JP5017678B2 - Signal inspection method and signal inspection module - Google Patents
Signal inspection method and signal inspection module Download PDFInfo
- Publication number
- JP5017678B2 JP5017678B2 JP2005251923A JP2005251923A JP5017678B2 JP 5017678 B2 JP5017678 B2 JP 5017678B2 JP 2005251923 A JP2005251923 A JP 2005251923A JP 2005251923 A JP2005251923 A JP 2005251923A JP 5017678 B2 JP5017678 B2 JP 5017678B2
- Authority
- JP
- Japan
- Prior art keywords
- dimensionless
- degree
- signal
- instability
- calculation method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Testing And Monitoring For Control Systems (AREA)
Description
本発明は、対象物の状態診断やパターン認識などの分野において、計測により得られた対象物の信号はオーバーフロー、外れ値および非定常性があるか否かを総合的に評価し、計測された信号の良否を検査する方法であり、診断装置やパターン認識装置などにおいて誤診断や誤判定を防ぐために提供できる信号検査用のモジュールに関するものである。In the field of object state diagnosis and pattern recognition, the present invention comprehensively evaluates whether or not the signal of the object obtained by measurement has overflow, outlier and non-stationarity, and was measured. This is a method for inspecting the quality of a signal, and relates to a module for signal inspection that can be provided in order to prevent misdiagnosis and misjudgment in a diagnosis device, a pattern recognition device, and the like.
対象物の状態診断やパターン認識などのために信号を計測するときに、測定された信号が定常な信号か、非定常な信号かによって処理方法が違う。定常な信号を処理するための診断装置やパターン認識装置などに非定常な信号を入力すると、間違った結果が出力される。When measuring a signal for object state diagnosis or pattern recognition, the processing method differs depending on whether the measured signal is a steady signal or an unsteady signal. If an unsteady signal is input to a diagnostic device or pattern recognition device for processing a steady signal, an incorrect result is output.
また、診断やパターン認識などの対象物から発する真の信号が定常な信号であるが、計測ミスや外乱などの原因により計測された信号は非定常な信号となり、更にオーバーフローなどの発生により計測された信号は対象物の真の信号でない不備な信号となってしまう。このような非定常な信号や不備な信号を診断装置やパターン認識装置などに入力しても正確な結果が得られない。In addition, the true signal emitted from an object such as diagnosis or pattern recognition is a steady signal, but the signal measured due to a measurement error or disturbance is an unsteady signal, and is further measured when an overflow occurs. The resulting signal is an incomplete signal that is not the true signal of the object. Even if such an unsteady signal or an inadequate signal is input to a diagnostic device or a pattern recognition device, an accurate result cannot be obtained.
従来、様々な分野で色々な診断装置やパターン認識装置などが提案されているが、診断やパターン認識のための処理を行う前に、測定された信号の良否(測定ミスや処理上の不備などの有無)についての検査手法およびモジュールが示されていない。この点については特に関連性のある過去の文献は先願[特許文献1]であり、その他に関連のある文献は、たとえば、[特許文献2,3,4,5、6]である。
従来の診断装置やパターン認識装置には、測定された信号の測定ミスがあるか否かを判断する手段は、信号のオーバーフローの有無だけをチェックするか、または計測者の目視や勘などにより不備(測定ミス)の有無を判断することである。しかし、前記のように、定常な信号を処理するための診断装置やパターン認識装置は、測定された信号のオーバーフローの有無だけの確認では不十分であり、信号の定常性を検査する必要がある。また、計測者の目視や勘などにより不備の有無を判断するのは限界があり、特に測定された生信号が直接に確認できない計測装置の場合は判定の精度が保証できない。In conventional diagnostic devices and pattern recognition devices, the means for determining whether or not there is a measurement error in the measured signal is incomplete by checking only the presence or absence of signal overflow, or by visual inspection or intuition of the measurer. It is to determine the presence or absence of (measurement error). However, as described above, a diagnostic device or a pattern recognition device for processing a stationary signal is not sufficient to confirm whether or not there is an overflow of the measured signal, and it is necessary to check the continuity of the signal. . In addition, there is a limit to judging whether or not there is a defect by visual observation or intuition of the measurer, and in particular, in the case of a measuring device that cannot directly check the measured raw signal, the accuracy of the determination cannot be guaranteed.
本発明は、様々な分野で色々な診断装置やパターン認識装置などにおいて、診断やパターン認識のための処理を行う前に、測定された信号が定常な信号か、非定常な信号か、また測定された信号の測定ミスがあるか否かについての信号検査手法および信号検査モジュールを提供することを目的とする。The present invention relates to whether a measured signal is a stationary signal or a non-stationary signal before performing a process for diagnosis or pattern recognition in various diagnostic apparatuses and pattern recognition apparatuses in various fields. It is an object of the present invention to provide a signal inspection method and a signal inspection module for determining whether or not there is a measurement error in a signal that has been transmitted.
上記の問題点を解決するために、本発明においては、次のような手段を採る。測定された信号が定常な信号か、非定常な信号かについては、有次元特徴パラメータおよび無次元特徴パラメータの定常性を確認することにより検査する。また、測定された信号に不備(測定ミス)があるか否かについては、オーバーフローの有無および外れ値の有無を確認することにより検査する。In order to solve the above problems, the present invention employs the following means. Whether the measured signal is a stationary signal or a non-stationary signal is inspected by confirming the steadiness of the dimensional feature parameter and the dimensionless feature parameter. In addition, whether or not there is a defect (measurement error) in the measured signal is inspected by confirming whether there is an overflow or outlier.
本発明においては、対象物の状態診断やパターン認識などのために測定された信号が定常な信号か、非定常な信号か、また不備があるか否かを自動的に検査する方法およびモジュールを提供できる。よって、本発明の方法およびモジュールは、様々な分野で色々な診断装置やパターン認識装置に適用でき、状態診断やパターン認識などの精度を高くすることができ、信号検査の自動化に役立つ。In the present invention, there is provided a method and a module for automatically inspecting whether a signal measured for state diagnosis or pattern recognition of an object is a stationary signal, a non-stationary signal, or whether there is a defect. Can be provided. Therefore, the method and module of the present invention can be applied to various diagnostic devices and pattern recognition devices in various fields, can improve the accuracy of state diagnosis and pattern recognition, and is useful for automation of signal inspection.
本発明の処理の流れは図1に示す。ここで、この流れに沿って本発明の最良の形態について説明する。The processing flow of the present invention is shown in FIG . Here, the best mode of the present invention will be described along this flow.
信号の測定(図1のA)
ここで、対象とする信号は、振動信号、電圧信号、電流信号、音響信号および生体信号などであり、対象物の状態診断やパターン認識に用いられるものである。Signal measurement (Fig. 1A)
Here, the target signals are a vibration signal, a voltage signal, a current signal, an acoustic signal, a biological signal, and the like, and are used for state diagnosis and pattern recognition of the target object.
時系列信号(図1のB)
本発明の検査対象は時系列信号であり、図5,図6,図7および図8の例に示すように、計測部で測定されて状態診断やパターン認識などの処理をしようとする対象信号の波形データ全体である。すなわち、測定された信号は不備などがあるか否か、また、時系列信号の統計的な性質が時間と共に変化するか否かを検査することにより信号の定常性を判定する。なお、計測された信号はサンプリングによりN個の離散データ波形となり、x(i)(i=1〜N)で表す。なお、x(i)の平均値μrと標準偏差Srを求めたら、次のようにx(i)の正規化を行えば、
Time series signal (B in Fig. 1)
The inspection target of the present invention is a time-series signal, and as shown in the examples of FIGS. 5, 6, 7, and 8, the target signal that is measured by the measurement unit and is intended to perform processing such as state diagnosis and pattern recognition This is the entire waveform data. That is, the stationarity of the signal is determined by checking whether or not the measured signal is defective, and whether or not the statistical properties of the time series signal change with time. The measured signal becomes N discrete data waveforms by sampling and is represented by x (i) (i = 1 to N). Incidentally, if the average value mu r and the standard deviation S r of x (i), by performing the normalization of x (i) as follows,
オーバーフロー検出法(図1のC,D)
オーバーフローとは、信号の最大値(プラス側)が計測装置の最大計測レンジより大きいか、最小値(マイナス側)が計測装置の最大計測レンジより小さいことである。オーバーフローが発生したか否かは次のように判定する。波形データx(i)の最大値と最小値をそれぞれxmax(i)とxmin(i)とし、計測装置の最大計測レンジと最小計測レンジをそれぞれRmaxとRminとすると、xmax(i)≧Rmaxはるいはxmin(i)≦Rminならば、オーバーフローが発生したと判定する。Overflow detection method (C and D in Fig. 1)
Overflow means that the maximum value (plus side) of the signal is larger than the maximum measurement range of the measurement device, or the minimum value (minus side) is smaller than the maximum measurement range of the measurement device. Whether an overflow has occurred is determined as follows. When the maximum value and the minimum value of the waveform data x (i) are x max (i) and x min (i), respectively, and the maximum measurement range and the minimum measurement range of the measuring device are R max and R min , respectively, x max ( If i) ≧ R max or x min (i) ≦ R min , it is determined that an overflow has occurred.
外れ値の検出法(図1のE,F,G,H)
外れ値は、「統計においてデータの集団から外れた極端に大きな値あるいは極端に小さな値である」と定義されている。外れ値の検定方法は、様々あるが、本発明では、処理の迅速化のために波形データの中に「平均値+4×標準偏差」以上、あるいは「平均値−4×標準偏差」以下の値を外れ値と見做し、外れ値の程度は「平均値+4×標準偏差」より大きいほど、あるいは「平均値−4×標準偏差」より小さいほど、外れ値の発生程度が大きい。外れ値の検出は次の2つの方法がある。
(1)波形データの平均値と標準偏差を用いた外れ値検出法
状態診断やパターン認識などのために得られた信号の離散データをx(i)(i=1〜N)とし、x(i)の絶対値を|x(i)|とし、|x(i)|の平均値と標準偏差をそれぞれμとSとし、係数kの範囲をk min 〜k max と設定した後、|x(i)|の中にある値|x(j)|(j=1〜N)>μ+k min Sならば、x(j)を外れ値と判定される。一般にk min 〜k max =4〜50である。望ましいk min 〜k max は5〜20である。 Outlier detection method (E, F, G, H in Fig. 1)
Outliers are defined as “extremely large values or extremely small values that deviate from the data population in statistics”. There are various outlier test methods. In the present invention, in order to speed up the processing, the waveform data has a value equal to or greater than “average value + 4 × standard deviation” or less than “average value−4 × standard deviation”. As the outlier is larger than “average value + 4 × standard deviation” or smaller than “average value−4 × standard deviation”, the degree of occurrence of the outlier is larger. There are two methods for detecting outliers.
(1) Outlier detection method using average value and standard deviation of waveform data
Let x (i) (i = 1 to N) be the discrete data of signals obtained for state diagnosis, pattern recognition, etc., and let | x (i) | be the absolute value of x (i). ) | of the average value and the respective standard deviations mu S, after the range of the coefficient k was set to k min ~k max, | x ( i) | value is in the | x (j) | (j = If 1 to N)> μ + k min S, x (j) is determined as an outlier. In general, a k min ~k max = 4~50. Desirable k min ~k max is 5 to 20.
(2)波形データの絶対最大値を用いた外れ値検出法
前記のx(i)のL個の絶対最大値を|x Mj |(j=1〜L)とし、x Mj 除いた後の平均値と標準偏差をそれぞれμ a とS a とすると、係数k a の範囲をk amin 〜k amax と設定した後、|x Mj |>μ a +k min S a ならば、x Mj を外れ値と判定される。ここで、一般にk amin 〜k amax =4〜30である。望ましいk amin 〜k amax は5〜20である。また、一般にL/N=0.00001〜0.1であり、望ましいL/Nの範囲は0.0001〜0.001である。(2) Outlier detection method using absolute maximum value of waveform data
When the L absolute maximum values of x (i) are | x Mj | (j = 1 to L ), and the average value and standard deviation after removing x Mj are μ a and S a , respectively , the coefficient k after setting the range of a and k amin ~k amax, | x Mj | if> μ a + k min S a , it is determined that values outside the x Mj. Where in general k amin ~k amax = 4~30. Desirable k amin ~k amax is 5 to 20. In general, L / N is 0.00001 to 0.1, and a desirable L / N range is 0.0001 to 0.001.
(3)外れ値の発生程度の計算法
外れ値の発生程度(以下「外れ程度」と呼ぶ)をパーセンテージで表す場合、係数k(または、k a )の上限値と下限値をそれぞれk max とk min (または、k amax とk amin )とし、|x(j)|≧μ+k max S(または、|x Mj |≧μ a +k amax S a )のとき、外れ程度を100%とし、|x(j)|≦μ+k min S(または、|x Mj |≦μ a +k amin S a )のとき、外れ程度を0%とし、|x(j)|=μ+k min S〜μ+k max (または、|x Mj |=μ a +k amin S a 〜μ a +k amax S a )のとき、外れ程度を0%〜100%とすると、外れ程度が予め設定した閾値より大きい時に前記信号を不備な信号と判定して適宜な対処を行う。
たとえば、kmax=15とkmin=5のとき、xmax=μ+5Sであれば0%、xmax=μ+10Sであれば50%、xmax>μ+15Sであれば100%。
外れ値の発生程度はx%以上の場合、信号の不備や測定ミスがあると判定されるが、x%は「外れパーセンテージ閾値」といって、測定対象の性質によって測定者が決める。また、外れ値の発生程度が大きいと判明した後、その対処として、信号を測定し直すか、外れ値を取り除いて処理するか測定者が決めることができる。(3) Calculation method of the degree of outlier occurrence
When the degree of occurrence of an outlier (hereinafter referred to as “outlier”) is expressed as a percentage, the upper limit value and lower limit value of the coefficient k (or k a ) are set to k max and k min (or k amax and k amin ), respectively. When | x (j) | ≧ μ + k max S (or | x Mj | ≧ μ a + k amax S a ), the degree of deviation is 100%, and | x (j) | ≦ μ + k min S (or When | x Mj | ≦ μ a + k amin S a ), the degree of deviation is 0%, and | x (j) | = μ + k min S to μ + k max (or | x Mj | = μ a + k amin S a to In the case of μ a + k amax S a ), if the degree of deviation is 0% to 100%, when the degree of deviation is larger than a preset threshold value, the signal is determined as an inadequate signal and appropriate measures are taken.
For example, when k max = 15 and k min = 5, 0% if x max = μ + 5S, 50 % if x max = μ + 10S, 100 % if x max> μ + 15S.
When the outlier generation degree is x% or more, it is determined that there is a signal defect or a measurement error, but x% is called “outlier percentage threshold” and is determined by the measurer according to the property of the measurement target. Further, after it has been found that the degree of occurrence of outliers is large, the measurer can decide whether to measure the signal again or to process the outliers as a countermeasure.
有次元特徴パラメータの定常性について(図1のI,J,K)
有次元特徴パラメータとは、波形データから求めた単位付きのパラメータのことである。波形データx(i)の有次元特徴パラメータの例としては、次のものがある。
なお、上記の有次元特徴パラメータ以外に実効値もあるが、実効値の定常性については標準偏差と同様に考えることができる。On the continuity of dimensional feature parameters (I, J, K in Fig. 1)
The dimensional feature parameter is a parameter with a unit obtained from waveform data. Examples of dimensional feature parameters of the waveform data x (i) include the following.
Although there are effective values in addition to the dimensional feature parameters described above, the continuity of the effective values can be considered in the same way as the standard deviation.
有次元特徴パラメータの定常性を検査するとき、波形データx(i)(あるいは、
いは、xj(i)とxk(i))で表す。一般にM/N=0.0001=0.5であり、望ましいM/Nの範囲は0.01〜0.1である。第j区間と第k区間の波形データ数をNjとNkとする。
When checking the continuity of the dimensional feature parameter, the waveform data x (i) (or
Or x j (i) and x k (i)). Generally, M / N = 0.0001 = 0.5, and a desirable M / N range is 0.01 to 0.1. The number of waveform data in the j-th section and the k-th section is N j and N k .
(1)有次元特徴パラメータの定常性評価法I
μの定常性を検定するときに、xj(i)とxk(i)における平均値をμjとμkとし、xj(i)とxk(i)における標準偏差をSjとSkとすると、μj=μkならば、第j区間と第k区間はμに関する定常区間と定義する。M個の区間における平均値μが全て等しければ、すなわちμ1=μ2=・・・μj=μk=・・・=μMならば、波形データ(信号)の平均値が定常であると判定できる。しかし、実際にはデータ波形のばらつきを考慮して、確率の有意水準αを与えて、仮説μ1=μ2=・・・μj=μk=・・・=μMについての統計検定を行う。統計検定方法[非特許文献1]は多く提案されているが、ここでその1例を示す。たとえば、有意水準αが与えられた場合、(1) Stationary evaluation method I for dimensional feature parameters I
When testing the continuity of μ, the average value in x j (i) and x k (i) is μ j and μ k, and the standard deviation in x j (i) and x k (i) is S j and Assuming S k , if μ j = μ k , the j-th section and the k-th section are defined as steady sections related to μ. If the average values μ in the M sections are all equal, that is, if μ 1 = μ 2 =... Μ j = μ k =... = Μ M , the average value of the waveform data (signal) is stationary. Can be determined. However, in practice, taking into account the variation of the data waveform, giving significance level α probability, the hypothesis μ 1 = μ 2 = ··· μ j = μ k = ··· = μ M statistical test for Do. Many statistical test methods [Non-Patent Document 1] have been proposed, but one example is shown here. For example, given a significance level α,
る。
The
(2)有次元特徴パラメータの定常性評価法II
(2) Steadyness evaluation method for dimensional feature parameters II
(3)有次元特徴パラメータの定常性評価法III
Sの定常性を検定するとき、xj(i)とxk(i)における標準偏差をSjとSkとすると、(3) Method for evaluating stationarity of dimensional feature parameters III
When testing the stationarity of S, if the standard deviations in x j (i) and x k (i) are S j and S k ,
る。
The
有次元特徴パラメータの定常性評価法IV
(4)有次元特徴パラメータの定常性評価法IV
と、Stationary evaluation method for dimensional feature parameters IV
(4) Stationary evaluation method for dimensional feature parameters IV
When,
(5)有次元特徴パラメータの非定常程度の計算法
有次元特徴パラメータの非安定程度(以下、「有次元非安定程度」とよぶ)をパーセンテージで表す場合、、有意水準α d を与えたときに、[数2]、[数3]、[数4]および[数5]が左側と右側が等しく、しかもα d ≧α max のときに、有次元非安定程度を0%とし、また、α d ≦α min のときに、有次元非安定程度を100%とし、α d =α min 〜α max のとき、有次元非安定程度を100%〜0%とすると、有次元非安定程度が予め設定した閾値より大きい時に前記信号を非安定な信号と判定して適宜な対処を行う。
たとえば、[数2]において、αmax=0.2、αmin=0.001とする。α=0.3のときに、[数2]の左側と右側が等しければ0%、α=0.0005のとき、[数2]の左側と右側が等しければ100%、α=0.1のとき、左側と右側が等しければ50.3%、α=0.05のとき、左側と右側が等しければ25.1%である。
有次元非安定程度はx%以上の場合、信号が「非定常」と判定すれば、x%は有次元特徴パラメータの「非定常パーセンテージ閾値」といって、測定対象の性質によって測定者が決める。(5) Unsteady calculation method of dimensional feature parameters
When the degree of instability of a dimensional feature parameter (hereinafter referred to as “dimensional degree of instability”) is expressed as a percentage, when the significance level α d is given, [Equation 2], [Equation 3], [Equation] 4] and [Equation 5] when the left side and the right side are equal, and α d ≧ α max , the dimensional instability is 0%, and when α d ≦ α min , the dimensional instability is about Is 100%, and when α d = α min to α max , if the dimensional instability is 100% to 0%, the signal is an unstable signal when the dimensional instability is greater than a preset threshold. And take appropriate measures.
For example, in [Equation 2], α max = 0.2 and α min = 0.001. When α = 0.3, the left side and the right side of [Equation 2] are equal to 0%, and when α = 0.0005, the left side and the right side of [Equation 2] are equal to 100%, α = 0.1. When the left and right sides are equal, 50.3%, and when α = 0.05, the left and right sides are equal to 25.1%.
If the dimensional instability is equal to or greater than x%, if the signal is determined to be “unsteady”, x% is called the “non-stationary percentage threshold” of the dimensional feature parameter and is determined by the measurer according to the property of the measurement object. .
信号が非定常と判定されたとき、信号を測定しなおすか否かは対象物の性質によって決められる。場合によって検定の結果を測定者に示し、測定者が信号を測定しなおすか否かを決める。
なお、定常な信号しか処理できない診断装置やパターン認識装置などには、非定常な信号を入力することは明らかに不適切である。When it is determined that the signal is non-stationary, whether or not to re-measure the signal is determined by the nature of the object. In some cases, the result of the test is shown to the measurer, and the measurer decides whether to remeasure the signal.
It should be noted that it is obviously inappropriate to input a non-stationary signal to a diagnosis device or a pattern recognition device that can process only a stationary signal.
無次元特徴パラメータの定常性評価法について(図1のL,M,N)
無次元特徴パラメータとは、波形データから求めた単位無しのパラメータのことである。波形データx(i)(=xi)の無次元特徴パラメータの例としては、次のものがある。About the stationary evaluation method of dimensionless feature parameters (L, M, N in Fig. 1)
The dimensionless feature parameter is a unitless parameter obtained from waveform data. Examples of dimensionless feature parameters of the waveform data x (i) (= x i ) include the following.
ここで、μはxiの平均値で、σはxiの標準偏差である。Here, mu is the average value of x i, sigma is the standard deviation of x i.
なお、以下で述べる無次元特徴パラメータの定常性の判定法は上記以外に他の無次元特徴パラメータにも適用できる。
The method for determining the continuity of a dimensionless feature parameter described below can be applied to other dimensionless feature parameters in addition to the above.
無次元特徴パラメータの定常性を検査するとき、波形データx(i)をM区間に分割し、第j区間の波形データをxj(i)で表す。一般にM/N=0.0001〜0.1であり、望ましいM/Nの範囲は0.005〜0.01である。第j区間の波形データ数をNjとする。舞次元特徴パラメータを統一にpで表し、xj(i)における無次元特徴パラメータpをpj(j=1〜M)で表す。
無次元特徴パラメータpの定常性を判定するとき、次のような方法がある。When examining the continuity of the dimensionless feature parameter, the waveform data x (i) is divided into M sections, and the waveform data of the jth section is represented by x j (i). Generally, M / N = 0.0001 to 0.1, and a desirable M / N range is 0.005 to 0.01. Let N j be the number of waveform data in the jth section. The dance dimension feature parameter is uniformly represented by p, and the dimensionless feature parameter p in x j (i) is represented by p j (j = 1 to M).
When determining the stationarity of the dimensionless feature parameter p, there are the following methods.
(1)無次元特徴パラメータの定常性評価法I
予め係数k p の範囲をk pnin 〜k pmax と設定した後、|p j |>μ p +k pmin S p ならばp j を特異な無次元特徴パラメータと判定され、信号が非定常と判定される。一般にk pnin 〜k pmax =1〜20である。望ましいk pnin 〜k pmax は2〜3である。 (1) Stationarity evaluation method for dimensionless feature parameters I
After the range of the advance coefficient k p was set to k pnin ~k pmax, | p j |> μ p + k pmin S p is determined if p j and a specific dimensionless characteristic parameter signal is determined to unsteady The Generally a k pnin ~k pmax = 1~20. Desirable k pnin ~k pmax is 2-3.
(2)無次元特徴パラメータの定常性評価法II
予め係数k L の範囲をk Lnin 〜k Lmax と設定した後、|S p /μ p |>k Lmin ならば無次元特徴パラメータpを非安定と判定される。一般にk Lnin 〜k Lmax =0.1〜6である。望ましいk Lnin 〜k Lmax は0.5〜3である。 (2) Method for evaluating stationarity of dimensionless feature parameters II
After the range of the advance coefficient k L was set to k Lnin ~k Lmax, | is determined> k Lmin if dimensionless characteristic parameter p unstable and | S p / mu p. In general, a k Lnin ~k Lmax = 0.1~6. Desirable k Lnin ~k Lmax is 0.5 to 3.
(3)無次元特徴パラメータの定常性評価法III
x j (i)における無次元特徴パラメータをp j のU個の最大値をp Mj (i=1〜U)とし、p Mj 除いた後のx(i)の平均値と標準偏差をそれぞれμ pn とS pn とすると、予め係数k M の範囲をk Mnin 〜k Mmax と設定した後、|p Mj |>μ pn +k Mmin S pn ならば無次元特徴パラメータpを非安定と判定され、信号が非定常と判定される。一般にk Mnin 〜k Mmax =2〜10である。望ましいk Mnin 〜k Mmax は3〜6である。また、一般にU/M=0.001〜0.5であり、望ましいU/Mの範囲は0.001〜0.01である。(3) Method for evaluating stationarity of dimensionless feature parameters III
The dimensionless feature parameter in x j (i) is set to p Mj (i = 1 to U) as the U maximum value of p j , and the average value and standard deviation of x (i) after removing p Mj are μ When pn and S pn, after the range of the advance coefficient k M was set to k Mnin ~k Mmax, | p Mj | determined> the mu pn + k Mmin S pn If dimensionless characteristic parameter p unstable and, signal Is determined to be non-stationary. In general, k Mmin -k Mmax = 2-10. Desirable k Mnin ~k Mmax is 3-6. In general, U / M = 0.001 to 0.5, and a desirable U / M range is 0.001 to 0.01.
(4)無次元特徴パラメータの定常性評価法IV
予め係数k i の範囲をk inin 〜k imax と設定した後、|p j ×p j−1 |(j=2〜M)の最大値>k imin ならば無次元特徴パラメータpを非安定と判定される。k i の決め方は経験
(4) Method for evaluating the continuity of dimensionless feature parameters IV
After the range of the advance coefficient k i was set to k inin ~k imax, | p j × p j-1 | (j = 2~M) the maximum value> k imin If dimensionless characteristic parameter p of the free and Determined. how to determine the k i experience
(5)無次元特徴パラメータの非定常程度の計算法
無次元特徴パラメータの非定常程度(以下、「無次元非安定程度」とよぶ)をパーセンテージで表す場合、係数k p (k L 、k M 、k i も同様)の上限値と下限値をそれぞれk max とk min とし、|p j |≧μ p +k pmax S p のとき、無次元非安定程度を100%とし、、|p j |≦μ p +k pmin S p のとき、無次元非安定程度を0%とし、k p =μ p +k pmin S p 〜k pmax S p のとき、無次元非安定程度を0%〜100%とすると、無次元非安定程度が予め設定した閾値より大きい時に前記信号を非安定な信号と判定して適宜な対処を行う。
たとえば、k pmax =5とk pmin =1のとき、|p j |=μ p +0.8S p であれば0%、|p j |=u p +3S p であれば50%、|p j |=μ p +6S p であれば100%。
また、係数ki(なお、以下の方法はkLにも適用できる。)の上限値と下限値をそれぞれkimaxとkiminとし、|pjpj−1|(j=2〜M)の最大値をΔpjmaxとすると、Δpjmax≧kimaxのとき、100%とし、Δpjmax<kiminのとき、0%とする。
たとえば、kimax=11とkimax=1とのとき、Δpjmax=0.9であれば0%、Δpjmax=6であれば50%、Δpjmax=12であれば100%である。
無次元特徴パラメータの非定常程度はx%以上の場合、信号が「非定常」と判定すれば、x%は無次元特徴パラメータの「非定常パーセンテージ閾値」といって、測定対象の性質によって測定者が決める。(5) Non-stationary calculation method for dimensionless feature parameters
When expressing the non-steady degree of the dimensionless feature parameter (hereinafter referred to as “the dimensionless instability degree”) as a percentage, the upper limit value and the lower limit value of the coefficient k p (k L , k M , and k i are also the same) When k max and kmin, and | p j | ≧ μ p + k pmax S p , the dimensionless instability degree is 100%, and when | p j | ≦ μ p + k pmin S p , dimensionless instability the extent to 0%, when k p = μ p + k pmin S p ~k pmax S p, when the dimensionless unstable about to 0% to 100%, when the threshold is larger than the dimensionless astable about previously set The signal is determined to be an unstable signal and appropriate measures are taken.
For example, when k pmax = 5 and k pmin = 1, | p j | if = μ p + 0.8S p 0% , | p j | = if u p + 3S p 50%, | p j | = 100% if it is μ p + 6S p.
Further, the upper limit value and lower limit value of the coefficient k i (the following method can also be applied to k L ) are set as k imax and k imin , respectively, and | p j p j−1 | (j = 2 to M). when the maximum value is referred to as Delta] p jmax, when Δp jmax ≧ k imax, to 100%, when Δp jmax <k imin, and 0%.
For example, when k imax = 11 and k imax = 1, 0% if Δp jmax = 0.9, 50% if Δp jmax = 6, and 100% if Δp jmax = 12.
If the non-steady degree of the dimensionless feature parameter is greater than or equal to x%, if the signal is determined to be “unsteady”, the x% is called the “non-stationary percentage threshold” of the dimensionless feature parameter and is measured according to the property of the measurement object. Decide.
信号が非定常と判定されたとき、信号を測定しなおすか否かは対象物の性質によって決められる。場合によって検定の結果を測定者に示し、測定者が信号を測定しなおすか否かを決める。
なお、定常な信号しか処理できない診断装置やパターン認識装置などには、非定常な信号を入力することは明らかに不適切である。When it is determined that the signal is non-stationary, whether or not to re-measure the signal is determined by the nature of the object. In some cases, the result of the test is shown to the measurer, and the measurer decides whether to remeasure the signal.
It should be noted that it is obviously inappropriate to input a non-stationary signal to a diagnosis device or a pattern recognition device that can process only a stationary signal.
以上、各項目による信号検査の結果を信号の測定者に示し、信号を計測しなおすか否かは測定者によって決めることができる。複数の有・無次元特徴パラメータで評価する場合、得られた複数の有・無次元特徴パラメータの非定常程度(%)の最大値を最終結果として表示する。
図2は棒グラフによる信号検査結果の表示法(I、II)を示す。
図3はランプによる信号検査結果の表示法(I、II、III、IV)を示す。ランプの点灯か消灯かは対象物の特性により決められる。望ましい決め方は次の通りである。
ランプによる信号検査結果の表示法IとIIIにおいては、80%以上は「赤」、30%以上〜80%以下は「黄」、30%未満は「青」とする。ランプによる信号検査結果の表示法IIとIVにおいては、50%以上は「点灯」、50%未満は「消灯」とする。As described above, the result of the signal inspection by each item is shown to the signal measurer, and it can be determined by the measurer whether or not the signal is measured again. When evaluating with a plurality of existence / non-dimension feature parameters, the maximum value of the obtained non-stationary degree (%) of the existence / non-dimension feature parameters is displayed as a final result.
FIG. 2 shows a method (I, II) of displaying the signal inspection result by a bar graph.
FIG. 3 shows a display method (I, II, III, IV) of the signal inspection result by the lamp. Whether the lamp is turned on or off is determined by the characteristics of the object. A desirable way to decide is as follows.
In the display methods I and III of the signal inspection result by the lamp, 80% or more is “red”, 30% to 80% is “yellow”, and less than 30% is “blue”. In the display methods II and IV of the signal inspection result by the lamp, 50% or more is “lighted” and less than 50% is “lighted out”.
更に、ブザーなどの音による表示も出来る。信号検査結果(%)が設定されたパーセンテージ以上になった場合、ブザーを鳴らす。たとえば、50%以上は「ブザー音」とする。In addition, a buzzer sound can be displayed. If the signal inspection result (%) exceeds the set percentage, the buzzer will sound. For example, 50% or more is a “buzzer sound”.
図4は本発明の方法により構築される信号検査モジュールの構成図を示す。すなわち、対象物の状態診断やパターン認識などのために、信号計測部で測定された信号が定常な信号か、非定常な信号か、また測定された信号の測定ミスがあるか否かを信号検査部で自動的に検査し、検査結果を検査結果の表示部で表示し、診断部やパターン認識部で診断やパターン認識のための処理を行う前に、信号の測定者が検査結果に基づき信号を測定しなおすか否かをその場で決定するか、事前に設定したルールにより信号検査部で自動的に対処することができ、状態診断やパターン認識などの精度を確保することができる。 FIG. 4 shows a block diagram of a signal inspection module constructed by the method of the present invention. That is, a signal indicating whether the signal measured by the signal measurement unit is a stationary signal, a non-stationary signal, or whether there is a measurement error in the measured signal for the purpose of state diagnosis or pattern recognition of the object. Automatically inspected by the inspection unit, the inspection result is displayed on the display unit of the inspection result, and the signal measurer based on the inspection result before performing the diagnosis or pattern recognition processing by the diagnosis unit or the pattern recognition unit Whether the signal is measured again can be determined on the spot, or can be automatically handled by the signal inspection unit according to a rule set in advance, and accuracy such as state diagnosis and pattern recognition can be ensured.
図5は設備診断装置によって測定された回転機械の振動加速度信号である。この設備診断装置は、定常回転のモータ、ポンプ、発電機および歯車装置などの回転機械の状態診断に用いられる。この診断装置は診断対象の回転機械の定常な振動信号を測定して、定常な振動信号を処理することにより状態診断を行う。
この信号を検査した結果を次に示す。
データの測定条件:データ数:N=2048、サンプリング周波数:1000Hz。
オーバーフローの検査結果:オーバーフロー検出のレンジはRmax=4.0(v)、Rmin=−4.0(v)である。この信号のxmax(i)=2.79(v)、xmin(i)=−2.95(v)である。よって、xmax(i)≦Rmax、xmin(i)≧Rminから、オーバーフローは無し。
外れ値の検査結果:外れ値検出法Iの係数kをkmax=20とkmin=5とする。この信号のμ=0.013784、S:0.799である。よって、|x(i)|の最大値2.79<0.013784+5×0.799から、外れ値の程度は0%である。
有次元特徴パラメータ(μrとμa)の定常性の判定結果:
波形データの分割数M=8、
有次元特徴パラメータの定常性評価法Iにおける有意水準α=0.001、
有意水準の最小値αmin=0.001、
有意水準の最大値αmin=0.01、
t(0.001,2048/8)=3.329867、
t(0.01,2048/8)=2.596、
第1分割区間のx1(i)の平均値μ1および|x1(i)|の平均値μa1を基準として、有次元特徴パラメータの定常性評価法Iにより求めた分割区間のtiおよびtaiによる判定結果は次の通りである。
第2分割区間のt2=1.45、非定常程度=0%
第2分割区間のta2=0.80、非定常程度=0%
第3分割区間のt3=0.23、非定常程度=0%
第3分割区間のta3=0.97、非定常程度=0%
第4分割区間のt4=1.35、非定常程度=0%
第4分割区間のta4=0.87、非定常程度=0%
第5分割区間のt5=0.79、非定常程度=0%
第5分割区間のta5=0.10、非定常程度=0%
第6分割区間のt6=2.36、非定常程度=0%
第6分割区間のta6=1.08、非定常程度=0%
第7分割区間のt7=0.40、非定常程度=0%
第7分割区間のta7=0.25、非定常程度=0%
第8分割区間のt8=1.95、非定常程度=0%
第8分割区間のta8=1.07、非定常程度=0%
以上の結果により、この波形は有次元特徴パラメータの非定常の程度は0%である。
無次元特徴パラメータ(p2とp3)の定常性の判定結果:
波形データの分割数M=8、
無次元特徴パラメータの定常性評価法IVにおけるkjは
p2の係数k2max=2、k2min=1
p3の係数k3max=3、k3min=1
p2のΔpjmax=0.89、非定常程度=0%
p3のΔpjmax=1.23、非定常程度=11.5%
以上の結果により、この波形は無次元特徴パラメータの非定常の程度が11.5%である。
よって、この信号は正常に測定された信号として、状態診断に用いられた。 FIG. 5 is a vibration acceleration signal of the rotating machine measured by the equipment diagnosis apparatus. This equipment diagnosis device is used for state diagnosis of rotating machines such as a motor, a pump, a generator, and a gear device of steady rotation. This diagnostic apparatus measures a steady vibration signal of a rotating machine to be diagnosed and performs a state diagnosis by processing the steady vibration signal.
The results of examining this signal are as follows.
Data measurement conditions: number of data: N = 2048, sampling frequency: 1000 Hz.
Overflow inspection result: Overflow detection ranges are R max = 4.0 (v) and R min = −4.0 (v). In this signal, x max (i) = 2.79 (v) and x min (i) = − 2.95 (v). Therefore, there is no overflow from x max (i) ≦ R max and x min (i) ≧ R min .
Outlier test result: The coefficient k of the outlier detection method I is set to kmax = 20 and kmin = 5. Μ of this signal is 0.013784 and S: 0.799. Therefore, since the maximum value of | x (i) | 2.79 <0.0137784 + 5 × 0.799, the degree of outlier is 0%.
Yes dimensional feature parameters (mu r and mu a) constancy of the determination result of:
Waveform data division number M = 8,
Significance level α = 0.001 in the dimensionality feature parameter stationaryity evaluation method I,
Minimum value of significance level α min = 0.001,
Maximum value of significance level α min = 0.01,
t (0.001,2048 / 8) = 3.329867,
t (0.01,2048 / 8) = 2.596,
Mean mu 1 and x 1 (i) of the first divided section | x 1 (i) |, based on the average value mu a1 of, t i of the divided sections obtained by routine evaluation method I chromatic dimensional feature parameters And the determination result by t ai is as follows.
T 2 = 1.45 of second divided section, unsteady degree = 0%
T a2 of the second divided section = 0.80, unsteady degree = 0%
T 3 = 0.23 of the third divided section, unsteady degree = 0%
T a3 in the third divided section = 0.97, unsteady degree = 0%
T 4 = 1.35 of the fourth divided section, unsteady degree = 0%
T a4 in the fourth divided section = 0.87, unsteady degree = 0%
T 5 = 0.79 of the fifth divided section, unsteady degree = 0%
T a5 of the fifth divided section = 0.10, unsteady degree = 0%
T 6 = 2.36 of the sixth divided section, unsteady degree = 0%
T a6 = 1.08 in the sixth divided section, unsteady degree = 0%
T 7 = 0.40 of the seventh divided section, unsteady degree = 0%
T a7 in the seventh divided section = 0.25, unsteady degree = 0%
T 8 = 1.95 in the eighth divided section, unsteady degree = 0%
T a8 = 1.07 in the eighth divided section, unsteady degree = 0%
Based on the above results, this waveform has a non-stationary degree of dimensional feature parameters of 0%.
Determination result of stationarity of dimensionless feature parameters (p 2 and p 3 ):
Waveform data division number M = 8,
K j at steady Evaluation Method IV dimensionless characteristic parameter coefficient p 2 k 2max = 2, k 2min = 1
The coefficient of p 3 k 3max = 3, k 3min = 1
Δp jmax of p 2 = 0.89, unsteady degree = 0%
Δp jmax of p 3 = 1.23, unsteady degree = 11.5%
Based on the above results, this waveform has a non-stationary degree of dimensionless feature parameter of 11.5%.
Therefore, this signal was used for condition diagnosis as a normally measured signal.
図6は図5の波形と同じ診断装置と測定条件で測定された波形例である。この信号を検査した結果を次に示す。
データの測定条件:データ数:N=2048、サンプリング周波数:1000Hz。
オーバーフローの検査結果:オーバーフロー検出のレンジはRmax=4.0(v)、Rmin=−4.0(v)である。この信号のxmax(i)=3.14(v)、xmin(i)=−3.19(v)である。よって、xmax(i)≦Rmax、xmin(i)≧Rminから、オーバーフローは無し。
外れ値の検査結果:外れ値検出法Iの係数kをkmax=20とkmin=5とする。この信号のμ=0.26、S=0.701である。よって、|x(i)|の最大値3.19<0.26+5×0.701から、外れ値の程度は0%である。
有次元特徴パラメータ(μrとμa)の定常性の判定結果:
波形データの分割数M=8、
有次元特徴パラメータの定常性評価法Iにおける有意水準α=0.001、
有意水準の最小値αmin=0.001、
有意水準の最大値αmin=0.01、
t(0.001,2048/8)=3.329867、
t(0.01,2048/8)=2.596、
第1分割区間のx1(i)の平均値μ1および|x1(i)|の平均値μa1を基準として、有次元特徴パラメータの定常性評価法Iにより求めた分割区間のtiおよびtaiによる判定結果は次の通りである。
第2分割区間のt2=4.98、非定常程度=100%
第2分割区間のta2=0.78、非定常程度=0%
第3分割区間のt3=5.32、非定常程度=100%
第3分割区間のta3=1.91、非定常程度=0%
第4分割区間のt4=4.48、非定常程度=100%
第4分割区間のta4=0.82、非定常程度=0%
第5分割区間のt5=4.92、非定常程度=100%
第5分割区間のta5=0.10、非定常程度=0%
第6分割区間のt6=0.44、非定常程度=0%
第6分割区間のta6=0.76、非定常程度=0%
第7分割区間のt7=2.75、非定常程度=5%
第7分割区間のta7=0.33、非定常程度=0%
第8分割区間のt8=6.72、非定常程度=100%
第8分割区間のta8=0.99、非定常程度=0%
以上の結果により、この波形は有次元特徴パラメータの非定常の程度が100%である。
無次元特徴パラメータ(p2とp3)の定常性の判定結果:
波形データの分割数M=8、
無次元特徴パラメータの定常性評価法IVにおけるkjは
p2の係数k2max=2、k2min=1
p3の係数k3max=3、k3min=1
p2のΔpjmax=1.68、非定常程度=68%
p3のΔpjmax=1.75、非定常程度=37.5%
以上の結果により、この波形は有次元特徴パラメータの非定常の程度が68%である。
この例では、有次元特徴パラメータの非定常の程度が100%であるから、定常信号しか処理できない上記の設備診断装置は、この信号を処理できないと判定された。 6 is an example of a waveform measured in the same diagnostic apparatus and the measurement conditions and the waveform of FIG. The results of examining this signal are as follows.
Data measurement conditions: number of data: N = 2048, sampling frequency: 1000 Hz.
Overflow inspection result: Overflow detection ranges are R max = 4.0 (v) and R min = −4.0 (v). In this signal, x max (i) = 3.14 (v) and x min (i) = − 3.19 (v). Therefore, there is no overflow from x max (i) ≦ R max and x min (i) ≧ R min .
Outlier test result: The coefficient k of the outlier detection method I is set to kmax = 20 and kmin = 5. This signal has μ = 0.26 and S = 0.701. Therefore, from the maximum value of | x (i) | 3.19 <0.26 + 5 × 0.701, the degree of outlier is 0%.
Yes dimensional feature parameters (mu r and mu a) constancy of the determination result of:
Waveform data division number M = 8,
Significance level α = 0.001 in the dimensionality feature parameter stationaryity evaluation method I,
Minimum value of significance level α min = 0.001,
Maximum value of significance level α min = 0.01,
t (0.001,2048 / 8) = 3.329867,
t (0.01,2048 / 8) = 2.596,
Mean mu 1 and x 1 (i) of the first divided section | x 1 (i) |, based on the average value mu a1 of, t i of the divided sections obtained by routine evaluation method I chromatic dimensional feature parameters And the determination result by t ai is as follows.
T 2 of the second divided section = 4.98, unsteady degree = 100%
T a2 of the second divided section = 0.78, unsteady degree = 0%
T 3 of the third divided section = 5.32, unsteady degree = 100%
T a3 = 1.91 of the third divided section, unsteady degree = 0%
T 4 = 4.48 of the fourth divided section, unsteady degree = 100%
T a4 in the fourth divided section = 0.82, unsteady degree = 0%
T 5 = 4.92 in the fifth divided section, unsteady degree = 100%
T a5 of the fifth divided section = 0.10, unsteady degree = 0%
T 6 = 0.44 in the sixth division, unsteady degree = 0%
T a6 of the sixth divided section = 0.76, unsteady degree = 0%
T 7 = 2.75 of the seventh divided section, unsteady degree = 5%
T a7 in the seventh divided section = 0.33, unsteady degree = 0%
T 8 = 6.72 in the eighth divided section, unsteady degree = 100%
T a8 of the eighth divided section = 0.99, unsteady degree = 0%
Based on the above results, this waveform has a non-stationary degree of the dimensional feature parameter of 100%.
Determination result of stationarity of dimensionless feature parameters (p 2 and p 3 ):
Waveform data division number M = 8,
K j at steady Evaluation Method IV dimensionless characteristic parameter coefficient p 2 k 2max = 2, k 2min = 1
The coefficient of p 3 k 3max = 3, k 3min = 1
Δp jmax of p 2 = 1.68, unsteady degree = 68%
Δp jmax of p 3 = 1.75, unsteady degree = 37.5%
Based on the above results, this waveform has a non-stationary degree of dimensional feature parameters of 68%.
In this example, since the degree of unsteady dimensional feature parameter is 100%, it is determined that the equipment diagnosis apparatus that can process only a steady signal cannot process this signal.
図7も図5の波形と同じ診断装置と測定条件で測定された波形例である。この信号を検査した結果を次に示す。
データの測定条件:データ数:N=2048、サンプリング周波数:1000Hz。
オーバーフローの検査結果:オーバーフロー検出のレンジはRmax=2.0(v)、Rmin=−2.0(v)である。この信号のxmax(i)=3.17(v)、xmin(i)=−2.79(v)である。よって、xmax(i)>Rmax、xmin(i)<Rminから、オーバーフローが発生したと判定され、信号を測定しなおした。 Figure 7 is also a waveform example measured in the same diagnostic apparatus and the measurement conditions and the waveform of FIG. The results of examining this signal are as follows.
Data measurement conditions: number of data: N = 2048, sampling frequency: 1000 Hz.
Overflow inspection result: Overflow detection ranges are R max = 2.0 (v) and R min = −2.0 (v). In this signal, x max (i) = 3.17 (v) and x min (i) = − 2.79 (v). Therefore, from x max (i)> R max and x min (i) <R min , it was determined that an overflow occurred, and the signal was measured again.
図8も図5の波形と同じ診断装置と測定条件で測定された波形例である。この信号を検査した結果を次に示す。
データの測定条件:データ数:N=2048、サンプリング周波数:1000Hz。
オーバーフローの検査結果:オーバーフロー検出のレンジはRmax=15.0(v)、Rmin=−15.0(v)である。この信号のxmax(i)=9.7(v)、xmin(i)=−14.0(v)である。よって、xmax(i)≦Rmax、xmin(i)≧Rminから、オーバーフローは無し。
外れ値の検査結果:外れ値検出法IIのLをL=2、係数kをkmax=12とkmin=6とする。この信号のμ=−0.0054、S=0.822である。よって、|x(i)|の最大値12.3>−0.0054+12×0.822から、外れ値の程度は100%であり、信号を測定しなおした。 Figure 8 is also an example of a waveform measured in the same diagnostic apparatus and the measurement conditions and the waveform of FIG. The results of examining this signal are as follows.
Data measurement conditions: number of data: N = 2048, sampling frequency: 1000 Hz.
Overflow inspection result: Overflow detection ranges are R max = 15.0 (v) and R min = -15.0 (v). In this signal, x max (i) = 9.7 (v) and x min (i) = − 14.0 (v). Therefore, there is no overflow from x max (i) ≦ R max and x min (i) ≧ R min .
Outlier inspection result: L in the outlier detection method II is L = 2, and the coefficient k is k max = 12 and kmin = 6. Μ of the signal is −0.0054 and S = 0.822. Therefore, from the maximum value 12.3> −0.0054 + 12 × 0.822 of | x (i) |, the degree of the outlier is 100%, and the signal was measured again.
図4中の符号について、
1 状態診断装置やパターン認識装置、2 本発明の信号検査モジュール、3 信号計測部、4 信号検査部、5 検査結果表示部、6 診断部やパターン認識部。Regarding the reference numerals in FIG.
DESCRIPTION OF
Claims (3)
「外れ値程度算出法」:
状態診断やパターン認識のために得られた信号の波形データをx(i)(i=1〜N)とし、x(i)の絶対値を|x(i)|とし、|x(i)|の平均値と標準偏差をそれぞれμとSとし、係数kの範囲をkmin〜kmaxと設定した後、|x(i)|の中にある値|x(j)|(j=1〜N)>μ+kminSならば、x(j)を外れ値と判定し、
または、x(i)のL個の絶対最大値を|xMj|(j=1〜L)とし、xMj除いた後の平均値と標準偏差をそれぞれμaとSaとすると、係数kaの範囲をkamin〜kamaxと設定した後、|xMj|>μa+kaminSaならば、xMjを外れ値と判定し、
外れ値の発生程度(以下「外れ程度」と呼ぶ)をパーセンテージで表す場合、係数k(または、ka)の上限値と下限値をそれぞれkmaxとkmin(または、kamaxとkamin)とし、|x(j)|≧μ+kmaxS(または、|xMj|≧μa+kamaxSa)のとき、外れ程度を100%とし、|x(j)|≦μ+kminS(または、|xMj|≦μa+kaminSa)のとき、外れ程度を0%とし、|x(j)|=μ+kminS〜μ+kmaxS(または、|xMj|=μa+kaminSa〜μa+kamaxSa)のとき、外れ程度を0%〜100%とすると、外れ程度が予め設定した閾値より大きい時に前記信号を不備な信号と判定する。
「波形非安定程度算出法」:
「波形非安定程度算出法」は下記の「(1)有次元特徴パラメータの安定性による波形非安定程度算出法」と下記の「(2)無次元特徴パラメータの安定性による波形非安定程度算出法」とから構成され、状態診断やパターン認識などのために得られた信号に対して、下記の「(1)有次元特徴パラメータの安定性による波形非安定程度算出法」を用いて算出した有次元特徴パラメータの非定常程度が予め設定した閾値より大きい場合、または、下記の「(2)無次元特徴パラメータの安定性による波形非安定程度算出法」を用いて算出した無次元特徴パラメータの非定常程度が予め設定した閾値より大きい場合、前記信号を非安定な信号と判定する。
(1)有次元特徴パラメータの安定性による波形非安定程度算出法:
状態診断やパターン認識などのために得られた信号の波形データx(i)をM区間に分割し、第j区間と第k区間の波形データをそれぞれxj(i)とxk(i)で表し、第j区間と第k区間の波形データ数をそれぞれNjとNkとし、第j区間と第k区間における有次元特徴パラメータの平均値をそれぞれμjとμkとし、第j区間と第k区間における有次元特徴パラメータの標準偏差をそれぞれSjとSkとし、M個の区間における平均値μi(i=1〜M)が全て等しい(すなわちμ1=μ2=・・・μj=μk=・・・=μM)またはM個の区間における標準偏差Si(i=1〜M)が全て等しい(すなわちS1=S2=・・・Sj=Sk=・・・=SM)という帰無仮説を統計理論により検定するために与えられた有意水準αの最大値と最小値をそれぞれαmaxとαminとを設定した後、αを0から1まで変化させた時に前記の帰無仮説が丁度棄却された時点でのαをαdとすると、αd<αminのときに有次元特徴パラメータが非定常と判定し、
有次元特徴パラメータの非安定程度(以下、「有次元非安定程度」とよぶ)をパーセンテージで表す場合、αd≦αminのとき、有次元非安定程度を100%とし、αd≧αmaxのとき、有次元非安定程度を0%とし、αd=αmin〜αmaxのとき、有次元非安定程度を100%〜0%とすると、有次元非安定程度が予め設定した閾値より大きい時に前記信号を非安定な信号と判定する。
(2)無次元特徴パラメータの安定性による波形非安定程度算出法:
状態診断やパターン認識などのために得られた信号の波形データx(i)から算出された無次元特徴パラメータをpとし、x(i)における無次元特徴パラメータpの平均値と標準偏差をそれぞれμpとSpとし、x(i)をM区間に分割し、第j区間の波形データ数をNjとし、第j区間の波形データをxj(i)(j=1〜M)で表し、xj(i)における無次元特徴パラメータをpjで表すと、
「無次元特徴パラメータの安定性による波形非安定程度算出法」は下記の「無次元非定常程度算出法1」と下記の「無次元非定常程度算出法2」と下記の「無次元非定常程度算出法3」と下記の「無次元非定常程度算出法4」から構成され、前記信号に対して、下記の「無次元非定常程度算出法1」と下記の「無次元非定常程度算出法2」と下記の「無次元非定常程度算出法3」と下記の「無次元非定常程度算出法4」とのうちの少なくとも一方を用いて算出した無次元特徴パラメータの非安定程度が予め設定した閾値より大きい場合、前記信号を非安定な信号と判定する。
無次元非定常程度算出法1:
予め係数kpの範囲をkpnin〜kpmaxと設定した後、|pj|>μp+kpminSpならばpjを特異な無次元特徴パラメータと判定し、
無次元特徴パラメータの非安定程度(以下、「無次元非安定程度」とよぶ)をパーセンテージで表す場合、|pj|≧μp+kpmaxSpのとき、無次元非安定程度を100%とし、|pj|≦μp+kpminSpのとき、無次元非安定程度を0%とし、|pj|=μp+kpminSp〜μp+kpmaxSpのとき、無次元非安定程度を0%〜100%とすると、無次元非安定程度が予め設定した閾値より大きい時に前記信号を非安定な信号と判定する。
無次元非定常程度算出法2:
予め係数kLの範囲をkLnin〜kLmaxと設定した後、|Sp/μp|>kLminならば無次元特徴パラメータpを非安定と判定し、
無次元特徴パラメータの非安定程度(以下、「無次元非安定程度」とよぶ)をパーセンテージで表す場合、|Sp/μp|≧kLmaxのとき、無次元非安定程度を100%とし、|Sp/μp|≦kLminのとき、無次元非安定程度を0%とし、|Sp/μp|=kLmin〜kLmaxのとき、無次元非安定程度を0%〜100%とすると、無次元非安定程度が予め設定した閾値より大きい時に前記信号を非安定な信号と判定する。
無次元非定常程度算出法3:
xj(i)における無次元特徴パラメータをpjのU個の最大値をpMj(j=1〜U)とし、pMj除いた後のx(i)の平均値と標準偏差をそれぞれμpnとSpnとすると、予め係数kMの範囲をkMnin〜kMmaxと設定した後、|pMj|>μpn+kMminSpnならば無次元特徴パラメータpを非安定と判定し、
無次元特徴パラメータの非安定程度(以下、「無次元非安定程度」とよぶ)をパーセンテージで表す場合、|pMj|≧μpn+kMaxSpnのとき、無次元非安定程度を100%とし、|pMj|≦μpn+kMinSpnのとき、無次元非安定程度を0%とし、|pMj|=μpn+kMminSpn〜μpn+kMaxSpnのとき、無次元非安定程度を0%〜100%とすると、無次元非安定程度が予め設定した閾値より大きい時に前記信号を非安定な信号と判定する。
無次元非定常程度算出法4:
予め係数kiの範囲をkinin〜kimaxと設定した後、|pj×pj−1|(j=2〜M)の最大値>kiminならば無次元特徴パラメータpを非安定と判定し、
無次元特徴パラメータの非安定程度(以下、「無次元非安定程度」とよぶ)をパーセンテージで表す場合、|pj×pj−1|(j=2〜M)の最大値≧kimaxのとき、無次元非安定程度を100%とし、|pj×pj−1|(j=2〜M)の最大値≦kiminのとき、無次元非安定程度を0%とし、|pj×pj−1|(j=2〜M)の最大値=kimin〜kimaxのとき、無次元非安定程度を0%〜100%とすると、無次元非安定程度が予め設定した閾値より大きい時に前記信号を非安定な信号と判定する。Perform comprehensive evaluation of the waveform data of signals measured from the object for condition diagnosis and pattern recognition using the presence of overflow and the following “outlier value calculation method” and “waveform instability calculation method” below. To determine whether the waveform data can be used for state diagnosis or pattern recognition.
"Outlier calculation method":
The waveform data of signals obtained for state diagnosis and pattern recognition is x (i) (i = 1 to N), the absolute value of x (i) is | x (i) |, and | x (i) | average value and the standard deviation of the respectively μ and S, then the range of the coefficient k was set to k min ~k max, | x ( i) | value is in the | x (j) | (j = 1 ˜N)> μ + k min S, x (j) is determined as an outlier,
Alternatively, if the L absolute maximum values of x (i) are | x Mj | (j = 1 to L), and the average value and the standard deviation after excluding x Mj are μ a and S a , respectively, the coefficient k after setting the range of a and k amin ~k amax, | x Mj |> if μ a + k amin S a, determines that values outside the x Mj,
When the degree of occurrence of an outlier (hereinafter referred to as “outlier”) is expressed as a percentage, the upper limit value and lower limit value of the coefficient k (or k a ) are set to k max and k min (or k amax and k amin ), respectively. When | x (j) | ≧ μ + k max S (or | x Mj | ≧ μ a + k amax S a ), the degree of deviation is 100%, and | x (j) | ≦ μ + k min S (or When | x Mj | ≦ μ a + k amin S a ), the degree of deviation is 0%, and | x (j) | = μ + k min S to μ + k max S (or | x Mj | = μ a + k amin S a when ~μ a + k amax S a) determining, when the degree of off-set to 0% to 100%, and deficiencies signal the signal when the threshold is greater than the order of disconnected preset.
"Calculation method of waveform instability":
“The method of calculating the degree of waveform instability” includes the following “(1) Method of calculating the degree of waveform instability based on the stability of dimensioned feature parameters” and “(2) Calculation of the degree of waveform instability based on the stability of dimensionless feature parameters” The signal obtained for condition diagnosis, pattern recognition, etc. was calculated using the following “(1) Method for calculating the degree of waveform instability based on the stability of dimensional feature parameters”. When the non-steady degree of the dimensional feature parameter is larger than a preset threshold value, or the dimensionless feature parameter calculated using the following “(2) Method for calculating the degree of waveform instability by the stability of the dimensionless feature parameter” If the unsteady degree is greater than a preset threshold, the signal is determined to be an unstable signal.
(1) Method for calculating the degree of waveform instability based on the stability of dimensional feature parameters:
The waveform data x (i) of a signal obtained for state diagnosis or pattern recognition is divided into M sections, and the waveform data of the jth section and the kth section are respectively x j (i) and x k (i). The number of waveform data in the j-th section and the k-th section is N j and N k , respectively, and the average values of dimensional feature parameters in the j-th section and the k-th section are μ j and μ k , respectively. And the standard deviations of the dimensional feature parameters in the k-th interval are S j and S k , respectively, and the average values μ i (i = 1 to M) in the M intervals are all equal (that is, μ 1 = μ 2 ). Μ j = μ k =... = Μ M ) or standard deviations S i (i = 1 to M ) in M intervals are all equal (ie, S 1 = S 2 =... S j = S k = ... = given the null hypothesis that S M) in order to test the statistical theory, et al. After the maximum and minimum values of the significance level alpha set the alpha max and alpha min respectively, the alpha at the time when the null hypothesis is just discarded when changing the alpha from 0 to 1 alpha d Then, when α d <α min , the dimensional feature parameter is determined to be non-stationary,
When the degree of instability of a dimensional feature parameter (hereinafter referred to as “the degree of dimensional instability”) is expressed as a percentage, when α d ≦ α min , the degree of dimensional instability is set to 100%, and α d ≧ α max When the dimensional instability is 0%, and when α d = α min to α max , the dimensional instability is 100% to 0%, the dimensional instability is greater than a preset threshold. Sometimes the signal is determined to be an unstable signal.
(2) Waveform instability calculation method based on the stability of dimensionless feature parameters:
The dimensionless feature parameter calculated from the waveform data x (i) of the signal obtained for state diagnosis or pattern recognition is defined as p, and the average value and standard deviation of the dimensionless feature parameter p in x (i) are respectively represented. and mu p and S p, with x (i) was divided into M sections, the number of waveform data of the j-section and N j, the waveform data of the j interval x j (i) (j = 1~M) And the dimensionless feature parameter in x j (i) is represented by p j ,
“Waveform instability calculation method based on stability of dimensionless feature parameter” is the following “Dimensionless nonstationary degree calculation method 1”, “Dimensionless nonstationary degree calculation method 2” below, and “Dimensionless nonstationary degree calculation method” below. Degree calculation method 3 ”and“ Dimensionless non-stationary degree calculation method 4 ”described below. The following“ Dimensionless non-stationary degree calculation method 1 ”and“ Dimensionless non-stationary degree calculation ”described below are applied to the signal. The non-stable degree of the dimensionless feature parameter calculated using at least one of “Method 2”, “Dimensionless non-stationary degree calculation method 3” and “Dimensionless non-stationary degree calculation method 4” described below is determined in advance. If it is greater than the set threshold, the signal is determined to be an unstable signal.
Dimensionless unsteady degree calculation method 1:
After the range of the coefficient k p is set as k pnin to k pmax in advance, if | p j |> μ p + k pmin S p , p j is determined as a unique dimensionless feature parameter,
Unregulated about dimensionless characteristic parameter (hereinafter, referred to as "non-dimensional unstable about") When expressed as a percentage of, | p j | when ≧ μ p + k pmax S p , the dimensionless unstable about 100% , | P j | ≦ μ p + k pmin S p , the dimensionless instability degree is set to 0%, and when | p j | = μ p + k pmin S p to μ p + k pmax S p , dimensionless instability If the degree is 0% to 100%, the signal is determined to be an unstable signal when the dimensionless astable degree is larger than a preset threshold value.
Dimensionless unsteady degree calculation method 2:
After setting the range of the coefficient k L as k Lnin to k Lmax in advance, if | S p / μ p |> k Lmin , the dimensionless feature parameter p is determined to be unstable,
When the non-stable degree of the dimensionless feature parameter (hereinafter referred to as “the dimensionless non-stable degree”) is expressed as a percentage, when | S p / μ p | ≧ k Lmax , the dimensionless non-stable degree is defined as 100%. When | S p / μ p | ≦ k Lmin , the dimensionless instability degree is 0%, and when | S p / μ p | = k Lmin to k Lmax , the dimensionless instability degree is 0% to 100%. Then, when the dimensionless instability is larger than a preset threshold value, the signal is determined to be an unstable signal.
Dimensionless unsteady degree calculation method 3:
The dimensionless characteristic parameter of x j (i) the number U of the maximum value of p j and p Mj (j = 1~U), respectively the mean and the standard deviation of x (i) after removal p Mj mu When pn and S pn, in advance after the range of the coefficient k M was set to k Mnin ~k Mmax, | p Mj |> a mu pn + k Mmin S pn If dimensionless characteristic parameter p is determined that unstable,
When expressing the non-stable degree of the dimensionless feature parameter (hereinafter referred to as “the non-dimensional non-stable degree”) as a percentage, when | p Mj | ≧ μ pn + k Max S pn , the non-dimensional non-stable degree is defined as 100%. , | P Mj | ≦ μ pn + k Min S pn , the dimensionless instability degree is set to 0%, and when | p Mj | = μ pn + k Mmin S pn to μ pn + k Max S pn , dimensionless instability If the degree is 0% to 100%, the signal is determined to be an unstable signal when the dimensionless astable degree is larger than a preset threshold value.
Dimensionless unsteady degree calculation method 4:
After setting the range of the coefficient k i as k inin to k imax in advance, if the maximum value of | p j × p j−1 | (j = 2 to M)> kimin , the dimensionless feature parameter p is assumed to be unstable. Judgment,
When the non-stable degree of the dimensionless feature parameter (hereinafter referred to as “the dimensionless non-stable degree”) is expressed as a percentage, the maximum value of | p j × p j−1 | (j = 2 to M) ≧ k imax When the dimensionless instability degree is 100% and the maximum value of | p j × p j−1 | (j = 2 to M) ≦ kimin , the dimensionless instability degree is 0%, and | p j × p j-1 | when the maximum value = k imin to k imax of (j = 2 to M), when the dimensionless unstable about to 0% to 100%, than a threshold dimensionless astable about previously set When the signal is large, the signal is determined as an unstable signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005251923A JP5017678B2 (en) | 2005-08-31 | 2005-08-31 | Signal inspection method and signal inspection module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005251923A JP5017678B2 (en) | 2005-08-31 | 2005-08-31 | Signal inspection method and signal inspection module |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007064819A JP2007064819A (en) | 2007-03-15 |
JP5017678B2 true JP5017678B2 (en) | 2012-09-05 |
Family
ID=37927184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005251923A Expired - Fee Related JP5017678B2 (en) | 2005-08-31 | 2005-08-31 | Signal inspection method and signal inspection module |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5017678B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5022774B2 (en) * | 2007-05-17 | 2012-09-12 | アイシン・エィ・ダブリュ株式会社 | Inspection method and inspection apparatus |
AT10073U9 (en) * | 2008-01-14 | 2009-02-15 | Avl List Gmbh | METHOD AND DEVICE FOR ANALYZING AND EVALUATING MEASUREMENT DATA OF A MEASURING SYSTEM |
JP5354174B2 (en) * | 2008-06-12 | 2013-11-27 | Jfeスチール株式会社 | Abnormality diagnosis system for machinery |
JP5751606B2 (en) * | 2009-03-04 | 2015-07-22 | Jfeスチール株式会社 | Abnormality diagnosis system for machinery |
JP2010237892A (en) * | 2009-03-31 | 2010-10-21 | Hitachi Ltd | Method and apparatus for classifying data |
US9239760B2 (en) * | 2013-10-24 | 2016-01-19 | General Electric Company | Systems and methods for detecting, correcting, and validating bad data in data streams |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55119012A (en) * | 1979-03-08 | 1980-09-12 | Komatsu Ltd | Data effectiveness or ineffectiveness discriminator and data processor |
JPS62219069A (en) * | 1986-03-20 | 1987-09-26 | Toshiba Corp | Parameter identifying device |
JPH07219929A (en) * | 1994-01-28 | 1995-08-18 | Mitsubishi Electric Corp | Method for detecting deviated value and data processor |
JPH08211925A (en) * | 1995-02-08 | 1996-08-20 | Takaoka Electric Mfg Co Ltd | Crt monitoring device |
JP3211615B2 (en) * | 1995-04-06 | 2001-09-25 | 日産自動車株式会社 | Machine operation noise abnormality judgment method |
JP3163980B2 (en) * | 1996-06-21 | 2001-05-08 | ダイキン工業株式会社 | Abnormal noise inspection method and apparatus for rotating machine |
JP3669129B2 (en) * | 1996-11-20 | 2005-07-06 | ヤマハ株式会社 | Sound signal analyzing apparatus and method |
JPH10267749A (en) * | 1997-03-27 | 1998-10-09 | Fukuoka Pref Gov Sangyo Kagaku Gijutsu Shinko Zaidan | Abnormality diagnosis method in cutting work |
JP3886024B2 (en) * | 1997-11-19 | 2007-02-28 | 富士通株式会社 | Voice recognition apparatus and information processing apparatus using the same |
US6609217B1 (en) * | 1998-03-30 | 2003-08-19 | General Electric Company | System and method for diagnosing and validating a machine over a network using waveform data |
JP2001282325A (en) * | 2000-03-30 | 2001-10-12 | Hitachi Ltd | Programmable controller and control system using the same |
JP2002372440A (en) * | 2001-06-14 | 2002-12-26 | Ho Jinyama | Signal recording device having state judging method, device, and function |
EP1488237B1 (en) * | 2002-03-27 | 2011-05-11 | GE Healthcare Bio-Sciences AB | Method, system and computer program for detecting molecular binding interactions comprising response curve quality control |
JP3821225B2 (en) * | 2002-07-17 | 2006-09-13 | 日本電気株式会社 | Autoregressive model learning device for time series data and outlier and change point detection device using the same |
JP3579043B1 (en) * | 2003-06-18 | 2004-10-20 | 株式会社マイホームプランナー | Ground information processing method, ground information processing system and earth resource system |
JP4001099B2 (en) * | 2003-11-11 | 2007-10-31 | 株式会社日立製作所 | Distributed power supply vibration diagnosis system |
-
2005
- 2005-08-31 JP JP2005251923A patent/JP5017678B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007064819A (en) | 2007-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10416126B2 (en) | Machine fault prediction based on analysis of periodic information in a signal | |
US8171797B2 (en) | Sideband energy ratio method for gear mesh fault detection | |
JP2008292288A (en) | Bearing diagnostic device for reduction gear | |
JP2009103525A (en) | Method for diagnosing abnormality of tooth plane of gear and apparatus using same | |
JP3382240B1 (en) | Method of diagnosing target equipment, computer program, and apparatus for diagnosing target equipment | |
US10607470B2 (en) | Vibrational analysis systems and methods | |
JP5017678B2 (en) | Signal inspection method and signal inspection module | |
JP2019027814A (en) | Method and device for analyzing vibration acoustic analysis and method and device for estimating abnormal part of apparatus | |
CN117906678B (en) | A health monitoring and management system for equipment maintenance equipment | |
US20250012835A1 (en) | Measurement of insulation resistance of an electrical insulator | |
CN115855165B (en) | Multi-dimensional precision point inspection method and system for thermal power equipment | |
CN111289243A (en) | Method and system for judging abnormal sound of gear box and storage medium | |
CN118331204B (en) | Safety state monitoring method and system for industrial automation control equipment | |
JP2017026509A (en) | Fault diagnosis device and fault diagnosis method | |
US12174084B2 (en) | Anomaly detection system and anomaly detection method | |
JP2005283227A (en) | Abnormal sound inspection method and its device | |
Jiang et al. | Rolling bearing quality evaluation based on a morphological filter and a Kolmogorov complexity measure | |
JP7476440B2 (en) | Method for diagnosing abnormalities in the shock system of rotating machinery | |
Omoregbee et al. | Low speed rolling bearing diagnostics using acoustic emission and higher order statistics techniques | |
CN118549780B (en) | Transformer partial discharge sensing system | |
JP2006153760A (en) | Periodic motion body state monitoring method, monitoring device, monitoring system, computer program, and recording medium | |
TWI680370B (en) | Time series signal analysis method | |
JP4049331B2 (en) | Method and apparatus for evaluating diagnostic object | |
JP2002131439A (en) | Deterioration diagnosing device for semiconductor detector | |
CN118896685B (en) | Real-time monitoring method for fatigue damage of steel structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050906 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101006 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101019 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101217 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101217 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110223 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110517 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110708 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111101 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120131 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20120319 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120515 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120521 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20180622 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |