[go: up one dir, main page]

JP4824900B2 - 半導体記憶装置及びその制御方法 - Google Patents

半導体記憶装置及びその制御方法 Download PDF

Info

Publication number
JP4824900B2
JP4824900B2 JP2002541687A JP2002541687A JP4824900B2 JP 4824900 B2 JP4824900 B2 JP 4824900B2 JP 2002541687 A JP2002541687 A JP 2002541687A JP 2002541687 A JP2002541687 A JP 2002541687A JP 4824900 B2 JP4824900 B2 JP 4824900B2
Authority
JP
Japan
Prior art keywords
sense amplifier
power supply
memory cell
potential
semiconductor memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002541687A
Other languages
English (en)
Other versions
JPWO2002039456A1 (ja
Inventor
淳匡 酒向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Publication of JPWO2002039456A1 publication Critical patent/JPWO2002039456A1/ja
Application granted granted Critical
Publication of JP4824900B2 publication Critical patent/JP4824900B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4091Sense or sense/refresh amplifiers, or associated sense circuitry, e.g. for coupled bit-line precharging, equalising or isolating
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4076Timing circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4093Input/output [I/O] data interface arrangements, e.g. data buffers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • G11C7/065Differential amplifiers of latching type
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2207/00Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
    • G11C2207/06Sense amplifier related aspects
    • G11C2207/065Sense amplifier drivers

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)

Description

技術分野
本発明は、半導体記憶装置及びその制御方法に関し、特にリフレッシュ動作を必要とする半導体記憶装置及びその制御方法に関する。
背景技術
図2に示すように、DRAM等の半導体記憶装置は、メモリセル内の容量素子21に電荷を蓄積することによりデータを記憶させ、その電荷を保持するためにリフレッシュ動作を行う必要がある。このリフレッシュ動作では、メモリセル内の容量素子21の電位をビット線BLに取り出し、センスアンプ17によりビット線BL及び/BLの電位差を増幅する。ここで、「/」は論理反転信号を示すバーを意味し、以下も同様の意味で用いる。この増幅の速度を上げるために、第2の電源Viiよりも高い第1の電源Vddを用いて上記の電位差の増幅を行う。
図12は、従来技術による半導体記憶装置(DRAM)の制御方法を示すタイミングチャートである。ワード線WLをローレベルからハイレベルにすると、ビット線BL,BLs及び/BL,/BLsには、容量素子21に蓄積されている電荷に応じてわずかな電位差が生じる。センスアンプ17は、この電位差をタイミングt1以降で増幅する。
次に、タイミングt1での制御方法を説明する。第2のセンスアンプ活性化信号線LEzをローレベルからハイレベルにすることにより、nチャネルMOSトランジスタ16(図2)はオンする。オーバードライブ信号線LEPxをハイレベルからローレベルにすることにより、pチャネルMOSトランジスタQ1はオンする。第1のセンスアンプ活性化信号線LExをハイレベルに維持することにより、pチャネルMOSトランジスタQ2はオフを維持する。これにより、ノードPSAは第1の電源Vddに接続され、ノードNSAは電位Vss(グランド)に接続される。例えば、ビット線BL,BLsは第1の電源Vddの電位に向けて増幅され、ビット線/BL,/BLsは電位Vssに向けて増幅される。
次に、タイミングt2での制御方法を説明する。第2のセンスアンプ活性化信号線LEzをハイレベルに維持することにより、nチャネルMOSトランジスタ16はオンを維持する。オーバードライブ信号線LEPxをローレベルからハイレベルにすることにより、pチャネルMOSトランジスタQ1はオフする。第1のセンスアンプ活性化信号線LExをハイレベルからローレベルにすることにより、pチャネルMOSトランジスタQ2はオンする。これにより、ノードPSAは第2の電源Viiに接続され、ノードNSAは電位Vssに接続される。例えば、ビット線BL,BLsは第2の電源Viiの電位に向けて増幅され、ビット線/BL,/BLsは電位Vssに向けて増幅される。
t1以降のセルノード(ストレージノード)CNの電位は、ビット線BLsの電位に応じて変化する。データ増幅時間T3は、タイミングt1からセルノードCNの電位が第2の電源Viiの電位になるまでの時間である。
以上のように、タイミングt1〜t2では高電源Vddで増幅し、タイミングt2以降では低電源Viiで増幅する。このように、センスアンプに過渡的に高い電源Vddを供給することをオーバードライブといい、このようなセンスアンプをオーバードライブセンスアンプという。2つの電源Vdd及びViiを用いることにより、1つの電源Viiを用いる場合に比べ、データ増幅時間T3を短縮することができる。
図12に示すように、t1以降のセルノードCNの電位は、ビット線BLsの電位に比べて遅れて変化する。データ増幅時間T3を短縮するためには、ビット線BLsの電位をメモリセル電位維持用電源Viiの電位より高い電位に引き上げることが考えられる。しかし、その後、ビット線BLsの電位を電源Viiの電位に安定させるため、電源をVddからViiに切り換える必要がある。この際、ビット線BLsの電位Vii以上の過剰な電位を電源Viiにより引き抜かなければならない。その過剰な電位を引き抜く電流は無駄な電流であり、消費電力が不必要に増加してしまう。また、半導体記憶装置の製造ばらつき又は動作環境により、データ増幅時間T3にばらつきが生じる。
本発明の目的は、高速かつ低消費電力でメモリセルのデータを増幅することができるセンスアンプを含む半導体記憶装置及びその制御方法を提供することである。
本発明の他の目的は、製造ばらつきによるデータ増幅時間のばらつきを防止することができるセンスアンプを含む半導体記憶装置及びその制御方法を提供することである。
本発明のさらに他の目的は、温度等の環境変化によるデータ増幅時間のばらつきを防止することができるセンスアンプを含む半導体記憶装置及びその制御方法を提供することである。
発明の開示
本発明の半導体記憶装置は、データを記憶するための複数のメモリセルが配列されたメモリセルアレイと、メモリセルのデータを増幅するためのセンスアンプと、第1の電源と、第1の電源より低い第2の電源とを有する。第1のステップでは、センスアンプが第1の電源から電源の供給を受けてメモリセルのデータを増幅する。第2のステップでは、センスアンプが第1の電源からも第2の電源からも電源の供給を受けない。第3のステップでは、センスアンプが第2の電源から電源の供給を受けてメモリセルのデータを増幅する。
第1のステップで第1の高電源をセンスアンプに供給することにより、センスアンプの出力に接続されるビット線の電位を第2の低電源の電位よりも高くすることができ、メモリセルのデータを高速に増幅することができる。第2のステップでセンスアンプに第1の電源も第2の電源も供給しないことにより、第2の低電源の電位よりも高くなったビット線の電位をセルやビット線端への充電により下げることができるので、電力を無駄に消費せず、消費電力を下げることができる。第3のステップでセンスアンプに第2の低電源を供給することにより、メモリセルを所定の維持用電位に安定させることができる。
発明を実施するための最良の形態
以下、本発明の第1〜第4の実施形態による半導体記憶装置及びその制御方法を、図面を参照しながら説明する。
(第1の実施形態)
図1は、本発明の第1の実施形態による半導体記憶装置の構成を示すブロック図である。メモリセルアレイ1には、データを記憶するための複数のメモリセルが2次元配列されている。各メモリセルの特定は、ワード線WL及びコラム選択信号線CLzを選択することにより行われる。コラムデコーダ2は、コラム選択信号線CLzの選択を行う。ローデコーダ3は、ワード線WLの選択を行う。リード/ライトアンプ4は、データバスDB及び/DBを介して各メモリセルに対してデータの読み出し及び書き込みを行うことができる。
図2は、上記のメモリセルにセンスアンプ17及びプリチャージ回路18が接続された回路である。メモリセルは、nチャネルMOSトランジスタ(トランスファゲート)20及び容量素子21を含む。nチャネルMOSトランジスタ20は、ゲートがワード線WLに接続され、ドレインがビット線BLに接続され、ソースが容量素子21を介して電位Vprに接続される。セルノード(ストレージノード)CNは、トランジスタ20のソースと容量素子21との相互接続点のノードである。
ビット線/BLはビット線BLの論理反転信号線であり、ビット線/BLsはビット線BLsの論理反転信号線であり、データバス/DBはデータバスDBの論理反転信号線である。nチャネルMOSトランジスタ(コラムゲート)11a及び11bのゲートには、コラム選択信号線CLzが接続される。トランジスタ11aは、ドレインがデータバスDBに接続され、ソースがビット線BLsに接続される。一方、トランジスタ11bは、ドレインがデータバス/DBに接続され、ソースがビット線/BLsに接続される。コラム選択信号線CLzをハイレベルにすると、トランジスタ11a及び11bがオンする。すると、データバスDBは、トランジスタ11aを介してビット線BLsに接続される。同様に、データバス/DBは、トランジスタ11bを介してビット線/BLsに接続される。すなわち、コラム選択信号線CLzをハイレベルにすることにより、ビット線BLs及び/BLsが選択される。
nチャネルMOSトランジスタ19a及び19bのゲートは、アイソレーション信号線ISOに接続される。トランジスタ19aは、プリチャージ回路18及びセンスアンプ17が接続されたビット線BLsと、トランスファゲート20及び容量素子21が接続されたビット線BLとの間を接続したり切断することができる。同様に、トランジスタ19bは、ビット線/BLと/BLsを接続したり切断することができる。
トランジスタ19a及び19bがオンし、プリチャージ信号線PREがハイレベルになると、プリチャージ回路18は、ビット線BL,BLsと/BL,/BLsとの間を短絡して所定の電位Vprにプリチャージする。また、トランジスタ19a及び19bがオンし、プリチャージ信号線PREがローレベルになると、プリチャージ回路18は、ビット線BL,BLsと/BL,/BLsとの間を開放する。
センスアンプ17は、pチャネルMOSトランジスタ12及びnチャネルMOSトランジスタ13を含むCMOSインバータと、pチャネルMOSトランジスタ14及びnチャネルMOSトランジスタ15を含むCMOSインバータとを有する。
ビット線BLsは、トランジスタ14のゲートとトランジスタ15のゲートとの相互接続点に接続される。トランジスタ14のソースはノードPSAに接続され、トランジスタ15のソースはノードNSAに接続される。トランジスタ14のドレインとトランジスタ15のドレインとの相互接続点は、ビット線/BLsに接続される。
また、ビット線/BLsは、トランジスタ12のゲートとトランジスタ13のゲートとの相互接続点に接続される。トランジスタ12のソースはノードPSAに接続され、トランジスタ13のソースはノードNSAに接続される。トランジスタ12のドレインとトランジスタ13のドレインとの相互接続点は、ビット線BLsに接続される。
pチャネルMOSトランジスタQ1は、ゲートがオーバードライブ信号線LEPxに接続され、ソースが第1の電源(高電源)Vddに接続され、ドレインがノードPSAに接続される。pチャネルMOSトランジスタQ2は、ゲートが第1のセンスアンプ活性化信号線LExに接続され、ソースが第2の電源(低電源)Viiに接続され、ドレインがノードPSAに接続される。第2の電源Viiは、メモリセルのデータ維持用電位を供給するための電源である。第1の電源Vddは、第2の電源Viiよりも高い電源である。
nチャネルMOSトランジスタ16は、ゲートが第2のセンスアンプ活性化信号線LEzに接続され、ソースが電位Vssに接続され、ドレインがノードNSAに接続される。電位Vssは、グランドレベルであり、第2の電源Viiよりも低い電位である。
センスアンプ17は、ビット線BLsの信号を反転増幅してビット線/BLsに出力し、ビット線/BLsの信号を反転増幅してビット線BLsに出力する。すなわち、センスアンプ17は、ビット線BL,BLsと/BL,/BLsとの間の電位差を増幅するリフレッシュ動作を行うことができる。
図3は、図2の回路の動作を説明するためのタイミングチャートである。まず、上記のように、プリチャージ回路18がビット線BL,BLsと/BL,/BLsとの間を短絡して所定の電位Vprにプリチャージする。
タイミングt1以前の動作を説明する。第2のセンスアンプ活性化信号線LEzはローレベルであり、トランジスタ16はオフし、電位VssとノードNSAとの間は切断される。オーバードライブ信号線LEPxはハイレベルであり、トランジスタQ1はオフし、第1の電源VddとノードPSAとの間は切断される。第1のセンスアンプ活性化信号LExはハイレベルであり、トランジスタQ2はオフし、第2の電源ViiとノードPSAとの間は切断される。
ワード線WLをローレベルからハイレベルにすると、トランスファゲート20がオンし、容量素子21がビット線BLに接続される。すると、ビット線BL,BLsと/BL,/BLsとの間に所定の電位差が生じる。この際、トランジスタ19a及び19bはオンしている。
次に、タイミングt1での動作を説明する。第2のセンスアンプ活性化信号線LEzをローレベルからハイレベルにすることにより、トランジスタ16はオンし、ノードNSAと電位Vssとが接続される。オーバードライブ信号線LEPxをハイレベルからローレベルにすることにより、トランジスタQ1はオンし、ノードPSAと第1の電源Vddとが接続される。第1のセンスアンプ活性化信号線LExをハイレベルに維持することにより、トランジスタQ2はオフを維持し、ノードPSAと第2の電源Viiとの間は切断される。すなわち、ノードPSAは第1の電源Vddに接続され、ノードNSAは電位Vssに接続される。
ビット線BL,BLs及び/BL,/BLsの論理は、容量素子21に記憶されているデータに応じて決まる。例えば、容量素子21に記憶されているデータがハイレベルの場合を説明する。ワード線WLがハイレベルになると、容量素子21とビット線BLとで電荷を共有することにより、ビット線BL,BLsの電位が上昇する。したがって、ビット線BLsは/BLsより第1の電源Vdd側となり、ビット線/BLsはBLsより電位Vss側となるので、トランジスタ12及び15がオンし、トランジスタ13及び14がオフする。
ビット線BLsには第1の電源Vddが接続され、ビット線BL,BLsの電位は第1の電源Vddの電位に向けて上昇する。一方、ビット線/BLsには電位Vssが接続され、ビット線/BL,/BLsの電位は電位Vssに向けて下降する。すなわち、センスアンプ17は、第1の電源Vdd及び電位Vssに応じてビット線BL,BLs及び/BL,/BLsの電位を増幅する。
次に、タイミングt2での動作を説明する。第2のセンスアンプ活性化信号線LEzをハイレベルに維持することにより、トランジスタ16はオンを維持し、ノードNSAに電位Vssが接続される。オーバードライブ信号線LEPxをローレベルからハイレベルにすることにより、トランジスタQ1はオフし、ノードPSAと第1の電源Vddとの間が切断される。第1のセンスアンプ活性化信号線LExをハイレベルに維持することにより、トランジスタQ2はオフを維持し、ノードPSAと第2の電源Viiとの間は切断される。すなわち、ノードPSAは第1及び第2の電源Vdd,Viiから切断されて開放状態になり、ノードNSAは電位Vssに接続される。ノードPSAが開放状態になると、ビット線BLsも開放状態となり、セルやビット線端への充電により、ビット線BLの電位は下降する。タイミングt2からt3までの期間T2では、ビット線BLsは第1の電源Vddによって上昇した電位をセルやビット線端への充電により下げることができるので、電力を無駄に消費しない。一方、ノードNSAには電位Vssが接続されたままであるので、ビット線/BL,/BLsの電位は、電位Vssに向けて変化する。
t1以降のセルノードCNの電位は、ビット線BLsの電位に追従するように変化する。図12の場合に比べて、タイミングt1からt2までの期間T1を長くすることにより、ビット線BLsの電位を電位Viiよりも高くすることができる。ビット線BLsの電位を高くすることにより、セルノードCNの電位を高速に上昇させることができる。
その後、タイミングt2でノードPSAに第2の電源Viiに接続する方法も考えられるが、その場合、ビット線BLsの電位Vii以上の過剰な電位を電源Viiにより引き抜く電流が無駄な電流となり、消費電力が不必要に増加してしまう。
本実施形態では、タイミングt2でノードPSAに対して第1及び第2の電源Vdd,Viiを切断することにより、ビット線BLsを開放状態とし、無駄な電力を消費することなく、ビット線BLsの電位を下げることができる。ビット線BLの電位が下降し、第2の電源Viiの電位に等しくなった時点をタイミングt3として、以下の制御を行う。
次に、タイミングt3での動作を説明する。第2のセンスアンプ活性化信号線LEz及びオーバードライブ信号線LEPxを変化させず、第1のセンスアンプ活性化信号線LExをハイレベルからローレベルにする。これにより、ノードPSAには第2の電源Viiが接続され、ノードNSAには電位Vssが接続される。タイミングt3の直前では、既にビット線BLsの電位が第2の電源Viiの電位にほぼ等しくなっており、ビット線/BLsの電位が電位Vssにほぼ等しくなっている。タイミングt3での上記の制御により、ビット線BL,BLsの電位は第2の電源Viiの電位に安定し、ビット線/BL,/BLsの電位は電位Vssに安定する。タイミングt1からt3までの期間T3がデータ増幅時間になる。
以上のように、期間T1の長さを調整することにより、ビット線BLsの電位を第2の電源Viiよりも高くすることができるので、データ増幅時間T3を短縮することができる。また、期間T2では、ノードPSAを開放状態にすることにより、消費電力を低減させることができる。
図4は第1の実施形態によるセンスアンプ制御回路の回路図であり、図5はその回路の動作を説明するためのタイミングチャートである。このセンスアンプ制御回路は、図2に示したオーバードライブ信号線LEPx、第1のセンスアンプ活性化信号線LEx及び第2のセンスアンプ活性化信号線LEzに接続される。
LEz発生回路31は、図5に示す第2のセンスアンプ活性化信号線LEzの信号を生成し、その出力端子は第2のセンスアンプ活性化信号線LEzに接続される。遅延素子32及び33の入力端子には、LEz発生回路31の出力端子が接続される。否定論理積(NAND)回路35は、一方の入力端子がLEz発生回路31の出力端子に接続され、他方の入力端子が論理否定(NOT)回路34を介して遅延素子32の出力端子に接続され、出力端子がオーバードライブ信号線LEPxに接続される。NAND回路36は、一方の入力端子がLEz発生回路31の出力端子に接続され、他方の入力端子が遅延素子33の出力端子に接続され、出力端子が第1のセンスアンプ活性化信号線LExに接続される。図5に、信号線LEz,LEPx,LExの信号を示す。期間T1は遅延素子32の遅延時間に対応し、期間T3は遅延素子33の遅延時間に対応する。
以上のように、第1の実施形態によれば、信号線LEx,LEz及びLEPxの信号タイミングを調整することにより、高速かつ低消費電力でデータ増幅を行うことができる。
(第2の実施形態)
本発明の第2の実施形態による半導体記憶装置は、第1の実施形態に比べて、図4に示したセンスアンプ制御回路のみが異なり、その他の点は同じである。
図6は、第2の実施形態によるセンスアンプ制御回路の回路図である。このセンスアンプ制御回路は、図4に示したセンスアンプ制御回路における遅延素子32及び33の代わりに可変遅延素子42及び43を設け、その可変遅延素子42及び43にヒューズ回路45を接続したものである。可変遅延素子42及び43を設けることにより、遅延時間を調整することができるので、半導体記憶装置の製造ばらつきがあっても図3に示すビット線BLs,/BLs及びセルノードCNにおけるリフレッシュ特性を均一にすることができる。
ヒューズ回路45は、可変遅延素子42及び43の遅延時間を独立にプログラム可能である。可変遅延素子42及び43は、それぞれヒューズ回路45にプログラムされた遅延時間に応じて信号の遅延を行う。ヒューズ回路45は、半導体ウエハ試験等において遅延時間をプログラム可能である。なお、ヒューズ回路45の代わりにラッチ回路等によりプログラムしてもよい。
図7は、図6に示した可変遅延素子42及びヒューズ回路45の回路図である。可変遅延素子43の回路も可変遅延素子42の回路と同様である。まず、可変遅延素子42の構成を説明する。可変遅延素子42は、入力端子がNOT回路51の入力端子に相当し、出力端子がNOT回路55の出力端子に相当する。複数のNOT回路51,52,53,54等が直列に接続される。
pチャネルMOSトランジスタ56は、ゲートが出力線/OUT1に接続され、ソースがNOT回路51及び52の相互接続点に接続され、ドレインがNOT回路55の入力端子に接続される。nチャネルMOSトランジスタ57は、ゲートが出力線OUT1に接続され、ドレインがNOT回路51及び52の相互接続点に接続され、ソースがNOT回路55の入力端子に接続される。
同様に、pチャネルMOSトランジスタ58は、ゲートが出力線/OUT2に接続され、ソースがNOT回路53及び54の相互接続点に接続され、ドレインがNOT回路55の入力端子に接続される。nチャネルMOSトランジスタ59は、ゲートが出力線OUT2に接続され、ドレインがNOT回路53及び54の相互接続点に接続され、ソースがNOT回路55の入力端子に接続される。同様に、上記のCMOSトランジスタの組が複数設けられる。
例えば、出力信号線OUT1がローレベルで出力信号線OUT2がハイレベルのとき、遅延時間を短くするには、出力信号線OUT1をハイレベルにして、出力信号線OUT2をローレベルにすればよい。出力信号線/OUT1及び/OUT2は、それぞれ出力信号線OUT1及びOUT2の論理反転信号である。この場合、トランジスタ56及び57がオンし、トランジスタ58及び59がオフする。その結果、可変遅延素子42に入力された信号は、NOT回路51、トランジスタ56,57及びNOT回路55を通過して出力される。すなわち、遅延時間は、NOT回路2個分短くなる。
例えば、出力信号線OUT1がハイレベルで出力信号線OUT2がローレベルのとき、遅延時間を長くするには、出力信号線OUT1をローレベルにして、出力信号線OUT2をハイレベルにすればよい。この場合、トランジスタ56及び57がオフし、トランジスタ58及び59がオンする。その結果、可変遅延素子42に入力された信号は、NOT回路51,52,53、トランジスタ58,59及びNOT回路55を通過して出力される。すなわち、遅延時間は、NOT回路2個分長くなる。以上のように、出力信号線OUT1,/OUT1,OUT2,/OUT2等に応じて、遅延時間が決まる。
デコーダ60は、入力信号線IN1,IN2等からの信号入力に応じて、出力信号線OUT1,/OUT1,OUT2,/OUT2等上の信号レベルを決定する。
次に、ヒューズ回路45の構成を説明する。ヒューズ61は、電源端子とNOT回路63の入力端子とに接続される。ヒューズ62は、NOT回路63の入力端子とnチャネルMOSトランジスタ66のドレインとに接続される。nチャネルMOSトランジスタ66はゲートが電源端子に接続され、ソースがグランド端子に接続され、ドレインがヒューズ62に接続される。ヒューズ61及び62の相互接続点は、3個のNOT回路63,64及び65を介して入力信号線IN1,IN2等に接続される。これらの素子の組は、可変遅延素子42の遅延時間に応じて複数設けられる。ヒューズ回路45のヒューズ61,62は、例えば半導体ウエハ試験時に、どちらかを溶断することによって遅延時間をプログラムすることができる。
以上のように、第2の実施形態によれば、可変遅延素子の遅延時間を調整することにより、半導体記憶装置の製造ばらつきがあっても、データ増幅特性及びリフレッシュ特性を均一化することができる。
(第3の実施形態)
本発明の第3の実施形態による半導体記憶装置は、第1の実施形態に比べて、図4に示したセンスアンプ制御回路のみが異なり、その他の点は同じである。
図8は、第3の実施形態によるセンスアンプ制御回路の回路図である。このセンスアンプ制御回路は、ダミーセンスアンプ17a及びダミーメモリセル等を設け、ダミービット線BLsaの信号レベルを検出し、その検出結果に応じて、信号線LEx,LEz,LEPx上の信号を生成する。これにより、ダイナミックに信号のタイミングを制御することができるので、温度等の動作環境が変わった場合でも、均一なデータ増幅特性及びリフレッシュ特性を提供することができる。
ダミーセンスアンプ17aは、図2に示したセンスアンプ17と同じ構成であり、ダミービット線BLa,BLsa,/BLa,/BLsaに接続される。プリチャージ回路18及びトランジスタ19a,19bは、図2と同様に、ダミービット線BLa,BLsa,/BLa,/BLsaに接続される。ただし、トランジスタ19a,19bのゲートには、常にハイレベルが供給される。ダミーメモリセルは、図2と同様に、トランスファゲート20及び容量素子21を有する。トランスファゲート20のゲートは、ダミーワード線WLaに接続される。
ここで、新たに、nチャネルMOSトランジスタ81が設けられる。トランジスタ81は、ゲートがプリチャージ信号線PREに接続され、ソースがセルノードCNに接続され、ドレインが電位Viiに接続される。プリチャージ信号線PREをハイレベルにすると、トランジスタ81はオンし、容量素子21を電位Viiに充電可能となり、容量素子21が記憶する論理値を固定化できる。
LEz発生回路82の出力端子は、第2のセンスアンプ活性化信号線LEzに接続される。比較器83は、+端子がダミービット線BLsaに接続され、−端子が第1の参照電位REF1に接続される。比較器84は、+端子がダミービット線BLsaに接続され、−端子が第2の参照電位REF2に接続される。
LEPx発生部85は、入力端子が信号線LEz及び比較器83の出力ノードN1に接続され、出力端子が信号線LEPxに接続される。LEx発生部86は、入力端子が信号線LEz,LEPx及び比較器84の出力ノードN2に接続され、出力端子が信号線LExに接続される。
図9は、図8に示したセンスアンプ制御回路の動作を説明するためのタイミングチャートである。タイミングt1a以前は、図3に示したタイミングチャートにおけるt1以前と同様である。第1の参照電位REF1は、第2の参照電位REF2よりも高い。
まず、タイミングt1a〜t2aについて説明する。ダミービット線BLsaの電位は第1の参照電位REF1より低いので、比較器83の出力ノードN1はローレベルになる。また、ダミービット線BLsaの電位は第2の参照電位REF2より低いので、比較器84の出力ノードN2はローレベルになる。
次に、タイミングt2a〜t3aについて説明する。ダミービット線BLsaの電位は第1の参照電位REF1より低いので、比較器83の出力ノードN1はローレベルになる。また、ダミービット線BLsaの電位は第2の参照電位REF2より高くなるので、比較器84の出力ノードN2はハイレベルになる。
次に、タイミングt3a〜t4aについて説明する。ダミービット線BLsaの電位は第1の参照電位REF1及び第2の参照電位REF2よりも高いので、比較器83の出力ノードN1及び比較器84の出力ノードN2はハイレベルになる。
次に、タイミングt4a〜t5aについて説明する。ダミービット線BLsaの電位は、第1の参照電位REF1より低くて第2の参照電位REF2よりも高いので、比較器83の出力ノードN1がローレベルになり、比較器84の出力ノードN2がハイレベルになる。
次に、タイミングt5a以降について説明する。ダミービット線BLsaの電位は、第1の参照電位REF1及び第2の参照電位REF2よりも低いので、比較器83の出力ノードN1及び比較器84の出力ノードN2がローレベルになる。
タイミングt6aでは、プリチャージ信号線PREがローレベルからハイレベルになり、信号線LEzがハイレベルからローレベルになる。プリチャージ信号線PREがハイレベルになると、ダミービット線BLa,BLsa,/BLa,/BLsaが短絡されて所定の電位Vprにプリチャージされる。
LEz発生回路82は、図9に示す信号線LEzの信号を生成する。LEPx発生部85は、信号線LEz及び出力ノードN1の信号に応じて、信号線LEPxの信号を生成する。LEx発生部86は、信号線LEz及び出力ノードN2の信号に応じて、信号線LExの信号を生成する。タイミングt1a〜t6aのセルノードCNの電位は、ダミービット線BLsaの電位に追従して変化する。
ここで、製造ばらつき、温度や、電源に対するマージンの確保又は、回路や配線遅延の影響等のため、タイミングを変更する場合には、参照電位REF1,REF2のレベルを変更、又はビット線BLa,BLsa,/BLa,/BLsaにCMOS容量等でダミーの負荷をつけるとよい。
以上のように、第3の実施形態によれば、図2に示したメモリセル及びセンスアンプ17とは別に、ダミーメモリセル及びダミーセンスアンプ17a等を設けることにより、データ増幅特性(リフレッシュ特性)をリアルタイムに検出しながら、信号線LEz、LEPx及びLExの信号タイミングをダイナミックに制御することができる。これにより、製造ばらつきがあったり、温度や電源等の動作環境が変化しても、高精度で均一なデータ増幅特性及びリフレッシュ特性を提供することができる。
(第4の実施形態)
本発明の第4の実施形態による半導体記憶装置は、第3の実施形態に比べて、図8に示したセンスアンプ制御回路のみが異なり、その他の点は同じである。図10に、第4の実施形態によるセンスアンプ制御回路の回路図を示す。このセンスアンプ制御回路では、図8に示した比較器84の代わりに遅延素子91(図10)を設けたものである。遅延素子91は、入力端子が比較器83の出力ノードN1に接続され、出力端子が出力ノードN2bを介してLEx発生部86の入力端子に接続される。
図11は、図10に示したセンスアンプ制御回路の動作を説明するためのタイミングチャートである。
タイミングt1b〜t2bでは、ダミービット線BLsbの電位が第1の参照電位REF1よりも低いので、比較器83の出力ノードN1はローレベルになる。
タイミングt2b〜t3bでは、ダミービット線BLsbの電位が第1の参照電位REF1よりも高いので、比較器83の出力ノードN1はハイレベルになる。
タイミングt3b以降では、ダミービット線BLsbの電位が第1の参照電位REF1よりも低いので、比較器83の出力ノードN1はローレベルになる。
遅延素子91の出力ノードN2bの信号は、ノードN1の信号よりも遅延時間T4だけ遅延した信号となる。
第3の実施形態と同様に、LEz発生回路82は、図11に示す信号線LEzの信号を生成する。LEPx発生部85は、信号線LEz及びノードN1の信号に応じて、信号線LEPxの信号を生成する。LEx発生部86は、信号線LEz及びノードN2bの信号に応じて、信号線LExの信号を生成する。
ここで、製造ばらつき、温度や、電源に対するマージンの確保又は、回路や配線遅延の影響等のため、タイミングを変更する場合には、参照電位REF1のレベルを変更、又はビット線BLb,BLsb,/BLb,/BLsbにCMOS容量等でダミーの負荷をつけるとよい。
また、ノードN2bがハイレベルになるタイミングt4bでは、ダミービット線BLsb,/BLsbの電位変化が緩やかになっているので、ノードN2の信号タイミングはノードN1の信号タイミングに比べて高精度である必要はない。したがって、遅延素子91は、可変遅延素子であることが好ましいが、固定遅延素子でも問題はない。
以上のように、第1〜第4の実施形態によれば、図3に示したタイミングt1〜t2で、ノードPSAに第1の電源Vddを接続し、ビット線BLsの電位を第2の電源Viiよりも高くすることにより、データ増幅時間T3を短縮することができる。次に、タイミングt2〜t3で、ノードPSAを開放状態にすることにより、無駄な電力を消費せずにビット線BLsの電位を下げることができる。次に、タイミングt3以降で、ノードPSAに第2の電源Viiを接続することにより、ビット線BL,BLsの電位を電源Viiの電位に安定させることができる。
第2の実施形態によれば、センスアンプ制御回路に可変遅延素子を用いることにより、センスアンプに入力される信号線LEx,LEz,LEPxのタイミングを調整でき、製造ばらつきによるデータ増幅特性及びリフレッシュ特性のばらつきを防止できる。
第3及び第4の実施形態によれば、ダミーセンスアンプ及びダミーメモリセル等を設け、そのデータ増幅動作をリアルタイムで検出し、ダイナミックに信号線LEx,LEz,LEPxのタイミングを調整できるので、製造ばらつきの他、温度や電源等の動作環境の変化によるデータ増幅特性及びリフレッシュ特性のばらつきを防止できる。
以上、半導体記憶装置のリフレッシュ動作について説明した。センスアンプのデータ増幅時間を短縮することにより、リフレッシュ動作を高速化することができる。
データ増幅時間を短縮することにより、データ読み出し速度も速くなる。図2を参照しながら、半導体記憶装置の読み出し動作を説明する。ワードラインWLをハイレベルにし、トランジスタ20をオンにする。このとき、アイソレーション信号ISOはハイレベルであり、トランジスタ19a,19bはオンしている。容量素子21内の電荷は、ビット線BL,BLsに取り出され、センスアンプ17により増幅される。その後、コラム選択信号線CLzをハイレベルにし、トランジスタ11a,11bをオンにする。ビット線BLsの電位はトランジスタ11aを介してデータバスDBに読み出され、ビット線/BLsの電位はトランジスタ11bを介してデータバス/DBに読み出される。センスアンプ17のデータ増幅速度が高速になるので、半導体記憶装置のデータ読み出し速度も高速になる。
なお、上記実施形態は、何れも本発明を実施するにあたっての具体化のほんの一例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
産業上の利用可能性
以上のように、本発明によれば、第1のステップで第1の高電源をセンスアンプに供給することにより、センスアンプの出力に接続されるビット線の電位を第2の低電源の電位よりも高くすることができ、メモリセルのデータを高速に増幅することができる。次に、第2のステップでセンスアンプに第1の電源も第2の電源も供給しないことにより、第2の低電源の電位よりも高くなったセルやビット線端への充電により下げることができ、第2の低電源により引き抜かないので、無駄に電力を消費せず、消費電力を下げることができる。次に、第3のステップでセンスアンプに第2の低電源を供給することにより、メモリセルを所定の維持用電位に安定させることができる。センスアンプが高速にデータ増幅を行うことができるので、半導体記憶装置のリフレッシュ動作及びデータ読み出し速度を高速化することができる。また、製造ばらつきや動作環境の変化に応じたリフレッシュ動作やデータ読み出し動作等のばらつきを防止できる。
【図面の簡単な説明】
図1は、本発明の第1の実施形態による半導体記憶装置の構成を示すブロック図である。
図2は、第1の実施形態によるセンスアンプ及びプリチャージ回路が接続されたメモリセルの回路図である。
図3は、第1の実施形態による半導体記憶装置の動作を説明するためのタイミングチャートである。
図4は、第1の実施形態によるセンスアンプ制御回路の回路図である。
図5は、図4に示すセンスアンプ制御回路の動作を説明するためのタイミングチャートである。
図6は、本発明の第2の実施形態によるセンスアンプ制御回路の回路図である。
図7は、図6に示す可変遅延素子およびヒューズ回路の回路図である。
図8は、本発明の第3の実施形態によるセンスアンプ制御回路の回路図である。
図9は、図8に示すセンスアンプ制御回路の動作を説明するためのタイミングチャートである。
図10は、本発明の第4の実施形態によるセンスアンプ制御回路の回路図である。
図11は、図10に示すセンスアンプ制御回路の動作を説明するためのタイミングチャートである。
図12は、従来技術による半導体記憶装置の制御方法を説明するためのタイミングチャートである。

Claims (16)

  1. データを記憶するための複数のメモリセルが配列されたメモリセルアレイと、
    前記メモリセルのデータを増幅するためのセンスアンプと、
    第1の電源と、
    前記第1の電源より低い第2の電源と、
    前記センスアンプが、第1のステップで前記第1の電源から電源の供給を受けて前記メモリセルのデータを増幅し、第2のステップで前記第1の電源からも前記第2の電源からも電源の供給を受けず、第3のステップで前記第2の電源から電源の供給を受けて前記メモリセルのデータを増幅するように制御する制御回路と
    を有する半導体記憶装置。
  2. さらに、前記第1又は第2の電源から前記センスアンプに電源を供給するための電源供給ラインを有し、
    前記制御回路は、前記第1のステップで前記センスアンプに前記電源供給ラインを介して前記第1の電源を接続し、前記第2のステップで前記センスアンプに対して前記第1及び第2の電源を切断し、前記第3のステップで前記センスアンプに前記電源供給ラインを介して前記第2の電源を接続するように制御する請求項1記載の半導体記憶装置。
  3. さらに、前記センスアンプの出力と前記メモリセルを接続するためのビット線を有し、
    前記制御回路は、前記第1のステップで前記ビット線の電位が前記第2の電源よりも高くなるように電荷を充電させる制御を行う請求項1記載の半導体記憶装置。
  4. 前記メモリセルは、電荷を蓄積することによりデータを記憶する容量素子を含み、
    前記制御回路は、前記第2のステップで前記センスアンプから前記ビット線を介して前記メモリセル内の容量素子に電荷を充電させて電荷量を増加させるように制御する請求項3記載の半導体記憶装置。
  5. 前記制御回路は、前記第3のステップが開始される時点で、前記メモリセル内の容量素子にリフレッシュするために十分な電荷が蓄積されているように制御する請求項4記載の半導体記憶装置。
  6. 前記制御回路は、前記第3のステップが開始される時点で、前記メモリセル内の容量素子の電位及び/又は前記ビット線の電位が前記第2の電源に等しくなるように制御する請求項4記載の半導体記憶装置。
  7. 前記制御回路は、前記第1のステップの期間及び/又は前記第2のステップの期間の長さを決めるための遅延素子を含む請求項1記載の半導体記憶装置。
  8. 前記制御回路は、前記第1のステップの期間及び/又は前記第2のステップの期間の長さを変更可能な可変遅延素子を含む請求項1記載の半導体記憶装置。
  9. 前記可変遅延素子の遅延時間はプログラム可能である請求項8記載の半導体記憶装置。
  10. さらに、ダミーとして使用するためのダミーセンスアンプ及びダミーメモリセルを有し、
    前記制御回路は、前記ダミーセンスアンプの出力電圧を検出する検出回路を含み、該検出回路の検出結果に応じて前記第1のステップの期間の長さを制御する請求項1記載の半導体記憶装置。
  11. 前記制御回路は、前記ダミーセンスアンプの出力と第1の参照電圧とを比較する第1の比較器と、前記ダミーセンスアンプの出力と第2の参照電圧とを比較する第2の比較器とを含み、前記第1の比較器の比較結果に応じて前記第1のステップの期間の長さを制御し、前記第2の比較器の比較結果に応じて前記第2のステップの期間の長さを制御し、
    前記第1の参照電圧は前記第1の電源より低くかつ前記第2の電源より高い電圧であり、前記第2の参照電圧は前記第1の参照電圧より低くかつ前記第2の電源より高い電圧である請求項10記載の半導体記憶装置。
  12. 前記制御回路は、前記ダミーセンスアンプの出力と参照電圧とを比較する比較器と、該比較器の出力を遅延させるための遅延素子とを含み、前記比較器の比較結果に応じて前記第1のステップの期間の長さを制御し、前記遅延素子の出力に応じて前記第2のステップの期間の長さを設定し、
    前記参照電圧は、前記第1の電源より低くかつ前記第2の電源より高い電圧である請求項10記載の半導体記憶装置。
  13. データを記憶するための複数のメモリセルが配列されたメモリセルアレイと、前記メモリセルのデータを増幅するためのセンスアンプと、第1の電源と、前記第1の電源より低い第2の電源とを有する半導体記憶装置の制御方法であって、
    前記センスアンプが前記第1の電源から電源の供給を受けて前記メモリセルのデータを増幅する第1のステップと、
    前記センスアンプが前記第1の電源からも前記第2の電源からも電源の供給を受けない第2のステップと、
    前記センスアンプが前記第2の電源から電源の供給を受けて前記メモリセルのデータを増幅する第3のステップと
    を有することを特徴とする半導体記憶装置の制御方法。
  14. 前記半導体記憶装置は、前記センスアンプの出力と前記メモリセルを接続するためのビット線を有し、
    前記第1のステップでは、前記ビット線の電位が前記第2の電源よりも高くなるように電荷を充電させる請求項13記載の半導体記憶装置の制御方法。
  15. 前記メモリセルは、電荷を蓄積することによりデータを記憶する容量素子を含み、
    前記第3のステップが開始される時点は、前記メモリセル内の容量素子にリフレッシュするために十分な電荷が蓄積されている時点である請求項14記載の半導体記憶装置の制御方法。
  16. 前記メモリセルは、電荷を蓄積することによりデータを記憶する容量素子を含み、
    前記第3のステップが開始される時点は、前記メモリセル内の容量素子の電位及び/又は前記ビット線の電位が前記第2の電源に等しくなる時点である請求項14記載の半導体記憶装置の制御方法。
JP2002541687A 2000-11-09 2000-11-09 半導体記憶装置及びその制御方法 Expired - Fee Related JP4824900B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/007883 WO2002039456A1 (fr) 2000-11-09 2000-11-09 Memoire a semi-conducteurs et son procede de commande

Publications (2)

Publication Number Publication Date
JPWO2002039456A1 JPWO2002039456A1 (ja) 2004-04-02
JP4824900B2 true JP4824900B2 (ja) 2011-11-30

Family

ID=11736671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002541687A Expired - Fee Related JP4824900B2 (ja) 2000-11-09 2000-11-09 半導体記憶装置及びその制御方法

Country Status (4)

Country Link
US (1) US6741514B2 (ja)
JP (1) JP4824900B2 (ja)
KR (1) KR100708561B1 (ja)
WO (1) WO2002039456A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004199813A (ja) * 2002-12-19 2004-07-15 Matsushita Electric Ind Co Ltd 半導体記憶装置
KR100546188B1 (ko) * 2003-05-24 2006-01-24 주식회사 하이닉스반도체 감지증폭수단을 포함하는 반도체 메모리 장치 및 그의감지증폭수단을 오버드라이브 하는 방법
KR100541367B1 (ko) * 2003-07-15 2006-01-11 주식회사 하이닉스반도체 오버드라이빙 구조를 가진 반도체 메모리 소자
JP3845096B2 (ja) * 2004-02-12 2006-11-15 株式会社東芝 磁気記憶装置
TWI323462B (en) * 2004-07-02 2010-04-11 Koltek Inc Operating method for dynamic random access memory
KR100613073B1 (ko) * 2004-09-21 2006-08-16 주식회사 하이닉스반도체 센스 앰프 오버드라이브 회로
US7379321B2 (en) * 2005-02-04 2008-05-27 Hitachi Global Storage Technologies Netherlands B.V. Memory cell and programmable logic having ferromagnetic structures exhibiting the extraordinary hall effect
KR100571648B1 (ko) * 2005-03-31 2006-04-17 주식회사 하이닉스반도체 반도체 메모리 소자의 오버 드라이버 제어신호 생성회로
JP5924173B2 (ja) * 2012-07-20 2016-05-25 富士通株式会社 電源選択回路を有する半導体装置、及び電源選択方法
KR102197137B1 (ko) * 2014-05-29 2020-12-31 에스케이하이닉스 주식회사 반도체 장치 및 이를 포함하는 반도체 시스템
KR20160001948A (ko) * 2014-06-30 2016-01-07 에스케이하이닉스 주식회사 반도체 장치 및 이를 포함하는 반도체 시스템
KR20190068098A (ko) * 2017-12-08 2019-06-18 삼성전자주식회사 다이나믹 랜덤 억세스 메모리 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562467A (ja) * 1991-09-05 1993-03-12 Hitachi Ltd センスアンプ駆動回路
JPH10269772A (ja) * 1997-03-19 1998-10-09 Sharp Corp 半導体記憶装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2624037B2 (ja) 1991-06-27 1997-06-25 日本電気株式会社 メンバカードシステム
JP3723615B2 (ja) * 1995-01-06 2005-12-07 株式会社ルネサステクノロジ ダイナミック型半導体記憶装置
JPH09120675A (ja) * 1995-08-18 1997-05-06 Hitachi Ltd 半導体集積回路
JP3694072B2 (ja) * 1995-08-18 2005-09-14 株式会社日立製作所 半導体装置
JPH10269771A (ja) * 1997-03-21 1998-10-09 Hitachi Ltd 半導体記憶装置及びデータ処理装置
JPH10302467A (ja) * 1997-04-22 1998-11-13 Hitachi Ltd 半導体集積回路装置
JP4118364B2 (ja) * 1997-07-16 2008-07-16 日本テキサス・インスツルメンツ株式会社 半導体記憶装置
KR100273274B1 (ko) * 1998-01-21 2001-01-15 김영환 오버 드라이빙 제어회로
US6420908B2 (en) * 1999-01-05 2002-07-16 Infineon Technologies Ag Sense amplifier
JP2000285676A (ja) * 1999-03-26 2000-10-13 Fujitsu Ltd オーバードライブ方式のセンスアンプを有するメモリデバイス
JP2001222888A (ja) * 2000-02-08 2001-08-17 Fujitsu Ltd 半導体記憶装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0562467A (ja) * 1991-09-05 1993-03-12 Hitachi Ltd センスアンプ駆動回路
JPH10269772A (ja) * 1997-03-19 1998-10-09 Sharp Corp 半導体記憶装置

Also Published As

Publication number Publication date
US20030227808A1 (en) 2003-12-11
US6741514B2 (en) 2004-05-25
WO2002039456A1 (fr) 2002-05-16
KR100708561B1 (ko) 2007-04-19
KR20030048458A (ko) 2003-06-19
JPWO2002039456A1 (ja) 2004-04-02

Similar Documents

Publication Publication Date Title
US8050113B2 (en) Core voltage discharger and semiconductor memory device with the same
JP4486777B2 (ja) モニターリング回路を有する半導体メモリ装置
US20080159045A1 (en) Semiconductor memory device capable of controlling drivability of overdriver
KR100582924B1 (ko) 반도체 판독 회로
KR100965773B1 (ko) 메모리소자의 센스앰프제어회로 및 그 제어방법
JP4824900B2 (ja) 半導体記憶装置及びその制御方法
US8416632B2 (en) Bitline precharge voltage generator, semiconductor memory device comprising same, and method of trimming bitline precharge voltage
US11342906B2 (en) Delay circuits, and related semiconductor devices and methods
KR0140175B1 (ko) 반도체 메모리 장치의 센스앰프 회로
US7602664B2 (en) Circuit and method of generating voltage of semiconductor memory apparatus
US10134465B2 (en) Semiconductor memory device and operating method thereof
US20070230262A1 (en) Semiconductor memory
US7586791B2 (en) Delay circuit for controlling a pre-charging time of bit lines of a memory cell array
US7764112B2 (en) Internal voltage discharge circuit and its control method
US6996018B2 (en) Method for sensing bit line with uniform sensing margin time and memory device thereof
US7573777B2 (en) Over driver control signal generator in semiconductor memory device
US7084675B2 (en) Circuit and method of generating a boosted voltage
JP2010102790A (ja) 半導体装置
US7450453B2 (en) Semiconductor memory device and method for driving bit line sense amplifier thereof
KR100780634B1 (ko) 반도체 메모리 소자의 오버 드라이버 제어신호 생성회로
KR100695285B1 (ko) 비트라인 이퀄라이즈 신호 구동 회로 및 방법
KR20070079446A (ko) 반도체 메모리 장치의 내부 전압 발생회로

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071017

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees