[go: up one dir, main page]

JP4862616B2 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
JP4862616B2
JP4862616B2 JP2006303006A JP2006303006A JP4862616B2 JP 4862616 B2 JP4862616 B2 JP 4862616B2 JP 2006303006 A JP2006303006 A JP 2006303006A JP 2006303006 A JP2006303006 A JP 2006303006A JP 4862616 B2 JP4862616 B2 JP 4862616B2
Authority
JP
Japan
Prior art keywords
gate
temperature detection
switching element
drive circuit
gate signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006303006A
Other languages
English (en)
Other versions
JP2008125157A (ja
Inventor
健介 佐々木
豊 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006303006A priority Critical patent/JP4862616B2/ja
Publication of JP2008125157A publication Critical patent/JP2008125157A/ja
Application granted granted Critical
Publication of JP4862616B2 publication Critical patent/JP4862616B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Description

本発明は、IGBT(Insulated Gate Bipolar Transistor)等のスイッチング素子を具えた電力変換装置の素子温度を測定するにあたって、熱電対などの感温素子をスイッチング素子近傍に配置する必要をなくして電力変換装置を小型化する技術に関するものである。
電力変換装置としては一般に、直流電圧源と負荷とを接続するインバータ装置がある。インバータ装置に設けられた半導体よりなるスイッチング素子は高温に弱く、温度上昇によりインバータ装置が破壊しないよう、スイッチング素子の温度を検出する発明としては従来、例えば特許文献1および特許文献2に記載のごときものが知られている。
特許文献1に記載のIGBTのゲートドライブ回路は、スイッチング素子がオフしているときに、IGBTのゲート・エミッタ端子間に高周波の交流電圧を印加し、この交流電圧によってIGBTのゲート端子に流れる電流に基づいて動作中のIGBTの静電容量を計測する。この静電容量は温度に対して相関関係を持っているため、静電容量を検出することによってIGBTの素子温度を計測するものである。
特許文献2に記載のオンチップ温度検出装置は、スイッチング素子がオフしているときに、スイッチング素子がオンしない程度の微小な一定電流をベースに流し、ベース・エミッタ端子間ダイオードの順方向電圧の温度特性を利用して素子温度を検出するように構成したものである。
特開平5−56553号公報 特開2002−289856号公報
しかし、上記従来のような温度検出装置にあっては、以下に説明するような問題を生ずる。つまりスイッチング素子の通常駆動に影響を与えないよう、素子がオフしている期間においてのみスイッチング素子の温度測定が可能になる。そうすると、オンの時間が長くオフの時間が短い電力変換装置の大出力時には、充分な測定期間を確保することができない。したがって従来技術では、電力変換装置の小出力時にスイッチング素子の温度を測定し、大出力時にはスイッチング素子の温度を推定に頼るしかなかった。この結果、スイッチング素子の温度が上昇する大出力時こそ正確な温度測定の必要が高いにもかかわらず、当該正確な温度測定ができなかった。
また、インバータ装置のような電力変換装置においては、スイッチング素子に測定用信号を印加することでスイッチが動作し電源が短絡してしまうことを防止するため、温度測定されるアームとは逆側のアームをオフ状態にする必要がある。このときにアームをオンオフする際のスイッチング損失が発生する。
本発明は、電力変換装置の出力の大小に関わらず正確に素子温度を検出することができる電力変換装置を提案することを目的とする。
この目的のため本発明による電力変換装置は、請求項1に記載のごとく、
直流電圧源と負荷とを電気的に接続するスイッチング素子と、該スイッチング素子にオンオフ動作のためのゲート信号を与える素子駆動回路とを具え、前記スイッチング素子をオンオフしてパルス状電圧を生成することにより負荷の駆動電流を制御する電力変換装置において、
前記素子駆動回路がスイッチング素子のゲート端子に前記ゲート信号を与えて前記スイッチング素子をオフからオンにする際に、前記ゲート信号の電圧値と前記スイッチング素子から前記負荷へ流れる素子電流の電流値との関係を規定するマップあるいは計算式から、前記スイッチング素子の温度状態を判断するよう構成したことを特徴としたものである。
かかる本発明の電力変換装置によれば、スイッチング素子のオフ期間の長短にかかわらず、正確な温度測定が可能になる。したがって、オフ期間が短い電力変換装置の大出力時でも、素子温度を正確に検出することが可能となり、素子保護を適宜に図ることができる。
また、温度測定されるアームとは逆側のアームをオフ状態にする必要がなくなり、スイッチング損失を低減することができる。
以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
図1は本発明の一実施例になる電力変換装置、電圧源および負荷の全体概略を示す回路構成図である。直流の電圧源10の正極側端子および負極側端子間には、6個のスイッチング素子41〜46を電気的に接続する。スイッチング素子21〜26はIGBTであり、これらスイッチング素子41〜46の接続および配置は周知のインバータ装置と同様である。スイッチング素子41〜46には負荷である三相交流モータ30を電気的に接続する。
各スイッチング素子41〜46のゲート端子には、これらスイッチング素子41〜46をオンオフ動作させる素子駆動回路20を接続する。スイッチング素子41〜46および素子駆動回路20は電力変換装置を構成する。
電圧源10は三相交流モータ30の電源である。図1に示すようにスイッチング素子41〜46はこれら電圧源10と三相交流モータ30とを電気的に接続する。素子駆動回路20はスイッチング素子41〜46のゲート端子にオンオフ動作のためのゲート信号を与え、スイッチング素子41〜46をオンオフする。これによりパルス状電圧を生成して三相交流モータ30の駆動電流を制御する。
図2は素子駆動回路20の構成を示すブロック図である。素子駆動回路20はスイッチング素子41〜46に共通であることから、図2にはスイッチング素子41〜46のうちの1個を代表して示し、説明の重複を避けるためスイッチング素子41のみにつき代表して示す。
駆動信号生成器201は、パルス幅変調制御のための指令信号sig_PWMをパルス動作用ゲート駆動回路202に出力し、スイッチング素子41〜46の温度検出のための指令信号sig_test1を温度検出用ゲート駆動回路203に出力する。指令信号sig_PWMは通常、目標となる電力変換装置の出力を実現するものである。しかしながら、後述する素子保護モードの間は、電力変換装置の出力を目標よりも小さくするよう制限する。
また駆動信号生成器201は後述する素子温度検出期間αを規定しており、素子温度検出期間α中はsig_search=1をゲート駆動回路選択回路204へ出力し、期間α以外ではsig_search=0をゲート駆動回路選択回路204へ出力する。
パルス動作用ゲート駆動回路202は指令信号sig_PWMに基づき、スイッチング素子41のゲート端子に駆動用のゲート信号を出力する。温度検出用ゲート駆動回路203は指令信号sig_test1に基づき、スイッチング素子41のゲート端子および素子温度判断器208に検出用のゲート信号を出力する。
ゲート駆動回路選択回路204は、受信した信号sig_searchに基づき、パルス動作用ゲート駆動回路202または温度検出用ゲート駆動回路203の一方を選択するための信号sig_selectを選択器205に出力する。具体的には、sig_search=1のときは切り替え信号sig_select=1を出力する。またsig_search=0のときは切り替え信号sig_select=0を出力する。
選択器205はゲート信号を駆動用または検出用に切り替える。具体的には、受信した切り替え信号sig_select=1のとき温度検出用ゲート駆動回路203をスイッチング素子41のゲート端子に接続する。また切り替え信号sig_select=0のときパルス動作用ゲート駆動回路202をスイッチング素子41のゲート端子に接続する。
選択器205が前述したパルス動作用ゲート駆動回路202を選択する間、パルス動作用ゲート駆動回路202からの駆動用のゲート信号がスイッチング素子41に入力される。この間、スイッチング素子41はパルス幅変調制御を実行するためのパルス状電圧を生成する。これに対し、選択器205が前述した温度検出用ゲート駆動回路203を選択する間、温度検出用ゲート駆動回路203からの検出用のゲート信号がスイッチング素子41に入力される。これらパルス動作用ゲート駆動回路202、温度検出用ゲート駆動回路203および選択器205はゲート駆動回路部206を構成する。
上述したように選択器205が検出用のゲート信号から駆動用のゲート信号にゲート信号を切り替えるため、ゲート駆動回路部206は異なる波形のゲート信号を連続して出力することができる。
素子電流値検出器207は、スイッチング素子41からモータ30へ流れる電流を検知する。具体的にはスイッチング素子41のコレクタ端子に流れるスイッチング素子41の素子電流が所定値i_swに達したかチェックして、達していれば結果を素子温度判断器208に出力する。所定値i_swはスイッチング素子がオフからオンになってコレクタ電流が流れていると判断するための電流値である。素子温度判断器208はゲート電圧Vgを監視し、所定電流値i_swに達したときゲート電圧を読み込むことにより、スイッチング素子がオフからオンになるゲートオン電圧値Vg1を測定することができる。このゲートオン電圧値Vg1は素子温度によって変化するという特性から、素子温度判断器208はスイッチング素子41の温度を判断する。破損危険領域にあると判断すればsig_result=0を駆動信号生成器201に出力する。これに対し、素子温度が安全領域にあると判断すればsig_result=1を駆動信号生成器201に出力する。
駆動信号生成器201は、安全領域を示すsig_result=1を受信する間、前述した指令信号sig_PWMを、電力変換装置の目標出力に対応する通常どおりのものとする。そして図6に沿って後述する素子温度検出期間αの終了後から連続して素子定格までスイッチング素子41をオンさせるよう動作する。
これに対し、破損危険領域を示すsig_result=0を受信する間、前述した指令信号sig_PWMを電力変換装置の出力を制限する素子保護モードとする。これにより、スイッチング素子41の温度上昇を抑制することができる。
図3は、スイッチング素子41の温度を判断する制御フローを示す。
まずステップS1において、コレクタ端子に流れる素子電流が所定値i_swに達しているかを判定する。素子電流が所定値i_swに達すると、次のステップS2に進む。ステップS2において、素子電流が所定値i_swに達したときのゲート電圧Vgを読み込み、この読み込み値をもってゲートオン電圧Vg1とする。次のステップS3において、ゲートオン電圧Vg1を素子温度が過温度状態における電圧値よりも高いか否かを判断するための閾値Vgthと比較する。比較の結果、Vg1<Vgthである(YES)と判断すれば、素子温度が高く破損危険領域にあるため、sig_result=0を出力して本制御フローを終える。これに対し、Vg1<Vgthではない(NO)と判断すれば、素子温度が低く安全領域にあるため、sig_result=1を出力して本制御フローを終える。このように本実施例によれば、破損危険領域にあるか、あるいは安全領域にあるか、ゲートオン電圧値から素子温度を正確に求めることができる。
ここで付言すると、素子電流の電流値が所定値i_swとなるゲートオン電圧Vg1はスイッチング素子の温度によって異なる。つまり、ゲート信号の電圧値と素子電流の電流値との関係を温度毎に規定するマップあるいは計算式がある。IGBT等のスイッチングに用いられる半導体素子には温度が上昇するにつれて、あるゲート電圧、例えば電圧Vg、に対する電流値が増加するという特性をもつ。この特性から、上述のマップあるいは計算式が得られる。
本実施例では、これらマップあるいは計算式を簡素化した閾値Vgthからスイッチング素子の温度状態を判断する。これらマップあるいは計算式を実験により求めて素子駆動回路20に記憶しておき、これらマップあるいは計算式を直接に参照すれば、スイッチング素子41〜46の温度そのものを求めることもできる。
図4は、パルス動作用ゲート駆動回路202がスイッチング素子41のゲート端子に出力する駆動用のゲート信号を示すグラフである。パルス動作用ゲート駆動回路202は図4に示すようなパルス動作のための矩形波を、必要なオンオフ時に応じて作成するのに適切な構成を有する。
図5は、温度検出用ゲート駆動回路203がスイッチング素子41のゲート端子および素子温度判断器208に出力する検出用のゲート信号を示すグラフである。温度検出用ゲート駆動回路203は、図5に示すようにオフからオンにする際に応じて0から漸増するような波形を作成するのに適切な構成を有する。
本実施例のようにパルス動作のためのゲート信号を出力する手段と、検出用のゲート信号を出力する手段をゲート駆動回路202とゲート駆動回路203に分けることによって、同一の手段によって異なる信号を出力する構成よりも、簡素化することができる。
駆動信号生成器201は、図5に示す検出用のゲート信号と、図4に示す駆動用のゲート信号との周波数および位相が同期するよう指令信号sig_test1および指令信号sig_PWMを出力する。そして、図5に示す検出用のゲート信号が漸増してゲートオン電圧Vg1に達すると、信号sig_searchを出力する。このため、スイッチング素子41のゲート信号は、これら図5および図4のゲート信号を連続させた図6に示すようなものとなる。
この図6はすなわち、ゲート駆動回路部206が出力するゲート信号の電圧波形を示す。図6におけるαは素子温度検出期間である。素子温度検出期間αのゲート信号は温度検出用ゲート駆動回路203からのゲート信号であり、時間経過とともにゲート電圧Vgが漸増する。また、βは、パルス動作期間である。期間βのゲート信号はパルス動作用ゲート駆動回路202からのゲート信号であり、ゲート電圧Vgが充分高い。期間βではスイッチング素子41がオンになって、該スイッチング素子41が1個のパルス状電圧を生成するようパルス動作する。
そして、パルス動作が終了し、スイッチング素子41がオンからオフになると、オフの間に切り替え信号sig_selectを出力し、選択器205をパルス動作用ゲート駆動回路202から温度検出用ゲート駆動回路203に切り替えて、次の素子温度検出に備える。
図6に示すようにゲート信号のゲート電圧Vgは、期間αにおいて漸増する波形であり、期間αのうちの瞬時でゲートオン電圧Vg1であり、期間αから期間βに移行する瞬時にゲート電圧Vgの波形が矩形波となって急増する。以上が素子温度検出における一連の動作である。
キャリア周波数10[kHz]のPWM駆動をする電力変換装置において変調率が0.9の場合、スイッチング素子がオンとなる期間は90[μs]である。これにデッドタイムなどが加わるため、スイッチング素子がオフとなる期間は10[μs] 未満となる。特許文献1および2に示す従来の素子温度検出手段では、充分な測定時間を確保できなかった。
しかし本実施例によれば、スイッチング素子41〜46のオフ状態からオン状態へ移行する際に素子温度を検出することができ、従来例のような温度測定用の充分な期間を設ける必要がない。したがって、通常のパルス幅変調制御を損なうことがなく、電力変換装置の大出力中に正確な温度測定が可能になる。
また温度測定されるアームとは逆側のアームをオフ状態にする必要がなくなり、スイッチング損失を低減することができる。
なお、図には示さなかったが素子温度検出期間αの開始時におけるゲート電圧値をゲート0よりも大きくゲート閾値Vgthよりも小さくして、ゲート信号の波形を台形にすれば、素子温度を検出するために要する時間を一層短くすることができる。
また図示しなかったが、前述した図3のフローチャート中のステップS3で、予め記憶させておいた素子温度とゲートオン電圧値との関係を示す特性図と、前記ステップS2で測定したゲートオン電圧値Vg1とを比較して、正確な素子温度を検出してもよい。
パルス幅変調制御を実行する電力変換装置にあっては、図7に示すように三角波比較法および変調率に基づき素子温度検出期間αを規定して信号sig_searchを生成するとよい。
図7中、三角波と交差する水平な直線のうち、γはパルス幅変調制御用(PWM)変調率であり、公知のパルス幅変調制御により設定される。そして上記γを具えた三角波の上に、PWM変調率γから所定の距離だけ離間させて素子温度検出用変調率δを設定する。
図7に示すように、γおよびδ間の所定距離は素子温度検出期間αを規定する。
これら変調率δから変調率γまでの素子温度検出期間αでは信号sig_search=1を出力して、温度検出用ゲート駆動回路203を選択するものとし、前記以外の間は、信号sig_search=0を出力して、パルス動作用ゲート駆動回路202を選択するものとする。
上述した三角波比較法および変調率に基づく信号sig_searchの生成によれば、信号sig_searchを容易に生成することが可能であるため、素子温度検出期間αの開始時点と期間αの長さを好適に実現することができ、素子温度検出期間αの管理が容易になる。
固定値であってもよいが、前回のパルス動作における所定距離およびスイッチング素子の温度を規定しておき、γおよびδ間の所定距離をフィードバック制御してもよい。例えば、最初はγおよびδ間の所定距離を初期値とする。前回のパルス動作で素子温度が破損危険領域にあると判断した場合など、求めた素子温度が高くなると、γおよびδ間の所定距離を前回値(初期値)よりも短くする。そして、前回のパルス動作で求めた素子温度が低い状態に戻ったと判断すると、γおよびδ間の所定距離を初期値に戻す。
このように、前回設定した素子温度検出用変調率δおよび前回求めたスイッチング素子温度に基づき素子温度検出用変調率をフィードバック制御で設定することにより、前回の素子温度検出期間αを次回の期間αの算出に反映させて、ゲートオン電圧値Vg1の測定に要する時間を最適化することができ、適切に素子温度を検出することができる。そして、素子温度検出期間αを適切に規定することが可能となり、余剰な素子温度検出期間を削減して電力損失を軽減することができる。
次に、素子温度を判断する別の実施例につき、図8および図9に沿って説明する。なお、上述した実施例と共通する部分については、説明を省略する。
本実施例における素子駆動回路20の構成は、図2に示すブロック図と共通であるが、図2中のゲート駆動回路部206を図8に示すゲート駆動回路部209に置き換える。本実施例では、ゲート駆動回路部209が選択器を有さず、パルス動作用ゲート駆動回路202および温度検出用ゲート駆動回路203を並列に接続したことを特徴とする。パルス動作用ゲート駆動回路202とスイッチング素子との間には抵抗R1を介挿する。また温度検出用ゲート駆動回路203とスイッチング素子との間には抵抗R2を介挿する。
図9は、このゲート駆動回路部209が出力するゲート信号の電圧波形を示すグラフである。図8に示すような並列接続であることから、駆動用のゲート信号と温度検出用のゲート信号とを重畳して、素子温度検出期間αおよびパルス動作期間βを実現する。
本実施例によれば、選択器を削減してゲート駆動回路部の簡素化を図ることができる。
次に、素子温度を判断するさらに別の実施例につき、図10に沿って説明する。さらに別の実施例では、前述した2個の構成要素202,203に代えて、1個の構成要素に205としたことを特徴とする。なお、上述した実施例と共通する部分については、説明を省略する。
本実施例における素子駆動回路20の構成は、図2に示すブロック図と共通であるが、図2中のゲート駆動回路部206を図10に示すゲート駆動回路部210に置き換える。ゲート駆動回路部210は、指令信号sig_PWMを受信してゲート信号を出力するゲートドライブ回路211と、切り替え信号sig_select=0を受信して抵抗R3または抵抗R4を選択する選択器212とから構成される。
ゲートドライブ回路211は、前述したパルス動作用ゲート駆動回路202と同様に、駆動用のゲート信号を選択器212へ出力する。
選択器212は、並列接続した抵抗R3および抵抗R4を具える。抵抗R3の抵抗値は抵抗R4の抵抗値よりも大きい。そして、受信した駆動用のゲート信号を、抵抗R3または抵抗R4を経てスイッチング素子41のゲート端子に出力する。
ゲート信号の電圧値がスイッチチング素子に作用する速度は、スイッチング素子の静電容量とゲート抵抗値によって定まる時定数を有するという特性がある。図10に示すように、抵抗値が異なる2つの抵抗R3および抵抗R4を選択してスイッチング素子41のゲート抵抗値に接続することにより、抵抗R3および抵抗R4はゲート信号の速度を異なせる素子として作用する。そして、ゲート抵抗値の異なる2つの状態を実現して、図2に示すゲート駆動回路部206と同様の機能を得ることが可能になる。
本実施例によれば、1つのゲート駆動回路で駆動用のゲート信号および温度検出用のゲート信号を出力することが可能になり、ゲート駆動回路部を一層簡素化して、コスト低減を図ることができる。
次に、素子温度を判断するさらに別の実施例につき、図11に沿って説明する。なお、上述した実施例と共通する部分については、説明を省略する。
本実施例における素子駆動回路20の構成を、図11のブロック図に示す。この基本構成は図2に示すブロック図と共通である。図11中の素子温度判断器204には、素子温度の判断が終了した時点で終了信号sig_endをゲート駆動回路204に出力する機能を付加する。そして、ゲート駆動回路204は、sig_search=1を受信しても、終了信号sig_endを受信することを条件に切り替え信号sig_select=0を出力する。
本実施例によれば、素子温度の判断に要した時間が短時間の場合に、素子判断終了後に余剰となる素子温度検出期間αを削減することが可能となり、余剰時間中の電力損失を防止することができる。特に、前述した三角波比較法および変調率に基づく素子温度検出期間αの規定において本実施例は有用である。
次に、素子温度を判断する他の実施例につき、図12〜図13に沿って説明する。なお、素子駆動回路20の構成や駆動用のゲート信号の波形等、上述した実施例と共通する部分については、説明を省略する。
図12は、スイッチング素子41の温度を判断する制御フローを示し、前述した図3に示す制御フローに代わるものである。
まずステップS11において、温度検出用ゲート駆動回路203(図2参照)がスイッチング素子41のゲート端子に判定ゲート電圧Vthを出力する。この判定ゲート電圧Vthは、図13に示すような矩形波であり、1つの矩形波は極短時間である。判定ゲート電圧Vthは、素子温度が破損危険領域であるかあるいは安全領域にあるかを判断するための値である。またこの判定ゲート電圧Vthは、前述した図5に示す0から漸増するような波形に代わるものである。
次のステップS12において、素子電流値検出器207(図2参照)がスイッチング素子41のコレクタ端子の電流i_cを測定する。次のステップS13において、測定値i_cと、素子温度が高いか否かを判断するための閾値ithとを比較する。比較の結果、i_c>ithである(YES)と判断すれば、素子温度が高く破損危険領域にあるため、sig_result=0を出力して本制御フローを終える。これに対し、i_c>ithではない(NO)と判断すれば、素子温度が低く安全領域にあるため、sig_result=1を出力して本制御フローを終える。
ゲート信号をある電圧値Vthに固定した場合の素子電流の電流値i_cはスイッチング素子の温度によって異なる。つまり、図3の沿って前述したように、ゲート信号の電圧値と素子電流の電流値との関係を温度毎に規定するマップあるいは計算式がある。本実施例では、これらマップあるいは計算式を簡素化した閾値ithからスイッチング素子の温度状態を判断する。これらマップあるいは計算式を直接に参照すれば、スイッチング素子41〜46の温度そのものを求めることもできる。
スイッチング素子のゲート電圧で一定であれば、スイッチング素子の温度に応じてコレクタ端子の電流が変化するという温度特性に着目した本実施例によれば、破損危険領域にあるか、あるいは安全領域にあるか、コレクタ端子の電流i_cの温度特性に基づき正確に素子温度を求めることができる。
また本実施例によれば、コレクタ端子の電流i_cが微小であり、素子温度を検出するために要する時間が極短時間であるため、測定に伴う電力損失が問題となることがない。
なお本実施例は、図8に沿って前述したゲート駆動回路を並列接続する構成においても実施可能である。
ところで、上記した各実施例によれば、素子駆動回路20がゲート信号を与えてスイッチング素子41〜46をオフからオンにする際に、ゲート信号の電圧値Vgとスイッチング素子41〜46から負荷であるモータ30へ流れる素子電流の電流値i_swとの関係から、前記スイッチング素子の温度状態を判断する。つまり、素子駆動回路20は、スイッチング素子41〜46からモータ30へ流れる電流を検知する素子電流値検出器207と、スイッチング素子41〜46をオフからオンにする際のゲート信号の電圧値Vgを監視し、素子電流値検出器207が素子電流i_swを検知したときのゲート信号の電圧値Vgを、ゲートオン電圧値Vg1とする素子温度判断器208とを具え、素子温度判断器208はゲートオン電圧値Vg1に基づきスイッチング素子41〜46の温度を求めることから、
スイッチング素子のオフ期間の長短にかかわらず、正確な温度測定が可能になる。したがって、オフ期間が短い電力変換装置の大出力時でも、素子温度を正確に検出することが可能となり、素子保護を適宜に図ることができる。
また素子駆動回路20は図6に示すように、スイッチング素子41をオフからオンにする際のゲート信号の電圧値を漸増させ、スイッチング素子がオンした後にゲート信号の電圧値を急増させることから、
オフからオンになる通常のパルス状電圧生成の際に、素子温度を測定することが可能になり、パルス状電圧の生成に支障をきたすことがない。また、素子温度検出後、スイッチング素子を一旦オフに戻す必要がなく、素子温度検出に要する時間を最小化することができる。
また漸増におけるゲート信号の電圧値の波形を、台形にすれば、ゲート信号の電圧値Vgがゲートオン電圧値Vg1に達するまでの時間を短縮することが可能になり、素子温度を検出するために要する時間を一層短くすることができる。
また本実施例では、素子駆動回路20が、ゲート信号の電圧値を前記漸増させる温度検出用ゲート駆動回路203と、ゲート信号の電圧値を矩形波で急増させるパルス動作用ゲート駆動回路202とを具えることから、
同一のゲート駆動回路で異なる2つのゲート信号を出力する構成よりもゲート信号を制御するための手法を簡素化することができる。
また本実施例では、素子駆動回路20が、ゲート信号を温度検出用ゲート駆動回路203およびパルス動作用ゲート駆動回路202の一方から他方に切り替える選択器205を具え、選択器205は、駆動信号生成器201が規定する素子温度検出期間αに温度検出用ゲート駆動回路203を選択することから、
上述したような2つの駆動回路202,203を有する構成を好適に実現することができる。
また図7に示すように本実施例では、素子駆動回路20の駆動信号生成器201がパルス幅変調制御用変調率γおよび三角波比較法に基づきパルス幅変調制御を実行し、この駆動信号生成器201は、素子温度検出用変調率δを設定し、これら素子温度検出用変調率δ、パルス幅変調制御用変調率γおよび三角波比較法に基づき素子温度検出期間αを規定して信号sig_search=1を出力することから、素子温度検出期間αを好適に規定することができる。
図7に示す実施例では、素子温度検出用変調率δを設定する手段として、前回の素子温度検出期間αに相当するγおよびδ間の所定距離および前回求めたスイッチング素子温度に基づき素子温度検出用変調率δを設定することから、
素子温度検出期間αを適切に規定することが可能となり、パルス動作用ゲート駆動回路202へ速やかに切り替えて、余剰な素子温度検出期間を削減して電力損失を軽減を図ることができる。
また図8に示す実施例では、スイッチング素子41〜46のゲート端子に、温度検出用ゲート駆動回路203およびパルス動作用ゲート駆動回路202を並列に接続したことから、
検出器205等の、温度検出用のゲート信号とパルス動作用のゲート信号を切り分けて出力するための手段を省略することができ、低コスト化を図ることができる。
また図10に示す実施例では、ゲート信号を出力する1つのゲートドライブ回路211と、2つの経路のうち1つを選択して出力されたゲート信号を伝達する選択器212とを具え、前記経路にはそれぞれ、ゲート信号の速度を互いに異なせる素子である抵抗R3および抵抗R4を設けたことから、
1つのゲート駆動回路に素子を付加するのみで、図6に示すようなゲート信号を生成することが可能になり、さらなる素子駆動回路の簡素化および低コスト化を図ることができる。
また図11に示す実施例では、ゲートオン電圧値を測定する手段である素子温度判断器208が、素子電流を検知したときに素子温度検出の終了信号sig_endをゲート駆動回路選択回路204経由で選択器205に出力し、選択器205は、素子温度検出期間αであっても終了信号sig_end受信後はゲート信号を温度検出用ゲート駆動回路203からパルス動作用ゲート駆動回路202に切り替えることから、温度検出に要する時間を必要充分にして、素子判断終了後に余剰となる素子温度検出期間αを削減することが可能となり、余剰時間中の電力損失を防止することができる。
また図12および図13に示す実施例では、素子駆動回路20は、スイッチング素子41〜46をオフからオンにする際のゲート信号を所定の電圧値Vthとする温度検出用ゲート駆動回路203と、所定の電圧値Vthにおける、スイッチング素子41〜46からモータ30へ流れる電流値i_cを検出する素子電流値検出器207と、
電流値i_cに基づきスイッチング素子41〜46の温度を求める素子温度判断器208とを具えたことから、
スイッチング素子41〜46のオフ期間の長短にかかわらず、正確な温度測定が可能になる。したがって、オフ期間が短い電力変換装置の大出力時でも、素子温度を正確に検出することが可能となり、素子保護を適宜に図ることができる。
また、温度測定されるアームとは逆側のアームをオフ状態にする必要がなくなり、スイッチング損失を低減することができる。
なお、上述したのはあくまでも本発明の一実施例であり、本発明はその主旨に逸脱しない範囲において種々変更が加えられうるものである。請求項のスイッチング素子は、IGBTの他、GTOサイリスタや MOS FET等の半導体素子も含む。
本発明の一実施例になる電力変換装置、電圧源および負荷の全体概略を示す回路構成図である。 同実施例の素子駆動回路の構成を示すブロック図である。 同実施例のスイッチング素子の温度を判断する制御フローを示す。 パルス動作用ゲート駆動回路がスイッチング素子のゲート端子に出力する駆動用のゲート信号を示すグラフである。 温度検出用ゲート駆動回路がスイッチング素子のゲート端子および素子温度判断器に出力する検出用のゲート信号を示すグラフである。 ゲート駆動回路部が出力するゲート信号の電圧波形を示すグラフである。 三角波比較法および変調率に基づき素子温度検出期間を規定する機能を示す説明図である。 別の実施例になる素子駆動回路の構成を示すブロック図である。 同実施例におけるゲート信号の電圧値を示すグラフである。 さらに別の実施例になる素子駆動回路の構成を示すブロック図である。 さらに別の実施例になる素子駆動回路の構成を示すブロック図である。 他の実施例になるスイッチング素子の温度を判断する制御フローを示す。 同実施例のゲート駆動回路部が出力するゲート信号の電圧波形を示すグラフである。
符号の説明
10 直流電圧源
20 素子駆動回路
201 駆動信号生成器
202 パルス動作用ゲート駆動回路
203 温度検出用ゲート駆動回路
204 ゲート駆動回路選択回路
205 選択器
206 ゲート駆動回路部
207 素子電流値検出器
208 素子温度判断器
209 210 ゲート駆動回路部
211 ゲートドライブ回路
212 選択器
30 モータ
41 42 43 44 45 46 スイッチング素子

Claims (12)

  1. 直流電圧源と負荷とを電気的に接続するスイッチング素子と、該スイッチング素子にオンオフ動作のためのゲート信号を与える素子駆動回路とを具え、前記スイッチング素子をオンオフしてパルス状電圧を生成することにより負荷の駆動電流を制御する電力変換装置において、
    前記素子駆動回路がスイッチング素子のゲート端子に前記ゲート信号を与えて前記スイッチング素子をオフからオンにする際に、前記ゲート信号の電圧値と前記スイッチング素子から前記負荷へ流れる素子電流の電流値との関係を規定するマップあるいは計算式から、前記スイッチング素子の温度状態を判断するよう構成したことを特徴とする電力変換装置。
  2. 請求項1に記載の電力変換装置において、
    前記スイッチング素子から前記負荷へ流れる素子電流を検知する素子電流値検出手段と、
    前記スイッチング素子をオフからオンにする際の前記ゲート信号の電圧値を監視し、前記素子電流値検出手段が前記素子電流を検知したときのゲート信号の電圧値を、ゲートオン電圧値とするゲートオン電圧値測定手段と、
    前記ゲートオン電圧値に基づき前記スイッチング素子の温度を求める素子温度判断手段とを具えたことを特徴とする電力変換装置。
  3. 請求項2に記載の電力変換装置において、
    前記素子駆動回路は、前記スイッチング素子をオフからオンにする際の前記ゲート信号の電圧値を漸増させ、スイッチング素子がオンした後にゲート信号の電圧値を急増させることを特徴とする電力変換装置。
  4. 請求項3に記載の電力変換装置において、
    前記漸増におけるゲート信号の電圧値の波形を、台形にしたことを特徴とする電力変換装置。
  5. 請求項3または4に記載の電力変換装置において、
    前記素子駆動回路は、前記ゲート信号の電圧値を前記漸増させる温度検出用ゲート駆動回路と、ゲート信号の電圧値を矩形波で急増させるパルス動作用ゲート駆動回路とを具えることを特徴とする電力変換装置。
  6. 請求項5に記載の電力変換装置において、
    前記素子駆動回路は、前記ゲート信号の電圧値を前記漸増させる期間である素子温度検出期間を規定するものであり、
    ゲート信号を前記温度検出用ゲート駆動回路および前記パルス動作用ゲート駆動回路の一方から他方に切り替える選択器を具え、
    該選択器は、前記素子温度検出期間に前記温度検出用ゲート駆動回路を選択することを特徴とする電力変換装置。
  7. 請求項6に記載の電力変換装置において、
    前記素子駆動回路は、パルス幅変調制御用変調率および三角波比較法に基づき前記パルス状電圧を制御してパルス幅変調制御を実行するパルス幅変調制御手段を具え、
    該パルス幅変調制御手段は、素子温度検出用変調率を設定する素子温度検出用変調率設定手段を具え、
    これら素子温度検出用変調率、パルス幅変調制御用変調率および三角波比較法に基づき前記素子温度検出期間を規定することを特徴とする電力変換装置。
  8. 請求項7に記載の電力変換装置において、
    前記素子温度検出用変調率設定手段は、前回設定した素子温度検出用変調率および前回求めたスイッチング素子温度に基づき素子温度検出用変調率をフィードバック制御で設定することを特徴とする電力変換装置。
  9. 請求項6に記載の電力変換装置において、
    前記スイッチング素子のゲート端子に、前記温度検出用ゲート駆動回路および前記パルス動作用ゲート駆動回路を並列に接続したことを特徴とする電力変換装置。
  10. 請求項3または4に記載の電力変換装置において、
    前記素子駆動回路は、ゲート信号を出力する1つのゲート駆動回路と、2つの経路のうち1つを選択して前記出力されたゲート信号を伝達する選択器とを具え、
    前記経路にはそれぞれ、ゲート信号の速度を互いに異なせる素子を設けたことを特徴とする電力変換装置。
  11. 請求項6に記載の電力変換装置において、
    前記ゲートオン電圧値測定手段は、前記素子電流を検知したときに素子温度検出の終了信号を前記選択器に出力し、
    前記選択器は、前記素子温度検出期間であっても終了信号受信後はゲート信号を温度検出用ゲート駆動回路からパルス動作用ゲート駆動回路に切り替えることを特徴とする電力変換装置。
  12. 請求項1に記載の電力変換装置において、
    前記ゲート信号を所定の電圧値として前記スイッチング素子をオフからオンにする温度検出用ゲート駆動手段と、
    ゲート信号が前記所定の電圧値における、スイッチング素子から前記負荷へ流れる素子電流の電流値を検出する素子電流値検出手段と、
    前記電流値に基づき前記スイッチング素子の温度を求める素子温度判断手段とを具えたことを特徴とする電力変換装置。
JP2006303006A 2006-11-08 2006-11-08 電力変換装置 Active JP4862616B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006303006A JP4862616B2 (ja) 2006-11-08 2006-11-08 電力変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006303006A JP4862616B2 (ja) 2006-11-08 2006-11-08 電力変換装置

Publications (2)

Publication Number Publication Date
JP2008125157A JP2008125157A (ja) 2008-05-29
JP4862616B2 true JP4862616B2 (ja) 2012-01-25

Family

ID=39509371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006303006A Active JP4862616B2 (ja) 2006-11-08 2006-11-08 電力変換装置

Country Status (1)

Country Link
JP (1) JP4862616B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5540931B2 (ja) * 2010-06-23 2014-07-02 株式会社デンソー 過熱保護装置および過熱保護方法
JP6162639B2 (ja) * 2014-04-22 2017-07-12 トヨタ自動車株式会社 温度算出装置
JP6396730B2 (ja) * 2014-09-19 2018-09-26 ルネサスエレクトロニクス株式会社 半導体装置
JP6750360B2 (ja) 2016-07-15 2020-09-02 富士電機株式会社 半導体装置
JP6861079B2 (ja) * 2017-04-19 2021-04-21 株式会社日立製作所 電力変換装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936356A (ja) * 1995-07-18 1997-02-07 Fuji Electric Co Ltd 温度検知部内蔵型バイポーラ半導体素子の使用方法
JP3861613B2 (ja) * 2001-03-27 2006-12-20 日産自動車株式会社 オンチップ温度検出装置
DE10196347T5 (de) * 2001-04-13 2004-07-29 Mitsubishi Denki K.K. Energiewandlervorrichtung

Also Published As

Publication number Publication date
JP2008125157A (ja) 2008-05-29

Similar Documents

Publication Publication Date Title
US10291110B2 (en) Driving circuit for switching element and power conversion system
US8841870B2 (en) Driver for switching element and control system for rotary machine using the same
US7969227B2 (en) Temperature detection circuit
JP6724706B2 (ja) スイッチング素子の駆動回路
JP6498473B2 (ja) スイッチ駆動回路
US10090832B2 (en) Controller for power converter having a delaying unit
US8829836B2 (en) Driver for switching element and control system for rotary machine using the same
CN101142737A (zh) 电动机控制装置的过热检测方式
US20150023076A1 (en) Power converter control device
JP4862616B2 (ja) 電力変換装置
US8723561B2 (en) Drive circuit for switching element
JP2014020994A (ja) 温度検出装置
JP2012129971A (ja) 負荷駆動装置
JP2016220481A (ja) 電力変換装置
JP5682593B2 (ja) スイッチング素子の駆動装置
JP5427633B2 (ja) ゲート駆動装置
JP4706130B2 (ja) 電力用半導体素子のゲート駆動回路
JP4833186B2 (ja) 多相電動機の制御装置
JP5422909B2 (ja) 電力変換装置
JP4713347B2 (ja) 半導体素子の駆動回路
CN111525818A (zh) 温度检测装置、异常检测装置及电力转换装置
KR20100033862A (ko) 션트저항을 사용하는 인버터의 전류 측정 방법
JP6344500B1 (ja) マトリクスコンバータ及び交流電動機の定数決定方法
KR101259623B1 (ko) 인버터의 전류 제어 장치
JP2010035284A (ja) 過電流保護回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4862616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150