JP2004050195A - Aluminum alloy brazing sheet for heat exchanger having excellent corrosion resistance and method of producing the same - Google Patents
Aluminum alloy brazing sheet for heat exchanger having excellent corrosion resistance and method of producing the same Download PDFInfo
- Publication number
- JP2004050195A JP2004050195A JP2002207402A JP2002207402A JP2004050195A JP 2004050195 A JP2004050195 A JP 2004050195A JP 2002207402 A JP2002207402 A JP 2002207402A JP 2002207402 A JP2002207402 A JP 2002207402A JP 2004050195 A JP2004050195 A JP 2004050195A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- brazing sheet
- corrosion resistance
- alloy brazing
- sacrificial anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005260 corrosion Methods 0.000 title claims abstract description 43
- 238000005219 brazing Methods 0.000 title claims abstract description 42
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 38
- 230000007797 corrosion Effects 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title description 4
- 239000010405 anode material Substances 0.000 claims abstract description 32
- 239000011162 core material Substances 0.000 claims abstract description 15
- 229910000765 intermetallic Inorganic materials 0.000 claims abstract description 15
- 239000011159 matrix material Substances 0.000 claims abstract description 10
- 229910052751 metal Inorganic materials 0.000 claims abstract description 5
- 239000002184 metal Substances 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 239000002245 particle Substances 0.000 claims abstract description 3
- 239000000463 material Substances 0.000 claims description 36
- 238000005096 rolling process Methods 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 238000001816 cooling Methods 0.000 claims description 6
- 229910052738 indium Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 238000005266 casting Methods 0.000 claims description 2
- 238000005253 cladding Methods 0.000 abstract description 4
- 239000000945 filler Substances 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 10
- 230000007423 decrease Effects 0.000 description 5
- 238000009749 continuous casting Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000012670 alkaline solution Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910018084 Al-Fe Inorganic materials 0.000 description 1
- 229910018131 Al-Mn Inorganic materials 0.000 description 1
- 229910018192 Al—Fe Inorganic materials 0.000 description 1
- 229910018461 Al—Mn Inorganic materials 0.000 description 1
- 229910018507 Al—Ni Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910018619 Si-Fe Inorganic materials 0.000 description 1
- 229910008289 Si—Fe Inorganic materials 0.000 description 1
- 229910006639 Si—Mn Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Prevention Of Electric Corrosion (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、耐食性、特に耐アルカリ腐食性に優れた熱交換器用アルミニウム合金ブレージングシートに関し、さらに詳しくはラジエータやヒータコアなどの主に自動車用熱交換器に使用されるチューブ材、ヘッダープレート材として使用されるアルミニウム合金ブレージングシート及びその製造方法に関するものである。
【0002】
【従来の技術】
自動車のラジエータやヒータコアのチューブ材、ヘッダープレート材としては、アルミニウム合金よりなる芯材の片面にアルミニウム合金ろう材をクラッドし、他の面に犠牲陽極材をクラッドしたアルミニウム合金ブレージングシートが使用されている。
【0003】
このアルミニウム合金ブレージングシート材は、ラジエータやヒータコアなどのアルミニウム製熱交換器として使用された場合、冷媒が低温でかつ中性〜弱酸性でClイオンを含む溶液の時には犠牲陽極材は優れた犠牲陽極効果を発揮するが、近年、弱アルカリ性であるLLC(ロングライフクーラント)を含む冷却水が使用されており、この場合には犠牲陽極材の効果が働かずに短期間で貫通孔が発生し、防食効果が十分に発揮されない不具合が多発している。
【0004】
本発明者らはアルカリ環境下におけるブレージングシートの腐食機構に関する研究において、中性〜アルカリ溶液中では、犠牲材の腐食によって芯材面が局部的に露出した場合、カソード部表面(芯材面)が強アルカリ化し、カソード部でもアルミニウムの溶解が起こることを確認している。このためアルカリ溶液中では局部的に露出した芯材部から孔食が進みやすく比較的短期間に貫通孔が発生する傾向にある。
【0005】
このようなブレージングシートのアルカリ環境下での耐食性を向上させるため、本発明者らは犠牲材中に犠牲材のマトリックスより貴な金属間化合物を生成させ、犠牲材中に局部カソードを作ることによって、芯材のアルカリ腐食を抑制することを見出した。さらに、局部カソード点となる犠牲材中の金属間化合物は微細なものが多数存在する時に効果が高いことを見出した。
【0006】
【発明が解決しようとする課題】
本発明は、上記の知見に基づき、耐食性に優れた熱交換器用アルミニウム合金ブレージングシート及びその製造方法を提供するものである。
【0007】
【課題を解決するための手段】
上記課題を解決するため本発明の耐食性に優れた熱交換器用アルミニウム合金ブレージングシートのうち、請求項1記載の発明は、アルミニウム合金よりなる芯材の片面にアルミニウム合金ろう材をクラッドし、他の面に犠牲陽極材をクラッドしたアルミニウム合金ブレージングシートにおいて、犠牲陽極材が犠牲陽極材のマトリックスより貴な金属間化合物を生成する元素を含有し、残部がAlおよび不可避不純物からなるアルミニウム合金で構成され、マトリックス中に粒子径(円相当直径、以下同じ)0.5〜0.9μmの前記化合物が1mm2当り2×103〜2×105個存在することを特徴とする。
【0008】
請求項2記載の耐食性に優れた熱交換器用アルミニウム合金ブレージングシートの発明は、請求項1記載の発明において、前記犠牲陽極材が、Si:0.1〜1.2%(重量%、以下同じ)、Mn:0.1〜2.5%、Fe:0.1〜2.0%、Ni:0.1〜2.0%を含有し、残部Alおよび不可避不純物からなることを特徴とする。
【0009】
請求項3記載の耐食性に優れた熱交換器用アルミニウム合金ブレージングシートの発明は、請求項2記載の発明において、前記犠牲陽極材が、さらにMg:0.1〜2.5%を含有することを特徴とする。
【0010】
請求項4記載の耐食性に優れた熱交換器用アルミニウム合金ブレージングシートの発明は、請求項2又は3記載の発明において、前記犠牲陽極材が、さらにZn:0.1〜10%、In:0.01〜0.3%のうちの1種または2種を含有することを特徴とする。
【0011】
請求項5記載の耐食性に優れた熱交換器用アルミニウム合金ブレージングシートの発明は、請求項2〜4記載の発明において、前記犠牲陽極材が、さらにCr:0.3%以下(0%を含まず、以下同じ)、Ti:0.3%以下、Zr:0.3%以下のうちの1種または2種以上を含有することを特徴とする。
【0012】
請求項6記載の耐食性に優れた熱交換器用アルミニウム合金ブレージングシートの製造方法の発明は、請求項1〜5記載の犠牲陽極材の製造方法において、溶湯から冷却速度:15〜1000℃/sで連続鋳造圧延して製造することを特徴とする。
【0013】
以下に、本発明で限定する事項について説明する。
犠牲陽極材中の金属間化合物は0.5〜0.9μmの大きさのものが1mm2当り2×103〜2×105個存在することが好ましい。この金属間化合物が局部カソード点となることによって、芯材のアルカリ腐食を抑制することができる。1mm2当りの個数が2×103個未満だとカソード点が少なくなり、芯材のアルカリ腐食抑制力が低下する。一方1mm2当りの個数が2×105個を越えると犠牲材の自己耐食性が低下する。また、犠牲陽極材のマトリックスより貴な金属間化合物とは、Al−Fe系化合物、Al−Ni系化合物、Al−Fe−Ni系化合物、Al−Si−Mn系化合物、Al−Si−Fe系化合物、Al−Mn系化合物などである。
【0014】
上記の金属間化合物を生成、分散させるには、各添加元素の成分範囲を以下のように限定するのが望ましい。
【0015】
Siの成分範囲は0.1〜1.2%であり、下限未満だとその効果が小さく、上限を越えると犠牲材の自己耐食性が低下するとともに、犠牲材の融点が低下し、ろう付時に局部溶融等の不具合が生じる可能性がある。
【0016】
Mnの成分範囲は0.1〜2.5%であり、下限未満だとその効果が小さく、上限を越えると犠牲材の自己耐食性が低下する。
【0017】
Feの成分範囲は0.1〜2.0%であり、下限未満だとその効果が小さく、上限を越えると犠牲材の自己耐食性が低下する。
【0018】
Niの成分範囲は0.1〜2.0%であり、下限未満だとその効果が小さく、上限を越えると犠牲材の自己耐食性が低下する。
【0019】
Mgの成分範囲は0.1〜2.5%であり、下限未満だとその効果が小さく、上限を越えると犠牲材の自己耐食性が低下する。
【0020】
Zn、Inは犠牲材マトリックスの電位を卑にする効果があり、犠牲材中に存在する電位的に貴な上記化合物と犠牲材マトリックスとの電位差を大きくする効果がある。Znは0.1%未満だとその効果が小さく、10%を越えると犠牲材の自己耐食性が低下する。Inは0.01%未満だとその効果が小さく、0.3%を越えると犠牲材の自己耐食性が低下する。
【0021】
Cr、Ti、Zrは上記のFe、Mn、Ni等と微細な金属間化合物を生成するとともに、Alの酸化皮膜の生成を抑制し、腐食の起点を増加させる効果がある。いずれも0.3%を越えると犠牲材の自己耐食性が低下するとともに、圧延性が低下する。
【0022】
犠牲陽極材を溶湯から冷却速度:15〜1000℃/sで連続鋳造圧延して製造すると、冷却速度が速いため、微細な金属間化合物を多数、分散させることができる。なお、冷却速度を1000℃/sより速く設定することは現実的に困難であるため、冷却速度は15〜1000℃/sに設定する。
【0023】
【発明の実施の形態】
本発明のブレージングシートは、アルミニウム合金よりなる芯材の片面にアルミニウム合金ろう材をクラッドし、他の面に犠牲陽極材をクラッドしたアルミニウム合金ブレージングシートであるが、芯材及びろう材の合金成分は限定されるものではない。また、犠牲陽極材は、金属間化合物が0.5〜0.9μmの大きさのものが1mm2当り2×103〜2×105個存在していれば、製造方法は連続鋳造圧延法に限定されない。なお、ろう材、犠牲陽極材のクラッド率についても特に限定されるものではないが、5〜20%とするのが望ましい。
【0024】
【実施例】
表1に示す組成のアルミニウム合金を用い、連続鋳造圧延法により、所定の板厚の犠牲陽極材を作製した。また、表1に示した比較材5、6組成のアルミニウム合金を用い、DC鋳造法、熱間圧延により、所定の板厚の犠牲陽極材を作製した。ついで、3003合金(Al−1.2%Mn−0.15%Cu)の芯材、4343合金(Al−7.5%Si)のろう材と熱間クラッド圧延し、中間焼鈍をはさみながら冷間圧延を行い、板厚0.20mmのブレージングシートを得た。クラッド率は犠牲陽極材が15%(犠牲材板厚0.03mm)、ろう材が10%である。
【0025】
犠牲陽極材の金属間化合物の個数については、圧延方向に平行な板厚断面で、観察を行い、500倍×25視野(約0.18mm2)のSEM画像内において、材料表面に存在する金属間化合物の分散量を画像解析したものである
【0026】
耐食性に関しては、ブレージングシート単体(サイズ:180mml×25mmw×t)にて、フッ化物系のフラックスを塗布後、窒素ガス雰囲気中で600℃×3minのろう付相当の熱処理を実施した。その後、ろう材側をマスキングし、以下に示す腐食試験を行った。
【0027】
腐食試験(酸性)
[腐食液]Cl−:195ppm、SO4 −:60ppm、Fe3 +:30ppm、Cu2+:1ppmを含む溶液(酢酸にてpH3に調整)
[試験サイクル]1サイクル:88℃×8h→室温×16h
[試験期間]2週間
【0028】
腐食試験(アルカリ性)
[腐食液]市販のLLCを蒸留水にて、30%濃度に希釈した溶液(苛性ソーダにてpH10に調整)
[試験サイクル]1サイクル:88℃×8h→室温×16h
[試験期間]2週間
【0029】
腐食試験の結果を表1に示すが、本発明材は、いずれも最大孔食深さ0.03mm以下(犠牲材内)であり、優れた耐孔食性を示した。
【0030】
【表1】
【0031】
【発明の効果】
以上説明したように、本発明の耐食性に優れた熱交換器用アルミニウム合金ブレージングシート及びその製造方法によれば、アルカリ環境下においても優れた耐食性を有するブレージングシートが得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an aluminum alloy brazing sheet for heat exchangers having excellent corrosion resistance, particularly alkali corrosion resistance, and more particularly to a tube material and a header plate material mainly used for a heat exchanger for automobiles such as radiators and heater cores. Aluminum brazing sheet to be produced and a method for producing the same.
[0002]
[Prior art]
Aluminum alloy brazing sheet is used as the radiator and heater core tube material and header plate material for automobiles, in which aluminum alloy brazing material is clad on one side of aluminum alloy core material and sacrificial anode material is clad on the other side. I have.
[0003]
When this aluminum alloy brazing sheet material is used as an aluminum heat exchanger such as a radiator or a heater core, the sacrificial anode material is an excellent sacrificial anode material when the refrigerant is a low-temperature, neutral to weakly acidic solution containing Cl ions. In recent years, cooling water containing LLC (long life coolant), which is weakly alkaline, has been used. In this case, a through hole is generated in a short period of time without the effect of the sacrificial anode material, Problems that the anticorrosion effect is not sufficiently exerted frequently occur.
[0004]
The present inventors have studied the corrosion mechanism of a brazing sheet in an alkaline environment. In a neutral to alkaline solution, when the core material surface is locally exposed by corrosion of the sacrificial material, the cathode surface (core material surface) Has become strongly alkaline, and it has been confirmed that aluminum dissolves also in the cathode part. For this reason, in an alkaline solution, pitting corrosion easily proceeds from a locally exposed core material portion, and a through-hole tends to be generated in a relatively short time.
[0005]
In order to improve the corrosion resistance of such a brazing sheet in an alkaline environment, the present inventors generate a noble intermetallic compound from the matrix of the sacrificial material in the sacrificial material and form a local cathode in the sacrificial material. And found that alkaline corrosion of the core material was suppressed. Furthermore, it has been found that the intermetallic compound in the sacrificial material serving as a local cathode point is highly effective when there are many fine ones.
[0006]
[Problems to be solved by the invention]
The present invention provides an aluminum alloy brazing sheet for a heat exchanger having excellent corrosion resistance based on the above findings, and a method for producing the same.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, among the aluminum alloy brazing sheets for heat exchangers having excellent corrosion resistance of the present invention, the invention according to claim 1 clad an aluminum alloy brazing material on one surface of a core material made of an aluminum alloy, In an aluminum alloy brazing sheet clad with a sacrificial anode material on its surface, the sacrificial anode material contains an element that generates an intermetallic compound that is more noble than the matrix of the sacrificial anode material, and the balance is made of an aluminum alloy composed of Al and inevitable impurities. The matrix is characterized in that 2 × 10 3 to 2 × 10 5 compounds having a particle diameter (equivalent circle diameter, hereinafter the same) of 0.5 to 0.9 μm exist per 1 mm 2 .
[0008]
In the invention of the aluminum alloy brazing sheet for a heat exchanger having excellent corrosion resistance according to the second aspect, in the invention according to the first aspect, the sacrificial anode material is made of Si: 0.1 to 1.2% (% by weight, hereinafter the same). ), Mn: 0.1 to 2.5%, Fe: 0.1 to 2.0%, Ni: 0.1 to 2.0%, the balance being Al and inevitable impurities. .
[0009]
The invention of the aluminum alloy brazing sheet for a heat exchanger having excellent corrosion resistance according to claim 3 is characterized in that, in the invention according to claim 2, the sacrificial anode material further contains Mg: 0.1 to 2.5%. Features.
[0010]
The invention of an aluminum alloy brazing sheet for a heat exchanger having excellent corrosion resistance according to claim 4 is the invention according to claim 2 or 3, wherein the sacrificial anode material further comprises Zn: 0.1 to 10%, In: 0. It is characterized by containing one or two of 01 to 0.3%.
[0011]
The invention of the aluminum alloy brazing sheet for a heat exchanger having excellent corrosion resistance according to claim 5 is the invention according to claims 2 to 4, wherein the sacrificial anode material further comprises Cr: 0.3% or less (excluding 0%). , The same shall apply hereinafter), one or more of Ti: 0.3% or less and Zr: 0.3% or less.
[0012]
The invention of a method for producing an aluminum alloy brazing sheet for a heat exchanger having excellent corrosion resistance according to claim 6 is the method for producing a sacrificial anode material according to claims 1 to 5, wherein the cooling rate from the molten metal is 15 to 1000 ° C / s. It is characterized by being manufactured by continuous casting and rolling.
[0013]
Hereinafter, matters limited by the present invention will be described.
It is preferable that there are 2 × 10 3 to 2 × 10 5 intermetallic compounds in the sacrificial anode material having a size of 0.5 to 0.9 μm per 1 mm 2 . When this intermetallic compound serves as a local cathode point, alkali corrosion of the core material can be suppressed. If the number per 1 mm 2 is less than 2 × 10 3, the number of cathode points is reduced, and the alkali corrosion suppressing power of the core material is reduced. On the other hand, if the number per 1 mm 2 exceeds 2 × 10 5 , the self-corrosion resistance of the sacrificial material decreases. Further, the intermetallic compound which is more noble than the matrix of the sacrificial anode material includes an Al-Fe compound, an Al-Ni compound, an Al-Fe-Ni compound, an Al-Si-Mn compound, and an Al-Si-Fe compound. Compounds, Al-Mn compounds and the like.
[0014]
In order to generate and disperse the above-mentioned intermetallic compound, it is desirable to limit the component range of each additive element as follows.
[0015]
The component range of Si is 0.1 to 1.2%. When the content is less than the lower limit, the effect is small. When the content exceeds the upper limit, the self-corrosion resistance of the sacrificial material decreases, and the melting point of the sacrificial material decreases. Problems such as local melting may occur.
[0016]
The component range of Mn is 0.1 to 2.5%, and if it is less than the lower limit, the effect is small, and if it exceeds the upper limit, the self-corrosion resistance of the sacrificial material is reduced.
[0017]
The component range of Fe is 0.1 to 2.0%. If the content is less than the lower limit, the effect is small. If the content exceeds the upper limit, the self-corrosion resistance of the sacrificial material is reduced.
[0018]
The component range of Ni is 0.1 to 2.0%. If the Ni content is less than the lower limit, the effect is small. If the Ni content exceeds the upper limit, the self-corrosion resistance of the sacrificial material decreases.
[0019]
The component range of Mg is 0.1 to 2.5%. When the content is less than the lower limit, the effect is small, and when the content exceeds the upper limit, the self-corrosion resistance of the sacrificial material is reduced.
[0020]
Zn and In have the effect of lowering the potential of the sacrificial material matrix, and have the effect of increasing the potential difference between the above-mentioned compound which is present in the sacrificial material and is noble in potential and the sacrificial material matrix. If Zn is less than 0.1%, the effect is small, and if it exceeds 10%, the self-corrosion resistance of the sacrificial material decreases. If In is less than 0.01%, the effect is small, and if more than 0.3%, the self-corrosion resistance of the sacrificial material is reduced.
[0021]
Cr, Ti, and Zr produce fine intermetallic compounds with the above-mentioned Fe, Mn, Ni, and the like, and also have the effect of suppressing the formation of an oxide film of Al and increasing the starting point of corrosion. If any of them exceeds 0.3%, the self-corrosion resistance of the sacrificial material is reduced, and the rolling property is reduced.
[0022]
When the sacrificial anode material is manufactured by continuous casting and rolling at a cooling rate of 15 to 1000 ° C./s from the molten metal, a large number of fine intermetallic compounds can be dispersed because the cooling rate is high. Since it is practically difficult to set the cooling rate higher than 1000 ° C./s, the cooling rate is set to 15 to 1000 ° C./s.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
The brazing sheet of the present invention is an aluminum alloy brazing sheet in which an aluminum alloy brazing material is clad on one surface of a core material made of an aluminum alloy and a sacrificial anode material is clad on the other surface. Is not limited. If the sacrificial anode material has 2 × 10 3 to 2 × 10 5 intermetallic compounds having a size of 0.5 to 0.9 μm per 1 mm 2 , the production method is a continuous casting and rolling method. It is not limited to. The cladding ratio of the brazing material and the sacrificial anode material is not particularly limited, but is preferably 5 to 20%.
[0024]
【Example】
Using an aluminum alloy having the composition shown in Table 1, a sacrificial anode material having a predetermined thickness was produced by a continuous casting and rolling method. In addition, a sacrificial anode material having a predetermined plate thickness was prepared by a DC casting method and hot rolling using aluminum alloys having the compositions of Comparative Materials 5 and 6 shown in Table 1. Next, hot clad rolling is performed with a 3003 alloy (Al-1.2% Mn-0.15% Cu) core material and a 4343 alloy (Al-7.5% Si) brazing material, and then cooled while sandwiching intermediate annealing. Rolling was performed to obtain a brazing sheet having a thickness of 0.20 mm. The cladding ratio is 15% for the sacrificial anode material (the thickness of the sacrificial material is 0.03 mm) and 10% for the brazing material.
[0025]
Regarding the number of intermetallic compounds of the sacrificial anode material, observation was performed on a plate thickness section parallel to the rolling direction, and the metal existing on the material surface was observed in an SEM image of 500 × 25 (approximately 0.18 mm 2 ). This is the result of image analysis of the amount of dispersion of interstitial compounds.
Regarding the corrosion resistance, a brazing sheet alone (size: 180 mm × 25 mm × t) was coated with a fluoride-based flux, and then subjected to a heat treatment equivalent to brazing at 600 ° C. × 3 min in a nitrogen gas atmosphere. Thereafter, the brazing material side was masked and a corrosion test shown below was performed.
[0027]
Corrosion test (acid)
[Etchant] Cl -: 195ppm, SO 4 -: 60ppm, Fe 3 +: 30ppm, Cu 2+: ( adjusted to pH3 with acetic acid) solution containing 1ppm
[Test cycle] 1 cycle: 88 ° C x 8h → room temperature x 16h
[Test period] 2 weeks
Corrosion test (alkaline)
[Corrosion liquid] A solution obtained by diluting a commercially available LLC to a concentration of 30% with distilled water (adjusted to pH 10 with caustic soda)
[Test cycle] 1 cycle: 88 ° C x 8h → room temperature x 16h
[Test period] 2 weeks
The results of the corrosion test are shown in Table 1. The materials of the present invention all had a maximum pit depth of 0.03 mm or less (in the sacrificial material), and exhibited excellent pitting resistance.
[0030]
[Table 1]
[0031]
【The invention's effect】
As described above, according to the aluminum alloy brazing sheet for a heat exchanger having excellent corrosion resistance and the method for producing the same according to the present invention, a brazing sheet having excellent corrosion resistance even in an alkaline environment can be obtained.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002207402A JP2004050195A (en) | 2002-07-16 | 2002-07-16 | Aluminum alloy brazing sheet for heat exchanger having excellent corrosion resistance and method of producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002207402A JP2004050195A (en) | 2002-07-16 | 2002-07-16 | Aluminum alloy brazing sheet for heat exchanger having excellent corrosion resistance and method of producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004050195A true JP2004050195A (en) | 2004-02-19 |
Family
ID=31931872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002207402A Pending JP2004050195A (en) | 2002-07-16 | 2002-07-16 | Aluminum alloy brazing sheet for heat exchanger having excellent corrosion resistance and method of producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004050195A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007277707A (en) * | 2006-03-13 | 2007-10-25 | Sumitomo Light Metal Ind Ltd | Aluminum alloy clad material for heat exchanger having excellent strength and brazability |
WO2017175762A1 (en) | 2016-04-06 | 2017-10-12 | 株式会社Uacj | Aluminum alloy material and production method therefor, and aluminum alloy cladding material using aluminum alloy material |
CN118086729A (en) * | 2024-04-26 | 2024-05-28 | 华劲新材料研究院(广州)有限公司 | High solidus braze-welded cast aluminum alloy, preparation method thereof, casting and product |
-
2002
- 2002-07-16 JP JP2002207402A patent/JP2004050195A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007277707A (en) * | 2006-03-13 | 2007-10-25 | Sumitomo Light Metal Ind Ltd | Aluminum alloy clad material for heat exchanger having excellent strength and brazability |
WO2017175762A1 (en) | 2016-04-06 | 2017-10-12 | 株式会社Uacj | Aluminum alloy material and production method therefor, and aluminum alloy cladding material using aluminum alloy material |
CN118086729A (en) * | 2024-04-26 | 2024-05-28 | 华劲新材料研究院(广州)有限公司 | High solidus braze-welded cast aluminum alloy, preparation method thereof, casting and product |
CN118086729B (en) * | 2024-04-26 | 2024-07-16 | 华劲新材料研究院(广州)有限公司 | High solidus braze-welded cast aluminum alloy, preparation method thereof, casting and product |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004084060A (en) | Aluminum alloy fin material for heat exchanger and heat exchanger including the fin material | |
JP6868383B2 (en) | Manufacturing method of aluminum alloy brazing sheet | |
JP5925022B2 (en) | Aluminum alloy fin material for heat exchanger, method for producing the same, and method for producing heat exchanger | |
JP2008121108A (en) | Tubes for heat exchanger, and manufacturing method of the same | |
JP2008188616A (en) | Aluminum alloy-brazing sheet for heat exchanger having excellent brazability and corrosion resistance, and heat exchanger tube having excellent corrosion resistance | |
JP2004076057A (en) | Aluminum alloy clad plate and method for producing the same | |
JP2017082266A (en) | Surface-treated aluminum alloy, and surface-treated aluminum alloy clad material | |
JP3772035B2 (en) | Aluminum alloy clad material for heat exchangers with excellent erosion and corrosion resistance | |
JP2017186615A (en) | Aluminium alloy material, method for manufacturing the same, and aluminium alloy clad material using aluminium alloy material | |
JP3873267B2 (en) | Aluminum alloy clad material for heat exchangers with excellent corrosion resistance | |
JP2004035966A (en) | Aluminum alloy clad material and its manufacturing process | |
JP2004017116A (en) | Aluminum alloy brazing sheet for brazed pipe making tubes, and its producing method | |
JP3360026B2 (en) | Brazing method of aluminum alloy brazing sheet for heat exchanger | |
JP7231442B2 (en) | Aluminum alloy clad fin material with excellent self-corrosion resistance and its manufacturing method | |
JP5545798B2 (en) | Method for producing aluminum alloy fin material for heat exchanger | |
JP2009030123A (en) | Aluminum alloy-clad material for heat exchanger, excellent in strength and pitting resistance | |
JP2004050195A (en) | Aluminum alloy brazing sheet for heat exchanger having excellent corrosion resistance and method of producing the same | |
JP2000212668A (en) | Aluminum alloy extruded tube for heat exchanger excellent in corrosion resistance | |
JP2010270386A (en) | Aluminum alloy fin material for heat exchanger | |
JP2003306735A (en) | Aluminum alloy brazing sheet for heat exchanger having excellent corrosion resistance | |
JP3859781B2 (en) | Aluminum alloy clad fin material and aluminum alloy heat exchanger using the clad fin material | |
JP7231443B2 (en) | Aluminum alloy clad fin material with excellent self-corrosion resistance and its manufacturing method | |
JP4019337B2 (en) | Aluminum alloy clad material for heat exchangers with excellent corrosion resistance | |
JP2000084661A (en) | Manufacture of heat exchanger excellent in corrosion resistance | |
JP2000087164A (en) | Aluminum alloy clad material for heat exchanger excellent in corrosion resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20050331 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20060718 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060808 |
|
A02 | Decision of refusal |
Effective date: 20070213 Free format text: JAPANESE INTERMEDIATE CODE: A02 |