JP4947640B2 - Waste acid solution treatment method - Google Patents
Waste acid solution treatment method Download PDFInfo
- Publication number
- JP4947640B2 JP4947640B2 JP2007022113A JP2007022113A JP4947640B2 JP 4947640 B2 JP4947640 B2 JP 4947640B2 JP 2007022113 A JP2007022113 A JP 2007022113A JP 2007022113 A JP2007022113 A JP 2007022113A JP 4947640 B2 JP4947640 B2 JP 4947640B2
- Authority
- JP
- Japan
- Prior art keywords
- waste
- acid solution
- waste acid
- treatment
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Removal Of Specific Substances (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Description
本発明は、鉄鋼製造工場の各種処理設備から排出される廃塩酸を混合廃酸液として処理する鉄分含有廃酸液の処理方法および処理装置に係り、特に廃酸液の混合量・混合量比の変動に伴うpH値・鉄分濃度等の液組成の変化や処理量の変化に適切に対処し効率良い安定した処理を維持し得るようにしたものである。 The present invention relates to a processing method and a processing apparatus for an iron-containing waste acid solution for treating waste hydrochloric acid discharged from various processing facilities of a steel manufacturing plant as a mixed waste acid solution, and in particular, a mixing amount / mixing amount ratio of a waste acid solution. Thus, it is possible to appropriately cope with changes in the liquid composition such as pH value and iron concentration and the change in the processing amount due to fluctuations in the amount, and to maintain an efficient and stable treatment.
鉄鋼製造工場において、例えば、鋼帯表面の酸化スケールを溶解除去する酸洗処理ラインでは、鉄分を高濃度に含む高pHの廃塩酸が発生し、めっきラインからはクロム系廃酸液が発生する。鉄鋼製造工場の構内には、これらの廃酸液を処理するための廃酸液処理装置が各ラインに付属して設置されているほか、各設備から発生する廃酸液を集め、混合廃酸液として処理する混合廃酸液処理装置を備えているのが一般である。 In a steel manufacturing plant, for example, in a pickling treatment line that dissolves and removes oxidized scale on the surface of a steel strip, high-pH waste hydrochloric acid containing iron at a high concentration is generated, and chromium-based waste acid solution is generated from the plating line. . In the premises of the steel manufacturing plant, waste acid treatment equipment for treating these waste acid solutions is attached to each line, and waste acid solution generated from each facility is collected and mixed waste acid solution. It is common to have a mixed waste acid treatment apparatus that treats as a liquid.
図5にその例を示す。Aは酸洗処理設備部、Bはめっき処理設備部、Cは酸洗鋼帯リンス処理設備部、Eは混合廃酸液処理装置である。酸洗処理設備部(A)では、酸洗ライン(a1)から排出される廃塩酸は廃塩酸処理装置(a2)に導入され、例えば噴霧焙焼方式の処理を施され鉄分の分離および塩酸の再生・回収が行なわれる。再生・回収された塩酸は酸洗ラインに循環供給され、鉄分(酸化鉄粉末)はフェライト原料等の鉄資源として再利用される。この酸洗処理設備(A)においてライン運転状況の変化により、その廃塩酸処理装置(a2)の処理能力を超える多量の廃塩酸が発生する場合、発生した廃塩酸の一部は混合廃酸液処理装置(E)に送られる。また、めっき処理設備部(B)のめっきライン(b1)から排出されクロム系廃酸液処理装置(b2)を経た処理水や、酸洗鋼帯リンス処理設備部(C)のリンス廃液、そのほか酸液が使用される各種処理設備(D)で発生する廃酸液が混合廃酸処理装置(E)に導入される。 An example is shown in FIG. A is a pickling processing equipment section, B is a plating processing equipment section, C is a pickling steel strip rinsing processing equipment section, and E is a mixed waste acid solution processing apparatus. In the pickling treatment equipment section (A), the waste hydrochloric acid discharged from the pickling line (a1) is introduced into the waste hydrochloric acid treatment equipment (a2), and subjected to, for example, spray roasting treatment to separate iron and remove hydrochloric acid. Regeneration and collection are performed. The regenerated and recovered hydrochloric acid is circulated and supplied to the pickling line, and the iron content (iron oxide powder) is reused as iron resources such as ferrite raw materials. In this pickling treatment facility (A), if a large amount of waste hydrochloric acid exceeding the treatment capacity of the waste hydrochloric acid treatment equipment (a2) is generated due to changes in the line operation status, a part of the generated waste hydrochloric acid is mixed waste acid solution. It is sent to the processing device (E). In addition, the treated water discharged from the plating line (b1) of the plating treatment equipment section (B) and passed through the chromium waste acid treatment equipment (b2), the rinse waste liquid of the pickling steel strip rinse treatment equipment section (C), and others Waste acid liquid generated in various treatment facilities (D) in which the acid liquid is used is introduced into the mixed waste acid treatment apparatus (E).
工場内の各所から混合廃酸液処理装置(E)に送り込まれる各種廃酸液は均一に混合され所定の処理に付される。廃酸液処理の代表的な方法の一つである中和-凝集-沈殿法によれば、混合廃酸液は中和剤の添加・pH調整の処理により、鉄分等を含む反応物を生成し、ついで反応生成物の凝集・沈殿、および沈殿物(凝集汚泥のスラッジ)の分離等の処理等が施される。分離されたスラッジは脱水処理されたうえ所定の鉄分回収処理に付され、他方沈殿物が分離された処理液(上澄み液)等は塩酸再生処理等が施され、残液は汚濁物質の除去・監視等の所定の工程を経て放流される。 Various waste acid solutions sent from various locations in the factory to the mixed waste acid solution processing apparatus (E) are uniformly mixed and subjected to a predetermined treatment. According to the neutralization-aggregation-precipitation method, which is one of the typical methods of waste acid solution treatment, the mixed waste acid solution produces a reaction product containing iron and the like by adding a neutralizer and adjusting the pH. Then, a treatment such as agglomeration / precipitation of the reaction product and separation of the precipitate (aggregated sludge sludge) is performed. The separated sludge is dehydrated and subjected to a predetermined iron recovery process, while the treatment liquid (supernatant) from which the precipitate has been separated is subjected to hydrochloric acid regeneration treatment, etc. It is discharged through a predetermined process such as monitoring.
廃酸液の処理については次のように種々の提案がなされている。
(a)廃塩酸に水酸化ナトリウムを添加してpH調整することにより、液中の塩化第一鉄[FeCl2]を水酸化第一鉄[Fe(OH)2]に変換し、更に水酸化第一鉄を酸素の供給により酸化第二鉄[Fe2O3]に変換したうえ、磁気選別機で液中から分離回収する(特許文献1)。
(b)金属イオン(Feイオン等)を含む廃酸液に硫酸を混合する混合工程の後、混合廃酸に水酸化カルシウムを添加して中和し、中和反応で生成した沈殿物をスラリーとして取り出す。取り出したスラリーの一部を前記混合工程に返送し、残部はフィルタープレス式の脱水機で脱水処理して金属分を石膏粒子と共に回収する(特許文献2)。
(c)鉄を含む廃塩酸にミルスケールと鉄粉(又は粒子)を所定量比で添加し、さらに空気を吹き込みながら鉄粉(又は粒子)を添加しpH調整する。ついで廃塩酸の冷却、凝集剤の添加等で液中の不純物を不溶化物として分離除去する(特許文献3)。
Various proposals have been made for the treatment of the waste acid solution as follows.
(a) By adjusting the pH by adding sodium hydroxide to waste hydrochloric acid, ferrous chloride [FeCl 2 ] in the liquid is converted to ferrous hydroxide [Fe (OH) 2 ], and further hydroxylated. Ferrous oxide is converted into ferric oxide [Fe 2 O 3 ] by supplying oxygen, and then separated and recovered from the liquid by a magnetic separator (Patent Document 1).
(b) After mixing step of mixing sulfuric acid with waste acid solution containing metal ions (Fe ions, etc.), neutralize by adding calcium hydroxide to mixed waste acid, and slurry generated by neutralization reaction Take out as. A part of the taken-out slurry is returned to the mixing step, and the remainder is dehydrated with a filter press type dehydrator to collect the metal content together with gypsum particles (Patent Document 2).
(c) Mill scale and iron powder (or particles) are added to waste hydrochloric acid containing iron at a predetermined ratio, and further, iron powder (or particles) is added while blowing air to adjust the pH. Next, the impurities in the liquid are separated and removed as insolubilized substances by cooling the waste hydrochloric acid, adding a flocculant, etc. (Patent Document 3).
(d)廃塩酸を濃縮し、濃縮液からシリカを除去(凝集剤による凝集沈殿分離)した後、濃縮液を焙焼炉で酸化第二鉄[Fe2O3]と塩化水素ガス[HCl]とに熱分解(4FeCl2+4H2O+O2→ 2Fe2O3+8HCl)し、それぞれ回収する。前記シリカ除去工程で生じるシリカ凝集沈殿液の一部又は全部を、濾過処理に付してシリカフロックを分離したのち前記濃縮液のラインに還流することにより、酸化鉄および塩酸の回収率が高められる(特許文献4)。
(e)廃塩酸に鉄(又は鉄化合物)を接触させ遊離塩基を中和してpHを調整し、更に酸素(又は空気等)と接触させながらアルカリ処理でpHを調整する。この第一段処理で、液中の第二鉄イオンを完全消費する(Fe+3+1/2Fe→Fe+2)。また酸素の吹き込みで液中の鉄分の一部が含水酸化第二鉄[FeOOH]及び水酸化第二鉄[Fe(OH)3]として沈殿し、不純物(Si,Al,P等)は共沈・吸着等により分離される。第一段処理後の塩化第一鉄溶液に、酸化剤(過酸化水素,サラシ粉等)の添加とアルカリ添加(pH調整)からなる第二段処理を施す。塩化第一鉄溶液は酸化剤の添加で塩化第二鉄溶液となり、pH調整により生成する水酸化第二鉄[Fe(OH)3]は沈殿として液中から分離採取される(特許文献5)。
(e) Iron (or iron compound) is brought into contact with waste hydrochloric acid to adjust the pH by neutralizing the free base, and further adjusted with alkali treatment while contacting with oxygen (or air, etc.). In this first stage treatment, ferric ions in the liquid are completely consumed (Fe +3 + 1 / 2Fe → Fe +2 ). Also, part of the iron in the liquid is precipitated as hydrous ferric oxide [FeOOH] and ferric hydroxide [Fe (OH) 3 ] by oxygen blowing, and impurities (Si, Al, P, etc.) are coprecipitated.・ Separated by adsorption. The ferrous chloride solution after the first stage treatment is subjected to a second stage treatment consisting of addition of an oxidizing agent (hydrogen peroxide, white powder, etc.) and alkali addition (pH adjustment). The ferrous chloride solution becomes a ferric chloride solution by adding an oxidizing agent, and ferric hydroxide [Fe (OH) 3 ] produced by pH adjustment is separated and collected from the solution as a precipitate (Patent Document 5). .
鉄鋼製造工場内の各設備から発生する廃酸液の組成(pH値や鉄分濃度等)はさまざまであり、それぞれの発生量も各設備の運転状況により変化する。従ってこれらの廃酸液が収容される混合廃酸液処理装置(E)では、各設備から排出される廃酸液の導入量およびその混合量比の変化に伴って混合廃酸液の組成および処理量が変動する。前記「中和-凝集-沈殿」方式による処理においては、所要の中和反応が十分に達成されるように、混合廃酸液の組成、処理量の変動に対応した適切な処理条件が確保されなければならない。中和反応が不十分なまま次工程に送られると、塩酸分や鉄分の回収効率が損なわれると共に、その後の処理を経て放流される廃液中に含まれる未反応物質による環境汚染を引起すことになる。しかるに、廃酸液の組成や処理量の変動が大きくなると、その変動に適切に対処することは困難となり上記の不具合が発生し易くなる。
本発明は上記に鑑みてなされたものであり、混合廃酸液の組成や処理量が大きく変動するような状況に対して、設備の拡張・処理槽容量の増大等の大掛かりな改造を必要とせず、比較的簡素な措置をもって中和反応の完結に必要な処理条件を確保し、廃酸液を効率よく処理し得るようにした廃酸液の処理方法及び装置を提供する。
The composition (pH value, iron concentration, etc.) of the waste acid solution generated from each facility in the steel manufacturing plant varies, and the amount of each generated varies depending on the operating status of each facility. Therefore, in the mixed waste acid solution processing apparatus (E) in which these waste acid solutions are accommodated, the composition of the mixed waste acid solution and the amount of waste acid solution discharged from each facility and the change in the mixing amount ratio The amount of processing varies. In the treatment by the “neutralization-aggregation-precipitation” method, appropriate treatment conditions corresponding to fluctuations in the composition of the mixed waste acid solution and the treatment amount are ensured so that the required neutralization reaction is sufficiently achieved. There must be. If it is sent to the next process with insufficient neutralization reaction, the recovery efficiency of hydrochloric acid and iron will be impaired, and environmental pollution will be caused by unreacted substances contained in the waste liquid discharged after the treatment. become. However, when the variation of the composition of the waste acid solution and the processing amount increases, it becomes difficult to appropriately cope with the variation, and the above-described problems are likely to occur.
The present invention has been made in view of the above, and requires a large-scale modification such as expansion of facilities and increase of a processing tank capacity in a situation where the composition and processing amount of the mixed waste acid solution greatly fluctuate. In addition, the present invention provides a waste acid solution processing method and apparatus that can ensure the treatment conditions necessary for the completion of the neutralization reaction with relatively simple measures and can efficiently treat the waste acid solution.
本発明に係る廃酸液処理方法(請求項1)は、
鉄鋼製造工場から発生する各種の廃塩酸を収容し混合する廃酸液混合工程、混合廃酸液に中和剤を添加し液中の鉄分を水酸化第二鉄として析出させるpH調整工程、凝集剤を加えて水酸化第二鉄を凝集させる凝集工程、凝集した汚泥を廃酸液から分離する汚泥分離工程を有する鉄分含有廃塩酸の処理方法において、前記混合廃酸液のpH調整工程において、浴液中に空気を吹き込み溶存酸素濃度を2ppm以上に保持すると共に、中和剤を添加して浴液のpHを8以上に調整することにより、液中の第1鉄イオンの略全量を水酸化第二鉄に変換することを特徴としている。
上記中和剤として水酸化カルシウム[Ca(OH)2]が好適に使用される(請求項2)。
The waste acid solution processing method according to the present invention (Claim 1)
A waste acid solution mixing process that contains and mixes various types of waste hydrochloric acid generated from steel manufacturing plants, a pH adjustment process that adds a neutralizing agent to the mixed waste acid solution, and precipitates iron in the solution as ferric hydroxide, agglomeration In the treatment method of iron-containing waste hydrochloric acid having a coagulation step of coagulating ferric hydroxide by adding an agent, and a sludge separation step of separating the coagulated sludge from the waste acid solution, in the pH adjustment step of the mixed waste acid solution, Air is blown into the bath liquid to maintain the dissolved oxygen concentration at 2 ppm or higher, and by adding a neutralizing agent to adjust the pH of the bath liquid to 8 or higher, almost the total amount of ferrous ions in the liquid is water. It is characterized by conversion to ferric oxide.
As the neutralizing agent, calcium hydroxide [Ca (OH) 2 ] is preferably used (Claim 2).
混合廃酸液の中和工程で、液中の鉄分(Fe2+)は、次式の中和反応により水酸化第二鉄[Fe(OH)3]に変換される。
FeCl2+Ca(OH)2+1/2O2→ Fe(OH)3+CaCl2 … [1]
この反応[1]は次の二段階で進行する。
Fe2++2OH-→ Fe(OH)2 … [11]
2Fe(OH)2+1/2O2+H2O→ 2Fe(OH)3 … [12]
In the neutralization step of the mixed waste acid solution, iron (Fe 2+ ) in the solution is converted to ferric hydroxide [Fe (OH) 3 ] by a neutralization reaction of the following formula.
FeCl 2 + Ca (OH) 2 + 1 / 2O 2 → Fe (OH) 3 + CaCl 2 ... [1]
This reaction [1] proceeds in the following two steps.
Fe 2+ + 2OH − → Fe (OH) 2 ... [11]
2Fe (OH) 2 + 1 / 2O 2 + H 2 O → 2Fe (OH) 3 ... [12]
廃酸液中の鉄分の全量を水酸化第二鉄[Fe(OH)3]に変換するには、上記のように液中の鉄分濃度に見合った中和剤のほかに、溶存酸素量を必要とする。廃酸液混合槽では通常混合攪拌が行なわれるので、pH調整工程に送られる混合廃酸液には、攪拌による曝気効果として数ppm程度の溶存酸素(例えば5〜6ppm)が含まれている。このため、混合廃酸液の鉄分濃度が比較的低い場合は、その溶存酸素量で上記反応[12]に必要な酸素をまかなうことができる。しかし混合槽内の廃酸液の流入状況の変化により液中の鉄分濃度が急増し酸素不足の状態になると、中和反応を達成し得なくなる。本発明は、この点に対しpH調整工程で空気吹き込み(溶存酸素の補給)を行うこととし、これにより混合廃酸液の組成の変動に対し所要の溶存酸素量を確保して上記中和反応を完結させ、塩酸分や鉄分の回収効率の低下を回避すると共に、環境汚染(未反応物質を含む廃液の放流による)の防止を可能にしている。 In order to convert the total amount of iron in the waste acid solution to ferric hydroxide [Fe (OH) 3 ], in addition to the neutralizing agent commensurate with the iron concentration in the solution as described above, I need. Since the mixing and stirring are usually performed in the waste acid solution mixing tank, the mixed waste acid solution sent to the pH adjustment step contains about several ppm of dissolved oxygen (for example, 5 to 6 ppm) as an aeration effect by stirring. For this reason, when the iron content concentration of the mixed waste acid solution is relatively low, the oxygen necessary for the reaction [12] can be provided by the amount of dissolved oxygen. However, when the concentration of iron in the liquid rapidly increases due to a change in the state of inflow of the waste acid solution in the mixing tank, the neutralization reaction cannot be achieved. In the present invention, air is blown (supplement of dissolved oxygen) in the pH adjustment step for this point, thereby ensuring a necessary dissolved oxygen amount with respect to fluctuations in the composition of the mixed waste acid solution, and the neutralization reaction. This makes it possible to prevent reduction in the recovery efficiency of hydrochloric acid and iron, and to prevent environmental pollution (by discharging waste liquid containing unreacted substances).
図1は本発明の廃酸液処理方法のフローチャートを示している。図中の酸洗処理設備部(A)、めっき処理設備部(B)、酸洗鋼帯リンス処理設備部(C)等は前記図5におけるそれと同じである。酸洗処理設備部(A)からの廃塩酸(pH値:約1以下,通常0.1前後)、めっき処理設備部(B)から排出される処理水(pH値:例えば約7〜8)、酸洗鋼帯リンス処理部(C)の廃酸液(pH値:通常約2〜4)、その他の各種処理設備(D)から排出される廃酸液のそれぞれは混合廃酸液処理装置(E)に送り込まれ、混合槽(1)に集められる。
混合槽(1)に集められた廃酸液は、混合手段(例えば攪拌ポンプ)による攪拌混合作用で均一化される。攪拌処理により、液組成の均一化のほかに、曝気効果として液中の溶存酸素量が高められる。攪拌条件によるが、その溶存酸素量は数ppm(約5〜6ppm)である。
FIG. 1 shows a flowchart of the waste acid solution treatment method of the present invention. The pickling treatment equipment section (A), the plating treatment equipment section (B), the pickling steel strip rinse treatment equipment section (C), etc. in the figure are the same as those in FIG. Waste hydrochloric acid from the pickling treatment equipment section (A) (pH value: about 1 or less, usually around 0.1), treated water discharged from the plating treatment equipment section (B) (pH value: about 7 to 8), acid The waste acid solution (pH value: usually about 2 to 4) in the rinsing section (C) of the steel washing zone and the waste acid solution discharged from the other various processing facilities (D) are mixed waste acid treatment equipment (E ) And collected in the mixing tank (1).
The waste acid solution collected in the mixing tank (1) is made uniform by a stirring and mixing action by a mixing means (for example, a stirring pump). In addition to homogenizing the liquid composition, the amount of dissolved oxygen in the liquid is increased as an aeration effect by the stirring treatment. Although depending on the stirring conditions, the amount of dissolved oxygen is several ppm (about 5 to 6 ppm).
混合槽(1)で均一に混合された廃酸液はpH調整槽(2)に送り込まれる。図のpH調整槽(2)は、前段の槽(No.1pH調整槽)(21)と後段の槽(No.2pH調整槽)(22)を有する二段構成の例を示している。pH調整槽(2)には、中和剤添加装置(図示せず)のほかに空気吹き込み装置が設置されている。空気吹き込み装置は、例えば図2に示すように、空気ブロアー(91)と液循環ポンプ(92)とを備えたエジェクター(9)として構成される。液循環ポンプ(92)は、槽内の処理液(廃酸液)をポンプアップし空気引き込み用駆動水としてエジェクターに供給する。空気ブロアー(91)で送り込まれる空気はエジェクター(9)で処理液と混合されて吐出される。図はエジェクター(9)を槽底の隅部の2個所に一定の向きに水平配置し、各エジェクター(9)から供給される空気を、攪拌機(8)の攪拌作用で槽内全体に一様に行きわたらせるようにしている。 The waste acid solution uniformly mixed in the mixing tank (1) is sent to the pH adjusting tank (2). The pH adjusting tank (2) in the figure shows an example of a two-stage configuration having a preceding tank (No. 1 pH adjusting tank) (21) and a succeeding tank (No. 2 pH adjusting tank) (22). In addition to the neutralizer addition device (not shown), the pH adjusting tank (2) is provided with an air blowing device. As shown in FIG. 2, for example, the air blowing device is configured as an ejector (9) including an air blower (91) and a liquid circulation pump (92). The liquid circulation pump (92) pumps up the treatment liquid (waste acid liquid) in the tank and supplies it to the ejector as driving water for air drawing. The air fed by the air blower (91) is mixed with the treatment liquid by the ejector (9) and discharged. In the figure, ejectors (9) are horizontally arranged in two directions at the corners of the bottom of the tank, and the air supplied from each ejector (9) is uniformly distributed throughout the tank by the stirring action of the stirrer (8). I'm trying to make it spread.
なお図1では、pH調整槽(2)内の廃酸液に対する空気吹込みを、前段と後段の2つの槽(21)(22)の両方において実施するように構成しているが、必ずしもそうである必要はなく、廃塩酸の鉄分濃度の高低や、空気吹き込み装置(エジェクター9)の容量等に応じて、いずれか一方(例えば後段のpH調整槽22)のみに空気吹き込みを実施し、他方(前段のpH調整槽21)での空気吹込みを省略した構成とすることもできる。 In FIG. 1, air is blown into the waste acid solution in the pH adjusting tank (2) in both the first and second tanks (21) and (22), but this is not necessarily the case. However, depending on the iron concentration of the waste hydrochloric acid, the capacity of the air blowing device (ejector 9), etc., air blowing is carried out only to one (for example, the pH adjusting tank 22 in the latter stage), and the other It is also possible to adopt a configuration in which air blowing in the (preceding pH adjusting tank 21) is omitted.
上記pH調整槽(2)において、混合廃酸液の組成に応じた適量の中和剤を添加することにより、前記[11]式で示される反応[Fe2++2OH-→Fe(OH)2]が進み、液中の鉄イオンの全量が水酸化第一鉄[Fe(OH)2]に変換されると共に、空気吹込みによる十分な溶存酸素量の存在下に、前記[12]の反応[2Fe(OH)2+1/2O2+H2O→2Fe(OH)3]が進行し、液中の水酸化第一鉄の全量が水酸化第二鉄に変換される。 In the pH adjusting tank (2), by adding an appropriate amount of a neutralizing agent according to the composition of the mixed waste acid solution, the reaction [Fe 2+ + 2OH − → Fe (OH) 2 ] represented by the above formula [11] The total amount of iron ions in the liquid is converted to ferrous hydroxide [Fe (OH) 2 ], and in the presence of a sufficient amount of dissolved oxygen by air blowing, the reaction [12] 2Fe (OH) 2 + 1 / 2O 2 + H 2 O → 2Fe (OH) 3 ] proceeds, and the total amount of ferrous hydroxide in the liquid is converted to ferric hydroxide.
中和反応に使用される中和剤の材種は特に限定されないが、水酸化カルシウム[Ca(OH)2]は、反応性、取り扱いの容易さ、輸送性および価格等の点で好適に使用される。なお、水酸化ナトリウム(NaOH)を使用することもできるが、この場合は回収される鉄分にNaイオンが残留し、鉄分をフェライト原料として再利用する場合好ましくなく、従って水酸化ナトリウムを使用する場合は、少量の補助的な使用に留めるのがよい。 The type of neutralizing agent used for the neutralization reaction is not particularly limited, but calcium hydroxide [Ca (OH) 2 ] is preferably used in terms of reactivity, ease of handling, transportability, and price. Is done. Sodium hydroxide (NaOH) can also be used, but in this case, Na ions remain in the recovered iron, which is not preferable when iron is reused as a ferrite raw material, and therefore sodium hydroxide is used. Should be kept in a small amount of auxiliary use.
中和剤の添加量は、処理液のpH値が約8〜9となるように調整するのが好ましい。これは、反応[12]で生成する水酸化第二鉄[Fe(OH)3]の液中の溶解度を下げて液中からの晶出を促し、凝集沈殿による分離効率を高めるためである。
また、液中の溶存酸素量を補給する空気吹き込みは、反応[12]を効率よく進行させために、約2ppm以上の溶存酸素量が維持されるように吹込み量を調整することが望ましい。
十分な溶存酸素量が確保された条件下では、上記反応[12](Fe2+→Fe3+)は瞬時に進行し、反応後の液は赤褐色を呈する。なお、液中の溶存酸素量が不足し反応[12]が不十分な場合、処理液はFe2+による緑色を呈するので、処理液の呈する色により溶存酸素量の適否を視覚的に観察することができる。
The addition amount of the neutralizing agent is preferably adjusted so that the pH value of the treatment liquid is about 8-9. This is to reduce the solubility of ferric hydroxide [Fe (OH) 3 ] produced in the reaction [12] in the liquid to promote crystallization from the liquid and increase the separation efficiency by coagulation precipitation.
In addition, air blowing for replenishing the amount of dissolved oxygen in the liquid is desirably adjusted so that the amount of dissolved oxygen is maintained at about 2 ppm or more in order to efficiently advance the reaction [12].
Under a condition in which a sufficient amount of dissolved oxygen is ensured, the above reaction [12] (Fe 2+ → Fe 3+ ) proceeds instantaneously, and the solution after the reaction is reddish brown. When the amount of dissolved oxygen in the solution is insufficient and the reaction [12] is insufficient, the treatment solution exhibits a green color due to Fe 2+, so the appropriateness of the dissolved oxygen amount is visually observed by the color of the treatment solution. be able to.
pH調整槽(2)での中和処理を完結したのち、処理液(廃塩酸)を凝集槽(3)に導入し、凝集剤(例えばアクリルアミド系ポリマー等)を添加し、水酸化第二鉄[Fe(OH)3]を凝集させる。ついでその処理液を沈殿槽(4)に送り込み、凝集汚泥の沈殿物(スラッジ)を分離排出する。沈殿槽(4)から分離排出されるスラッジの一部は、所望により、回路(5)を介して前記pH調整槽(2)に返戻し循環される。これにより水酸化第二鉄[Fe(OH)3]はオキシ水酸化鉄[FeOOH]に変化する。このようにスラッジを循環させてオキシ水酸化鉄を形成することは、脱水効率を高め、鉄分の液中からの分離回収の効率化に有効である。 After completing the neutralization treatment in the pH adjustment tank (2), the treatment liquid (waste hydrochloric acid) is introduced into the coagulation tank (3), and an aggregating agent (for example, acrylamide polymer) is added to ferric hydroxide. Aggregate [Fe (OH) 3 ]. Then, the treatment liquid is sent to the settling tank (4) to separate and discharge the aggregated sludge precipitate (sludge). A part of the sludge separated and discharged from the settling tank (4) is returned to the pH adjusting tank (2) through the circuit (5) if desired. Thereby, ferric hydroxide [Fe (OH) 3 ] is changed to iron oxyhydroxide [FeOOH]. Circulating sludge in this way to form iron oxyhydroxide is effective for improving the efficiency of dehydration efficiency and separating and recovering iron from the liquid.
処理液から分離された凝集汚泥(オキシ水酸化鉄を含む)の沈殿物は、スラッジシックナー(6)で更に濃縮され、ついで脱水機(7)で加圧脱水処理される。加圧脱水された鉄分を含むケーキは、例えばセメントに配合される骨材、無収縮性モルタルの骨材等の原料として有用である。
一方、凝集汚泥を分離された上澄み液は、沈殿槽から送出された後、他の処理水と共に最終中和処理、冷却塔での液温調整、油分,濁度,pH,COD等の監視を経て放流される。
The precipitate of the coagulated sludge (including iron oxyhydroxide) separated from the treatment liquid is further concentrated with a sludge thickener (6), and then subjected to pressure dehydration with a dehydrator (7). The cake containing iron that has been pressure-dehydrated is useful as a raw material for, for example, an aggregate blended with cement or an aggregate of non-shrinkable mortar.
On the other hand, the supernatant liquid from which the coagulated sludge has been separated is sent out from the sedimentation tank, and is then subjected to final neutralization treatment with other treated water, liquid temperature adjustment in the cooling tower, monitoring of oil content, turbidity, pH, COD, etc. It is released after that.
次に本発明の廃塩酸処理を図1及び図2の構成を有する廃塩酸処理装置で実施した試験結果につい説明する。
[1]設備
(1)混合槽1:槽容量200m3 攪拌ポンプ(11)付帯
(2)pH調整槽2
・pH調整槽の容量:No.1pH調整槽(21)…50m3 No.2pH調整槽(22)…50m3
・空気供給装置9:No.2pH調整槽(22)にエジェクター2台設置
空気ブロアー91…5.0m3/min/台 液循環ポンプ92…0.7m3/min/台
Next, test results obtained by performing the waste hydrochloric acid treatment of the present invention in the waste hydrochloric acid treatment apparatus having the configuration shown in FIGS. 1 and 2 will be described.
[1] Equipment
(1) Mixing tank 1: Tank capacity 200m 3 Stirring pump (11)
(2)
・ Capacity of pH adjustment tank: No.1 pH adjustment tank (21) ... 50m 3 No.2 pH adjustment tank (22) ... 50m 3
・ Air supply device 9: Two ejectors installed in No. 2 pH adjustment tank (22)
[2]被処理廃塩酸の性状
酸洗鋼帯リンス処理設備部(C)(リンス液は工業用水)から排出されるリンス廃液(pH:2〜4)を主たる処理液とし、これに酸洗処理設備部(A)からの廃塩酸(pH:約0.1)を混合して被処理廃酸液とする。廃塩酸の混合量は、試験第1日目は4.0m3/日とし、第2日目以降4.5m3/日、5.2m3/日、6.0m3/日、7.0m3/日に順次増量した。
なお、pH調整槽(2)における中和剤の供給能力は上記廃塩酸の増量に対処し得る供給量をまかなうことができる十分な供給能力を備えている。
[2] Properties of waste hydrochloric acid to be treated Rinse waste liquid (pH: 2 to 4) discharged from the pickling steel strip rinsing equipment section (C) (rinsing liquid is industrial water) is used as the main treatment liquid. Waste hydrochloric acid (pH: about 0.1) from the treatment equipment section (A) is mixed to obtain a waste acid solution to be treated. The amount of waste hydrochloric acid is 4.0m 3 / day on the first day of the test, and 4.5m 3 / day, 5.2m 3 / day, 6.0m 3 / day, and 7.0m 3 / day from the second day. Increased the amount.
In addition, the supply capacity of the neutralizing agent in the pH adjusting tank (2) has a sufficient supply capacity that can cover the supply amount that can cope with the increase of the waste hydrochloric acid.
[3]廃塩酸処理結果
上記処理試験における混合槽(1)及びpH調整槽(2)内の処理液の溶存酸素量(ppm)の測定結果を図3に示し、鉄分(Fe2+)濃度の測定結果を図4に示す。
[3] Waste hydrochloric acid treatment results Fig. 3 shows the results of measurement of dissolved oxygen content (ppm) in the treatment liquid in the mixing tank (1) and pH adjustment tank (2) in the above treatment test. The concentration of iron (Fe 2+ ) The measurement results are shown in FIG.
図3において、図中左端のプロットは、リンス廃液(pH:2〜4)の処理(No.2pH調整槽22での空気吹込みなし)の場合を示し、その右側のグラフは、廃塩酸を混合した高pH処理液(廃塩酸の混合量は図の右側に向かって増加)を空気吹込み条件下に処理した場合を、それぞれ示している。
同図中、左端のプロットが示すように、空気吹込みがない場合、No.2pH調整槽(22)における溶存酸素量は殆どゼロである。これは、処理液が塩酸分や鉄分の希薄なリンス廃液であっても、液中の溶存酸素量のほぼ全量が中和反応[12]に消費されてしまうことを意味し、このことはリンス廃液に高濃度の廃塩酸を混合した場合、中和反応[12]に要する溶存酸素量の欠乏をきたすことを示唆している。これに対し、No.2pH調整槽(22)での空気吹込みを実施することにより、右側のグラフに示されるように、混合廃酸(高濃度の廃塩酸を含む)を処理する場合にも、その中和反応[12]を達成するための十分な量の溶存酸素量(約2ppm以上)を保持することができる。
In FIG. 3, the leftmost plot in the figure shows the case of treatment of the rinse waste liquid (pH: 2 to 4) (no air blowing in No. 2 pH adjustment tank 22), and the graph on the right side is mixed with waste hydrochloric acid. The cases where the high pH treatment liquid (mixed amount of waste hydrochloric acid increases toward the right side of the figure) treated under air blowing conditions are respectively shown.
In the figure, as shown in the leftmost plot, when there is no air blowing, the amount of dissolved oxygen in the No. 2 pH adjustment tank (22) is almost zero. This means that even if the treatment solution is a dilute rinse waste solution containing hydrochloric acid or iron, almost all of the dissolved oxygen in the solution is consumed in the neutralization reaction [12]. This suggests that when high-concentration waste hydrochloric acid is mixed with the waste liquid, the amount of dissolved oxygen required for the neutralization reaction [12] will be deficient. On the other hand, by performing air blowing in the No. 2 pH adjustment tank (22), as shown in the graph on the right side, even when processing mixed waste acid (including high concentration waste hydrochloric acid) In addition, a sufficient amount of dissolved oxygen (about 2 ppm or more) for achieving the neutralization reaction [12] can be maintained.
また、図4に示したように、高濃度の廃塩酸を混合すると、混合量の増加に伴って混合槽(1)における第1鉄イオン(Fe2+)の増加をみるが、その増量に見合う空気吹込み(酸素補給)が実施されることにより、pH調整槽(2)における第1鉄イオン(Fe2+)の検出量はほぼゼロとなる。このことは空気供給により反応[12]が十分に達成され、水酸化第一鉄[Fe(OH)2]の全量が水酸化第二鉄[Fe(OH)3]に変換されたことを示している。
なお、同図中、左端のプロット(空気供給なし)におけるpH調整槽の第1鉄イオン(Fe2+)の検出量はゼロであるが、これは処理液がリンス廃液(pH及び鉄分濃度ともに低い)であるからであって、これに高濃度の廃塩酸が混合されると、酸素量の不足により反応[12]を十分に進めることができず、第1鉄イオン(Fe2+)の多量の残留が検出されることは明らかである。
As shown in FIG. 4, when high concentration waste hydrochloric acid is mixed, ferrous ions (Fe 2+ ) increase in the mixing tank (1) as the mixing amount increases. By performing appropriate air blowing (oxygen replenishment), the detected amount of ferrous ions (Fe 2+ ) in the pH adjusting tank (2) becomes almost zero. This reaction [12] is fully achieved by the air supply, indicates that the total amount of the ferrous hydroxide [Fe (OH) 2] was converted to ferric hydroxide [Fe (OH) 3] ing.
In the figure, the detected amount of ferrous ions (Fe 2+ ) in the pH adjustment tank in the leftmost plot (without air supply) is zero. This is because the treatment liquid is rinse waste liquid (both pH and iron concentration). If high concentration waste hydrochloric acid is mixed with this, the reaction [12] cannot proceed sufficiently due to the lack of oxygen, and the ferrous ion (Fe 2+ ) It is clear that a large amount of residue is detected.
上記のようにpH調整槽での空気供給を実施することにより、中和反応[1]を十分に達成し液中の鉄分の全量を略完全に水酸化第二鉄に変換することができ、鉄分を効率よく回収することが可能となる。なお、液中の溶存酸素量の不足のために、第1鉄イオン(Fe2+)の一部が残留するような場合は、その後の処理工程を経て放流される廃水中の水酸化第1鉄が、海水中の酸素と反応し水酸化第二鉄に酸化して赤水発生の環境汚染を招く原因となる。本発明によれば、中和反応[1]が達成されることによりこのような不都合も回避される。 By carrying out air supply in the pH adjustment tank as described above, the neutralization reaction [1] can be sufficiently achieved, and the total amount of iron in the liquid can be almost completely converted to ferric hydroxide, It becomes possible to efficiently collect iron. In addition, when a part of ferrous ion (Fe 2+ ) remains due to a shortage of dissolved oxygen in the liquid, the first hydroxylation in the wastewater discharged through the subsequent treatment process. Iron reacts with oxygen in the seawater and oxidizes to ferric hydroxide, causing environmental pollution of red water generation. According to the present invention, such inconvenience is avoided by achieving the neutralization reaction [1].
上記廃酸処理試験は、混合される廃塩酸の最大増量が7m3/日であるが、これを更に増量した処理条件においても、その増量に応じてエジェクター(9)による空気吹込み量(酸素補給量)を調整して液中の鉄分の中和反応[1]を達成することができる。上記実施例における空気吹込みはNo.2pH調整槽(22)で実施しているが、吹込みの増量に伴って液面の盛り上がりとオーバーフローが懸念される場合には、エジェクター(9)をNo.2pH調整槽(22)及びNo.1pH調整槽(21)に配置し混合廃酸の組成やその処理状況に応じ、エジェクターの運転台数を適宜増減変更することにより上記懸念を緩和することができる。 In the above-mentioned waste acid treatment test, the maximum increase in waste hydrochloric acid to be mixed is 7 m 3 / day, but even in the treatment conditions in which this was further increased, the amount of air blown by the ejector (9) (oxygen) The neutralization reaction [1] of iron in the liquid can be achieved by adjusting the replenishment amount). The air blowing in the above embodiment is carried out in the No. 2 pH adjustment tank (22). However, if there is concern about liquid level swell and overflow with the increase in blowing, the ejector (9) should be set to No. .2 The above concerns can be alleviated by placing in the pH adjustment tank (22) and the No.1 pH adjustment tank (21) and changing the number of ejector units appropriately according to the composition of the mixed waste acid and its treatment status. .
本発明によれば、混合廃酸液の組成・処理量の大きな変動にも迅速・適切に対処することが可能となり、所要の中和反応を効率よく達成でき、液中の鉄分の分離回収と廃酸液の高度の浄化処理効果を安定に維持することができる。従って、中和反応の不足による環境汚染(赤水発生)の問題も解消される。
本発明は、混合廃酸の中和処理工程に空気吹き込み装置を取り付け、処理液の組成や処理量の変動に応じて、液中の溶存酸素量を補給するための空気吹込みを行なうものであるから、処理槽の増設・大容量化等の大掛かりな改造を必要とせず、既設の装置への適用も容易であり実用価値に富むものである。
According to the present invention, it becomes possible to quickly and appropriately cope with large fluctuations in the composition and processing amount of the mixed waste acid solution, to efficiently achieve the required neutralization reaction, and to separate and recover the iron content in the solution. The advanced purification treatment effect of the waste acid solution can be stably maintained. Therefore, the problem of environmental pollution (red water generation) due to insufficient neutralization reaction is also solved.
The present invention attaches an air blowing device to the mixed waste acid neutralization treatment step, and performs air blowing to replenish the amount of dissolved oxygen in the liquid in accordance with variations in the composition of the treatment liquid and the treatment amount. Therefore, it does not require major modifications such as expansion of the treatment tank and large capacity, and it can be easily applied to existing equipment and has practical value.
1:廃酸混合槽
2:pH調整槽
21;No.1pH調整槽
22:No.2pH調整槽
3:凝集槽
4:沈殿槽
5:スラッジ返戻回路
6:スラッジシックナー
7:脱水機
8:攪拌機
9:エジェクター
91:空気ブロアー
92:液循環ポンプ
1: Waste acid mixing tank 2: pH adjustment tank
21; No.1 pH adjustment tank
22: No. 2 pH adjustment tank 3: Coagulation tank 4: Precipitation tank 5: Sludge return circuit 6: Sludge thickener 7: Dehydrator 8: Stirrer 9: Ejector
91: Air blower
92: Liquid circulation pump
A:酸洗処理設備部
a1:酸洗ライン
a2:廃塩酸処理装置(噴霧焙焼式処理)
B:めっき処理設備部
b1:めっきライン
b2:クロム系廃液処理装置
C:酸洗鋼帯リンス処理設備
D:その他の処理設備部
E:混合廃酸液処理装置
A: Pickling equipment section
a1: Pickling line
a2: Waste hydrochloric acid treatment equipment (spray roasting treatment)
B: Plating treatment equipment
b1: Plating line
b2: Chromium waste liquid treatment equipment C: Pickling steel strip rinse treatment equipment D: Other treatment equipment section E: Mixed waste acid treatment equipment
Claims (2)
前記混合廃酸液のpH調整工程で、浴液中に空気を吹き込み溶存酸素濃度を2ppm以上に保持すると共に、中和剤を添加して浴液のpHを8以上に調整することにより、液中の第1鉄イオンの略全量を水酸化第二鉄に変換することを特徴とする廃酸液処理方法。 A waste acid solution mixing process that contains and mixes various types of waste hydrochloric acid generated from steel manufacturing plants, a pH adjustment process that adds a neutralizing agent to the mixed waste acid solution, and precipitates iron in the solution as ferric hydroxide, agglomeration In the treatment method of iron-containing waste hydrochloric acid having a coagulation step of coagulating ferric hydroxide by adding an agent, a sludge separation step of separating the coagulated sludge from the waste acid solution,
In the pH adjustment step of the mixed waste acid solution, air is blown into the bath solution to maintain the dissolved oxygen concentration at 2 ppm or more, and the pH of the bath solution is adjusted to 8 or more by adding a neutralizer. A method for treating a waste acid solution, comprising converting substantially the entire amount of ferrous ions therein to ferric hydroxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007022113A JP4947640B2 (en) | 2007-01-31 | 2007-01-31 | Waste acid solution treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007022113A JP4947640B2 (en) | 2007-01-31 | 2007-01-31 | Waste acid solution treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008188479A JP2008188479A (en) | 2008-08-21 |
JP4947640B2 true JP4947640B2 (en) | 2012-06-06 |
Family
ID=39749095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007022113A Active JP4947640B2 (en) | 2007-01-31 | 2007-01-31 | Waste acid solution treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4947640B2 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8323510B2 (en) * | 2008-04-02 | 2012-12-04 | Fengchun Xie | Ultrasound assisted heavy metal recovery |
JP5250486B2 (en) * | 2009-06-01 | 2013-07-31 | 新日鐵住金株式会社 | Purification process for steel manufacturing wastewater |
CN102358648A (en) * | 2011-09-20 | 2012-02-22 | 卢玉柱 | Technology for recycling of sludge obtained after neutralizing treatment of steel and iron pickling wastewater and recycling ferroferric oxide |
JP6544059B2 (en) * | 2015-06-08 | 2019-07-17 | 栗田エンジニアリング株式会社 | Wastewater treatment method |
CN105696010B (en) * | 2016-01-12 | 2018-07-06 | 惠州市斯瑞尔环境化工有限公司 | A kind of recoverying and utilizing method of iron content abraum salt containing zinc acid solution |
JP6731261B2 (en) * | 2016-03-07 | 2020-07-29 | オルガノ株式会社 | Heavy metal-containing water treatment device and treatment method |
CN106277486A (en) * | 2016-10-01 | 2017-01-04 | 辽宁中成永续水工科技有限公司 | The process recovery method of a kind of steel industry hydrochloric acid pickling waste liquor and system thereof |
CN106277474A (en) * | 2016-10-01 | 2017-01-04 | 辽宁中成永续水工科技有限公司 | The process recovery method of a kind of steel industry sulfuric acid pickling waste liquid and system thereof |
CN113955834A (en) * | 2021-10-19 | 2022-01-21 | 马钢(合肥)板材有限责任公司 | Recovery process of waste acid in metallurgical industry |
CN114249353B (en) * | 2021-12-18 | 2023-07-25 | 大连市环境保护有限公司产业废弃物处理厂 | Method for regenerating liquid ferrous chloride from waste hydrochloric acid |
CN114014471A (en) * | 2022-01-05 | 2022-02-08 | 天津海关动植物与食品检测中心 | Digestion waste acid absorption treatment device |
CN114604885B (en) * | 2022-04-19 | 2023-03-17 | 生态环境部南京环境科学研究所 | Preparation method for preparing calcium chloride by using waste hydrochloric acid |
CN115304267A (en) * | 2022-08-19 | 2022-11-08 | 陕西合兴硅砂有限公司 | Recovery method of quartz sand pickling solution for photovoltaic glass |
CN116040688A (en) * | 2022-11-01 | 2023-05-02 | 攀枝花末微环保科技有限公司 | Iron oxide red product and preparation method and application thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5519643B1 (en) * | 1970-11-20 | 1980-05-28 | ||
JPS51103076A (en) * | 1975-03-07 | 1976-09-11 | Nippon Steel Corp | SUTENRESUKOSANHAIEKINOCHUWASHORIHO |
JPH02191541A (en) * | 1989-01-20 | 1990-07-27 | Sugita Seisen Kojo:Kk | Oxidation of liquid and equipment thereof |
JP3434325B2 (en) * | 1993-08-19 | 2003-08-04 | 環境エンジニアリング株式会社 | Treatment method for wastewater containing dissolved iron |
JP3325689B2 (en) * | 1994-01-28 | 2002-09-17 | 環境エンジニアリング株式会社 | Treatment method for metal-containing wastewater |
JP2002292374A (en) * | 2001-03-30 | 2002-10-08 | Kawasaki Steel Corp | Disposal method for metal ion-containing waste acid |
JP4369793B2 (en) * | 2004-04-14 | 2009-11-25 | 新日本製鐵株式会社 | Method for producing iron-containing dehydrated cake from waste liquid |
-
2007
- 2007-01-31 JP JP2007022113A patent/JP4947640B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008188479A (en) | 2008-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4947640B2 (en) | Waste acid solution treatment method | |
US20130168314A1 (en) | Method for Treating Wastewater Containing Copper Complex | |
JP5828969B2 (en) | Coal gasification wastewater treatment system and coal gasification wastewater treatment method | |
JP5579414B2 (en) | Treatment method for wastewater containing reducing selenium | |
JP5431998B2 (en) | Method and apparatus for recovering copper from acidic waste liquid containing copper | |
CN111039455A (en) | Independent standard-reaching treatment process for high-concentration strong-complexation nickel-containing wastewater | |
CN103626322A (en) | Double-alkali neutralization treatment method of heavy metal-containing acidic wastewater | |
CN111424280A (en) | Regeneration system and method for tin stripping waste liquid | |
WO2016029613A1 (en) | Method and apparatus for purifying desulfurization lead plaster filtrate | |
CN112708885A (en) | Recycling method and system for copper-etching waste nitric acid | |
CN110759532A (en) | High-salt concentrated water treatment process for producing iron phosphate by sodium method | |
WO2015159810A1 (en) | Method for treating copper-containing acidic liquid waste | |
CN110981031A (en) | Chemical nickel waste water treatment method | |
KR101370246B1 (en) | Purifing apparatus of acid mine drainage | |
CN106630334A (en) | Cold-rolled acid wastewater resource and zero-emission method | |
JP2010094647A (en) | Wastewater treatment system and wastewater treatment method using the same | |
JP6597349B2 (en) | Blast furnace wastewater treatment method | |
CN104876362A (en) | Acid purification recycling system | |
JP2014012880A (en) | Method for disposing electroless copper plating waste solution, and device for the same | |
JP2018083172A (en) | Wastewater treatment method, wastewater treatment apparatus and coal gasification power generation equipment with the same | |
CN107673539B (en) | Acidic wastewater treatment equipment and treatment method | |
JP6623288B2 (en) | Method and apparatus for treating wastewater containing hydrogen sulfide | |
CN106995249B (en) | Segmentation-combined treatment method for acid and alkali washing waste tank liquor | |
JPH03106493A (en) | Treating waste water | |
JP4735359B2 (en) | Treatment method of iron-containing waste liquid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100201 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110414 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110418 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110616 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120301 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120301 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150316 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4947640 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |