[go: up one dir, main page]

JP4930018B2 - 還元剤添加弁の異常検出装置 - Google Patents

還元剤添加弁の異常検出装置 Download PDF

Info

Publication number
JP4930018B2
JP4930018B2 JP2006325874A JP2006325874A JP4930018B2 JP 4930018 B2 JP4930018 B2 JP 4930018B2 JP 2006325874 A JP2006325874 A JP 2006325874A JP 2006325874 A JP2006325874 A JP 2006325874A JP 4930018 B2 JP4930018 B2 JP 4930018B2
Authority
JP
Japan
Prior art keywords
reducing agent
amount
nox
addition
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006325874A
Other languages
English (en)
Other versions
JP2008138603A (ja
Inventor
大介 柴田
裕 澤田
悟 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006325874A priority Critical patent/JP4930018B2/ja
Publication of JP2008138603A publication Critical patent/JP2008138603A/ja
Application granted granted Critical
Publication of JP4930018B2 publication Critical patent/JP4930018B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)

Description

本発明は、NOx触媒の浄化能力を回復させるための還元剤を排気通路に添加する還元剤添加弁の異常検出装置に関する。
NOx吸蔵還元触媒(以下「NOx触媒」という。)の浄化能力を回復させるために、該NOx吸蔵触媒の上流の排気通路に還元剤を添加する還元剤添加弁(以下「添加弁」ということもある。)を備えた装置が知られている(例えば、特許文献1参照。)。
この装置によれば、添加弁から添加される還元剤添加量を空燃比センサ出力に基づいて推定し、この推定された添加量を指示添加量と比較することにより、添加弁の異常判定が実行されている。
特開2005−54723号公報 特開2000−104536号公報 特開2002−195025号公報 特開2004−257302号公報
しかしながら、リッチスパイク実施時、すなわち、NOx触媒の還元時には、NOx触媒において酸素が発生し、この発生した酸素がNOx触媒下流に排出される場合がある。NOx触媒下流に設けられた空燃比センサを用いて上記添加量の推定を行う場合、NOx触媒から排出された酸素により、空燃比センサ出力がずれてしまう可能性がある。そうすると、推定された添加量にも誤差が生じるため、添加弁の異常検出を精度良く実行することができなくなる可能性がある。
本発明は、上述のような課題を解決するためになされたもので、空燃比センサ出力のずれを低減することで、還元剤添加弁の異常検出を精度良く実行することが可能な還元剤添加弁の異常検出装置を提供することを目的とする。
第1の発明は、上記の目的を達成するため、NOx触媒の浄化能力を回復させるために該NOx触媒の上流に還元剤を添加する還元剤添加弁の異常を検出する異常検出装置であって、
前記還元剤添加弁に対して還元剤の添加量を指示する添加量指示手段と、
前記NOx触媒の下流の排気空燃比を検出する空燃比検出手段と、
前記排気空燃比に基づいて、前記還元剤添加弁から添加された還元剤の添加量を計測する添加量計測手段と、
前記添加量指示手段により指示された添加量と、前記添加量計測手段により計測された添加量とを比較することにより、前記還元剤添加弁の異常を検出する異常検出手段とを備え、
前記異常検出手段は、前記NOx触媒のNOx吸蔵量が基準値よりも小さいときに、異常検出を実行することを特徴とする。
また、第2の発明は、NOx触媒の浄化能力を回復させるために該NOx触媒の上流に還元剤を添加する還元剤添加弁の異常を検出する異常検出装置であって、
前記還元剤添加弁に対して還元剤の添加量を指示する添加量指示手段と、
前記NOx触媒の下流の排気空燃比を検出する空燃比検出手段と、
前記排気空燃比に基づいて、前記還元剤添加弁から添加された還元剤の添加量を計測する添加量計測手段と、
前記添加量指示手段により指示された添加量と、前記添加量計測手段により計測された添加量とを比較することにより、前記還元剤添加弁の異常を検出する異常検出手段とを備え、
前記添加量指示手段は、前記NOx触媒入口の空燃比が理論空燃比よりもリーン側となるように、前記還元剤を添加することを特徴とする。
また、第3の発明は、第2の発明において、
前記異常検出手段は、前記NOx触媒のNOx吸蔵量が基準値よりも小さいときに、異常検出を実行することを特徴とする。
また、第4の発明は、第1又は第3の発明において、
前記異常検出手段により異常検出を実行する前に、還元剤の添加インターバルを短縮する添加インターバル短縮手段を更に備えたことを特徴とする。
また、第5の発明は、第1又は第3の発明において、
前記異常検出手段は、NOx触媒床温が前記NOx触媒のNOx吸蔵能が基準値よりも小さい温度領域内である場合に、異常検出を実行することを特徴とする。
第1の発明によれば、NOx触媒のNOx吸蔵量が基準値よりも小さいときに、還元剤添加弁の異常検出が実行される。NOx吸蔵量が小さいほど、NOx触媒の還元反応により生じる酸素量が少なくなるため、NOx触媒から排出される酸素量が少なくなる。よって、空燃比検出手段による排気空燃比の検出誤差を抑制することができるため、添加量計測手段によって還元剤の添加量を精度良く検出することができる。これにより、還元剤添加弁の異常検出を精度良く実行することができる。
第2の発明によれば、還元剤添加弁の異常検出時に、排気空燃比が理論空燃比よりもリーン側となるように、還元剤が添加される。排気空燃比がリーン側である場合には、NOx触媒における還元反応が起こりにくいため、NOx触媒から排出される酸素量が小さくされる。よって、空燃比検出手段による排気空燃比の検出誤差を抑制することができるため、添加量計測手段によって還元剤の添加量を精度良く計測することができる。これにより、還元剤添加弁の異常検出を精度良く実行することができる。
第3の発明によれば、NOx触媒のNOx吸蔵量を基準値よりも小さくした状態で、還元剤添加弁の異常検出が実行される。ここで、還元剤添加弁により還元剤が液状に添加されると、NOx触媒において空燃比リッチ部分が局所的に存在し得る。かかる場合においても、NOx吸蔵量を小さくすることで、NOx触媒における還元反応により発生する酸素量を大幅に抑制することができる。よって、添加量計測手段による添加量計測精度を大幅に向上させることができるため、還元剤添加弁の異常検出精度を大幅に向上させることができる。
第4の発明によれば、還元剤添加弁の異常検出を実行する前に、添加インターバル短縮手段によって還元剤の添加インターバルが短縮される。これにより、NOx触媒のNOx吸蔵量を小さくした状態で、還元剤添加弁の異常検出を実行することができる。よって、還元剤添加弁の異常検出時に、NOx触媒から排出される酸素量を抑えることができる。
第5の発明によれば、NOx触媒床温がNOx吸蔵能が基準値よりも小さくなる温度領域内である場合に、還元剤添加弁の異常検出が実行される。該温度領域内では、NOx触媒のNOx吸蔵量が小さくなる。これは、例えば、低温側の領域では、NOx触媒の活性が低いため、NOx吸蔵反応が起こりにくいためであり、高温側の領域では、NOx触媒に吸蔵されたNOxが離脱するためである。従って、NOx触媒のNOx吸蔵量を小さくした状態で、還元剤添加弁の異常検出を実行することができる。
以下、図面を参照して本発明の実施の形態について説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。
実施の形態1.
[システム構成の説明]
図1は、本発明の実施の形態1によるシステム構成を説明するための図である。図1に示すシステムは、内燃機関1として、4サイクルのディーゼルエンジン(圧縮着火内燃機関)を備えている。ディーゼルエンジン1は、車両に搭載され、その動力源とされているものとする。図1に示すディーゼルエンジン1は直列4気筒型であるが、本発明において、気筒数および気筒配置はこれに限定されるものではない。
ディーゼルエンジン1の各気筒2のピストンは、クランク機構を介してクランク軸4に連結されている。クランク軸4の近傍には、クランク軸4の回転角度(クランク角)を検出するクランク角センサ5が設けられている。
ディーゼルエンジン1の各気筒2には、燃料を筒内に直接噴射するインジェクタ6が設置されている。各気筒のインジェクタ6は、共通のコモンレール7に接続されている。図示しない燃料タンク内の燃料は、サプライポンプ8によって所定の燃圧まで加圧される。この加圧された燃料は、コモンレール7内に蓄えられ、コモンレール7から各インジェクタ6に供給される。インジェクタ6は、任意のタイミングで燃料を筒内に噴射することができる。
ディーゼルエンジン1の吸気ポート10には、吸気バルブ12が設けられている。この吸気バルブ12の開弁特性(開弁時期、リフト量、作用角)は、図示しない公知の可変動弁機構により変更可能である。
吸気ポート10は、吸気マニホールド16を介して吸気通路18に接続されている。吸気通路18の途中には、吸気絞り弁20が設けられている。吸気絞り弁20は、アクセル開度センサ21により検出されるアクセル開度AAに基づき、その開度が決定される電子制御弁である。吸気絞り弁20の上流には、インタークーラ22が設けられている。インタークーラ22の上流にはターボ過給機24のコンプレッサ24aが設けられている。コンプレッサ24aは、排気通路38のタービン24bと連結軸により連結されている。
コンプレッサ24aの上流には、吸入空気量Gaを検出するエアフロメータ26が設けられている。エアフロメータ26の上流にはエアクリーナ28が設けられている。
このような構成によれば、ターボ過給機24のコンプレッサ24aにより圧縮された吸入空気は、インタークーラ22で冷却される。インタークーラ22を通過した吸入空気は、吸気マニホールド16によって各気筒の吸気ポート10に分配される。
また、ディーゼルエンジン1の排気ポート30には、排気バルブ32が設けられている。この排気バルブ32の開弁特性(開弁時期、リフト量、作用角)は、図示しない公知の可変動弁機構により変更可能である。
排気ポート30は、排気マニホールド36を介して排気通路38に接続されている。排気通路38には、ターボ過給機24のタービン24bが設けられている。タービン24bの下流には、前処理触媒である酸化触媒40が設けられている。酸化触媒40は、HCやCOを酸化する機能を有する触媒である。
酸化触媒40の下流には、NOx触媒42が設けられている。NOx触媒42は、空燃比が理論空燃比より大きい雰囲気中、つまり理論空燃比よりリーンな雰囲気中では排気ガス中のNOxを吸蔵し、空燃比が理論空燃比以下の雰囲気中、つまり理論空燃比以下のリッチの雰囲気中では吸蔵されたNOxを還元浄化して放出する機能を有している。
このNOx触媒42は、NOxを吸蔵還元する機能のみを有するものでもよく、あるいは、排気ガス中のすすを捕集する機能を併せ持つDPNR(Diesel Particulate-NOx-Reduction system)のようなものでもよい。また、NOx触媒42は、すすを捕集すること以外の機能を併せ持つものでもよい。なお、酸化触媒40とNOx触媒42とは、1つの容器内に収納されていてもよい。
NOx触媒42には、触媒床温センサ44が設けられている。この触媒床温センサ44は、NOx触媒42の床温(以下「触媒床温」という。)Tcを検出するように構成されている。
また、酸化触媒40とNOx触媒42の間には、NOx触媒42に流入する排気ガス温度Texgを検出する排気温センサ45が設けられている。タービン24bと酸化触媒40との間には、排気ガス中に還元剤である燃料を添加する排気燃料添加弁(以下「添加弁」という。)46が設けられている。添加弁46は、図示しない燃料供給管を介して上記サプライポンプ8と連通している。
NOx触媒42の下流には、空燃比センサ48が設けられている。この空燃比センサ48は、該下流における排気空燃比を検出するように構成されている。
吸気通路18の吸気マニホールド16の近傍には、外部EGR通路52の一端が接続されている。外部EGR通路52の他端は、排気通路38の排気マニホールド36近傍に接続されている。本システムでは、この外部EGR通路52を通して、排気ガス(既燃ガス)の一部を吸気通路18に還流させること、つまり外部EGR(Exhaust Gas Recirculation)を行うことができる。
外部EGR通路52の途中には、外部EGRガスを冷却するためのEGRクーラ54が設けられている。外部EGR通路52におけるEGRクーラ54の下流には、EGR弁56が設けられている。このEGR弁56の開度を大きくするほど、外部EGR通路52を通る排気ガス量(すなわち、外部EGR量もしくは外部EGR率)を増大させることができる。
また、本実施の形態1のシステムは、制御装置としてのECU(Electronic Control Unit)60を備えている。ECU60の出力側には、インジェクタ6、サプライポンプ8、吸気絞り弁20、添加弁46、EGR弁56等が接続されている。ECU60の入力側には、クランク角センサ5、アクセル開度センサ21、エアフロメータ26、触媒床温センサ44、排気温センサ45、空燃比センサ48等が接続されている。
また、ECU60は、クランク角センサ5の出力に基づいて、機関回転数NEを算出する。また、ECU60は、アクセル開度AA等に基づいて、機関負荷KLを算出する。また、ECU60は、この機関負荷KLに基づいて、インジェクタ6からの燃料噴射量(筒内噴射量)Qinjを算出する。ECU60は、各センサからの信号に基づき、所定のプログラムに従って各アクチュエータを作動させることにより、ディーゼルエンジン1の運転状態を制御する。
[本実施の形態1の特徴]
上記システムにおけるNOx触媒42のNOx吸蔵量が所定値を超えると、NOxを還元・放出させるため、いわゆるリッチスパイクが実施される。すなわち、添加弁46から還元剤である燃料の添加が行われ、この還元剤によりNOx触媒42の浄化能力回復処理(再生処理)が行われる。本実施の形態1では、以下に説明するように、この添加弁46の異常(故障)を検出する手法について提案する。
図2は、添加弁46の異常を判別する方法を説明するための図である。図2における横軸は、ECU60から添加弁46に対して指示される添加量(以下「指示添加量」という。)であり、縦軸は後述する方法により計測(推定)される添加量(以下「計測添加量」という。)である。
図2に示すように、指示添加量と計測添加量とを比較することで、添加弁46の異常検出を行うことができる。指示添加量に対する計測添加量の比率Rが1である場合、すなわち、ECU60から指示された量だけ添加弁46から還元剤が添加されると計測された場合には、当然ながら添加弁46は正常であると判定される。さらに、添加弁46のばらつき・経時変化を考慮して、比率Rが図2に示すような基準範囲内であれば、添加弁46は正常であると判定される。例えば、指示添加量がAである場合、計測添加量がA±Dthの範囲内であれば、添加弁46は正常であると判定される。
一方、比率Rがこの基準範囲外であれば、添加弁46は異常(故障)であると判定される。なお、この基準範囲は、車種に応じて予め設定しておくことができる。
図3は、リッチスパイク実施時の空燃比センサ48の出力(以下「空燃比センサ出力」という。)A/Fsの変化を示す図である。
添加弁46よりも上流の排気空燃比は、図3において一点鎖線で示すような空燃比A/Fcalとなる。この空燃比A/Fcalは、後述する式(1)に従って計算することができる。なお、この空燃比(以下「計算空燃比」という。)A/Fcalの代わりに、還元剤添加前(リッチスパイク非実施時)の空燃比センサ出力A/Fs(NRS)を用いることもできる。
一方、NOx触媒42下流の空燃比センサ48の出力A/Fsは、リッチスパイク非実施時(添加弁46から燃料添加が行われていない時)には上記計算空燃比A/Fcalと略同一である。しかしながら、空燃比センサ出力A/Fcalは、リッチスパイク実施時(添加弁46から燃料添加が行われている時)には、添加された燃料の分だけ、上記計算空燃比A/Fcalと相違する。具体的には、空燃比センサ出力A/Fsは、図3において実線で示されるように変化する。
後述するように、これらの計算空燃比A/Fcalと空燃比センサ出力A/Fsを用いて、添加弁46から添加された燃料量(すなわち、上記計測添加量)を計測(推定)することができる。
図4は、計算空燃比A/Fcalと空燃比センサ出力A/Fsに基づいて、添加弁46から添加された燃料量を計測する方法を説明するための図である。図4において、上記図3と同様に、符号「A/Fcal」は計算により求められた添加弁46上流の排気空燃比を、符号「A/Fs」は空燃比センサ48の出力を、それぞれ表している。
計算空燃比A/Fcalは、次式(1)に従って算出することができる。次式(1)において、「Ga」は吸入空気量であり、「Qinj」は筒内燃料噴射量である。
A/Fcal=Ga/Qinj・・・(1)
上式(1)を変形すると、次式(2)が得られる。
Qinj=Ga/(A/Fcal)・・・(2)
また、リッチスパイク実施時の空燃比センサ出力A/Fsは、次式(3)のように表すことができる。次式(3)において、「Qex」は添加弁46から添加された燃料量である。
A/Fs=Ga/(Qinj+Qex)・・・(3)
上式(3)を変形すると、次式(4)が得られる。
Qinj+Qex=Ga/(A/Fs)・・・(4)
上式(4)から上式(2)を減算することにより次式(5)が得られ、さらに次式(5)を変形することにより次式(6)が得られる。
Qex=Ga×{1/(A/Fs)-1/(A/Fcal)}・・・(5)
=Ga×{(A/Fcal)-(A/Fs)}/(A/Fcal)/(A/Fs)・・・(6)
よって、吸入空気量Gaと、計算空燃比A/Fcalと、空燃比センサ出力A/Fsとを用いて、上式(5)又は(6)に従って、リッチスパイク実施中における瞬時(ある時刻)の添加燃料量Qexが算出される。この添加燃料量Qexを、図4に示すリッチスパイク時間trsの間だけ積算することで、リッチスパイク実施時に添加弁46から添加された燃料量を計測することができる。すなわち、計測添加量が求められる。
ところで、リッチスパイク実施時には、NOx触媒42から酸素が排出される。これは、NOx触媒42において、次式(7)で表されるように、硝酸塩(Ba(NO3)2)と還元剤(H2)とが反応した結果、酸素が発生することによる。
Ba(NO3)2+2H2→BaO+O2+3H2O+N2・・・(7)
NOx触媒42下流に配置された空燃比センサ48は、酸素濃度に基づいて空燃比を検出するものである。よって、NOx触媒42から排出された酸素により、空燃比センサ出力A/Fsがリーン側にシフトする可能性がある。そうすると、計測添加量が実際よりも少なく算出される可能性がある。従って、添加弁46の異常検出を精度良く実行することができなくなる虞がある。
図5は、NOx吸蔵量が小さい場合と大きい場合とにおける空燃比センサ出力A/Fsの変化を示す図である。図5に示す例では、NOx触媒42入口の空燃比が理論空燃比よりも弱リッチ側の13.9となるように、添加弁46から還元剤が添加されている。
図5に示すように、NOx吸蔵量が小さい場合には、大きい場合に比して、空燃比センサ出力A/Fsのリーン側へのずれ量が小さい。これは、NOx吸蔵量が小さい場合の方が、NOx触媒42で発生される酸素量が少なく、NOx触媒42から排出される酸素量が少ないためである。
なお、図5において、リッチスパイク前半にNOx吸蔵量が大きい場合と小さい場合とも理論空燃比近傍となっているのは、NOx還元反応により発生した酸素によるものである。
図6は、NOx吸蔵量が最小の場合と最大の場合とにおける計測添加量の一例を示す図である。図6で示す例では、還元剤添加パターンが250[mm3]×3[回]とされている。この例では、NOx吸蔵量が最大である場合と最小である場合とでは、計測添加量が11%もずれている。このずれは、図5に示したように、NOx触媒42で発生した酸素による空燃比センサ出力A/Fsのずれ量の相違に起因するものである。
そこで、本実施の形態1によれば、NOx吸蔵量が所定の基準値よりも小さい場合に、添加弁46の異常検出を実行することとする。より具体的には、添加弁46の異常検出を実行する前に、通常のNOx還元用リッチスパイクのインターバルを短縮することで、NOx吸蔵量を小さくする。
図7は、リッチスパイク実施時の還元剤の添加インターバルを示す図である。詳細には、図7(A)は、通常のNOx還元時の添加インターバルを示す図であり、図7(B)は、添加弁46の異常検出前の添加インターバルを示す図である。図7(B)に示すように、添加弁46の異常検出前は、図7(A)に示す通常のリッチスパイクに比して、還元剤の添加インターバルが短縮される。
図8は、リッチスパイク実施時におけるNOx触媒42の出ガスNOx濃度の変化を示す図である。この出ガスNOx濃度は、NOx吸蔵量と相関を有している。また、図8には、NOx触媒42の入ガスNOx濃度が併せて示されている。この入ガスNOx濃度は一定に制御されている。
図8における時刻t1以前は、リッチスパイクが実施されておらず、NOx触媒42によりNOxが吸蔵されている。NOx吸蔵量が大きくなるに連れて、出ガスNOx濃度が高くなる。
時刻t1以降、NOx還元のためのリッチスパイクを頻繁に繰り返すと、すなわち、図7(B)に示すように還元剤の添加インターバルを短縮してリッチスパイクを繰り返すと、出ガスNOx濃度が低くなる。かかる出ガスNOx濃度が低くなるに連れて、NOx吸蔵量が小さくなる。そして、NOx吸蔵量が小さい状態で、添加弁46の異常検出が実行される。
[実施の形態1における具体的処理]
(NOx還元の基本制御)
先ず、NOx還元用リッチスパイクの基本制御について説明する。
図9は、本実施の形態1において、ECU60が実行するNOx還元の基本制御ルーチンを示すフローチャートである。
図9に示すルーチンによれば、先ず、エンジン1から排出されるNOx量(以下「NOx排出量」という。)Gnoxを算出する(ステップ100)。このステップ100では、例えば、機関回転数NEと筒内噴射量Qinjとの関係でNOx排出量Gnoxが定められたマップを参照することで、NOx排出量Gnoxを算出することができる。
次に、上記ステップ100で算出されたNOx排出量Gnoxを用いて、次式(8)に従ってNOx吸蔵量変化量(ΔGst)を算出する(ステップ102)。すなわち、NOx吸蔵量変化量ΔGstは、NOx排出量Gnoxに係数kを乗ずることによって算出される。この係数kは、触媒通過空気量、触媒床温Tc、排気ガス温度Texg、NOx吸蔵量Gst等(以下「触媒通過空気量等」という。)に対して相関を有している。ECU60には、この係数kと触媒通過空気量等との関係を規定したマップが予め記憶されている。ECU60は、該マップを参照して、対応する係数kを読み出すことができる。
ΔGst=Gnox×k・・・(8)
次に、NOx吸蔵量Gstを算出する(ステップ104)。このステップ104では、次式(9)で表されるように、前回算出されたNOx吸蔵量Gst(k-1)と、上記ステップ102で算出されたNOx吸蔵量変化量ΔGstとを加算することによって、NOx吸蔵量Gstが算出される。
Gts=Gst(k-1)+ΔGst・・・(9)
その後、上記ステップ104で算出されたNOx吸蔵量Gstが基準値Gst1よりも大きいか否かを判別する(ステップ106)。このステップ106では、NOx還元用のリッチスパイクを実施するか否かが判別される。この基準値Gst1により、還元剤の添加インターバルが決定される。具体的には、この基準値Gst1が小さいほど、還元剤の添加インターバルが短くされる。
上記ステップ106でNOx吸蔵量Gstが基準値Gst1よりも大きいと判別された場合には、通常のNOx還元用のリッチスパイクを実施する(ステップ108)。このステップ108では、NOx触媒入口の空燃比が理論空燃比よりもリッチ側となるように、添加弁46から還元剤が添加される。図5に示す例では、NOx触媒入口の空燃比が13.9となるように、還元剤が添加されている。その後、本ルーチンを一旦終了する。
一方、上記ステップ106でNOx吸蔵量Gstが基準値Gst1以下であると判別された場合には、NOx還元用のリッチスパイクの実施は不要であると判断される。この場合、そのまま本ルーチンを一旦終了する。
以上説明した図9のルーチンとは独立したタイミングで、ECU60は、図10及び図11のルーチンを実行することにより、添加弁46の異常検出を実行する。
(排気燃料添加弁の異常検出)
図10は、本実施の形態1において、ECU60が実行するルーチンを示すフローチャートである。
図10に示すルーチンによれば、添加弁46の異常検出要求があるか否かを判別する(ステップ110)。このステップ110において、ECU60は、例えば、前回異常検出を実行してから所定距離又は所定時間だけ走行した場合や、前回異常検出を実行してからの添加弁46への指示添加量の積算値(積算指示添加量)が所定値を超えた場合に、異常検出要求が有ると判別することができる。このステップ110で異常検出要求が無いと判別された場合には、本ルーチンを一旦終了する。
上記ステップ110で異常検出要求が有ると判別された場合には、触媒床温Tcが基準値T1よりも高いか否かを判別する(ステップ112)。この基準値T1は、NOx触媒42の暖機完了(活性化)を判別するための温度であり、例えば、250℃である。このステップ112で触媒床温Tcが基準値T1以下であると判別された場合には、本ルーチンを一旦終了する。
一方、上記ステップ112で触媒床温Tcが基準値T1よりも高いと判別された場合には、NOx吸蔵量Gstが基準値Gst2よりも小さいか否かを判別する(ステップ114)。このステップ114では、例えば、図9のルーチンのステップ104で算出されたNOx吸蔵量Gstが読み込まれ、この読み込まれたNOx吸蔵量Gstが基準値Gst2よりも小さいか否かが判別される。この基準値Gst2は、通常のNOx還元用リッチスパイクの実施の要否を決定する上記基準値Gst1よりも小さい値に設定されている。
上記ステップ114でNOx吸蔵量Gstが基準値Gst2よりも大きいと判別された場合には、NOx還元リッチスパイクのインターバルを短縮する(ステップ116)。このステップ116では、具体的には、図9に示すルーチンのステップ106における上記基準値Gst1が減少せしめられる。これにより、図7に示すように、還元剤の添加インターバルが短縮される。
その後、NOx還元リッチスパイクが実施された直後であるか否かを判別する(ステップ118)。このステップ118でリッチスパイクの実施直後でないと判別された場合には、リッチスパイクが実施されるまで、上記ステップ118の処理を繰り返す。一方、上記ステップ118でリッチスパイクの実施直後であると判別された場合には、上記ステップ114の判別処理に戻る。
その後、上記ステップ114でNOx吸蔵量Gstが基準値Gst2よりも大きいと再度判別された場合には、上記ステップ116,118の処理を再度実行する。ここで、ステップ116の処理を再度実行する場合、Gst1を減らす量は前回と同じでもよく、前回よりも少なくてもよい。
一方、上記ステップ114でNOx吸蔵量Gstが基準値Gst2よりも小さいと判別された場合には、図11に示すルーチンを実行する。図11は、本発明の実施の形態1において、ECU60が実行する添加弁異常検出の詳細ルーチンを示すフローチャートである。
図11に示すルーチンによれば、先ず、積算計測添加量をゼロにする(ステップ120)。このステップ120では、前回までに下記ステップ136において積算された積算計測添加量がリセットされる。その後、積算指示添加量をゼロにする(ステップ122)。このステップ122では、前回までに下記ステップ130において積算された積算指示添加量がリセットされる。
次に、計測完了フラグをOFFにする(ステップ124)。この計測完了フラグは、積算計測添加量と積算指示添加量から供給割合を求める直前に、すなわち、積算計測添加量と積算指示添加量の算出が完了したときに、下記ステップ144においてONに設定されるフラグである。
次に、積算指示添加量が基準値よりも大きいか否かを判別する(ステップ126)。この基準値は、添加弁46の異常を判定するために噴射することが必要な最低限の還元剤量である。このステップ126で積算添加量が基準値以下であると判別された場合には、NOx触媒入口の空燃比がリッチ側となるように還元剤を添加する(ステップ128)。図5に示す例では、NOx触媒入口の空燃比が13.9となるように、還元剤が添加されている。このステップ128でECU60から添加弁46に対して与えられる添加量は、上記の指示添加量である。この還元剤の添加によって、添加弁46の異常検出用のリッチスパイクが実施されることとなる。
なお、NOx触媒入口の空燃比は、吸入空気量Gaと筒内燃料噴射量Qinjと排気添加量Qex等を用いて公知の手法により算出することができる(以下同様)。
次に、上記ステップ128で算出された指示添加量を、前回算出された積算指示添加量に加算した値を、積算指示添加量として設定する(ステップ130)。このステップ130では、上記ステップ128で算出された指示添加量だけ積算指示添加量がインクリメントされる。
そして、吸入空気量Gaと筒内燃料噴射量Qinjとを用いて、上式(1)に従って、計算空燃比A/Fcalを算出する(ステップ132)。
次に、吸入空気量Gaと、上記ステップ132で算出された計算空燃比A/Fcalと、空燃比センサ48により検出された空燃比A/Fsとを用いて、上式(5)に従って、計測添加量を算出する(ステップ134)。
そして、上記ステップ134で算出された計測添加量を、前回までに積算された積算計測添加量に加算した値を、積算計測添加量として設定する(ステップ136)。このステップ136では、上記ステップ134で算出された計測添加量だけ積算計測添加量がインクリメントされる。その後、上記ステップ126の判別処理に戻る。
上記ステップ126で積算指示添加量が基準値よりも大きいと判別された場合には、上記ステップ132と同様の方法により、計算空燃比A/Fcalを算出する(ステップ138)。そして、上記ステップ138で算出された計算空燃比A/Fcalから空燃比センサ48により検出された空燃比A/Fsを減算することで、空燃比差ΔA/Fを算出する(ステップ140)。
次に、上記ステップ140で算出された空燃比差ΔA/Fが基準値よりも小さいか否かを判別する(ステップ142)。この基準値は、添加弁46の異常検出用のリッチスパイクを終了するか否かを判別するための閾値である。このステップ142で空燃比差ΔA/Fが基準値以上であると判別された場合には、上記ステップ126の処理に戻る。
一方、上記ステップ142で空燃比差ΔA/Fが基準値よりも小さいと判別された場合には、添加弁異常検出用のリッチスパイクを終了すると判断される。この場合、計測完了フラグがONに設定される(ステップ144)。その後、上記積算指示添加量に対する上記積算計測添加量の比率Rを求め、該比率Rを供給割合として設定する(ステップ146)。
次に、上記ステップ146で求められた供給割合が、例えば、図2に示すような基準範囲内であるか否かを判別する(ステップ148)。このステップ148で供給割合が基準範囲内である場合には、添加弁46は正常であると判断される。この場合、添加弁異常フラグがOFFに設定される(ステップ150)。一方、上記ステップ148で供給割合が基準範囲外である場合には、添加弁46は故障していると判断される。この場合、添加弁異常フラグがONに設定される(ステップ152)。その後、本ルーチンを終了すると同時に、図10に示すルーチンも終了する。
以上説明したように、本実施の形態1によれば、添加弁46の異常検出に先立って、NOx還元時に添加される還元剤の添加インターバルが短縮される。これにより、添加弁46の異常検出前に、NOx吸蔵量Gstが基準値Gst2よりも小さくされる。よって、NOx吸蔵量Gstが小さい状態で、添加弁46の異常検出を実行することができる。従って、添加弁46の異常検出用のリッチスパイク時に、NOx触媒42から排出される酸素量を小さくすることができるため、空燃比センサ48の出力ずれを抑えることができる。よって、計測添加量を精度良く算出することができるため、添加弁46の異常検出を精度良く実行することができる。
ところで、本実施の形態1では、機関回転数NEと筒内噴射量Qinjとの関係でNOx排出量Gnoxが定められたマップを参照することで、NOx排出量Gnoxを算出しているが(ステップ100)、NOx排出量Gnoxの算出方法はこの手法に限定されない。他の手法として、NOx触媒42上流にNOxセンサを設け、該NOxセンサにより検出する方法や、筒内圧センサにより検出された筒内圧から推定する手法を用いることができる。
また、本実施の形態1では、添加弁46がタービン42bと酸化触媒40との間に設けられているが、その設定位置はNOx触媒42よりも上流側であれば変更可能である。例えば、酸化触媒40とNOx触媒42との間や、タービン42b上流の排気通路38や、排気マニホールド36に、添加弁46を設置してもよい。
尚、本実施の形態1においては、NOx触媒42が第1の発明における「NOx触媒」に、添加弁46が第1の発明における「還元剤添加弁」に、空燃比センサ48が第1の発明における「空燃比検出手段」に、それぞれ相当する。
また、本実施の形態1においては、ECU60が、ステップ128,130の処理を実行することにより第1の発明における「添加量指示手段」が、ステップ134,136の処理を実行することにより第1の発明における「添加量計測手段」が、ステップ146,148,150の処理を実行することにより第1及び第3の発明における「異常検出手段」が、ステップ116の処理を実行することにより第4の発明における「添加インターバル短縮手段」が、それぞれ実現されている。
実施の形態2.
次に、図12及び図13を参照して、本発明の実施の形態2について説明する。
本実施の形態2のシステムは、図1に示すハードウェア構成を用いて、ECU60に、後述する図13に示すルーチンを実行させることにより実現することができる。
[実施の形態2の特徴]
上記実施の形態1では、添加弁46の異常検出に先立って、NOx還元用のリッチスパイク時の還元剤の添加インターバルが短縮されている(図10のステップ116)。
ところで、触媒床温Tcによっては、NOx吸蔵能が低下するため、NOx吸蔵量Gstが小さくなる。図12は、触媒床温TcとNOx吸蔵量Gstとの関係を示す図である。すなわち、図12は、NOx吸蔵量Gstの触媒床温依存性を示す図である。
図12に示すように、触媒床温Tcが低温側と高温側においては、NOx吸蔵量Gstが小さくなる。これは、低温側(例えば、暖機過程等)では、触媒活性が低く、NOx吸蔵反応が起こりにくいためである。また、高温側(例えば、DPNR触媒のPM再生後やS再生後等)では、NOx触媒42に一旦吸蔵されたNOxが離脱してしまうためである。
そこで、本実施の形態2では、触媒床温Tcが基準値T3よりも低温側もしくは基準値T2よりも高温側である場合に、すなわち、NOx吸蔵能が基準値よりも小さい場合に、添加弁46の異常検出を実行することとする。これにより、上記実施の形態1と同様に、NOx吸蔵量Gstが基準値Gst2よりも小さい状態で、添加弁46の異常検出が実行される。
[実施の形態2における具体的処理]
図13は、本実施の形態2において、ECU60が実行するルーチンを示すフローチャートである。図13のルーチンは、図10のルーチンのステップ112に代えて、ステップ160,162が加えられたものである。
図13に示すルーチンによれば、先ず、図10に示すルーチンと同様に、添加弁46の異常検出要求があるか否かを判別する(ステップ110)。
次に、触媒床温Tcが基準値T2よりも高いか否かを判別する(ステップ160)。この基準値T2は、図12に示すようにNOx吸蔵量Gstが基準値Gst2となる高温側の触媒床温であり、例えば、500℃である。このステップ160で触媒床温Tcが基準値T2以下であると判別された場合には、触媒床温Tcが基準値T3よりも低いか否かを判別する(ステップ162)。この基準値T3は、図12に示すようにNOx吸蔵量Gstが基準値Gst2となる低温側の触媒床温であり、例えば、200℃である。
上記ステップ162で触媒床温Tcが基準値T3以上であると判別された場合、すなわち、触媒床温Tcが基準値T3以上基準値T2以下の範囲内である場合には、触媒床温TcがNOx吸蔵量Gstが小さくなる温度ではないと判断される。この場合、図10に示すルーチンと同様に、ステップ114〜116の処理を実行する。これにより、NOx還元用リッチスパイクで添加される還元剤の添加インターバルを短縮することで、NOx吸蔵量Gstが基準値Gst2よりも小さくされる。その後、図11に示すルーチンが実行される。
一方、上記ステップ160で触媒床温Tcが基準値T2よりも高いと判別された場合、もしくは、上記ステップ162で触媒床温Tcが基準値T3よりも低いと判別された場合には、触媒床温TcがNOx吸蔵量Gstが基準値Gst2よりも小さくなる温度であると判断される。この場合、上記のような添加インターバルの短縮をすることなく、図11に示すルーチンを実行する。
以上説明したように、本実施の形態2によれば、触媒床温Tcが基準値T2より高い場合もしくは基準値Tcよりも低い場合に、添加弁46の異常検出が実行される。すなわち、NOx吸蔵量Gstが小さくなる触媒床温Tcの温度領域で、添加弁46の異常検出が実行される。よって、還元剤添加インターバルを短縮する必要がないため、添加弁46の異常検出を即座に実行することができる。
また、触媒床温Tcが基準値T3以上基準値T2以下である場合には、上記実施の形態1と同様に、添加弁46の異常検出に先立って、NOx還元時に添加される還元剤の添加インターバルが短縮される。
このように、リッチスパイク実施時にNOx触媒42から排出される酸素量を小さくすることができるため、空燃比センサ48の出力ずれを抑えることができる。よって、計測添加量を精度良く算出することができるため、添加弁46の異常検出を精度良く実行することができる。
尚、本実施の形態2においては、ECU60が、ステップ160,162の処理を実行することにより第5の発明における「異常検出手段」が、ステップ116の処理を実行することにより第4の発明における「添加インターバル短縮手段」が、それぞれ実現されている。
実施の形態3.
次に、図14から図16を参照して、本発明の実施の形態3について説明する。
本実施の形態3のシステムは、図1に示すハードウェア構成を用いて、ECU60に、後述する図16に示すルーチンを実行させることにより実現することができる。
[実施の形態3の特徴]
上記実施の形態1では、添加弁46の異常検出に先立って、NOx還元用のリッチスパイク時の還元剤の添加インターバルを短縮することで、NOx吸蔵量が基準値よりも小さくされている。
さらに、NOx還元用のリッチスパイク時と同様に、添加弁46異常検出用のリッチスパイク時においても、図14において実線L1で示すように、NOx触媒入口の空燃比がリッチ側となるように還元剤が添加されている。
ところで、NOx触媒42におけるNOx還元反応は、通常は、排気空燃比が理論空燃比よりもリッチ側である場合に起こる。よって、NOx触媒入口の空燃比を理論空燃比よりもリーン側とすることで、NOx触媒42においてNOx還元反応は起こりにくくなる。
そこで、本実施の形態3では、図14において破線L2で示すように、添加弁46の異常検出時に、NOx触媒入口の空燃比が理論空燃比よりもリーン側となるように、還元剤を添加する。図14は、本実施の形態3において、還元剤の添加量を説明するための図である。還元剤の添加量を上記実施の形態1,2に比して少なくして、NOx触媒入口の空燃比が理論空燃比よりもリーン側となるようにする。リーン側の空燃比としては、例えば、14.9とすることができ、また排気エミッションが許容されれば18以上とすることもできる。これにより、添加弁46の異常検出用のリッチスパイク実施時に、NOx触媒42においてNOx還元反応を起こりにくくすることができる。
従って、添加弁46の異常検出用のリッチスパイク実施時に、NOx触媒42から排出される酸素量を小さくすることができるため、空燃比センサ48の出力ずれを抑えることができる。よって、計測添加量を精度良く算出することができるため、添加弁46の異常検出を精度良く実行することができる。
また、本発明者等の知見によれば、NOx触媒入口の空燃比をリーン側としても、NOx吸蔵量Gstが大きい場合には、小さい場合に比して、図15に示すように、空燃比センサ出力A/Fsがずれてしまう可能性がある。図15は、本実施の形態3において、NOx吸蔵量が大きい場合と小さい場合の空燃比センサ出力A/Fsを示す図である。図15に示す例では、NOx触媒入口の空燃比が14.9となるように、還元剤が添加されている。
図15に示すように、NOx吸蔵量が小さい場合には、NOx触媒上流の空燃比を14.9とすることで、NOx触媒42におけるNOx還元反応がほとんど起こらないため、空燃比センサ出力A/Fsのずれをほとんど無くすことができる。
一方、NOx吸蔵量が大きい場合には、NOx吸蔵量が小さい場合に比して、空燃比センサ出力A/Fsがわずかにリーン側にずれている。
この理由について説明する。添加弁46から添加される還元剤は液状に添加されるため、NOx触媒42全体としては空燃比がリーンであるにも関わらず、該NOx触媒42において空燃比がリッチな部分が局所的に存在する。NOx吸蔵量が大きい場合には、この局所的なリッチ部分において、NOx還元反応が起こってしまうため、NOx触媒42において酸素が発生してしまう。その結果、図15に示すように、NOx吸蔵量が大きい場合には、空燃比センサ出力A/Fsがわずかにリーン側にずれてしまう。なお、この場合の空燃比センサ出力A/Fsのずれは、図5及び図6において説明したずれに比して、非常に少ない。
そこで、本実施の形態3では、NOx吸蔵量Gstを小さくした後、NOx触媒入口の空燃比が理論空燃比よりもリーン側となるように、還元剤を添加する。これにより、添加弁46から還元剤が液状に添加され、NOx触媒42において空燃比がリッチな部分が局所的に存在することとなっても、NOx触媒42における酸素の発生を抑制することができる。
[実施の形態3における具体的処理]
図16に示すルーチンを実行する前に、先ず、図10に示すルーチンのステップ110〜118の処理を実行する。これらの処理により、NOx吸蔵量Gstが基準値Gst2よりも小さくされる。そして、上記ステップ114の処理でNOx吸蔵量Gstが基準値Gst2よりも小さいと判別された場合には、図11に示すルーチンの代わりに、図16に示すルーチンを実行する。
図16は、本実施の形態3において、ECU60が実行する添加弁異常検出の詳細ルーチンを示すフローチャートである。図16に示すルーチンは、図11に示すルーチンのステップ128の代わりに、ステップ170が加えられたものである。以下、この相違点を中心に説明する。
図16に示すルーチンによれば、図11に示すルーチンと同様に、ステップ120〜126の処理を順次実行する。このステップ126で積算指示添加量が基準値以下であると判別された場合には、NOx触媒入口の空燃比がリーン側となるように還元剤を添加する(ステップ170)。図15に示す例では、NOx触媒入口の空燃比が14.9となるように、添加剤が添加されている。
その後、図11に示すルーチンと同様に、ステップ130以下の処理を順次実行する。
以上説明したように、本実施の形態3によれば、添加弁46の異常検出時に、NOx触媒入口の空燃比がリーン側となるように還元剤が添加される。これにより、NOx触媒42においてNOx還元反応が起こりにくい状態で、すなわち、NOx触媒42から排出される酸素量が少ない状態で、計測添加量が算出される。このとき、空燃比センサ48の出力ずれを抑えることができるため、計測添加量を精度良く算出することができる。よって、添加弁46の異常検出を精度良く実行することができる。
また、本実施の形態3によれば、還元剤の添加に先立って、NOx吸蔵量Gstが小さくされる。よって、NOx触媒42において空燃比がリッチな部分が局所的に存在することとなっても、NOx触媒42における酸素の発生を抑制することができる。
ところで、本実施の形態3では、図16に示すルーチンを実行する前に、図10に示すルーチンを実行しているが、図13に示すルーチンを実行してもよい。すなわち、触媒床温Tcが基準値T3以上基準値T2以下である場合には、還元剤添加インターバルを短縮することなく、図16に示すルーチンを実行してもよい。この場合も、NOx吸蔵量Gstが基準値Gst2よりも小さい状態で、図16に示すルーチンが実行されるため、上記実施の形態3と同様の効果を得ることができる。
尚、本実施の形態3においては、ECU60が、ステップ170の処理を実行することにより第2の発明における「添加量指示手段」が、ステップ134,136の処理を実行することにより第2の発明における「添加量計測手段」が、ステップ146,148,150の処理を実行することにより第2及び第3の発明における「異常検出手段」が、それぞれ実現されている。
本発明の実施の形態1によるシステム構成を説明するための図である。 排気燃料添加弁46の異常を判別する方法を説明するための図である。 リッチスパイク実施時の空燃比センサ48の出力A/Fsの変化を示す図である。 計算空燃比A/Fcalと空燃比センサ出力A/Fsに基づいて、添加弁46から添加された燃料量を計測する方法を説明するための図である。 NOx吸蔵量が小さい場合と大きい場合とにおける空燃比センサ出力A/Fsの変化を示す図である。 NOx吸蔵量が最小の場合と最大の場合とにおける計測添加量の一例を示す図である。 リッチスパイク実施時の還元剤の添加インターバルを示す図である。 リッチスパイク実施時におけるNOx触媒42の出ガスのNOx濃度の変化を示す図である。 本発明の実施の形態1において、ECU60が実行するNOx還元の基本制御ルーチンを示すフローチャートである。 本発明の実施の形態1において、ECU60が実行するルーチンを示すフローチャートである。 本発明の実施の形態1において、ECU60が実行する添加弁異常検出の詳細ルーチンを示すフローチャートである。 触媒床温TcとNOx吸蔵量Gstとの関係を示す図である。 本発明の実施の形態2において、ECU60が実行するルーチンを示すフローチャートである。 本発明の実施の形態3において、還元剤の添加量を説明するための図である。 本発明の実施の形態3において、NOx吸蔵量が大きい場合と小さい場合の空燃比センサ出力A/Fsを示す図である。 本発明の実施の形態3において、ECU60が実行する添加弁異常検出の詳細ルーチンを示すフローチャートである。
符号の説明
1 内燃機関
42 NOx触媒
44 触媒床温センサ
45 排気温センサ
46 排気燃料添加弁
48 空燃比センサ
60 ECU

Claims (4)

  1. NOx触媒の浄化能力を回復させるために該NOx触媒の上流に還元剤を添加する還元剤添加弁の異常を検出する異常検出装置であって、
    前記還元剤添加弁に対して還元剤の添加量を指示する添加量指示手段と、
    前記NOx触媒の下流の排気空燃比を検出する空燃比検出手段と、
    前記排気空燃比に基づいて、前記還元剤添加弁から添加された還元剤の添加量を計測する添加量計測手段と、
    前記添加量指示手段により指示された添加量と、前記添加量計測手段により計測された添加量とを比較することにより、前記還元剤添加弁の異常を検出する異常検出手段とを備え、
    前記添加量指示手段は、前記還元剤添加弁の異常を検出するときに、前記NOx触媒入口の空燃比が理論空燃比よりもリーン側となるように、前記還元剤を添加することを特徴とする還元剤添加弁の異常検出装置。
  2. 請求項に記載の還元剤添加弁の異常検出装置において、
    前記NOx触媒の再生処理が必要となるNOx吸蔵量に応じて設定される一の基準値を判定基準として、前記NOx触媒のNOx吸蔵量が前記一の基準値よりも大きいときに前記還元剤添加弁を作動させ、前記NOx吸蔵量が前記一の基準値以下のときに前記還元剤添加弁を停止させる添加制御手段を備え、
    前記異常検出手段は、前記一の基準値よりも小さな基準値として設定され、かつ、前記NOx触媒に吸蔵されたNOxの影響で前記還元剤の添加量の計測値に生じるずれを許容範囲に抑えるようなNOx吸蔵量に応じて設定される他の基準値を有し、前記NOx触媒のNOx吸蔵量が前記他の基準値よりも小さいときに、異常検出を実行することを特徴とする還元剤添加弁の異常検出装置。
  3. 請求項に記載の還元剤添加弁の異常検出装置において、
    前記異常検出手段により異常検出を実行する前に、還元剤の添加インターバルを短縮する添加インターバル短縮手段を更に備えたことを特徴とする還元剤添加弁の異常検出装置。
  4. 請求項に記載の還元剤添加弁の異常検出装置において、
    前記異常検出手段は、前記NOx触媒のNOx吸蔵前記他の基準値よりも小さくなる所定の温度領域を判定基準として、前記NOx触媒の床温が前記温度領域内である場合に、異常検出を実行することを特徴とする還元剤添加弁の異常検出装置。
JP2006325874A 2006-12-01 2006-12-01 還元剤添加弁の異常検出装置 Expired - Fee Related JP4930018B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006325874A JP4930018B2 (ja) 2006-12-01 2006-12-01 還元剤添加弁の異常検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006325874A JP4930018B2 (ja) 2006-12-01 2006-12-01 還元剤添加弁の異常検出装置

Publications (2)

Publication Number Publication Date
JP2008138603A JP2008138603A (ja) 2008-06-19
JP4930018B2 true JP4930018B2 (ja) 2012-05-09

Family

ID=39600332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006325874A Expired - Fee Related JP4930018B2 (ja) 2006-12-01 2006-12-01 還元剤添加弁の異常検出装置

Country Status (1)

Country Link
JP (1) JP4930018B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6582409B2 (ja) * 2014-12-26 2019-10-02 いすゞ自動車株式会社 排気浄化システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3552653B2 (ja) * 2000-07-24 2004-08-11 トヨタ自動車株式会社 内燃機関の還元剤供給装置の診断処理装置
JP4218462B2 (ja) * 2003-08-06 2009-02-04 トヨタ自動車株式会社 排気浄化触媒の還元剤添加誤差検出方法及び還元剤添加誤差検出装置

Also Published As

Publication number Publication date
JP2008138603A (ja) 2008-06-19

Similar Documents

Publication Publication Date Title
US7299625B2 (en) Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
US20100154387A1 (en) Abnormality detection device for reductant addition valve
US7849672B2 (en) Failure diagnosis method for reducing agent addition valve
JP6032358B2 (ja) 排気浄化装置の異常診断装置
US10316716B2 (en) Exhaust purification system and method for restoring NOx purification capacity
CN105247184A (zh) 排气净化装置的异常诊断装置
WO2008020287A2 (en) Catalyst monitoring system and method
US10364719B2 (en) Exhaust gas purification system, and NOx purification capacity restoration method
JP4561656B2 (ja) 内燃機関の触媒温度推定装置
JP4650370B2 (ja) 触媒劣化検出装置
JP2014222028A (ja) Pm堆積量推定装置および内燃機関の排気浄化システム
US10436092B2 (en) Exhaust purification system and control method therefor
JP5229400B2 (ja) 内燃機関の制御装置
JP2010236458A (ja) NOx触媒の劣化診断装置
JP4765866B2 (ja) 内燃機関の制御装置
JP4600362B2 (ja) 還元剤添加弁の異常検出装置
JP4930018B2 (ja) 還元剤添加弁の異常検出装置
JP4650364B2 (ja) NOx触媒の劣化検出装置
JP2009299597A (ja) 車載内燃機関の排気浄化装置
US10130913B2 (en) Exhaust gas purification system, and NOx purification capacity restoration method
JP3656496B2 (ja) 内燃機関の排気浄化装置
CN110945218B (zh) 排气净化系统
JP2007040186A (ja) 内燃機関のNOx生成量推定装置及び内燃機関の制御装置
JP2008045413A (ja) 還元剤添加弁の異常検出装置
JP4190378B2 (ja) 内燃機関の触媒床温推定装置、及び内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R151 Written notification of patent or utility model registration

Ref document number: 4930018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees