結果を図1a〜図5に示している。
<Detailed Description of the Invention>
Table 1 shows the composition of various alloys according to the present invention and a comparative conventional alloy E357. Various tests including mechanical property tests were conducted on the alloys shown in Table 1, and the test results are shown in FIGS.
表1の値は、試験試料に含まれる様々な元素を重量%で示したものである。なお、一番左の合金欄に記載した数値は、合金中に含まれる銅と亜鉛の目標値である(但し、最終行の従来合金E357を除く)。 The values in Table 1 represent the various elements contained in the test sample in weight percent. The numerical values described in the leftmost alloy column are target values for copper and zinc contained in the alloy (except for the conventional alloy E357 in the last row).
表1中、各試料について、Cu、Zn、Si、Mg、Fe、Ti、B及びSrの実際の含有量を重量%で示している。 In Table 1, the actual content of Cu, Zn, Si, Mg, Fe, Ti, B, and Sr is shown by weight% for each sample.
表1に記載の組成を有する試料は、一方向性凝固試験用金型で鋳造し、機械的特性を調べた。得られた鋳造品は、次に、T6質別に熱処理を施した。試料は、鋳物の凝固速度の異なる領域から採取した。その後、試料の引張特性を、室温で評価した。 Samples having the compositions shown in Table 1 were cast with a unidirectional solidification test mold and examined for mechanical properties. Next, the obtained cast product was heat-treated according to T6 quality. Samples were taken from areas of different casting solidification rates. Thereafter, the tensile properties of the samples were evaluated at room temperature.
図1aは、アルミニウム合金試料の引張強さを示しており、アルミニウム合金試料は、Si約7%、Mg約0.5%を含み、CuとZnの濃度は、図に記載したとおりである。図1の試料は、約1℃/秒の速度で凝固させた。これら試料のデンドライトアーム間隔(dendrite arm spacing(DAS))は約30ミクロンであった。合金の引張強さは、Zn濃度の増加(試験でのZnの最大含有量は約3.61%)と共に大きくなることが認められる。同じように、引張強さは、Cu濃度の増加(試験でのCuの最大含有量は約3%)と共に大きくなることが認められる。Cu及び/又はZnを含む試料は、従来合金E357よりも高い強度を示した。 FIG. 1a shows the tensile strength of an aluminum alloy sample. The aluminum alloy sample contains about 7% Si and about 0.5% Mg, and the concentrations of Cu and Zn are as described in the figure. The sample of FIG. 1 was coagulated at a rate of about 1 ° C./second. These samples had a dendrite arm spacing (DAS) of about 30 microns. It can be seen that the tensile strength of the alloy increases with increasing Zn concentration (the maximum Zn content in the test is about 3.61%). Similarly, it can be seen that the tensile strength increases with increasing Cu concentration (the maximum Cu content in the test is about 3%). Samples containing Cu and / or Zn showed higher strength than the conventional alloy E357.
図1bは、図1aと同様なデータを示しているが、図1aのものと異なる点は、凝固速度が遅い約0.4℃/秒であるため、デンドライトアーム間隔が約64ミクロンであったことである。最大引張強さを有する試料は、Cu約3%及びZn約3.61%の試料であった。図1bに示す試料は全てCu及び/又はZnを含んでおり、従来合金E357よりも強度が大きかった。 FIG. 1b shows data similar to FIG. 1a, but the difference from that of FIG. 1a is that the dendrite arm spacing was about 64 microns due to the slow solidification rate of about 0.4 ° C./sec. That is. The sample with the maximum tensile strength was a sample of about 3% Cu and about 3.61% Zn. All of the samples shown in FIG. 1b contained Cu and / or Zn and were stronger than the conventional alloy E357.
図2aは、アルミニウム合金試料の降伏強さを示しており、アルミニウム合金試料は、Si約7%、Mg約0.5%を含み、CuとZnの濃度は、図に記載したとおりである。これらの試料は、約1℃/秒の速度で凝固させた。これら試料のデンドライトアーム間隔(dendrite arm spacing(DAS))は約30ミクロンであった。合金の降伏強さは、Cuの増加により顕著に大きくなり、またZnの増加と共に増大傾向を示した。最大降伏強さを有する試料は、Cu約3%及びZn約4%の試料であった。Cu又はZnを含む全ての試料は、従来合金E357より大きな降伏強さを示した。 FIG. 2a shows the yield strength of the aluminum alloy sample. The aluminum alloy sample contains about 7% Si and about 0.5% Mg, and the concentrations of Cu and Zn are as described in the figure. These samples were coagulated at a rate of about 1 ° C./second. These samples had a dendrite arm spacing (DAS) of about 30 microns. The yield strength of the alloy increased remarkably with increasing Cu, and showed an increasing trend with increasing Zn. The sample with the maximum yield strength was a sample of about 3% Cu and about 4% Zn. All samples containing Cu or Zn showed yield strength greater than the conventional alloy E357.
図2bは、図2aと同様なデータを示しているが、図2aのものと異なる点は、凝固速度が遅い約0.4℃/秒であるため、デンドライトアーム間隔が約64ミクロンであったことである。最大降伏強さを有する試料は、Cu約3%及びZn約4%の試料であった。Cu又はZnを含む試料は全て、従来合金E357よりも降伏強さが大きかった。 FIG. 2b shows data similar to FIG. 2a, except that the dendrite arm spacing was about 64 microns due to the slow solidification rate of about 0.4 ° C./sec. That is. The sample with the maximum yield strength was a sample of about 3% Cu and about 4% Zn. All samples containing Cu or Zn had higher yield strength than the conventional alloy E357.
図3aは、従来合金E357と、Cu及びZnを添加した様々な合金の伸びデータを表している。凝固速度は、1℃/秒で、デンドライトアーム間隔は約30ミクロンであった。伸びが最もすぐれていたのは、Cu含有量が0%の合金であった。しかし、Zn濃度を2%から約4%まで増やすと、伸びは増加した。Zn約2%〜4%を含有する合金は、従来合金E357よりも大きな伸びを示した。 FIG. 3a shows the elongation data for the conventional alloy E357 and various alloys with added Cu and Zn. The solidification rate was 1 ° C./second and the dendrite arm spacing was about 30 microns. The alloys with the highest elongation were those with 0% Cu content. However, increasing the Zn concentration from 2% to about 4% increased the elongation. Alloys containing about 2% to 4% Zn exhibited greater elongation than the conventional alloy E357.
図3bは、図3aと同様なデータを示しているが、図3aのものと異なる点は、凝固速度が遅い約0.4℃/秒であるため、デンドライトアーム間隔が約64ミクロンであったことである。前述したしたように、Cu含有量0%の合金が最も大きな伸びを示した。しかしながら、Cuが0%、Znが2%〜4%の合金は、伸びに関して、E357より極く僅かに劣った。Znを2%〜4%含有する合金は、引張強さ及び降伏強さがE357より優れている点で重要である。 FIG. 3b shows data similar to FIG. 3a, except that the dendrite arm spacing was about 64 microns due to the slow solidification rate of about 0.4 ° C./sec. That is. As described above, the alloy with 0% Cu content showed the largest elongation. However, alloys with 0% Cu and 2% to 4% Zn were only slightly inferior to E357 in terms of elongation. An alloy containing 2% to 4% of Zn is important in that the tensile strength and yield strength are superior to E357.
図4は、流動鋳型(fluidity mold)での鋳造結果を示す。前記と同様、試験は、Si約7%、Mg約0.5%を含み、CuとZnの含有量が異なるアルミニウム合金について実施した。図4の合金の大部分はCu又はZnを含有しており、従来合金E357よりもすぐれた流動性を示した。Cu3%、Zn4%を含む合金が最もすぐれた流動性を示した。流動性は形状鋳物にとって重要であるが、それは、鋳造品のあらゆる部分に液体金属を供給するために、鋳型内の小さな通路を合金が流れる能力を左右するからである。 FIG. 4 shows the results of casting with a fluidity mold. Similar to the above, the test was performed on aluminum alloys containing about 7% Si and about 0.5% Mg and having different contents of Cu and Zn. Most of the alloy of FIG. 4 contained Cu or Zn, and showed better fluidity than the conventional alloy E357. An alloy containing 3% Cu and 4% Zn showed the best fluidity. Flowability is important for shape castings because it affects the ability of the alloy to flow through small passages in the mold to supply liquid metal to all parts of the casting.
図5は、試験した合金の品質指数(Q)に関するデータを示している。品質指数(Q)は、計算による指数であって、最大引張強さ(UTS)と、対数表示した伸び(E)を含んでいる。図5は、前記した2種類のデンドライトアーム間隔のデータをプロットしたグラフを示している。アーム間隔30ミクロンのものは、冷却速度1℃/秒の試料であり、アーム間隔64ミクロンのものは、冷却速度0.4℃/秒の試料である。図5に示されるように、一般的に、Zn濃度が高く、Cu濃度が低い試料について、最もすぐれた品質係数(Q)が得られる。 FIG. 5 shows data relating to the quality index (Q) of the tested alloys. The quality index (Q) is a calculated index and includes maximum tensile strength (UTS) and logarithmic elongation (E). FIG. 5 shows a graph plotting the data of the two types of dendrite arm spacing described above. A sample having an arm interval of 30 microns is a sample having a cooling rate of 1 ° C./second, and a sample having an arm interval of 64 microns is a sample having a cooling rate of 0.4 ° C./second. As shown in FIG. 5, generally, the best quality factor (Q) is obtained for a sample having a high Zn concentration and a low Cu concentration.
表2は、本発明に係る合金の様々な組成を示しており、Cu、Mg及びZnの濃度は、室温及び高温で機械的特性の向上がもたらされるように選択した。表2中、試験した試料の種々元素の含有量を重量%で示している。各合金の残部は、本質的にアルミニウムからなる。なお、Srは結晶微細化材として含められている。 Table 2 shows various compositions of the alloys according to the present invention, and the concentrations of Cu, Mg and Zn were selected to provide improved mechanical properties at room temperature and elevated temperature. In Table 2, the contents of various elements of the tested samples are shown in% by weight. The balance of each alloy consists essentially of aluminum. Sr is included as a crystal refining material.
機械的性質試験のために、上記組成を有する試料から試験片を作製した。試験片は、インベストメント鋳造により、板状に形成した。インベストメント鋳造の冷却速度は、約0.5℃/秒よりも遅く、デンドライトアーム間隔(DAS)は約60ミクロン以上のオーダであった。鋳造後、試験板を、T6質別(temper)に熱処理した。一般的に、T6質別は、溶体化熱処理、クエンチング及び人工時効を含んでいる。試験板を切断し、機械的性質を調べた。具体的には、表2に記載の合金組成を含む試験片について、室温(22℃)での最大引張強さ(UTS)、高温(150℃)での最大引張強さ(UTS)、室温(22℃)での引張降伏強さ(TYS)、高温(150℃)での引張降伏強さ(TYS)、高温(150℃)での伸び(E)、室温(22℃)での伸び(E)、高温(150℃)での品質指標(Q)、及び室温(22℃)での品質指標(Q)を調べた。試験結果は次の表3に示す。 Test pieces were prepared from samples having the above composition for mechanical property testing. The test piece was formed into a plate shape by investment casting. The cooling rate for investment casting was slower than about 0.5 ° C./second and the dendrite arm spacing (DAS) was on the order of about 60 microns or more. After casting, the test plate was heat treated to T6 temper. In general, T6 sorting includes solution heat treatment, quenching and artificial aging. The test plate was cut and examined for mechanical properties. Specifically, for a test piece including the alloy composition shown in Table 2, the maximum tensile strength (UTS) at room temperature (22 ° C.), the maximum tensile strength (UTS) at high temperature (150 ° C.), room temperature ( (22 ° C) tensile yield strength (TYS), high temperature (150 ° C) tensile yield strength (TYS), high temperature (150 ° C) elongation (E), room temperature (22 ° C) elongation (E ), Quality index (Q) at high temperature (150 ° C.), and quality index (Q) at room temperature (22 ° C.). The test results are shown in Table 3 below.
表3の上記データから、室温(22℃)での引張降伏強さ(TYS)、室温(22℃)での最大引張強さ(UTS)、室温(22℃)での伸び(E)の回帰モデルを求めると次のとおりである。
室温(22℃)でのTYS(MPa)=322.04−25.9466*Mg(wt%)+19.5276Cu(wt%)−4.8189Zn(wt%)+1.3576Si(wt%)+19.08Mg(wt%) Zn(wt%)−2.1535Cu(wt%)Zn(wt%)−119.57Sr(wt%)
室温(22℃)でのUTS(MPa)=373.188−71.5565*Mg(wt%)+14.5255Cu(wt%)−6.0743Zn(wt%)+4.57744Si(wt%)+23.212Mg(wt%)Zn(wt%)−3.42964Cu(wt%)Zn(wt%)+79.2381Sr(wt%)
室温(22℃)でのE(%)=7.119−11.548*Mg(wt%)−1.055Cu(wt%)−0.117Zn(wt%)+0.739Si(wt%)−0.801Mg(wt%)Zn(wt%)+0.173Cu(wt%)Zn(wt%)+16.903Sr(wt%)。
From the above data in Table 3, regression of tensile yield strength (TYS) at room temperature (22 ° C), maximum tensile strength (UTS) at room temperature (22 ° C), elongation (E) at room temperature (22 ° C) The model is as follows.
TYS (MPa) at room temperature (22 ° C.) = 322.04-25.9466 * Mg (wt%) + 19.5276 Cu (wt%) − 4.8189 Zn (wt%) + 1.5766 Si (wt%) + 19.08 Mg (wt%) Zn (wt%)-2.1535 Cu (wt%) Zn (wt%)-119.57Sr (wt%)
UTS (MPa) at room temperature (22 ° C.) = 373.188−71.5565 * Mg (wt%) + 14.5255Cu (wt%) − 6.0743Zn (wt%) + 4.557444Si (wt%) + 23.212Mg (wt%) Zn (wt%) -3,4964 Cu (wt%) Zn (wt%) + 79.2381 Sr (wt%)
E (%) at room temperature (22 ° C.) = 7.119-11.548 * Mg (wt%) − 1.055 Cu (wt%) − 0.117 Zn (wt%) + 0.739 Si (wt%) − 0 .801 Mg (wt%) Zn (wt%) + 0.173 Cu (wt%) Zn (wt%) + 16.903 Sr (wt%).
表3の上記データから、高温(150℃)での引張降伏強さ(TYS)、高温(150℃)での最大引張強さ(UTS)、高温(150℃)での伸び(E)及び高温(150℃)での品質指標(Q)の回帰モデルを求めると次のとおりである。
高温(150℃)でのTYS(MPa)=279.465+29.792*Mg(wt%)+14.0Cu(wt%)+0.4823Zn(wt%)−0.503Si(wt%)+6.566Mg(wt%)Zn(wt%)−1.998Cu(wt%)Zn(wt%)−3.686Sr(wt%)
高温(150℃)でのUTS(MPa)=293.3+15.723*Mg(wt%)+18.32Cu(wt%)+0.441Zn(wt%)+1.2264Si(wt%)+9.811Mg(wt%)Zn(wt%)−3.7344Cu(wt%)Zn(wt%)−145.682Sr(wt%)
高温(150℃)でE(MPa)=13.575−20.454*Mg(wt%)−1.672Cu(wt%)−4.812Zn(wt%)+1.184Si(wt%)+8.138Mg(wt%)Zn(wt%)+0.014Cu(wt%)Zn(wt%)−26.65Sr(wt%)
高温(150℃)でのQ(MPa)=447.359-138.331*Mg(wt%)−0.4381Cu(wt%)−65.285Zn(wt%) +14.36Si(wt%)+130.69Mg(wt%)Zn(wt%)−6.043Cu(wt%)Zn(wt%)+405.71Sr(wt%)
From the above data in Table 3, tensile yield strength (TYS) at high temperature (150 ° C), maximum tensile strength (UTS) at high temperature (150 ° C), elongation (E) at high temperature (150 ° C) and high temperature A regression model of the quality index (Q) at (150 ° C.) is obtained as follows.
TYS (MPa) at high temperature (150 ° C.) = 279.465 + 29.792 * Mg (wt%) + 14.0 Cu (wt%) + 0.4823 Zn (wt%) − 0.503 Si (wt%) + 6.566 Mg (wt %) Zn (wt%)-1.998Cu (wt%) Zn (wt%)-3.686Sr (wt%)
UTS (MPa) at high temperature (150 ° C.) = 293.3 + 15.723 * Mg (wt%) + 18.32 Cu (wt%) + 0.441 Zn (wt%) + 1.264 Si (wt%) + 9.811 Mg (wt%) ) Zn (wt%)-37344 Cu (wt%) Zn (wt%)-145.682 Sr (wt%)
E (MPa) = 13.575-20.454 * Mg (wt%)-1.672Cu (wt%)-4.812Zn (wt%) + 1.184Si (wt%) + 8.138Mg at high temperature (150 ° C.) (wt%) Zn (wt%) + 0.014 Cu (wt%) Zn (wt%) -26.65 Sr (wt%)
Q (MPa) at high temperature (150 ° C.) = 447.359-138.331 * Mg (wt%) − 0.4181 Cu (wt%) − 65.285 Zn (wt%) + 14.36 Si (wt%) + 130 .69 Mg (wt%) Zn (wt%)-6.043 Cu (wt%) Zn (wt%) + 405.71 Sr (wt%)
高温(150℃)での最大引張強さ(UTS)、高温(150℃)での伸び(E)及び高温(150℃)での品質指標(Q)の回帰モデルを、図6〜図8にプロットして示す。 Regression models of maximum tensile strength (UTS) at high temperature (150 ° C), elongation (E) at high temperature (150 ° C), and quality index (Q) at high temperature (150 ° C) are shown in Figs. Plotted.
図6のグラフは、Mg及びCu濃度が異なる合金組成物について、高温(150℃)での最大引張強さ(UTS)(MPa)を、増加するZn濃度(wt%)の関数としてプロットしたものである。具体的には、基準線(15)は、Mg約0.6wt%及びCu約3wt%を含む本発明合金をプロットしたものであり、基準線(20)は、Mg約0.5wt%及びCu約3wt%を含む本発明合金をプロットしたものであり、基準線(25)は、Mg約0.6wt%及びCu約2wt%を含む本発明合金をプロットしたものであり、基準線(30)は、Mg約0.5wt%及びCu約2wt%を含む本発明合金をプロットしたものであり、基準線(35)は、Mg約0.6wt%及びCu約1wt%を含む本発明合金をプロットしたものであり、基準線(40)は、Mg約0.5wt%及びCu約1wt%を含む本発明合金をプロットしたものであり、基準線(45)は、Mg約0.6wt%を含み、Cu0wt%である本発明合金をプロットしたものであり、基準線(50)は、Mg約0.5wt%を含み、Cu0wt%である本発明合金をプロットしたものである。
The graph of FIG. 6 plots the maximum tensile strength (UTS) (MPa) at high temperature (150 ° C.) as a function of increasing Zn concentration (wt%) for alloy compositions with different Mg and Cu concentrations. It is. Specifically, the reference line (15) is a plot of the present alloy containing about 0.6 wt% Mg and about 3 wt% Cu, and the reference line (20) is about 0.5 wt% Mg and Cu. The alloy of the present invention containing about 3 wt% is plotted, and the reference line (25) is a plot of the alloy of the present invention containing about 0.6 wt% Mg and about 2 wt% Cu. Is a plot of an alloy of the present invention containing about 0.5 wt% Mg and about 2 wt% of Cu, and the reference line (35) is a plot of an alloy of the present invention containing about 0.6 wt% Mg and about 1 wt% Cu. The reference line (40) is a plot of the present alloy containing about 0.5 wt% Mg and about 1 wt% Cu, and the reference line (45) contains about 0.6 wt% Mg. , Cu of 0 wt% is plotted, and the reference line (50) is about 0.5 wt. %, The alloy of the present invention which is
図6に描かれたグラフと、表3に記載されたデータを参照すると、基準線(15)(20)(25)(30)の合金で示されるように、合金のCu濃度が約2wt%以上に増加すると、Znの含有は合金の高温での最大引張強さ(UTS)にマイナスの効果を及ぼすことがわかる。また、基準線(35)(40)(45)(50)の合金で示されるように、合金のCu濃度が約2wt%未満に減少すると、Znの含有は合金の高温での最大引張強さ(UTS)にプラスの効果を及ぼすことがわかる。理論に拘束されることを望まないが、Cu含有量の多い合金の強度にZnがマイナスの効果を及ぼすのは、ZnとCuの相互作用によって形成される粒子が、T6熱処理工程の溶体化熱処理中に固溶しないためと考えられる。固溶しない粒子は、鋳物の強度及び伸び特性を低下させると考えられる。 Referring to the graph depicted in FIG. 6 and the data listed in Table 3, the Cu concentration of the alloy is about 2 wt% as shown by the alloy of the reference line (15) (20) (25) (30). As the above increases, it can be seen that the inclusion of Zn has a negative effect on the maximum tensile strength (UTS) of the alloy at high temperatures. Also, as shown in the reference line (35) (40) (45) (50) alloy, when the Cu concentration of the alloy decreases to less than about 2 wt%, the Zn content is the maximum tensile strength of the alloy at high temperatures. It turns out that it has a positive effect on (UTS). Although not wishing to be bound by theory, the negative effect of Zn on the strength of alloys with high Cu content is that particles formed by the interaction of Zn and Cu are solution heat treated in the T6 heat treatment step. It is thought that it does not dissolve in the inside. Particles that do not dissolve are considered to reduce the strength and elongation properties of the casting.
図6をさらに参照すると、本発明の幾つかの実施例において、基準線(15)(25)(35)(45)の合金に示されるように、Mg0.6wt%を含む合金は、基準線(20)(30)(40)(50)で示されるMg濃度約0.5wt%オーダの類似組成の合金と比べて、高温での最大引張強さ(UTS)が大きいことを示している。 With further reference to FIG. 6, in some embodiments of the present invention, the alloy containing 0.6 wt% Mg, as shown in the alloys of baseline (15) (25) (35) (45), It shows that the maximum tensile strength (UTS) at a high temperature is larger than that of an alloy having a similar composition of (20), (30), (40) and (50) with an Mg concentration on the order of about 0.5 wt%.
図7に描かれたグラフは、Mg及びCu濃度が異なる合金組成物について、高温(150℃)での伸び(%)を、増加するZn濃度(wt%)の関数としてプロットしたものである。具体的には、基準線(55)は、Mg約0.6wt%及びCu約3wt%を含む本発明合金をプロットしたものであり、基準線(60)は、Mg約0.5wt%及びCu約3wt%を含む本発明合金をプロットしたものであり、基準線(65)は、Mg約0.6wt%及びCu約2wt%を含む本発明合金をプロットしたものであり、基準線(70)は、Mg約0.5wt%及びCu約2wt%を含む本発明合金をプロットしたものであり、基準線(75)は、Mg約0.6wt%及びCu約1wt%を含む本発明合金をプロットしたものであり、基準線(80)は、Mg約0.5wt%及びCu約1wt%を含む本発明合金をプロットしたものであり、基準線(85)は、Mg約0.6wt%を含み、Cu0wt%である本発明合金をプロットしたものであり、基準線(90)は、Mg約0.5wt%を含み、Cu0wt%である本発明合金をプロットしたものである。
The graph depicted in FIG. 7 plots the elongation (%) at high temperature (150 ° C.) as a function of increasing Zn concentration (wt%) for alloy compositions having different Mg and Cu concentrations. Specifically, the reference line (55) is a plot of an alloy of the present invention containing about 0.6 wt% Mg and about 3 wt% Cu, and the reference line (60) is about 0.5 wt% Mg and Cu. The alloy of the present invention containing about 3 wt% is plotted, and the reference line (65) is a plot of the alloy of the present invention containing about 0.6 wt% Mg and about 2 wt% Cu. Is a plot of an alloy of the present invention containing about 0.5 wt% Mg and about 2 wt% of Cu, and the reference line (75) is a plot of an alloy of the present invention containing about 0.6 wt% Mg and about 1 wt% Cu. The reference line (80) is a plot of the present alloy containing about 0.5 wt% Mg and about 1 wt% Cu, and the reference line (85) contains about 0.6 wt% Mg. , Cu of the present invention is plotted with 0 wt%, and the reference line (90) is about 0.5 wt. %, The alloy of the present invention which is
図7に描かれたグラフと、表3に記載されたデータを参照すると、発明合金のCu濃度が増加すると、合金の伸びにマイナス効果を及ぼすことがわかる。例えば、Mg濃度が0.6wt%である基準線(55)(65)(75)(85)を参照すると、Cuの含有量が多いほど、合金の伸びは低下することがわかる。また、Cu濃度は、Mg濃度が約0.5wt%である基準線(60)(70)(80)(90)に示される合金に対しても同様の効果を有することを示している。 Referring to the graph depicted in FIG. 7 and the data listed in Table 3, it can be seen that increasing the Cu concentration of the inventive alloy has a negative effect on the elongation of the alloy. For example, referring to the reference line (55) (65) (75) (85) where the Mg concentration is 0.6 wt%, it can be seen that the elongation of the alloy decreases as the Cu content increases. Moreover, it is shown that the Cu concentration has the same effect on the alloy indicated by the reference lines (60) (70) (80) (90) where the Mg concentration is about 0.5 wt%.
表3及び図7をさらに参照すると、本発明の一実施例において、発明合金のZn含有量が増加すると、基準線(60)(70)(80)(90)に示されるように、Mgの含有量が少ない(例えば0.5wt%のオーダ)ときは、合金の伸びを大きくすることがわかる。本発明の一実施例において、発明合金のZn含有量が増加すると、基準線(55)(65)(75)(85)に示されるように、Mgの含有量が多い(例えば0.6wt%のオーダ)ときは、合金の伸びを低下させることがわかる。Zn含有量が2.5wt%よりも多い場合、Mgは、伸びにプラスの効果を及ぼし、Zn含有量が2.5wt%より少ない場合、伸びにマイナスの効果を及ぼす。例えば、合金中のCu含有量が3.0wt%で等しい基準線(55)(60)を参照すると、合金のZn含有量が2.5wt%以上のとき、Mg濃度が0.5wt%から0.6wt%に増加すると、品質指標(Q)は向上する。さらにまた、Mg濃度は、Cu3.0wt%未満の合金に対して同様の効果を及ぼす。 Referring further to Table 3 and FIG. 7, in one embodiment of the present invention, when the Zn content of the inventive alloy increases, as shown by the reference lines (60) (70) (80) (90), Mg It can be seen that when the content is small (for example, on the order of 0.5 wt%), the elongation of the alloy is increased. In one embodiment of the present invention, when the Zn content of the invention alloy increases, the Mg content increases (for example, 0.6 wt%) as indicated by the reference lines (55) (65) (75) (85). It is understood that the elongation of the alloy is reduced. When the Zn content is greater than 2.5 wt%, Mg has a positive effect on elongation, and when the Zn content is less than 2.5 wt%, it has a negative effect on elongation. For example, referring to the reference line (55) (60) where the Cu content in the alloy is equal to 3.0 wt%, when the Zn content in the alloy is 2.5 wt% or more, the Mg concentration is reduced from 0.5 wt% to 0 wt%. When it increases to .6 wt%, the quality index (Q) improves. Furthermore, the Mg concentration has a similar effect on alloys with less than 3.0 wt% Cu.
図8に描かれたグラフは、Cu及びMgの濃度が異なる本発明のAlSiMg合金について、高温(150℃)での品質指標(Q)をZn含有量の関数としてプロットしたものである。具体的には、基準線(95)は、Mg約0.5wt%及びCu約3wt%を含む本発明合金をプロットしたものであり、基準線(100)は、Mg約0.5wt%及びCu約2wt%を含む本発明合金をプロットしたものであり、基準線(105)は、Mg約0.5wt%及びCu約1wt%を含む本発明合金をプロットしたものであり、基準線(115)は、Mg約0.6wt%及びCu約2wt%を含む本発明合金をプロットしたものであり、基準線(75)は、Mg約0.6wt%及びCu約1wt%を含む本発明合金をプロットしたものであり、基準線(120)は、Mg約0.5wt%を含み、Cu0wt%である本発明合金をプロットしたものであり、基準線(125)は、Mg約0.6wt%及びCu約1wt%を含む本発明合金をプロットしたものであり、基準線(85)は、Mg約0.6wt%を含み、Cu0wt%である本発明合金をプロットしたものであり、基準線(130)は、Mg約0.6wt%を含み、Cu0wt%である本発明合金をプロットしたものである。前述のとおり、品質指数(Q)は、計算による指数であって、最大引張強さ(UTS)と、対数表示した伸び(E)を含んでいる。 The graph depicted in FIG. 8 is a plot of the quality index (Q) at high temperature (150 ° C.) as a function of Zn content for the AlSiMg alloys of the present invention with different concentrations of Cu and Mg. Specifically, the reference line (95) is a plot of an alloy of the present invention containing about 0.5 wt% Mg and about 3 wt% Cu, and the reference line (100) is about 0.5 wt% Mg and Cu. The alloy of the present invention containing about 2 wt% is plotted, and the reference line (105) is a plot of the alloy of the present invention containing about 0.5 wt% Mg and about 1 wt% Cu. Is a plot of an alloy of the present invention containing about 0.6 wt% Mg and about 2 wt% of Cu, and the reference line (75) is a plot of an alloy of the present invention containing about 0.6 wt% Mg and about 1 wt% Cu. The reference line (120) is a plot of the alloy of the present invention containing about 0.5 wt% Mg and 0 wt% Cu, and the reference line (125) is about 0.6 wt% Mg and Cu The alloy according to the present invention containing about 1 wt% is plotted, and the reference line (85) is about 0.6 Mg. Include t%, it plots the invention alloy is Cu0wt%, baseline (130) includes Mg of about 0.6 wt%, is a plot of the present invention alloy is Cu0wt%. As described above, the quality index (Q) is a calculated index, and includes the maximum tensile strength (UTS) and the logarithmic elongation (E).
図8及び表3のデータを参照すると、本発明の合金では、Cuの含有量が増えると、一般的には、最大引張強さ(UTS)及び/又は引張降伏強さ(TYS)を増加させるが、一方では、伸びを低下させて、合金の品質指標(Q)を低下させることがある。Mgは、一般的には、Cu及びZn(但し、Zn含有量は1.2wt%以上)を含む本発明合金の品質指標にプラスの効果を与える。例えば、Cu濃度が3.0wt%である基準線(95)(105)を参照すると、Znの含有量が1.2wt%以上であるとき、Mg濃度が0.5wt%から0.6wt%に増加すると、品質指標(Q)が向上することがわかる。また、Mg濃度は、Cu濃度が約3.0wt%よりも少ない合金に対しても同様の効果を有することを示している。本発明の幾つかの実施例では、Cu濃度の多いAlSiMg合金(例えば、基準線(95)(100)(105)(120)で示される合金)は、Cu濃度が増加すると、品質指標(Q)の値が低下する。
減少する。本発明の幾つかの実施例では、基準線(115)(125)(130)で示されるように、Mg含有量が約0.6wt%のオーダで、Cu含有量が約2.5wt%より少ないとき、Znの含有によって合金の品質指標(Q)が向上する。
Referring to the data of FIG. 8 and Table 3, the alloys of the present invention generally increase the maximum tensile strength (UTS) and / or the tensile yield strength (TYS) as the Cu content increases. However, on the other hand, the elongation may be lowered to lower the quality index (Q) of the alloy. Mg generally has a positive effect on the quality index of the alloy of the present invention containing Cu and Zn (however, the Zn content is 1.2 wt% or more). For example, referring to the reference line (95) (105) where the Cu concentration is 3.0 wt%, when the Zn content is 1.2 wt% or more, the Mg concentration is changed from 0.5 wt% to 0.6 wt%. It can be seen that the quality index (Q) improves as the value increases. Further, the Mg concentration indicates that the same effect is obtained even for an alloy having a Cu concentration of less than about 3.0 wt%. In some embodiments of the present invention, an AlSiMg alloy with a high Cu concentration (e.g., an alloy indicated by the reference lines (95) (100) (105) (120)) has a quality index (Q ) Value decreases.
Decrease. In some embodiments of the present invention, as indicated by the reference lines (115) (125) (130), the Mg content is on the order of about 0.6 wt% and the Cu content is less than about 2.5 wt%. When the content is small, the quality index (Q) of the alloy is improved by containing Zn.
表3に記載の合金組成は、発明合金の例示であって、発明は、それらに限定されるものではなく、特許請求の範囲に記載された成分及び範囲を有する全ての組成物は、この発明の範囲内である。本発明の範囲内である合金組成のさらなる例は、図9の表に示されている。図9は、例示した組成の合金について、引張降伏強さ(TYS)、最大引張強さ(UTS)、伸び(E)及び品質指標(Q)を含んでおり、TYS、UTS、E及びQは、室温(22℃)のT6質別試験試料から得たものである。 The alloy compositions listed in Table 3 are examples of invention alloys, and the invention is not limited thereto, and all compositions having the components and ranges recited in the claims are not limited to the invention. Is within the range. Further examples of alloy compositions that are within the scope of the present invention are shown in the table of FIG. FIG. 9 includes tensile yield strength (TYS), maximum tensile strength (UTS), elongation (E), and quality index (Q) for alloys of the illustrated composition, where TYS, UTS, E, and Q are It was obtained from a T6 quality test sample at room temperature (22 ° C.).
図9の表の最終行は、インベストメント鋳造によって製造し、T6質別のE357合金の試験片について、合金組成、室温(22℃)での機械的性質(引張降伏強さ(TYS)、最大引張強さ(UTS)、伸び(E)及び品質指標(Q))を示している。なお、E357合金は従来合金で、比較のために含めている。図9をさらに参照すると、E357は、22℃での最大引張強さ(UTS)が275MPa、伸び(E)が約5%である。約150℃の温度では、E357のインベストメント鋳造及びT6質別試料は、最大引張強さ(UTS)が260MPa、引張降伏強さ(TYS)が250MPa、伸び(E)が約7%、品質指標(Q)が387MPaである。 The last row of the table in FIG. 9 shows the alloy composition, mechanical properties at room temperature (22 ° C.) (Tensile Yield Strength (TYS), Maximum Tensile) for specimens of T357 graded E357 alloy produced by investment casting. Strength (UTS), elongation (E) and quality index (Q)). The E357 alloy is a conventional alloy and is included for comparison. Still referring to FIG. 9, E357 has a maximum tensile strength (UTS) at 22 ° C. of 275 MPa and an elongation (E) of about 5%. At a temperature of about 150 ° C., the investment casting of E357 and the T6 graded sample have a maximum tensile strength (UTS) of 260 MPa, a tensile yield strength (TYS) of 250 MPa, an elongation (E) of about 7%, and a quality index ( Q) is 387 MPa.
本発明の一実施例において、本発明のアルミニウム合金は、Si:4%〜9%、Mg:0.1〜0.7%、Zn:5%未満、Fe:0.15%未満、Cu:4%未満、Mn:0.3%未満、B:0.05%未満、Ti:0.15%未満であり、インベストメント鋳造のT6熱処理品では、同じ様に製造されたE357鋳造品と比べて、150℃での最大引張強さ(UTS)は20%〜30%大きい。 In one embodiment of the present invention, the aluminum alloy of the present invention comprises Si: 4% to 9%, Mg: 0.1 to 0.7%, Zn: less than 5%, Fe: less than 0.15%, Cu: Less than 4%, Mn: less than 0.3%, B: less than 0.05%, Ti: less than 0.15%, compared with the T357 heat-treated product of investment casting compared to the E357 cast product produced in the same way The maximum tensile strength (UTS) at 150 ° C. is 20% to 30% greater.
本発明の望ましい一実施例において、Cu含有量が2wt%以下、Zn含有量が3wt%〜5wtの発明合金は、インベストメント鋳造のT6熱処理品では、同じ様に製造されたE357鋳造品と比べて、150℃での最大引張強さ(UTS)は10%〜20%大きい。 In a preferred embodiment of the present invention, the inventive alloy having a Cu content of 2 wt% or less and a Zn content of 3 wt% to 5 wt is compared with the E357 cast product manufactured in the same manner in the investment cast T6 heat treated product. The maximum tensile strength (UTS) at 150 ° C. is 10% to 20% greater.
本発明の望ましい他の実施例において、Cu含有量が2wt%より多く、Znを含まない発明合金は、インベストメント鋳造のT6熱処理品では、同じ様に製造されたE357鋳造品と比べて、150℃での最大引張強さ(UTS)は20%〜30%大きい。 In another preferred embodiment of the present invention, the alloy containing more than 2 wt% Cu and not containing Zn is 150 ° C. in the investment cast T6 heat treated product compared to the E357 cast product produced in the same way. Maximum tensile strength (UTS) at 20% to 30% greater.
高い引張降伏強さ(TYS)及び高い最大引張強さ(UTS)を有する合金としては、Si:約7%、Mg:約0.45〜約0.55%、Cu:約2〜3%、Zn:0%を含む合金が好ましい。 Alloys having high tensile yield strength (TYS) and high maximum tensile strength (UTS) include Si: about 7%, Mg: about 0.45 to about 0.55%, Cu: about 2-3%, An alloy containing Zn: 0% is preferable.
高い引張降伏強さ(TYS)及び高い最大引張強さ(UTS)を有する合金としては、Si:約7%、Mg:約0.55〜約0.65%、Cu:2%未満、Zn:3%〜5%を含む合金が好ましい。 Alloys having high tensile yield strength (TYS) and high maximum tensile strength (UTS) include Si: about 7%, Mg: about 0.55 to about 0.65%, Cu: less than 2%, Zn: Alloys containing 3% to 5% are preferred.
強度と伸びの両方が良好な合金としては、Si:約7%、Mg:約0.5%、Cu:微量、Zn:約4%を含む合金が好ましい。 As an alloy having good strength and elongation, an alloy containing Si: about 7%, Mg: about 0.5%, Cu: trace amount, Zn: about 4% is preferable.
流動性が良好な合金としては、Si:約7%、Mg:約0.5%、Cu:約3%、Zn:約4%を含む合金が好ましい。 As an alloy having good fluidity, an alloy containing Si: about 7%, Mg: about 0.5%, Cu: about 3%, Zn: about 4% is preferable.
上記データは、様々な望ましい性質を有する鋳造合金群であることを示唆している。用途に応じて、好ましい特性は異なる。 The above data suggests a group of cast alloys having various desirable properties. Depending on the application, the preferred properties vary.
本発明合金は、インベストメント鋳造、低圧若しくは重力鋳造、永久若しくは半永久鋳型鋳造、スクイズ鋳造、高圧ダイカスト鋳造又は砂型鋳造により、有用な製品に鋳造されることができる。 The alloys of the present invention can be cast into useful products by investment casting, low pressure or gravity casting, permanent or semi-permanent mold casting, squeeze casting, high pressure die casting or sand casting.
本発明の実施例を例示したが、当該分野の専門家であれば、多くの変更及びその他の実施形態を成し得るであろう。それゆえ、特許請求の範囲は、発明の精神及び範囲に含まれる前記変更及び実施態様を含むものと理解されるべきである。 While examples of the present invention have been illustrated, many modifications and other embodiments will occur to those skilled in the art. Therefore, it is to be understood that the appended claims are intended to cover such modifications and embodiments as fall within the spirit and scope of the invention.
Claims (26)
Si:6.803%〜9%、
Mg:0.1%〜0.7%、
Zn:3%〜5%、
Fe:0.15%未満、
Cu:2.0%未満、
Ag:0.504%以下、
Mn:0.3%未満、
B:0.05%未満、
Ti:0.15%未満、
残部アルミニウム及び不可避不純物からなる、アルミニウム鋳造合金。 % By weight
Si : 6.803 % to 9 %,
Mg : 0.1% to 0.7 %,
Zn : 3 % to 5 %,
Fe : less than 0.15%,
Cu : less than 2.0%,
Ag: 0.504% or less,
Mn : less than 0.3%,
B: 0 less than .05%,
Ti : less than 0.15%,
An aluminum casting alloy consisting of the balance aluminum and inevitable impurities .
Si:6.803%〜9%、
Mg:0.1%〜0.7%、
Zn:3%〜5%、
Fe:0.15%未満、
Cu:2.0%未満、
Ag:0.504%以下、
Mn:0.3%未満、
B:0.05%未満、
Ti:0.15%未満、
残部アルミニウム及び不可避不純物からなる、形状鋳物。 % By weight
Si : 6.803 % to 9 %,
Mg : 0.1% to 0.7 %,
Zn : 3 % to 5 %,
Fe : less than 0.15%,
Cu : less than 2.0%,
Ag: 0.504% or less,
Mn : less than 0.3%,
B: 0 less than .05%,
Ti : less than 0.15%,
Shape casting consisting of the balance aluminum and inevitable impurities .
Si:6.803%〜9%、
Mg:0.1%〜0.7%、
Zn:3%〜5%、
Fe:0.15%未満、
Cu:2.0%未満、
Ag:0.504%以下、
Mn:0.3%未満、
B:0.05%未満、
Ti:0.15%未満、
残部アルミニウム及び不可避不純物
からなる溶融金属塊を調製し、(b) 該溶融金属塊からアルミニウム合金製品を形成する、ことを含んでいる、アルミニウム合金形状鋳物の製造方法。A method for producing a shape casting of an aluminum alloy comprising: (a) at weight percent,
Si : 6.803 % to 9 %,
Mg : 0.1% to 0.7 %,
Zn : 3% to 5 %,
Fe : less than 0.15%,
Cu: less than 2.0%,
Ag: 0.504% or less,
Mn : less than 0.3%,
B: 0 less than .05%,
Ti : less than 0.15%,
Remaining aluminum and inevitable impurities
And (b) forming an aluminum alloy product from the molten metal lump, and a method for producing an aluminum alloy shape casting.
前記鋳型内で溶融金属塊を鋳造してアルミニウム合金製品を形成する、
ことをさらに含んでいる、請求項15の方法。Prepare a mold with chill and riser,
Casting a molten metal mass in the mold to form an aluminum alloy product;
16. The method of claim 15 , further comprising:
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US59205104P | 2004-07-28 | 2004-07-28 | |
US60/592,051 | 2004-07-28 | ||
PCT/US2005/026478 WO2006014948A2 (en) | 2004-07-28 | 2005-07-28 | An al-si-mg-zn-cu alloy for aerospace and automotive castings |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2008514807A JP2008514807A (en) | 2008-05-08 |
JP2008514807A5 JP2008514807A5 (en) | 2008-09-11 |
JP5069111B2 true JP5069111B2 (en) | 2012-11-07 |
Family
ID=37875545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007523726A Expired - Fee Related JP5069111B2 (en) | 2004-07-28 | 2005-07-28 | Al-Si-Mg-Zn-Cu alloy for aerospace and automotive castings |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP1778887B1 (en) |
JP (1) | JP5069111B2 (en) |
KR (1) | KR101223546B1 (en) |
CN (1) | CN101018881B (en) |
AU (1) | AU2005269483B2 (en) |
CA (1) | CA2574962C (en) |
MX (1) | MX2007001008A (en) |
NO (1) | NO339946B1 (en) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011144443A (en) * | 2010-01-18 | 2011-07-28 | Yasuo Sugiura | Aluminum alloy for semisolid casting |
US10654135B2 (en) | 2010-02-10 | 2020-05-19 | Illinois Tool Works Inc. | Aluminum alloy welding wire |
JP2012097332A (en) * | 2010-11-04 | 2012-05-24 | Toyota Industries Corp | Aluminum alloy component excellent in high-temperature strength, and method of manufacturing the same |
CN102764876A (en) * | 2011-05-03 | 2012-11-07 | 远轻铝业(中国)有限公司 | Gravity casting process of back cover board of turbosupercharger |
CN102304651B (en) * | 2011-08-15 | 2013-03-20 | 镇江汇通金属成型有限公司 | Casting aluminum-silicon alloy and strengthening method thereof |
CN107245612B (en) * | 2011-10-28 | 2019-04-16 | 美铝美国公司 | High-performance AlSiMgCu casting alloy |
CN102758108B (en) * | 2012-06-19 | 2014-08-06 | 南昌大学 | Al-Si-Mg-Sm rare earth cast aluminum alloy and preparation method thereof |
CN104911413A (en) * | 2014-03-13 | 2015-09-16 | 深圳市中兴康讯电子有限公司 | Aluminum silicate composition alloy and production method therof |
CN105088033A (en) * | 2014-05-08 | 2015-11-25 | 比亚迪股份有限公司 | Aluminium alloy and preparation method thereof |
ES2851827T3 (en) * | 2014-06-09 | 2021-09-09 | O M Ler 2000 S R L | Pneumatic hammer for extracting core from cast iron castings with aluminum alloy jacket |
DE102015111020A1 (en) * | 2014-07-29 | 2016-02-04 | Ksm Castings Group Gmbh | Al-cast alloy |
CN105624487A (en) * | 2015-04-07 | 2016-06-01 | Sj技术股份有限公司 | Aluminum alloy for pressure casting and preparation method for aluminum alloy casting piece utilizing aluminum alloy for pressure casting |
CN104911414B (en) * | 2015-06-09 | 2017-08-01 | 贵州兴科合金有限公司 | A kind of aluminum alloy materials and preparation method for car light heat dissipation base |
CA2993306C (en) * | 2015-07-21 | 2023-03-14 | Bruce Edward Anderson | Aluminum alloy welding wire |
CN105568083B (en) * | 2016-03-02 | 2018-05-01 | 慈溪阿尔特新材料有限公司 | It is a kind of suitable for high tough aluminum alloy materials of semi-solid rheological die casting and preparation method thereof |
JP6704276B2 (en) * | 2016-03-29 | 2020-06-03 | アイシン軽金属株式会社 | Method for producing cast material using aluminum alloy for casting |
KR101756016B1 (en) | 2016-04-27 | 2017-07-20 | 현대자동차주식회사 | Aluminum alloy for die casting and Method for heat treatment of manufacturing aluminum alloy using thereof |
US10604825B2 (en) * | 2016-05-12 | 2020-03-31 | GM Global Technology Operations LLC | Aluminum alloy casting and method of manufacture |
CN107868889B (en) * | 2016-09-23 | 2020-04-24 | 比亚迪股份有限公司 | Aluminum alloy, preparation method and application thereof, vehicle body framework connecting piece and electric vehicle |
CN106636813A (en) * | 2016-12-12 | 2017-05-10 | 余姚市庆达机械有限公司 | Corrosion-resistant aluminum alloy and preparation method thereof |
CN106917014B (en) * | 2017-02-23 | 2019-03-01 | 中国第一汽车股份有限公司 | A kind of car aluminium alloy knuckle and its extrusion casting method |
CN107058819A (en) * | 2017-06-22 | 2017-08-18 | 安徽银力铸造有限公司 | A kind of Modification Manners of Casting Al-Si magnesium automotive hub alloy |
CN107829001A (en) * | 2017-12-18 | 2018-03-23 | 广州致远新材料科技有限公司 | A kind of preparation method of extrusion casint aluminum alloy materials |
CN107828999A (en) * | 2017-12-18 | 2018-03-23 | 广州致远新材料科技有限公司 | The heat treatment method and die-cast aluminum alloy material of a kind of pack alloy |
CN110144499B (en) * | 2019-06-21 | 2020-12-08 | 广东省材料与加工研究所 | A kind of die-casting aluminum alloy for 5G communication base station shell and preparation method thereof |
CN113462932B (en) * | 2021-07-05 | 2023-03-24 | 南昌航空大学 | High-thermal-conductivity aluminum alloy material for semi-solid rheocasting and preparation method thereof |
CN114381640B (en) * | 2021-12-17 | 2022-11-22 | 深圳南科强正轻合金技术有限公司 | High-strength aluminum alloy material for rheocasting and application method thereof |
CN114752822B (en) * | 2022-05-25 | 2023-02-24 | 深圳南科强正轻合金技术有限公司 | Die-casting aluminum alloy and preparation method thereof |
CN114875280B (en) * | 2022-07-07 | 2022-10-28 | 中国航发北京航空材料研究院 | Heat-resistant aluminum-silicon alloy material, manufacturing method and heat-resistant aluminum-silicon alloy casting |
CN115627393B (en) * | 2022-11-07 | 2024-03-12 | 贵州航天风华精密设备有限公司 | High-strength ZL114A aluminum alloy and preparation method thereof |
CN115679162A (en) * | 2022-11-18 | 2023-02-03 | 江西万泰铝业有限公司 | A new energy vehicle heat-free aluminum alloy material and low-carbon preparation method |
KR102633119B1 (en) * | 2023-04-20 | 2024-02-02 | 주식회사 앨럽 | Aluminum-copper Composite and Manufacturing Method of the Same |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5613789B2 (en) * | 1973-05-29 | 1981-03-31 | ||
JPS54120217A (en) * | 1978-03-10 | 1979-09-18 | Toyota Motor Corp | Brittle aluminum alloy |
JPS6057497B2 (en) * | 1980-05-15 | 1985-12-16 | 株式会社日軽技研 | Heat resistant high strength aluminum alloy |
JPH05332364A (en) * | 1992-06-01 | 1993-12-14 | Daido Metal Co Ltd | Aluminum alloy bearing excellent in wear resistance and manufacture thereof |
JPH0748643A (en) * | 1993-08-05 | 1995-02-21 | Showa Alum Corp | Aluminum alloy casting material |
JPH0835030A (en) * | 1994-07-22 | 1996-02-06 | Showa Denko Kk | Aluminum alloy for casting, excellent in strength |
FR2746414B1 (en) * | 1996-03-20 | 1998-04-30 | Pechiney Aluminium | THIXOTROPE ALUMINUM-SILICON-COPPER ALLOY FOR SHAPING IN SEMI-SOLID CONDITION |
JPH10158771A (en) * | 1996-12-02 | 1998-06-16 | Showa Denko Kk | Aluminum alloy for casting, excellent in pressure resistance |
WO2000071772A1 (en) * | 1999-05-25 | 2000-11-30 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) | Aluminum-silicon alloy having improved properties at elevated temperatures |
JP3921314B2 (en) * | 1999-09-03 | 2007-05-30 | 株式会社神戸製鋼所 | Aluminum alloy cast material excellent in impact fracture strength and method for producing the same |
JP3846149B2 (en) * | 2000-03-21 | 2006-11-15 | いすゞ自動車株式会社 | Heat treatment method for casting aluminum alloy |
JP3472284B2 (en) * | 2001-10-10 | 2003-12-02 | 大同メタル工業株式会社 | Aluminum bearing alloy |
US6719859B2 (en) * | 2002-02-15 | 2004-04-13 | Northwest Aluminum Company | High strength aluminum base alloy |
US7087125B2 (en) * | 2004-01-30 | 2006-08-08 | Alcoa Inc. | Aluminum alloy for producing high performance shaped castings |
-
2005
- 2005-07-28 CA CA2574962A patent/CA2574962C/en not_active Expired - Fee Related
- 2005-07-28 AU AU2005269483A patent/AU2005269483B2/en not_active Ceased
- 2005-07-28 KR KR1020077003089A patent/KR101223546B1/en active IP Right Grant
- 2005-07-28 MX MX2007001008A patent/MX2007001008A/en active IP Right Grant
- 2005-07-28 JP JP2007523726A patent/JP5069111B2/en not_active Expired - Fee Related
- 2005-07-28 CN CN2005800309993A patent/CN101018881B/en active Active
- 2005-07-28 EP EP05775565.4A patent/EP1778887B1/en active Active
-
2007
- 2007-02-26 NO NO20071075A patent/NO339946B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
EP1778887A2 (en) | 2007-05-02 |
EP1778887A4 (en) | 2010-06-02 |
KR20070057144A (en) | 2007-06-04 |
EP1778887B1 (en) | 2013-10-02 |
KR101223546B1 (en) | 2013-01-18 |
CA2574962A1 (en) | 2006-02-09 |
AU2005269483A1 (en) | 2006-02-09 |
MX2007001008A (en) | 2007-04-16 |
CA2574962C (en) | 2014-02-04 |
NO339946B1 (en) | 2017-02-20 |
JP2008514807A (en) | 2008-05-08 |
NO20071075L (en) | 2007-04-30 |
AU2005269483B2 (en) | 2010-12-23 |
CN101018881A (en) | 2007-08-15 |
CN101018881B (en) | 2011-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5069111B2 (en) | Al-Si-Mg-Zn-Cu alloy for aerospace and automotive castings | |
US20100047113A1 (en) | al-si-mg-zn-cu alloy for aerospace and automotive castings | |
Ferraro et al. | Influence of sludge particles on the tensile properties of die-cast secondary aluminum alloys | |
JP2007534840A (en) | Heat-treatable Al-Zn-Mg-Cu alloys for aerospace and automotive castings | |
JP6685222B2 (en) | Aluminum alloy composites with improved high temperature mechanical properties | |
JP2010528187A (en) | Aluminum alloy formulations for reducing hot cracking susceptibility | |
CA1208042A (en) | Rhenium-bearing copper-nickel-tin alloys | |
JP2013529255A (en) | Aluminum alloy and aluminum alloy casting | |
JP2008542533A (en) | Aluminum casting alloy and method for producing the same | |
CN113862531A (en) | Aluminum alloy and preparation method thereof | |
JP2022517830A (en) | Casting alloy for high pressure vacuum die casting | |
JP2022177040A (en) | Aluminum alloy for die casting and aluminum alloy die casting material | |
JP2007534839A (en) | Heat-treatable Al-Zn-Mg alloys for aerospace and automotive castings | |
WO2019101316A1 (en) | Al-si-mg-zr-sr alloy with particle-free grain refinement and improved heat conductivity | |
JP7096690B2 (en) | Aluminum alloys for die casting and aluminum alloy castings | |
JP7472318B2 (en) | Aluminum alloys and aluminum alloy castings | |
JP3195392B2 (en) | Method for producing high strength and high toughness aluminum alloy casting | |
Samuel et al. | Intermetallics formation, hardness and toughness of A413. 1 type alloys: role of melt and aging treatments | |
JP7293696B2 (en) | Aluminum alloy casting material and manufacturing method thereof | |
Zainon et al. | Effect of intermetallic phase on microstructure and mechanical properties of AA332/Mg2Si (p) composite | |
Zak et al. | New Wear Resistant Hypereutectic AlSi 4 Cu 4 FeCrMn Alloys for High Pressure Die Casting | |
RU2191843C2 (en) | Nickel-base alloy and article made of thereof | |
Anderson et al. | 201.0 and A201. 0 | |
JP2024132243A (en) | Eutectic Al-Si alloy for casting and eutectic Al-Si alloy casting | |
Zainon et al. | Effect of intermetallic phase on microstructure and mechanical properties of AA332/Mg |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080723 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080723 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110621 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110726 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20111018 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20111025 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20111125 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20111202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120807 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120816 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150824 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5069111 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees | ||
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |