JP4916334B2 - Aluminum alloy clad material for heat exchangers with excellent strength and brazing - Google Patents
Aluminum alloy clad material for heat exchangers with excellent strength and brazing Download PDFInfo
- Publication number
- JP4916334B2 JP4916334B2 JP2007037610A JP2007037610A JP4916334B2 JP 4916334 B2 JP4916334 B2 JP 4916334B2 JP 2007037610 A JP2007037610 A JP 2007037610A JP 2007037610 A JP2007037610 A JP 2007037610A JP 4916334 B2 JP4916334 B2 JP 4916334B2
- Authority
- JP
- Japan
- Prior art keywords
- brazing
- sacrificial anode
- aluminum alloy
- strength
- core material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Prevention Of Electric Corrosion (AREA)
Description
この発明は、不活性ガス雰囲気中でフッ化物フラックスやセシウム化合物を含むフラックスを用いたろう付けによってラジエータやヒータコアなどのアルミニウム製熱交換器を製造する場合、その構造部材であるチューブ材(クラッド材を曲成し、溶接またはろう付けによりチューブ形状としたものを含む)やヘッダープレート材、あるいはこれらの熱交換器を接続するための配管材として好適な強度とろう付け性に優れた熱交換器用アルミニウム合金クラッド材に関する。 In the case of manufacturing an aluminum heat exchanger such as a radiator or a heater core by brazing using a fluoride flux or a flux containing a cesium compound in an inert gas atmosphere, this invention is a tube material (cladding material) that is a structural member of the heat exchanger. Aluminum for heat exchangers with excellent strength and brazing properties suitable for piping materials for connecting these heat exchangers, including header plates (including bent, welded or brazed tube shapes) It relates to an alloy cladding material.
自動車のラジエータやヒータコアなどのチューブ材やヘッダープレート材には、JIS A3003などのAl−Mn系合金を心材とし、一方の面にAl−Si系合金のろう材をクラッドし、場合によっては他方の面にAl−Zn系合金やAl−Zn−Mg系合金からなる犠牲陽極材をクラッドした厚さ0.3mm程度の3層クラッド材が用いられている。 For tube materials and header plate materials such as radiators and heater cores of automobiles, an Al-Mn alloy such as JIS A3003 is used as a core material, and a brazing material of an Al-Si alloy is clad on one side, and in some cases the other A three-layer clad material having a thickness of about 0.3 mm is used in which a sacrificial anode material made of an Al—Zn alloy or an Al—Zn—Mg alloy is clad on the surface.
Al−Si系合金のろう材は、チューブとフィンとの接合、チューブとヘッダープレートとの接合のためのもので、ろう付けは、フッ化物フラックスやセシウム化合物を含むフラックスを用いて不活性ガス雰囲気ろう付け、あるいは真空ろう付けにより行われる。また、チューブ材内面の犠牲陽極材は、使用中に作動流体と接し、犠牲陽極効果を発揮して心材の孔食や隙間腐食を防止し、チューブ材外面の犠牲陽極材は、使用中に犠牲陽極効果を発揮して心材の孔食を防止する。 The brazing material of Al-Si alloy is for joining tubes and fins, joining tubes and header plates, and brazing is performed using an inert gas atmosphere using a fluoride flux or a flux containing a cesium compound. It is performed by brazing or vacuum brazing. In addition, the sacrificial anode material on the inner surface of the tube material comes into contact with the working fluid during use and exhibits a sacrificial anode effect to prevent pitting corrosion and crevice corrosion of the core material. The sacrificial anode material on the outer surface of the tube material is sacrificed during use. Demonstrate pitting corrosion of core material by demonstrating anode effect.
自動車の熱交換器の間を結ぶ配管材については、JIS A3003などのAl−Mn系合金を心材とし、内面、あるいは内面と外面にJIS A7072などのAl−Zn系合金の犠牲陽極材をクラッドした二層または三層のクラッドチューブが用いられている。クラッド管の内面の犠牲陽極材は、使用中にクーラントと接触して犠牲陽極効果を発揮して、心材に対する孔食または隙間腐食の発生を防止し、外面の犠牲陽極材は、過酷な環境で使用された場合、犠牲陽極効果を発揮して心材に発生する孔食または隙間腐食を防止する。 For piping materials connecting between heat exchangers of automobiles, an Al-Mn alloy such as JIS A3003 is used as a core material, and a sacrificial anode material of Al-Zn alloy such as JIS A7072 is clad on the inner surface or the inner and outer surfaces. Two-layer or three-layer clad tubes are used. The sacrificial anode material on the inner surface of the clad tube is in contact with the coolant during use to exert a sacrificial anode effect to prevent the occurrence of pitting corrosion or crevice corrosion on the core material, and the outer surface sacrificial anode material is used in harsh environments. When used, the sacrificial anode effect is exhibited to prevent pitting corrosion or crevice corrosion occurring in the core material.
ラジエータやヒータコアの製造は、図1に示すように、心材2の片面にろう材3、他の片面に犠牲陽極材4をクラッドしたクラッド板材1を曲成し、溶接する(溶接部W)ことにより偏平チューブとし、ヘッダープレートに組み付けた後、一体にろう付けする(溶接型)ことにより行われていたが、近年、図2〜3に示すように、クラッド板材1を曲げ加工するだけで溶接することなくチューブ形状とし、ヘッダープレートに組み付けて一体ろう付けする(ろう付け型)ことにより製造される手法が行われるようになっている。
As shown in FIG. 1, the radiator and the heater core are manufactured by bending and welding the
近年、自動車の軽量化の要請に伴い、自動車熱交換器においても省エネルギー、省資源の観点から構成材料の薄肉化が要請され、チューブ材についても薄肉化が進行している。チューブ材を薄肉化するには、材料の強度を高める必要から心材には多量のMn、Cu、Siなどが含有されるが、これらの元素の含有により心材の耐食性が低下するため、犠牲陽極材に多量のZnを添加して心材との電位差を確保し、確実に犠牲陽極効果が得られるようにした材料構成が提案されている。 In recent years, with the demand for lighter automobiles, automobile heat exchangers are also required to be made thinner from the viewpoint of energy saving and resource saving, and the tube materials are also becoming thinner. In order to reduce the thickness of the tube material, the core material contains a large amount of Mn, Cu, Si, etc. because it is necessary to increase the strength of the material. However, since the corrosion resistance of the core material is reduced by the inclusion of these elements, the sacrificial anode material A material structure has been proposed in which a large amount of Zn is added to ensure a potential difference from the core material and the sacrificial anode effect is reliably obtained.
また、犠牲陽極材に多量のMgを添加して、犠牲陽極材と心材の界面にMg2Siを微細析出させたり、心材に0.05〜0.5%の微量のMgを添加して心材中にMg2Siを微細析出させ、さらに強度を高めた材料構成のものも提案されている(特許文献1参照)。犠牲陽極材にMgを添加する場合、溶接型に関しては有効であるが、ろう付け型に関しては、犠牲陽極材とろうが直接接合される面があり、Mgがフラックスと反応してMgF2などの化合物を形成してフラックスの機能が損なわれ、ろう付け欠陥が生じる問題がある。心材にMgを添加する場合、心材からろう材へMgが拡散し、同様にMgがフラックスと反応してMgF2などの化合物を形成してフラックスの機能が損なわれ、ろう付け欠陥が生じる問題があるため、Mgの添加量は0.5%以下に限定されており、ろう付け型の場合には、Mg添加による高強度化には限界がある。 Further, a large amount of Mg is added to the sacrificial anode material, and Mg 2 Si is finely precipitated at the interface between the sacrificial anode material and the core material, or a small amount of 0.05 to 0.5% Mg is added to the core material. A material structure in which Mg 2 Si is finely precipitated and the strength is further increased has been proposed (see Patent Document 1). When adding Mg to the sacrificial anode material, it is effective for the welding mold, but for the brazing mold, there is a surface where the sacrificial anode material and the braze are directly joined, and Mg reacts with the flux to produce MgF 2 or the like. There is a problem that a compound is formed and the function of the flux is impaired, and a brazing defect occurs. When Mg is added to the core material, Mg diffuses from the core material to the brazing material. Similarly, Mg reacts with the flux to form a compound such as MgF 2 , thereby reducing the function of the flux and causing a brazing defect. For this reason, the amount of Mg added is limited to 0.5% or less, and in the case of a brazing type, there is a limit to increasing the strength by adding Mg.
そのため、ろう付け型の高強度化に関しては、心材に多量のMn、Cu、Siなどを添加するとともに、犠牲陽極材にもMn、Fe、Siを添加する手法が提案されている(特許文献2参照)が、要求される薄肉化に対応するには、さらに改善の必要があり、また、これらの元素の添加によって犠牲陽極材面の濡れ性が低下し、ろう付け欠陥が生じる問題も解決しなければならない。
発明者らは、ろう付け型ラジエータ用チューブについて、上記従来のチューブ材よりさらに高強度を達成し、向上したろう付け性を得るために、クラッド材の強度およびろう付け性と、クラッド材における心材と犠牲陽極材の組成とその組み合わせ、心材と犠牲陽極材の組織性状との関係について試験、検討を行った結果、Mgの拡散は主に心材の結晶粒界を経路として生じること、ろう付け加熱中の再結晶粒を粗大化すれば心材からろう材への拡散が抑制され、多量のMgを添加した場合にも健全なろう付けが可能となることを見出した。 In order to achieve higher brazing strength and higher brazing performance for the brazing-type radiator tube, and to obtain improved brazing performance, the inventors have determined the strength and brazing performance of the cladding material and the core material in the cladding material. As a result of testing and investigating the relationship between the composition of the sacrificial anode material and its combination, and the relationship between the structure of the core material and the sacrificial anode material, Mg diffusion occurs mainly through the crystal grain boundaries of the core material, brazing heating It has been found that if the recrystallized grains inside are coarsened, diffusion from the core material to the brazing material is suppressed, and even when a large amount of Mg is added, sound brazing is possible.
また、高強度を得るために心材に多量のMn、Cu、Siを添加すると、多数のAl−Mn系、Al−Si系の化合物が生成し、これらがろう付け加熱中の再結晶の核となるため結晶粒の微細化が生じることとなるが、Mn量とSi量の比(Mn%/Si%)を特定範囲とした場合、Al−Mn系やAl−Si系の化合物よりも再結晶の核になり難いAl−Mn−Si系化合物が生成し易くなってAl−Mn−Si系化合物の存在割合が増加し、ろう付け加熱中の再結晶粒を粗大化できることを見出した。 In addition, when a large amount of Mn, Cu, Si is added to the core material to obtain high strength, a large number of Al-Mn-based and Al-Si-based compounds are formed, which are recrystallization nuclei during brazing heating. Therefore, when the ratio of Mn amount to Si amount (Mn% / Si%) is within a specific range, recrystallization is more effective than Al-Mn and Al-Si compounds. It was found that an Al—Mn—Si compound that is difficult to become a core of the metal is easily formed, the proportion of the Al—Mn—Si compound is increased, and the recrystallized grains during brazing heating can be coarsened.
犠牲陽極材については、チューブ材の強度を高めるために、Mn、Fe、Siなどの元素を含有させるのが有効であるが、前記のように、これらの元素の添加により犠牲陽極面のろうの濡れ性が低下して、ろう付け性が害される。犠牲陽極面のろうの濡れ性について検討した結果、ろう材中のSiは主に犠牲陽極材表面の結晶粒界を経路として表面拡散していることがわかり、この問題を解決するためには、ろう付け加熱中の犠牲陽極材表面の結晶粒微細化が有効であること、犠牲陽極材表面の結晶粒微細化には、Mn量とSi量の比(Mn%/Si%)およびFe、Niの添加が有効であることを見出した。心材および犠牲陽極材におけるMn量とSi量の比(Mn%/Si%)とろう付け加熱後の結晶粒度との関係の一例を図4に示す。 As for the sacrificial anode material, it is effective to contain elements such as Mn, Fe, Si, etc. in order to increase the strength of the tube material. The wettability decreases and the brazing property is impaired. As a result of examining the wettability of the sacrificial anode surface, it was found that Si in the brazing material mainly diffused through crystal grain boundaries on the surface of the sacrificial anode material, and in order to solve this problem, The refinement of crystal grain on the surface of the sacrificial anode material during brazing heating is effective. The refinement of crystal grain on the surface of the sacrificial anode material involves the ratio of Mn amount to Si amount (Mn% / Si%) and Fe, Ni Was found to be effective. FIG. 4 shows an example of the relationship between the ratio of Mn amount to Si amount (Mn% / Si%) in the core material and sacrificial anode material and the crystal grain size after brazing heating.
本発明は、上記の知見に基づいてなされたものであり、その目的は、高強度と優れたろう付け性をそなえ、熱交換器、とくに自動車用熱交換器のチューブ材、ヘッダープレート材、配管材の素材として好適に使用することができる熱交換器用アルミニウム合金クラッド材を提供することにある。 The present invention has been made on the basis of the above knowledge, and the object thereof is to provide high strength and excellent brazing, and heat exchangers, in particular, tube materials, header plate materials, and piping materials for automotive heat exchangers. An object of the present invention is to provide an aluminum alloy clad material for a heat exchanger that can be suitably used as a material for the heat exchanger.
上記目的を達成するための請求項1による強度とろう付け性に優れた熱交換器用アルミニウム合金クラッド材は、少なくとも心材の一方の面に犠牲陽極材をクラッドしてなるアルミニウム合金クラッド材であって、心材が、Si:0.3〜1.2%、Fe:0.01〜1.0 %、Cu:0.6%以下、Mn:0.6〜1.8 %、Mg:0.5%を超え1.0%以下を含有し、Mn含有量とSi含有量との比(Mn%/Si%)を2.0以下とし、残部Alおよび不純物からなるアルミニウム合金で構成され、犠牲陽極材が、Si:0.1〜1.0%、Fe:0.05〜0.5%、Mn:0.6〜2.0%、Zn:1.0〜5.0%、Ni:0.01〜1.0%を含有し、Mn含有量とSi含有量との比(Mn%/Si%)を2.0以上とし、残部Alおよび不純物からなるアルミニウム合金で構成されることを特徴とする。 The aluminum alloy clad material for heat exchanger excellent in strength and brazing according to claim 1 for achieving the above object is an aluminum alloy clad material obtained by clad a sacrificial anode material on at least one surface of a core material. The core material is Si: 0.3-1.2%, Fe: 0.01-1.0%, Cu: 0.6% or less, Mn: 0.6-1.8%, Mg: 0.5 And a ratio of Mn content to Si content (Mn% / Si%) is 2.0 or less, and is composed of an aluminum alloy composed of the remaining Al and impurities, and a sacrificial anode The material is Si: 0.1 to 1.0%, Fe: 0.05 to 0.5%, Mn: 0.6 to 2.0%, Zn: 1.0 to 5.0%, Ni: 0 .01 to 1.0%, and the ratio of Mn content to Si content (Mn% / Si%) is 2.0 or more. Characterized in that it is made of aluminum alloy and the balance Al and impurities.
請求項2による強度とろう付け性に優れた熱交換器用アルミニウム合金クラッド材は、請求項1において、前記心材の一方の面に犠牲陽極材がクラッドされ、他方の面にAl−Si系ろう材がクラッドされていることを特徴とする。
An aluminum alloy clad material for a heat exchanger excellent in strength and brazing according to
請求項3による強度とろう付け性に優れた熱交換器用アルミニウム合金クラッド材は、請求項2において、前記Al−Si系ろう材が、Si:7〜13%、Fe:0.15〜2.0%を含有し、さらにZn:0.5〜5.0%、Cu:0.5〜5.0%、Sr:0.005〜0.1%、In:0.05%以下、Sn:0.05以下のうちの1種または2種以上を含有し、残部Alおよび不可避的不純物とからなることを特徴とする。
The aluminum alloy clad material for a heat exchanger excellent in strength and brazing property according to
請求項4による強度とろう付け性に優れた熱交換器用アルミニウム合金クラッド材は、請求項1において、前記心材の両面に犠牲陽極材がクラッドされていることを特徴とする。
The aluminum alloy clad material for a heat exchanger excellent in strength and brazeability according to
請求5による強度とろう付け性に優れた熱交換器用アルミニウム合金クラッド材は、請求項1〜4のいずれかにおいて、前記心材がさらに、Cr:0.02〜0.3%、Zr:0.02〜0.3%のうちの1種または2種を含有することを特徴とする。 The aluminum alloy clad material for a heat exchanger excellent in strength and brazing according to claim 5 is the heat-treatable aluminum alloy clad material according to any one of claims 1 to 4, wherein the core material is further Cr: 0.02-0.3%, Zr: 0.00. It contains 1 type or 2 types in 02-0.3%, It is characterized by the above-mentioned.
請求項6による強度とろう付け性に優れた熱交換器用アルミニウム合金クラッド材は、請求項1〜5のいずれかにおいて、前記心材がさらに、Ti:0.05〜0.35%を含有することを特徴とする。 The aluminum alloy clad material for a heat exchanger excellent in strength and brazing property according to claim 6 is any one of claims 1 to 5, wherein the core material further contains Ti: 0.05 to 0.35%. It is characterized by.
請求項7による強度とろう付け性に優れた熱交換器用アルミニウム合金クラッド材は、請求項1〜6のいずれかにおいて、前記心材がさらに、V:0.01〜0.3%、B:0.01〜0.3%のうちの1種または2種を含有することを特徴とする。 The aluminum alloy clad material for a heat exchanger excellent in strength and brazing property according to claim 7 is any one of claims 1 to 6, wherein the core material is further V: 0.01 to 0.3%, B: 0. It is characterized by containing 1 type or 2 types among 0.01-0.3%.
請求項8による強度とろう付け性に優れた熱交換器用アルミニウム合金クラッド材は、請求項1〜7のいずれかにおいて、前記犠牲陽極材がさらに、Ti:0.01〜0.35%を含有することを特徴とする。 The aluminum alloy clad material for a heat exchanger excellent in strength and brazing property according to claim 8 is the sacrificial anode material according to any one of claims 1 to 7, further containing Ti: 0.01 to 0.35% It is characterized by doing.
請求項9による強度とろう付け性に優れた熱交換器用アルミニウム合金クラッド材は、請求項1〜8のいずれかにおいて、前記犠牲陽極材がさらに、In:0.05%以下、Sn:0.05以下のうちの1種または2種を含有することを特徴とする。 The aluminum alloy clad material for a heat exchanger excellent in strength and brazeability according to claim 9 is any one of claims 1 to 8, wherein the sacrificial anode material is further In: 0.05% or less, Sn: 0.00. It contains one or two of 05 or less.
請求項10による強度とろう付け性に優れた熱交換器用アルミニウム合金クラッド材は、請求項1〜9のいずれかにおいて、前記心材のろう付け加熱後の平均結晶粒度が200μm以上であることを特徴とする。 The aluminum alloy clad material for heat exchanger excellent in strength and brazing property according to claim 10 is characterized in that in any one of claims 1 to 9, the core material has an average grain size after brazing heating of 200 µm or more. And
請求項11による強度とろう付け性に優れた熱交換器用アルミニウム合金クラッド材は、請求項1〜10のいずれかにおいて、前記犠牲陽極材のろう付け加熱後の平均結晶粒度が200μm以下であることを特徴とする。 The aluminum alloy clad material for heat exchangers excellent in strength and brazing property according to claim 11 has an average crystal grain size after brazing heating of the sacrificial anode material in any one of claims 1 to 10 μm or less. It is characterized by.
本発明によれば、高強度と優れたろう付け性をそなえ、熱交換器、とくに自動車用熱交換器のチューブ材、ヘッダープレート材、配管材の素材として好適に使用することができる熱交換器用アルミニウム合金クラッド材が提供される。 According to the present invention, aluminum for heat exchangers that has high strength and excellent brazing properties, and can be suitably used as a material for heat exchangers, particularly tube materials, header plate materials, and piping materials for automotive heat exchangers. An alloy cladding material is provided.
本発明に係る熱交換器用アルミニウム合金クラッド材における合金成分の意義およびそれらの限定理由について説明する。
(心材)
Mn:Mnは、心材の強度を向上させるとともに、心材の電位を貴にして犠牲陽極材との電位差を大きくして耐食性を高めるよう機能する。好ましい含有範囲は0.6%〜1.8%であり、0.6%未満ではその効果が小さく、1.8%を超えて含有すると、鋳造時に粗大な化合物が生成し、圧延加工性が害される結果健全な板材が得難い。Mnのさらに好ましい含有範囲は1.0〜1.3%である。
The significance of the alloy components in the aluminum alloy clad material for heat exchangers according to the present invention and the reasons for their limitation will be described.
(Heartwood)
Mn: Mn functions to improve the corrosion resistance by improving the strength of the core material and making the potential of the core material noble and increasing the potential difference from the sacrificial anode material. A preferable content range is 0.6% to 1.8%, and if the content is less than 0.6%, the effect is small. If the content exceeds 1.8%, a coarse compound is generated at the time of casting, and the rollability is low. As a result of harm, it is difficult to obtain a healthy plate. A more preferable content range of Mn is 1.0 to 1.3%.
Mg:Mgは、固溶硬化とSiとの化合物Mg2Siの微細析出硬化により心材の強度を向上させる。好ましい含有範囲は0.5%を超え1.0%以下であり、0.5%以下では強度向上の効果が十分でなく、1.0%を超えて含有するとMgとフラックスの化合物MgF2などが多量に生成してろう付け性が低下する。 Mg: Mg improves the strength of the core material by solid solution hardening and fine precipitation hardening of the compound Mg 2 Si with Si. Preferred content range is 1.0% or less than 0.5%, no sufficient effect of improving the strength is 0.5% or less, when the content exceeds 1.0% Mg and a compound of flux MgF 2, etc. Is produced in large quantities and brazing properties are reduced.
Si:Siは、固溶硬化とMgとの化合物Mg2Siの微細析出硬化により、心材の強度を向上させる機能を有する。好ましい含有範囲は0.3〜1.2%であり、1.2%を超えて含有すると耐食性を低下させるとともに、心材の融点を下げ、ろう付け時に局部溶融が生じ易くなる。Siのさらに好ましい含有範囲は0.5〜1.0%である。 Si: Si has a function of improving the strength of the core material by solid solution hardening and fine precipitation hardening of Mg 2 Si, a compound of Mg. A preferable content range is 0.3 to 1.2%. If the content exceeds 1.2%, the corrosion resistance is lowered, the melting point of the core material is lowered, and local melting is likely to occur during brazing. The more preferable content range of Si is 0.5 to 1.0%.
Fe:Feは、心材の強度を向上させる機能を有する。好ましい範囲は、0.01〜1.0%で、0.01%以下ではその効果が小さく、1.0%を超えて含有すると心材の自己腐食性が増大する。Feのさらに好ましい含有範囲は0.1〜0.7%である。 Fe: Fe has a function of improving the strength of the core material. A preferable range is 0.01 to 1.0%, and the effect is small when the content is 0.01% or less. When the content exceeds 1.0%, the self-corrosion property of the core material increases. A more preferable content range of Fe is 0.1 to 0.7%.
Cu:Cuは、心材の強度を向上させるとともに、心材の電位を貴にし、犠牲陽極材のとの電位差を大きくして、防食効果を向上させるよう機能する。さらに心材中のCuはろう付け加熱時に犠牲陽極材中に拡散して、なだらかな濃度勾配を形成させる結果、心材側の電位が貴となり、犠牲陽極材の表面側の電位が卑となって犠牲陽極材中になだらかな電位分布が形成され、腐食形態を全面腐食型にする。Cuの好ましい含有量は0.6%以下に限定する。これは、本発明の心材のように0.5%を超えるMgを添加した場合、Cuが0.6%を超えると心材の融点が低下して、ろう付け時に局部的な溶融を生じ易くなるためである。Cuのさらに好ましい含有範囲は0.1〜0.4%である。 Cu: Cu functions to improve the anticorrosion effect by improving the strength of the core material, making the potential of the core material noble, and increasing the potential difference from the sacrificial anode material. Furthermore, Cu in the core material diffuses into the sacrificial anode material during brazing heating and forms a gentle concentration gradient. As a result, the potential on the core material side becomes noble and the potential on the surface side of the sacrificial anode material becomes base and sacrificed. A gentle potential distribution is formed in the anode material, and the corrosion form is changed to the full corrosion type. The preferable content of Cu is limited to 0.6% or less. This is because when Mg exceeding 0.5% is added as in the core material of the present invention, if Cu exceeds 0.6%, the melting point of the core material is lowered and local melting is likely to occur during brazing. Because. A more preferable content range of Cu is 0.1 to 0.4%.
Mn%/Si%:Mn含有量とSi含有量との比(Mn%/Si%)は、前記のように、心材の結晶粒度に影響する。心材の結晶粒を粗大化させて、心材のMgのろう材への拡散を抑制するためには、Mn%/Si%が2.0以下であることが好ましい。Mn%/Si%のさらに好ましい範囲は1.7以下である。 Mn% / Si%: The ratio of Mn content to Si content (Mn% / Si%) affects the crystal grain size of the core material as described above. In order to coarsen the crystal grains of the core material and suppress the diffusion of Mg of the core material into the brazing material, it is preferable that Mn% / Si% is 2.0 or less. A more preferable range of Mn% / Si% is 1.7 or less.
CrとZr:CrとZrは、ろう付け加熱中の再結晶温度を高め、心材の結晶粒度を粗大化させることでろう付け加熱中のMgの粒界拡散を抑制する。好ましい含有範囲は0.02〜0.3%であり、0.3%を超えて含有しても効果が飽和する。CrとZrのさらに好ましい含有範囲は0.05〜0.2%である。 Cr and Zr: Cr and Zr increase the recrystallization temperature during brazing heating and coarsen the grain size of the core material to suppress Mg grain boundary diffusion during brazing heating. A preferable content range is 0.02 to 0.3%, and even if the content exceeds 0.3%, the effect is saturated. A more preferable content range of Cr and Zr is 0.05 to 0.2%.
Ti:Tiは、心材の板厚方向に濃度の高い領域と低い領域とに分かれ、それらが交互に分布する層状となり、Ti濃度の低い領域が高い領域に比べ優先的に腐食することにより、腐食形態を層状にする効果を有し、それにより板厚方向への腐食の進行を妨げて材料の耐孔食性を向上させる。含有量が0.05%未満ではこの効果が少なく0.35%を超えると鋳造が困難となり、また加工性が劣化して健全な材料の製造が困難となる。Tiのさらに好ましい含有範囲は0.1〜0.2%である。 Ti: Ti is divided into a high-concentration region and a low region in the thickness direction of the core material, and the layers are alternately distributed. Corrosion occurs by preferentially corroding the low-Ti concentration region over the high-concentration region. It has the effect of layering the form, thereby preventing the progress of corrosion in the thickness direction and improving the pitting corrosion resistance of the material. If the content is less than 0.05%, this effect is small, and if it exceeds 0.35%, casting becomes difficult, and workability deteriorates, making it difficult to produce a sound material. A more preferable content range of Ti is 0.1 to 0.2%.
VとB:VとBは、心材の結晶粒度を粗大化しろう付け加熱中のMgの粒界拡散を抑制する。好ましい含有範囲は0.01〜0.3%であり、0.3%を超えて含有しても効果が飽和する。 V and B: V and B coarsen the grain size of the core material and suppress Mg grain boundary diffusion during brazing heating. A preferable content range is 0.01 to 0.3%, and even if the content exceeds 0.3%, the effect is saturated.
(犠牲陽極材)
Mn:Mnは、犠牲陽極材の強度を向上させる。また、Al−Mn系化合物が腐食の起点となり、孔食が分散化されることで耐食性が向上する。好ましい含有範囲は0.6%〜2.0%であり、0.6%未満ではその効果が小さく、2.0%を超えて含有すると、鋳造時に粗大な化合物が生成し、圧延加工性が害されて健全な板材が得難くなる。Mnのさらに好ましい含有範囲は1.3〜1.7%である。
(Sacrificial anode material)
Mn: Mn improves the strength of the sacrificial anode material. In addition, the Al—Mn compound serves as a starting point of corrosion, and the pitting corrosion is dispersed to improve the corrosion resistance. A preferable content range is 0.6% to 2.0%, and if the content is less than 0.6%, the effect is small. If the content exceeds 2.0%, a coarse compound is generated at the time of casting, and the rollability is low. It is difficult to obtain a healthy plate material. A more preferable content range of Mn is 1.3 to 1.7%.
Zn:Znは犠牲陽極材の電位を卑にし、心材に対する犠牲陽極効果を保持させる。その結果、心材の孔食やすき間腐食を防止する。Znの好ましい範囲は1.0〜5.0%であり、1.0%未満ではその効果が小さく、5.0%を超えて含有すると犠牲陽極材の自己腐食性が増大する。Znのさらに好ましい含有範囲は2.0〜4.0%である。 Zn: Zn lowers the potential of the sacrificial anode material and maintains the sacrificial anode effect on the core material. As a result, pitting corrosion and crevice corrosion of the core material are prevented. The preferable range of Zn is 1.0 to 5.0%. When the content is less than 1.0%, the effect is small, and when the content exceeds 5.0%, the self-corrosion property of the sacrificial anode material increases. The more preferable content range of Zn is 2.0 to 4.0%.
Si:Siは、犠牲陽極材の強度を向上させる。また、Al−Mn−Si系、Al−Fe−Si系やAl−Mn−Fe−Si系化合物が生成して、これらが腐食の起点となり、孔食が分散化されることで耐食性が向上する。好ましい含有範囲は0.1〜1.0%であり、1.0%を超えて含有すると耐食性を低下させる。Siのさらに好ましい含有範囲は0.3〜0.7%である。 Si: Si improves the strength of the sacrificial anode material. In addition, Al—Mn—Si, Al—Fe—Si, and Al—Mn—Fe—Si compounds are formed, which serve as starting points for corrosion, and the corrosion resistance is improved by dispersing pitting corrosion. . A preferable content range is 0.1 to 1.0%, and if it exceeds 1.0%, the corrosion resistance is lowered. A more preferable content range of Si is 0.3 to 0.7%.
Fe:Feは、犠牲陽極材の強度を向上させる。また、Al−Fe系、Al−Fe−Si系、Al−Mn−Fe系やAl−Mn−Fe−Si系化合物が生成して、これらが腐食の起点となり、孔食が分散化されることで耐食性が向上する。好ましい範囲は、0.05〜0.5%で、0.05%以下ではその効果が小さく、0.5%を超えて含有すると耐食性を低下させる。Feはさらに、Al−Fe系化合物が再結晶の核になるため、犠牲陽極材の結晶粒の微細化に有効であり、犠牲陽極材の結晶粒の微細化のためには、Feを0.2〜0.5%含有させるのがさらに好ましい。 Fe: Fe improves the strength of the sacrificial anode material. In addition, Al-Fe-based, Al-Fe-Si-based, Al-Mn-Fe-based and Al-Mn-Fe-Si-based compounds are generated, and these serve as a starting point for corrosion and pitting corrosion is dispersed. Corrosion resistance is improved. A preferable range is 0.05 to 0.5%, and if it is 0.05% or less, the effect is small, and if it exceeds 0.5%, the corrosion resistance is lowered. In addition, Fe is effective for refining the crystal grains of the sacrificial anode material because the Al—Fe-based compound serves as a nucleus for recrystallization. It is more preferable to contain 2 to 0.5%.
Niは、Al−Ni系化合物を生成して、これが再結晶の核となるため犠牲陽極材の結晶粒微細化に有効である。犠牲陽極材の微細化のために、Niの好ましい含有量は0.01〜1.0%の範囲であり、0.01%未満ではその効果が十分でなく、1.0%を超えると犠牲陽極材の自己腐食性が大きくなる。Niのさらに好ましい含有範囲は0.1〜0.5%である。 Ni produces an Al—Ni-based compound, which serves as a nucleus for recrystallization, and is therefore effective for refining the crystal grains of the sacrificial anode material. In order to refine the sacrificial anode material, the preferable Ni content is in the range of 0.01 to 1.0%. If the content is less than 0.01%, the effect is not sufficient. The self-corrosion property of the anode material is increased. A more preferable content range of Ni is 0.1 to 0.5%.
Mn%/Si%:Mn含有量とSi含有量との比(Mn%/Si%)は、前記のように、犠牲陽極材の結晶粒度に影響する。犠牲陽極材の結晶粒を微細化して、犠牲陽極材表面のろうの濡れ性を向上させるためには、Mn%/Si%を2.0以上とするのが好ましい。Mn%/Si%のさらに好ましい範囲は2.5以上である。 Mn% / Si%: The ratio of Mn content to Si content (Mn% / Si%) affects the crystal grain size of the sacrificial anode material as described above. In order to reduce the crystal grains of the sacrificial anode material and improve the wettability of the brazing anode material surface, it is preferable to set Mn% / Si% to 2.0 or more. A more preferable range of Mn% / Si% is 2.5 or more.
Ti:Tiは、犠牲陽極材の板厚方向に濃度の高い領域と低い領域とに分かれ、それらが交互に分布する層状となり、Ti濃度の低い領域が高い領域に比べ優先的に腐食することにより、腐食形態を層状にする効果を有し、それにより板厚方向への腐食の進行を妨げて材料の耐孔食性を向上させる。含有量が0.01%未満ではこの効果が少なく0.35%を超えると鋳造が困難となり、また加工性が劣化して健全な材料の製造が困難となる。Tiのさらに好ましい含有範囲は0.1〜0.2%である。 Ti: Ti is divided into a high-concentration region and a low region in the thickness direction of the sacrificial anode material, and the layers are alternately distributed, and the low-Ti concentration region corrodes preferentially compared to the high region. It has the effect of layering the corrosion form, thereby preventing the progress of corrosion in the plate thickness direction and improving the pitting corrosion resistance of the material. If the content is less than 0.01%, this effect is small, and if it exceeds 0.35%, casting becomes difficult, and workability deteriorates, making it difficult to produce a sound material. A more preferable content range of Ti is 0.1 to 0.2%.
In、Sn:InとSnは、微量の添加により犠牲陽極材の電位を卑にし、心材に対する犠牲陽極効果を確実にし、心材の孔食やすき間腐食を防止する。InとSnの好ましい範囲は0.05%以下であり、0.05%を超えて含有すると犠牲陽極材の自己腐食性が増大する。InとSnのさらに好ましい含有範囲は0.01〜0.03%である。 In, Sn: In and Sn lower the potential of the sacrificial anode material by adding a small amount, ensure the sacrificial anode effect on the core material, and prevent pitting corrosion and crevice corrosion of the core material. The preferable range of In and Sn is 0.05% or less, and if it exceeds 0.05%, the self-corrosion property of the sacrificial anode material increases. A more preferable content range of In and Sn is 0.01 to 0.03%.
(ろう材)
Si:ろう材としてはAl−Si系合金が適用され、通常7〜13%のSiを含む合金が用いられる。含有量が7%未満では流動性が低下しろうとして有効に作用せず、13%を超えると健全な材料の製造が難しくなる。心材にMgを含む材料のろう付けをより確実にするためには、Siの含有範囲を9.5〜12.0%とするのが好ましい。Siが9.5%未満ではろう材量が不足する場合があり、12.0%を超えるとろう材中にSiの粗大な晶出物が生じて、ろうの溶融が不均一になり、ろう付け欠陥が生じ易くなる。
(Brazing material)
Si: An Al—Si based alloy is used as the brazing material, and an alloy containing 7 to 13% Si is usually used. If the content is less than 7%, the fluidity tends to decrease and does not act effectively, and if it exceeds 13%, it is difficult to produce a sound material. In order to ensure brazing of the material containing Mg in the core material, the Si content range is preferably 9.5 to 12.0%. If the Si content is less than 9.5%, the amount of brazing material may be insufficient. If the Si content exceeds 12.0%, coarse crystallized products of Si are generated in the brazing material, resulting in non-uniform melting of the brazing. A flaw is likely to occur.
Fe:FeはAl−Fe系またはAl−Fe−Si系化合物を形成し、それらの化合物が腐食の起点となって孔食が分散化される結果、外面の耐食性が向上する。Feの好ましい含有範囲は0.15〜2.0%であり、0.15%以下ではその効果が小さく、2.0%を超えて含有すると外面の耐食性が低下する。Feのさらに好ましい含有範囲は0.5〜1.0%である。 Fe: Fe forms an Al-Fe-based or Al-Fe-Si-based compound, and these compounds serve as a starting point for corrosion to disperse pitting corrosion. As a result, the corrosion resistance of the outer surface is improved. The preferable content range of Fe is 0.15 to 2.0%. If the content is less than 0.15%, the effect is small, and if the content exceeds 2.0%, the corrosion resistance of the outer surface is lowered. A more preferable content range of Fe is 0.5 to 1.0%.
Zn:Znはろう材の電位を卑にし、心材に対する犠牲陽極効果を保持させる。その結果、外面からの心材の孔食やすき間腐食を防止する。また、Cuと共存させることで、ろう材の融点を低下させる。Znの好ましい含有範囲は0.5〜5.0%であり、0.5%未満ではその効果が小さく、5.0%を超えて含有するとろう材の自己腐食性が増大する。Znのさらに好ましい含有範囲は0.9〜1.5%である。 Zn: Zn lowers the potential of the brazing material and maintains the sacrificial anode effect on the core material. As a result, pitting corrosion and crevice corrosion of the core material from the outer surface are prevented. Moreover, by making it coexist with Cu, melting | fusing point of a brazing material is reduced. The preferable content range of Zn is 0.5 to 5.0%. If the content is less than 0.5%, the effect is small, and if it exceeds 5.0%, the self-corrosion property of the brazing material increases. The more preferable content range of Zn is 0.9 to 1.5%.
Cu:CuはZnと共存させることで、ろう材の融点を低下させる。Cuの好ましい含有範囲は0.5〜5.0%であり、0.5%未満ではその効果が小さく、5.0%を超えて含有するとろう材の自己腐食性が増大する。Cuのさらに好ましい含有範囲は1〜3%である。 Cu: Cu coexists with Zn, thereby lowering the melting point of the brazing material. The preferable content range of Cu is 0.5 to 5.0%. If the content is less than 0.5%, the effect is small. If the content exceeds 5.0%, the self-corrosion property of the brazing material increases. A more preferable content range of Cu is 1 to 3%.
Sr:SrはSi粒子の存在形態を、より微細にかつ均一にする効果があり、その結果、ろうの溶融が均一になり、ろう付け性が向上する。また、ろう付け後のSi粒子の存在形態も微細で均一になるため、外面の耐食性も向上する。Srの好ましい含有範囲は0.005〜0.1%であり、0.005%未満ではその効果が少なく、0.1%を超えて含有しても効果が飽和する。Srのさらに好ましい含有範囲は0.01〜0.03%である。なお、Na:1〜100ppm、Sb:0.001〜0.5%を添加しても同等の効果が得られる。 Sr: Sr has an effect of making the existence form of the Si particles finer and uniform, and as a result, the melting of the brazing becomes uniform and the brazing property is improved. Moreover, since the presence form of the Si particles after brazing becomes fine and uniform, the corrosion resistance of the outer surface is also improved. The preferable content range of Sr is 0.005 to 0.1%. If the content is less than 0.005%, the effect is small, and even if the content exceeds 0.1%, the effect is saturated. A more preferable content range of Sr is 0.01 to 0.03%. In addition, even if Na: 1 to 100 ppm and Sb: 0.001 to 0.5% are added, the same effect can be obtained.
In、Sn:InとSnは微量の添加によりろう材の電位を卑にし、心材に対する犠牲陽極効果を保持させる。その結果、心材の孔食やすき間腐食を防止する。InおよびSnの好ましい含有範囲は0.05%以下であり、それぞれ0.05%を超えて含有するとろう材の自己腐食性が増大する。InおよびSnのさらに好ましい含有範囲は0.01〜0.03%である。 In, Sn: In and Sn add a small amount to lower the potential of the brazing material and maintain the sacrificial anode effect on the core material. As a result, pitting corrosion and crevice corrosion of the core material are prevented. A preferable content range of In and Sn is 0.05% or less, and when each content exceeds 0.05%, the self-corrosion property of the brazing material increases. A more preferable content range of In and Sn is 0.01 to 0.03%.
本発明においては、心材にMgを多く含有させても、Mgが心材からろう材へ拡散してろう付け性が損なわれるのを抑えるために、Mn%/Si%を2.0以下、さらに好ましくは1.7以下として、ろう付け加熱中の心材の再結晶粒を粗大化させることが必要で、この場合、心材の平均結晶粒径は200μm以上とするのが好ましい。 In the present invention, even if the core material contains a large amount of Mg, in order to prevent Mg from diffusing from the core material to the brazing material and impairing the brazing property, Mn% / Si% is more preferably 2.0 or less. Is 1.7 or less, and it is necessary to coarsen the recrystallized grains of the core material during brazing heating. In this case, the average crystal grain size of the core material is preferably 200 μm or more.
また、高強度化のために犠牲陽極材にMn、Fe、Siなどを添加した場合に生じる犠牲陽極材表面のろうの濡れ性の低下を抑えるために、Mn%/Si%を2.0以上、さらに好ましくは2.5以上として犠牲陽極材の結晶粒を微細化し、さらに特定量のFe、Niの添加によりAl−Fe系化合物を生成させ、これを再結晶の核としてろう付け加熱中の犠牲陽極材の再結晶粒の微細化を図り、Siの表面拡散を促進させることが必要で、この場合、犠牲陽極材の平均結晶粒度を200μm以下とするのが好ましい。犠牲陽極材の平均結晶粒度のさらに好ましい範囲は100μm未満である。 In addition, Mn% / Si% is set to 2.0 or more in order to suppress a decrease in wettability of the sacrificial anode material surface when Mn, Fe, Si, or the like is added to the sacrificial anode material for high strength. More preferably, the grain size of the sacrificial anode material is refined to 2.5 or more, and an Al-Fe-based compound is formed by adding a specific amount of Fe and Ni, which is used as a nucleus for recrystallization during brazing heating. It is necessary to refine the recrystallized grains of the sacrificial anode material and promote the surface diffusion of Si. In this case, the average crystal grain size of the sacrificial anode material is preferably 200 μm or less. A more preferable range of the average crystal grain size of the sacrificial anode material is less than 100 μm.
本発明によるアルミニウム合金クラッド材は、連続鋳造により心材用合金、犠牲陽極材用合金およびろう材用合金を造塊し、例えば、得られた鋳塊のうち、心材用合金と犠牲陽極材用合金については均質化処理を行い、犠牲陽極材用合金およびろう材用合金を熱間圧延して所定の厚さとし、これらと心材用合金の鋳塊とを組み合わせて熱間圧延してクラッド材とする。 The aluminum alloy clad material according to the present invention ingots a core material alloy, a sacrificial anode material alloy and a brazing material alloy by continuous casting. For example, among the obtained ingots, the core material alloy and the sacrificial anode material alloy Is subjected to a homogenization treatment, and hot rolled the sacrificial anode material alloy and brazing material alloy to a predetermined thickness, and these are combined with the ingot of the core material alloy and hot rolled to obtain a clad material. .
その後、クラッド材を冷間圧延、中間焼鈍、冷間圧延して所定厚さのアルミニウム合金クラッド材(例えばH14)とする。この場合、中間焼鈍は、心材のMgがろう材へ拡散するのを抑制するため最高温度を360℃以下とし、最高温度での保持時間を5時間以下とするのが望ましく、また、中間焼鈍後の冷間圧延の加工度は、ろう付け加熱後の心材の平均結晶粒度を200μm以上に粗大化するためには40%以下が望ましく、ろう付け加熱後の犠牲陽極材の平均結晶粒度を200μm以下に微細化するためには20%以上にするのが望ましい。心材の結晶粒粗大化と犠牲陽極材の結晶粒微細化という相反する特性を得るための冷間圧延加工度は、熱交換器の形状等にあわせて調整する。 Thereafter, the clad material is cold-rolled, intermediate-annealed, and cold-rolled to obtain an aluminum alloy clad material (for example, H14) having a predetermined thickness. In this case, in the intermediate annealing, the maximum temperature is preferably 360 ° C. or less and the holding time at the maximum temperature is preferably 5 hours or less in order to suppress diffusion of Mg of the core material into the brazing material. The degree of cold rolling is preferably 40% or less in order to coarsen the average grain size of the core material after brazing heating to 200 μm or more, and the average grain size of the sacrificial anode material after brazing heating is 200 μm or less. In order to make it finer, it is desirable to make it 20% or more. The degree of cold rolling for obtaining the contradictory characteristics of the coarse grain of the core material and the fine grain of the sacrificial anode material is adjusted in accordance with the shape of the heat exchanger.
以下、本発明の実施例を比較例と対比して説明し、その効果を実証する。これらの実施例は本発明の一実施態様を示すものであり、本発明はこれらに限定されるものではない。 Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects. These examples show one embodiment of the present invention, and the present invention is not limited thereto.
実施例
連続鋳造により表1に示す組成を有する心材用合金、表2に示す組成を有する犠牲陽極材用合金、および表3に示す組成を有するろう材用合金を造塊し、得られた鋳塊のうち、心材用合金と犠牲陽極材用合金については均質化処理を行い、犠牲陽極材用合金およびろう材用合金を熱間圧延して所定の厚さとし、これらと心材用合金の鋳塊とを組み合わせて熱間圧延してクラッド材を得た。
Example An alloy for a core material having a composition shown in Table 1, an alloy for a sacrificial anode material having a composition shown in Table 2, and an alloy for a brazing material having a composition shown in Table 3 were obtained by ingot casting. Among the ingots, the alloy for the core material and the alloy for the sacrificial anode material are homogenized, and the alloy for the sacrificial anode material and the alloy for the brazing material are hot-rolled to a predetermined thickness. Were combined and hot rolled to obtain a clad material.
ついで、クラッド材を冷間圧延、中間焼鈍、冷間圧延して厚さ0.20mmのアルミニウム合金クラッド材(H14)とした。クラッドの構成は、犠牲陽極材を0.020〜0.050mm、ろう材を0.020〜0.050mm、残りを心材とした。中間焼鈍温度は350℃、保持時間は3時間とした。中間焼鈍後の冷間圧延の加工度は30%とした。 Subsequently, the clad material was cold-rolled, intermediate-annealed, and cold-rolled to obtain an aluminum alloy clad material (H14) having a thickness of 0.20 mm. The structure of the clad was 0.020 to 0.050 mm for the sacrificial anode material, 0.020 to 0.050 mm for the brazing material, and the remainder was the core material. The intermediate annealing temperature was 350 ° C. and the holding time was 3 hours. The degree of cold rolling work after intermediate annealing was 30%.
得られたアルミニウム合金クラッド材を試験材として、以下の方法によって、ろう付け加熱後の心材の平均結晶粒度、犠牲陽極材の平均結晶粒度を測定し、ろう付け性、犠牲陽極材表面のろうの濡れ広がり性、強度特性(引張強さ)、犠牲陽極材面の耐食性(内面耐食性)を評価した。平均結晶粒径の測定をろう付け加熱後としたのは、ろう付け加熱中に生じた再結晶粒の粒径が、ろう付け加熱完了時点においてもほとんど変化しないためである。結果を表4〜6に示す。 Using the obtained aluminum alloy clad material as a test material, the average crystal grain size of the core material after brazing and heating, and the average crystal grain size of the sacrificial anode material were measured by the following method. Wet spreadability, strength characteristics (tensile strength), and sacrificial anode material surface corrosion resistance (internal corrosion resistance) were evaluated. The reason for measuring the average crystal grain size after brazing heating is that the grain size of recrystallized grains generated during brazing heating hardly changes even when brazing heating is completed. The results are shown in Tables 4-6.
心材の平均結晶粒度測定:クラッド材のろう材面だけにフッ化物フラックスを塗布し、窒素ガス中、595℃(材料温度)で3分間加熱した。昇温は約30℃/分の条件で加熱した。加熱後の試験材について、ろう材面をエメリー紙(500〜2400)で50μm研磨して心材(L−LT方向)を露出させ、バフ研磨で鏡面に仕上げた。さらに、純水500ml、フッ酸27ml(46%)、ホウ酸11gを混合した溶液中で、電圧25〜30Vで45〜60秒電解した。その後、光学顕微鏡を用いて心材表面の偏光ミクロ組織を撮影し、比較法により結晶粒度を測定した。比較にはASTM(E112−61)の標準結晶粒度組織図を用い、標準結晶粒度組織図に示されているグレインサイズを平均結晶粒度の指標とした。 Measurement of average grain size of core material: Fluoride flux was applied only to the brazing material surface of the clad material, and heated in nitrogen gas at 595 ° C. (material temperature) for 3 minutes. The temperature was raised at about 30 ° C./min. For the test material after heating, the brazing material surface was polished with emery paper (500 to 2400) by 50 μm to expose the core material (L-LT direction), and finished to a mirror surface by buffing. Furthermore, electrolysis was performed at a voltage of 25 to 30 V for 45 to 60 seconds in a mixed solution of 500 ml of pure water, 27 ml (46%) of hydrofluoric acid, and 11 g of boric acid. Thereafter, the polarization microstructure on the core material surface was photographed using an optical microscope, and the crystal grain size was measured by a comparative method. For comparison, the standard grain size structure chart of ASTM (E112-61) was used, and the grain size shown in the standard grain size structure chart was used as an index of the average grain size.
犠牲陽極材の平均結晶粒度測定:クラッド板材のろう材面だけにフッ化物フラックスを塗布し、窒素ガス中、595℃(材料温度)で3分間加熱した。昇温は約30℃/分の加熱条件で行い、加熱後の試験材について、犠牲陽極材面(L−LT方向)をエメリー紙(1000〜2400)で数μm研磨して、バフ研磨で鏡面に仕上げた。さらに、純水500ml、フッ酸27ml(46%)、ホウ酸11gを混合した溶液中で、電圧25〜30Vで45〜60秒電解した。その後、光学顕微鏡を用いて犠牲陽極材表面の偏光ミクロ組織を撮影し、比較法により結晶粒度を測定した。比較にはASTM(E112−61)の標準結晶粒度組織図を用い、標準結晶粒度組織図に示されているグレインサイズを平均結晶粒度の指標とした。 Measurement of average grain size of sacrificial anode material: Fluoride flux was applied only to the brazing material surface of the clad plate material, and heated in nitrogen gas at 595 ° C. (material temperature) for 3 minutes. The temperature is raised under heating conditions of about 30 ° C./minute. The sacrificial anode material surface (L-LT direction) is polished several μm with emery paper (1000 to 2400) for the heated test material, and then mirror-finished by buffing. Finished. Furthermore, electrolysis was performed at a voltage of 25 to 30 V for 45 to 60 seconds in a mixed solution of 500 ml of pure water, 27 ml (46%) of hydrofluoric acid, and 11 g of boric acid. Thereafter, the polarization microstructure on the surface of the sacrificial anode material was photographed using an optical microscope, and the crystal grain size was measured by a comparative method. For comparison, the standard grain size structure chart of ASTM (E112-61) was used, and the grain size shown in the standard grain size structure chart was used as an index of the average grain size.
ろう付け性の評価:得られたアルミニウム合金クラッド材のろう材面だけにフッ化物系フラックスを15g/m2塗布した後、A3003合金の厚さ1.0mmのベア材と図5に示すように組み合わせて間隙充填試験片を作製し、窒素ガス中、595℃(材料温度)で3分間加熱し、図6のFLで示す加熱後のろう材の充填長さ(接合長さ)を測定し、接合長さが10mm以上を良好(○)、10mm未満を不良(×)と評価した。 Evaluation of brazing property: After applying 15 g / m 2 of a fluoride-based flux only to the brazing material surface of the obtained aluminum alloy clad material, as shown in FIG. combined to produce a gap-filling test piece, in nitrogen gas, it was heated for three minutes at 595 ° C. (material temperature), measured filling length of the brazing material after heating indicated by F L in FIG. 6 (junction length) The bonding length of 10 mm or more was evaluated as good (◯), and the length of less than 10 mm was evaluated as defective (×).
犠牲陽極材表面のろうの濡れ広がり性の評価:得られたアルミニウム合金クラッド材を用いて、20mm×60mmの試片を切り出し、シェーパ加工により端面(4面全て)を切削して15mm×55mmのサイズに仕上げた。この板をフラックスを塗布することなく、犠牲陽極材面を上にして炉内に水平に設置し、窒素ガス中、595℃(材料温度)で3分間加熱した。加熱後の犠牲陽極材面を光学顕微鏡を用いて16倍で撮影した写真(ネガポジ反転撮影)(図7)上からろう周り長さの平均値L(例えば、図7においては、L=(L1+L2)/2)を測定した。ろうの濡れ広がり性の評価は、ろう周り長さの平均値Lが1.3mm以上を良好(○)、1.3mm未満を不良(×)と評価した。 Evaluation of brazing wettability on the surface of the sacrificial anode material: Using the obtained aluminum alloy clad material, a 20 mm x 60 mm test piece was cut out, and end faces (all four faces) were cut by shaper processing to obtain 15 mm x 55 mm Finished in size. This plate was placed horizontally in the furnace with the sacrificial anode material face up without applying flux, and heated in nitrogen gas at 595 ° C. (material temperature) for 3 minutes. A photograph of the sacrificial anode material surface after heating taken at a magnification of 16 using an optical microscope (negative-positive reversal photography) (FIG. 7). The average value L of the wax circumference from the top (for example, L = (L1 + L2 in FIG. 7) ) / 2) was measured. In the evaluation of the wetting and spreading property of the wax, the average value L of the wax circumference length was evaluated as good (◯) when the average value L was 1.3 mm or more, and as poor (×) when less than 1.3 mm.
強度特性(引張強さ)の評価:得られたアルミニウム合金クラッド材のろう材面だけにフッ化物系フラックスを15g/m2塗布した後、窒素ガス中、595℃(材料温度)で3分間加熱し、その後、引張試験(JIS Z2241に準拠)を行った。 Evaluation of strength characteristics (tensile strength): After applying 15 g / m 2 of fluoride-based flux only to the brazing filler metal surface of the obtained aluminum alloy clad material, heating in nitrogen gas at 595 ° C. (material temperature) for 3 minutes Thereafter, a tensile test (based on JIS Z2241) was performed.
犠牲陽極材の耐食性(内面耐食性)の評価:得られたアルミニウム合金クラッド材を、フラックスを塗布することなく、窒素ガス中、595℃(材料温度)で3分間加熱した後、50mm×80mmの試片を切り出し、ろう材面と端面をシリコン樹脂でシールし、犠牲陽極材面について、下記の腐食液を用いて、下記に方法により腐食試験を行い、腐食深さが0.07mm未満を良好(○)、0.07mm以上を不良(×)と評価した。
腐食液:Cl−:300ppm、SO4 2−:100ppm、Cu2+:10ppm
比液量:5〜10mL/cm2
方法:88℃で8hr加熱した後、冷却し25℃×16hr保持するサイクルを
4ヶ月間繰り返し試験した。なお、1ヶ月に1回の頻度で腐食液を交換した。
Evaluation of the corrosion resistance (internal corrosion resistance) of the sacrificial anode material: The obtained aluminum alloy clad material was heated in nitrogen gas at 595 ° C. (material temperature) for 3 minutes without applying a flux, and then tested for 50 mm × 80 mm. Cut the piece, seal the brazing filler metal surface and the end face with silicon resin, perform the corrosion test by the following method on the sacrificial anode material surface using the following corrosive liquid, and the corrosion depth is less than 0.07 mm ( ○), 0.07 mm or more was evaluated as defective (x).
Corrosion solution: Cl − : 300 ppm, SO 4 2− : 100 ppm, Cu 2+ : 10 ppm
Specific liquid volume: 5 to 10 mL / cm 2
Method: After heating at 88 ° C. for 8 hours, a cycle of cooling and holding at 25 ° C. × 16 hours was repeatedly tested for 4 months. The corrosive liquid was replaced once a month.
表4〜6にみられるように、本発明に従う試験材No.1〜65はいずれも、ろう付け性、犠牲陽極材面のろうの濡れ拡がり性に優れ、十分な強度を有し、良好な内面耐食性をそなえていた。 As seen in Tables 4-6, the test material No. All of Nos. 1 to 65 were excellent in brazeability and wettability and spreadability of the sacrificial anode material surface, had sufficient strength, and had good inner surface corrosion resistance.
比較例1
連続鋳造により表7に示す組成を有する心材用合金、表8に示す組成を有する犠牲陽極材用合金を造塊した後、均質化処理を行い、犠牲陽極材用合金を熱間圧延して所定の厚さとし、犠牲陽極用合金として当該犠牲陽極用合金および実施例1で造塊後所定厚さまで熱間圧延した犠牲陽極用合金B2と、実施例1で造塊後所定厚さまで熱間圧延したろう材用合金C1と、前記心材用合金および実施例1で造塊した心材用合金A1、A7の鋳塊とを組み合わせて熱間圧延してクラッド材を得た。
Comparative Example 1
The ingot for core material having the composition shown in Table 7 and the alloy for sacrificial anode material having the composition shown in Table 8 are formed by continuous casting, and then homogenized, and the sacrificial anode material alloy is hot-rolled to a predetermined value. The sacrificial anode alloy as a sacrificial anode alloy and the sacrificial anode alloy B2 hot rolled to a predetermined thickness after ingot formation in Example 1, and hot rolled to a predetermined thickness after ingot formation in Example 1 The brazing material alloy C1, the core material alloy and the ingots of the core material alloys A1 and A7 formed in Example 1 were combined and hot-rolled to obtain a clad material.
ついで、クラッド材を冷間圧延、中間焼鈍、冷間圧延して厚さ0.20mmのアルミニウム合金クラッド材(H14)とした。クラッドの構成は、犠牲陽極材を0.020〜0.050mm、ろう材を0.020〜0.050mm、残りを心材とした。中間焼鈍温度は350℃、保持時間は3時間とした。中間焼鈍後の冷間圧延の加工度は30%とした。 Subsequently, the clad material was cold-rolled, intermediate-annealed, and cold-rolled to obtain an aluminum alloy clad material (H14) having a thickness of 0.20 mm. The structure of the clad was 0.020 to 0.050 mm for the sacrificial anode material, 0.020 to 0.050 mm for the brazing material, and the remainder was the core material. The intermediate annealing temperature was 350 ° C. and the holding time was 3 hours. The degree of cold rolling work after intermediate annealing was 30%.
得られたアルミニウム合金クラッド材を試験材として、実施例1と同じ方法によって、心材の平均結晶粒度、犠牲陽極材の平均結晶粒度を測定し、ろう付け性、犠牲陽極材表面のろうの濡れ広がり性、強度特性(引張強さ)、犠牲陽極材面の耐食性(内面耐食性)を評価した。結果を表9に示す。 Using the obtained aluminum alloy clad material as a test material, the average crystal grain size of the core material and the average crystal grain size of the sacrificial anode material were measured by the same method as in Example 1, and the brazing performance and the wetting spread of the brazing on the sacrificial anode material surface , Strength characteristics (tensile strength), and corrosion resistance (internal corrosion resistance) of the sacrificial anode material surface were evaluated. The results are shown in Table 9.
表9に示すように、試験材No.101〜103は心材のMn%/Si%が大きく、ろう付け加熱中の心材の再結晶粒の粗大化が得られず、ろう付け加熱後の心材の平均結晶粒径は200μm未満となり心材のMgがろうへ拡散したため、ろう付け性が劣っている。試験材No.104〜105は犠牲陽極材のMn%/Si%が小さく、試験材No.106は犠牲陽極材がNiを含有せず、ろう付け加熱中の犠牲陽極材表面の結晶粒微細化が得られず、ろう付け加熱後の犠牲陽極材の平均結晶粒径は200μmを超えたものとなり、犠牲陽極材のろうの濡れ拡がり性が劣っている。試験材No.107は心材のMg量が少ないため、また試験材No.108は犠牲陽極材のSi量、Fe量、Mn量が少ないため、いずれも引張強さが劣っている。 As shown in Table 9, the test material No. Nos. 101 to 103 have a large Mn% / Si% of the core material, and the recrystallized grains of the core material during brazing heating cannot be coarsened, and the average crystal grain size of the core material after brazing heating becomes less than 200 μm. The brazing property is inferior due to the diffusion to the wax. Test material No. Nos. 104 to 105 have small Mn% / Si% of the sacrificial anode material, and the test material No. No. 106, the sacrificial anode material does not contain Ni, the crystal grain refinement of the sacrificial anode material surface during brazing heating cannot be obtained, and the average crystal grain size of the sacrificial anode material after brazing heating exceeds 200 μm Thus, the sacrificial anode material is inferior in the wetting and spreading properties of the wax. Test material No. No. 107 has a small amount of Mg in the core material. No. 108 has a low tensile strength because the sacrificial anode material has a small amount of Si, Fe, and Mn.
1 クラッド板材
2 心材
3 ろう材
4 犠牲陽極材
1
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007037610A JP4916334B2 (en) | 2006-03-13 | 2007-02-19 | Aluminum alloy clad material for heat exchangers with excellent strength and brazing |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006067038 | 2006-03-13 | ||
JP2006067038 | 2006-03-13 | ||
JP2007037610A JP4916334B2 (en) | 2006-03-13 | 2007-02-19 | Aluminum alloy clad material for heat exchangers with excellent strength and brazing |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007277707A JP2007277707A (en) | 2007-10-25 |
JP4916334B2 true JP4916334B2 (en) | 2012-04-11 |
Family
ID=38679440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007037610A Expired - Fee Related JP4916334B2 (en) | 2006-03-13 | 2007-02-19 | Aluminum alloy clad material for heat exchangers with excellent strength and brazing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4916334B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2921472B1 (en) * | 2007-09-26 | 2015-12-11 | Valeo Systemes Thermiques | COATING FOR HEAT EXCHANGER MATERIAL |
JP5354911B2 (en) * | 2008-01-09 | 2013-11-27 | 住友軽金属工業株式会社 | Aluminum heat exchanger and manufacturing method thereof |
JP5354909B2 (en) * | 2008-01-09 | 2013-11-27 | 住友軽金属工業株式会社 | Aluminum alloy bare fin material for heat exchanger |
JP5354910B2 (en) * | 2008-01-09 | 2013-11-27 | 住友軽金属工業株式会社 | Aluminum heat exchanger and manufacturing method thereof |
JP5354912B2 (en) * | 2008-01-09 | 2013-11-27 | 住友軽金属工業株式会社 | Aluminum heat exchanger and manufacturing method thereof |
JP5577616B2 (en) | 2009-04-06 | 2014-08-27 | 株式会社デンソー | Heat exchanger tubes and heat exchangers |
JP5702927B2 (en) * | 2009-11-09 | 2015-04-15 | 三菱アルミニウム株式会社 | Aluminum alloy brazing fin material for heat exchanger and heat exchanger using the fin material |
CN104046865A (en) * | 2013-03-12 | 2014-09-17 | 亚太轻合金(南通)科技有限公司 | High strength forgeable aluminum alloy bar and preparation method thereof |
JP6282444B2 (en) * | 2013-11-13 | 2018-02-21 | 三菱アルミニウム株式会社 | Aluminum alloy brazing sheet, aluminum alloy assembly for brazing, and method of brazing aluminum alloy material |
CN118011578B (en) * | 2024-04-09 | 2024-06-11 | 江苏亨通华海科技股份有限公司 | Composite aluminum strip for optical cable and brazing process thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3763498B2 (en) * | 1997-09-08 | 2006-04-05 | 住友軽金属工業株式会社 | Aluminum alloy clad material for heat exchangers with excellent corrosion resistance |
JP2000135590A (en) * | 1998-10-29 | 2000-05-16 | Sumitomo Light Metal Ind Ltd | High strength aluminum alloy clad material for heat exchanger |
JP2004017116A (en) * | 2002-06-18 | 2004-01-22 | Mitsubishi Alum Co Ltd | Aluminum alloy brazing sheet for brazed pipe making tubes, and its producing method |
JP2004050195A (en) * | 2002-07-16 | 2004-02-19 | Mitsubishi Alum Co Ltd | Aluminum alloy brazing sheet for heat exchanger having excellent corrosion resistance and method of producing the same |
JP4448758B2 (en) * | 2004-11-02 | 2010-04-14 | 株式会社デンソー | Aluminum alloy clad material for heat exchangers with excellent brazing, corrosion resistance and hot rolling properties |
-
2007
- 2007-02-19 JP JP2007037610A patent/JP4916334B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007277707A (en) | 2007-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5057439B2 (en) | Aluminum alloy clad material for high strength, high melting point heat exchanger excellent in durability, its manufacturing method, and aluminum alloy heat exchanger | |
JP4916334B2 (en) | Aluminum alloy clad material for heat exchangers with excellent strength and brazing | |
JP4993440B2 (en) | High strength aluminum alloy clad material for heat exchangers with excellent brazeability | |
JP4832354B2 (en) | Aluminum alloy clad material for high strength, high melting point heat exchanger excellent in durability, its manufacturing method, and aluminum alloy heat exchanger | |
JP4916333B2 (en) | Aluminum alloy clad material for heat exchangers with excellent strength and brazing | |
JP4702797B2 (en) | Manufacturing method of aluminum alloy clad material excellent in surface bondability by brazing of sacrificial anode material surface | |
JP5188115B2 (en) | High strength aluminum alloy brazing sheet | |
JP2007152422A (en) | Method for producing aluminum alloy brazing sheet | |
JP2007152421A (en) | Aluminum alloy brazing sheet | |
JP4993439B2 (en) | High strength aluminum alloy clad material for heat exchangers with excellent brazeability | |
JP4030006B2 (en) | Aluminum alloy clad material and manufacturing method thereof | |
JP2007092101A (en) | Aluminum alloy clad material excellent in surface joinability on sacrificial anode material surface, and heat-exchanger | |
JP5498213B2 (en) | Aluminum alloy clad material for high-strength heat exchangers with excellent brazeability | |
JP2012057183A (en) | Aluminum alloy clad material and heat exchanging device using the same | |
JP5632175B2 (en) | Aluminum alloy clad material and heat exchanger for high-strength heat exchangers with excellent brazing properties | |
JP5599131B2 (en) | Aluminum alloy brazing material and method for producing aluminum alloy brazing sheet | |
JP5498214B2 (en) | Aluminum alloy clad material for high-strength heat exchangers with excellent brazeability | |
JP3968024B2 (en) | Aluminum alloy clad material for heat exchanger | |
JP3876180B2 (en) | Aluminum alloy three-layer clad material | |
JPH07179971A (en) | Aluminum alloy brazing sheet bar for resistance welding | |
JP2009149936A (en) | Aluminum alloy clad material for heat-exchanger for brazed-making pipe excellent in strength and brazing property, and aluminum alloy tube for heat-exchanger | |
JP3876179B2 (en) | Aluminum alloy three-layer clad material | |
JP3243188B2 (en) | Aluminum alloy clad material for heat exchangers with excellent alkali corrosion resistance | |
JP4861905B2 (en) | Aluminum alloy brazing material and aluminum alloy brazing sheet | |
JP3968023B2 (en) | Aluminum alloy clad material for heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101217 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120116 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120124 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120124 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150203 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4916334 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |